751
|
Bu L, Baba H, Yasuda T, Uchihara T, Ishimoto T. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci 2020; 111:3468-3477. [PMID: 33044028 PMCID: PMC7541012 DOI: 10.1111/cas.14578] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
The effectiveness of current chemotherapies for cancer is gradually progressing; however achieving a complete cure through chemotherapy is still difficult and has been the main goal in treatment of advanced cancer. Drug resistance is an issue in cancer therapy, therefore increasing numbers of investigations into drug resistance have focused on the characteristics of the cancer cells themselves. The interaction between the tumor microenvironment (TME) and cancer cells is also intimately involved in the development of drug resistance. Cancer-associated fibroblasts (CAFs) are a predominant component of the TME and affect tumor progression by secreting soluble factors. This review summarizes the most up-to-date knowledge of CAFs and drug resistance in cancer, with a focus on factors secreted from CAFs including proteins, cytokines, extracellular vesicles, and metabolites. A perspective on the potential role of anti-CAF therapies in overcoming CAF-induced drug resistance is also discussed.
Collapse
Affiliation(s)
- Luke Bu
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tadahito Yasuda
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Tomoyuki Uchihara
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Takatsugu Ishimoto
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
752
|
Miyabayashi K, Baker LA, Deschênes A, Traub B, Caligiuri G, Plenker D, Alagesan B, Belleau P, Li S, Kendall J, Jang GH, Kawaguchi RK, Somerville TDD, Tiriac H, Hwang CI, Burkhart RA, Roberts NJ, Wood LD, Hruban RH, Gillis J, Krasnitz A, Vakoc CR, Wigler M, Notta F, Gallinger S, Park Y, Tuveson DA. Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discov 2020; 10:1566-1589. [PMID: 32703770 PMCID: PMC7664990 DOI: 10.1158/2159-8290.cd-20-0133] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Koji Miyabayashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benno Traub
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Microbiology and Molecular Genetics, University of California, Davis, California
| | - Richard A Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas J Roberts
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura D Wood
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
753
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
754
|
El Jammal T, Sève P, Gerfaud-Valentin M, Jamilloux Y. State of the art: approved and emerging JAK inhibitors for rheumatoid arthritis. Expert Opin Pharmacother 2020; 22:205-218. [PMID: 32967471 DOI: 10.1080/14656566.2020.1822325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is the most common autoimmune inflammatory arthritis in adults. In the past decade, many treatments have emerged to expand the therapeutic armamentarium of rheumatologists. Among emerging treatments, Janus Kinase inhibitors (JAKi) are promising in treating RA and several other inflammatory conditions, such as psoriatic arthritis (PsA). The JAK/STAT signaling pathway is located downstream certain cytokines receptors that are known to be involved in RA pathogenesis. So far, three JAKi are approved for the treatment of RA, while other JAKi, are under investigation. AREAS COVERED Herein, the authors review those JAKi approved and emerging for the treatment of RA and provide their expert perspectives on the subject area. EXPERT OPINION JAKi represent an interesting alternative to other DMARDs when MTX has failed. Long-term extension studies are still ongoing, but one can assume that most of the major safety concerns have already come out. Switching from one JAKi to another DMARD has been little studied, but in such cases, preferring a treatment which does not interfere with the JAK/STAT pathway seems to be a reasonable choice.
Collapse
Affiliation(s)
- Thomas El Jammal
- Department of Internal Medicine, Lyon University Hospital , Lyon, France
| | - Pascal Sève
- Department of Internal Medicine, Lyon University Hospital , Lyon, France
| | | | - Yvan Jamilloux
- Department of Internal Medicine, Lyon University Hospital , Lyon, France
| |
Collapse
|
755
|
Luo Q, Fu Q, Zhang X, Zhang H, Qin T. Application of Single-Cell RNA Sequencing in Pancreatic Cancer and the Endocrine Pancreas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:143-152. [PMID: 32949397 DOI: 10.1007/978-981-15-4494-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pancreas is a complex organ composed of an endocrine (pancreatic islets) and an exocrine portion. This mixed cell population has resulted in an implacable barrier to exploring the detailed mechanism and function of each cell type in previous investigative approaches. In recent years, single-cell RNA sequencing (scRNA-seq) technologies have provided in-depth analysis of cell heterogeneity in the pancreas and in pancreatic cancer. It is especially effective in cell-type-specific molecule identification and detection of interactions between cancer cells and the stromal microenvironment. To date, numerous reports have described the application of scRNA-seq in studies of pancreatic islets and pancreatic cancer. The aim of this paper is to review recent advances of pancreatic transcriptomics and pancreatic cancer using scRNA-seq strategies.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Fu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwei Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
756
|
Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12092652. [PMID: 32957515 PMCID: PMC7564346 DOI: 10.3390/cancers12092652] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are key players in the tumor microenvironment. They are responsible for potentiating growth and metastasis through versatile functions, including maintenance of the extracellular matrix, blood vessel formation, modulation of tumor metabolism, suppression of antitumor immunity, and promotion of chemotherapy resistance. As such, CAFs are associated with poor prognosis and have emerged as a focus of anticancer research. In this review, we discuss the origins of CAFs, their heterogenous subtypes and their properties. We then detail the current state of preclinical and clinical research targeting CAF activities. We believe the limited efficacy of current cancer therapeutic approaches is driven by an incomplete understanding of CAF functions and by a nonstandardized CAF classification system. Therefore, we suggest a unified CAF classification based on specific functions to develop a new class of therapies that will focus on targeting the pro-tumorigenic properties of CAFs during tumor progression. Abstract Cancer-associated fibroblasts (CAFs) are indispensable architects of the tumor microenvironment. They perform the essential functions of extracellular matrix deposition, stromal remodeling, tumor vasculature modulation, modification of tumor metabolism, and participation in crosstalk between cancer and immune cells. In this review, we discuss our current understanding of the principal differences between normal fibroblasts and CAFs, the origin of CAFs, their functions, and ultimately, highlight the intimate connection of CAFs to virtually all of the hallmarks of cancer. We address the remarkable degree of functional diversity and phenotypic plasticity displayed by CAFs and strive to stratify CAF biology among different tumor types into practical functional groups. Finally, we summarize the status of recent and ongoing trials of CAF-directed therapies and contend that the paucity of trials resulting in Food and Drug Administration (FDA) approvals thus far is a consequence of the failure to identify targets exclusive of pro-tumorigenic CAF phenotypes that are mechanistically linked to specific CAF functions. We believe that the development of a unified CAF nomenclature, the standardization of functional assays to assess the loss-of-function of CAF properties, and the establishment of rigorous definitions of CAF subpopulations and their mechanistic functions in cancer progression will be crucial to fully realize the promise of CAF-targeted therapies.
Collapse
|
757
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
758
|
Ma Z, Li J, Lin K, Ramachandran M, Zhang D, Showalter M, De Souza C, Lindstrom A, Solano LN, Jia B, Urayama S, Duan Y, Fiehn O, Lin TY, Li M, Li Y. Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat Commun 2020; 11:4615. [PMID: 32934241 PMCID: PMC7493904 DOI: 10.1038/s41467-020-18399-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Integration of the unique advantages of the fields of drug discovery and drug delivery is invaluable for the advancement of drug development. Here we propose a self-delivering one-component new-chemical-entity nanomedicine (ONN) strategy to improve cancer therapy through incorporation of the self-assembly principle into drug design. A lysosomotropic detergent (MSDH) and an autophagy inhibitor (Lys05) are hybridised to develop bisaminoquinoline derivatives that can intrinsically form nanoassemblies. The selected BAQ12 and BAQ13 ONNs are highly effective in inducing lysosomal disruption, lysosomal dysfunction and autophagy blockade and exhibit 30-fold higher antiproliferative activity than hydroxychloroquine used in clinical trials. These single-drug nanoparticles demonstrate excellent pharmacokinetic and toxicological profiles and dramatic antitumour efficacy in vivo. In addition, they are able to encapsulate and deliver additional drugs to tumour sites and are thus promising agents for autophagy inhibition-based combination therapy. Given their transdisciplinary advantages, these BAQ ONNs have enormous potential to improve cancer therapy.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jin Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Kai Lin
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Dalin Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Megan Showalter
- West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Lucas N Solano
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Bei Jia
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Shiro Urayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Yuyou Duan
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
| | - Tzu-Yin Lin
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
759
|
McAndrews KM, Kalluri R. A map of human breast cancer: new players in stromal-immune crosstalk. EMBO J 2020; 39:e106368. [PMID: 32909627 DOI: 10.15252/embj.2020106368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prominent accumulation of mesenchymal cells within tumors has long been appreciated, and recent studies suggest molecular and functional diversity of stromal components. In this issue, Wu et al (2020) employed single-cell RNA sequencing of primary human breast tumors and identified new subsets of stromal mesenchymal cells with distinct transcriptional profiles, tissue localization, and associative immune microenvironments.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
760
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 727] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
761
|
Yamauchi M, Gibbons DL, Zong C, Fradette JJ, Bota-Rabassedas N, Kurie JM. Fibroblast heterogeneity and its impact on extracellular matrix and immune landscape remodeling in cancer. Matrix Biol 2020; 91-92:8-18. [PMID: 32442601 DOI: 10.1016/j.matbio.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is marked by dense collagenous matrix accumulations that dynamically reorganize to accommodate a growing and invasive tumor mass. Cancer-associated fibroblasts (CAFs) play an essential role in matrix remodeling and influence other processes in the tumor microenvironment, including angiogenesis, immunosuppression, and invasion. These findings have spawned efforts to elucidate CAF functionality at the single-cell level. Here, we will discuss how those efforts have impacted our understanding of the ways in which CAFs govern matrix remodeling and the influence of matrix remodeling on the development of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NS, United States
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
762
|
Cho C, Mukherjee R, Peck AR, Sun Y, McBrearty N, Katlinski KV, Gui J, Govindaraju PK, Puré E, Rui H, Fuchs SY. Cancer-associated fibroblasts downregulate type I interferon receptor to stimulate intratumoral stromagenesis. Oncogene 2020; 39:6129-6137. [PMID: 32807917 PMCID: PMC7502515 DOI: 10.1038/s41388-020-01424-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Activation of cancer-associated fibroblasts (CAFs) and ensuing desmoplasia play an important role in the growth and progression of solid tumors. Here we demonstrate that, within colon and pancreatic ductal adenocarcinoma tumors, efficient stromagenesis relies on downregulation of the IFNAR1 chain of the type I interferon (IFN1) receptor. Expression of the fibroblast activation protein (FAP) and accumulation of the extracellular matrix (ECM) was notably impaired in tumors grown in the Ifnar1S526A (SA) knock-in mice, which are deficient in IFNAR1 downregulation. Primary fibroblasts from these mice exhibited elevated levels of Smad7, a negative regulator of the transforming growth factor-β (TGFβ) pathway. Knockdown of Smad7 alleviated deficient ECM production in SA fibroblasts in response to TGFβ. Analysis of human colorectal cancers revealed an inverse correlation between IFNAR1 and FAP levels. Whereas growth of tumors in SA mice was stimulated by co-injection of wild type but not SA fibroblasts, genetic ablation of IFNAR1 in fibroblasts also accelerated tumor growth. We discuss how inactivation of IFNAR1 in CAFs acts to stimulate stromagenesis and tumor growth.
Collapse
Affiliation(s)
- Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riddhita Mukherjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Noreen McBrearty
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kanstantsin V Katlinski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Gui
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Priya K Govindaraju
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
763
|
Bordignon P, Bottoni G, Xu X, Popescu AS, Truan Z, Guenova E, Kofler L, Jafari P, Ostano P, Röcken M, Neel V, Dotto GP. Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Rep 2020; 28:2358-2372.e6. [PMID: 31461652 PMCID: PMC6718812 DOI: 10.1016/j.celrep.2019.07.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Heterogeneity of cancer-associated fibroblasts (CAFs) can result from activation of distinct signaling pathways. We show that in primary human dermal fibroblasts (HDFs), fibroblast growth factor (FGF) and transforming growth factor β (TGF-β) signaling oppositely modulate multiple CAF effector genes. Genetic abrogation or pharmacological inhibition of either pathway results in induction of genes responsive to the other, with the ETV1 transcription factor mediating the FGF effects. Duality of FGF/TGF-β signaling and differential ETV1 expression occur in multiple CAF strains and fibroblasts of desmoplastic versus non-desmoplastic skin squamous cell carcinomas (SCCs). Functionally, HDFs with opposite TGF-β versus FGF modulation converge on promoting cancer cell proliferation. However, HDFs with increased TGF-β signaling enhance invasive properties and epithelial-mesenchymal transition (EMT) of SCC cells, whereas HDFs with increased FGF signaling promote macrophage infiltration. The findings point to a duality of FGF versus TGF-β signaling in distinct CAF populations that promote cancer development through modulation of different processes. FGF and TGF-β signaling exert opposite control over multiple CAF effector genes ETV1 transcription factor mediates FGF effects and suppresses those of TGF-β Modulation of either pathway leads to different tumor-promoting CAF populations TGF-β-activated CAFs promote EMT, but FGF-activated CAFs increase inflammation
Collapse
Affiliation(s)
- Pino Bordignon
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Giulia Bottoni
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiaoying Xu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Alma S Popescu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Zinnia Truan
- Department of Otolaryngology-Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lukas Kofler
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Paris Jafari
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella 13900, Italy
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland.
| |
Collapse
|
764
|
Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet AS, Murphy KJ, Pereira B, Al-Eryani G, Bartonicek N, Hou R, Torpy JR, Junankar S, Chan CL, Lam CE, Hui MN, Gluch L, Beith J, Parker A, Robbins E, Segara D, Mak C, Cooper C, Warrier S, Forrest A, Powell J, O'Toole S, Cox TR, Timpson P, Lim E, Liu XS, Swarbrick A. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J 2020; 39:e104063. [PMID: 32790115 DOI: 10.15252/embj.2019104063] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the development of stromal-targeted therapies. Single-cell RNA sequencing of five TNBCs revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) subpopulations. CAFs clustered into two states: the first with features of myofibroblasts and the second characterised by high expression of growth factors and immunomodulatory molecules. PVL cells clustered into two states consistent with a differentiated and immature phenotype. We showed that these stromal states have distinct morphologies, spatial relationships and functional properties in regulating the extracellular matrix. Using cell signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse array of immunoregulatory molecules. Importantly, the investigation of gene signatures from inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively. Such insights present promising candidates to further investigate for new therapeutic strategies in the treatment of TNBCs.
Collapse
Affiliation(s)
- Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel L Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Chenfei Wang
- Department of Data Sciences, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Kate Harvey
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Aurélie S Cazet
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Kendelle J Murphy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke Pereira
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Ghamdan Al-Eryani
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Nenad Bartonicek
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, Australia
| | - James R Torpy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chuan En Lam
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Mun N Hui
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Jane Beith
- Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | | | | | | | - Cindy Mak
- Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Caroline Cooper
- Pathology Queensland, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Southside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Qld, Australia
| | - Sanjay Warrier
- Department of Breast Surgery, Chris O'Brien Lifehouse, Camperdown, NSW, Australia.,Royal Prince Alfred Institute of Academic Surgery, Sydney University, Sydney, NSW, Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, Australia.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Joseph Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Sandra O'Toole
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Australian Clinical Laboratories, Northern Beaches Hospital, Frenchs Forest, NSW, Australia
| | - Thomas R Cox
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - X Shirley Liu
- Department of Data Sciences, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
765
|
Tanase C, Gheorghisan-Galateanu AA, Popescu ID, Mihai S, Codrici E, Albulescu R, Hinescu ME. CD36 and CD97 in Pancreatic Cancer versus Other Malignancies. Int J Mol Sci 2020; 21:5656. [PMID: 32781778 PMCID: PMC7460590 DOI: 10.3390/ijms21165656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Starting from the recent identification of CD36 and CD97 as a novel marker combination of fibroblast quiescence in lung during fibrosis, we aimed to survey the literature in search for facts about the separate (or concomitant) expression of clusters of differentiation CD36 and CD97 in either tumor- or pancreatic-cancer-associated cells. Here, we provide an account of the current knowledge on the diversity of the cellular functions of CD36 and CD97 and explore their potential (common) contributions to key cellular events in oncogenesis or metastasis development. Emphasis is placed on quiescence as an underexplored mechanism and/or potential target in therapy. Furthermore, we discuss intricate signaling mechanisms and networks involving CD36 and CD97 that may regulate different subpopulations of tumor-associated cells, such as cancer-associated fibroblasts, adipocyte-associated fibroblasts, tumor-associated macrophages, or neutrophils, during aggressive pancreatic cancer. The coexistence of quiescence and activated states in cancer-associated cell subtypes during pancreatic cancer should be better documented, in different histological forms. Remodeling of the local microenvironment may also change the balance between growth and dormant state. Taking advantage of the reported data in different other tissue types, we explore the possibility to induce quiescence (similar to that observed in normal cells), as a therapeutic option to delay the currently observed clinical outcome.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
- Faculty of Medicine, Titu Maiorescu University, 001863 Bucharest, Romania
| | - Ancuta-Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Str., 050474 Bucharest, Romania;
- ‘C.I. Parhon’ National Institute of Endocrinology, 001863 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
| | - Simona Mihai
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
| | - Elena Codrici
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
| | - Radu Albulescu
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
- National Institute for Chemical Pharmaceutical R&D, 001863 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Str., 050474 Bucharest, Romania;
| |
Collapse
|
766
|
Koliaraki V, Prados A, Armaka M, Kollias G. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol 2020; 21:974-982. [PMID: 32747813 DOI: 10.1038/s41590-020-0741-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
Mesenchymal cells are mesoderm-derived stromal cells that are best known for providing structural support to organs, synthesizing and remodeling the extracellular matrix (ECM) and regulating development, homeostasis and repair of tissues. Recent detailed mechanistic insights into the biology of fibroblastic mesenchymal cells have revealed they are also significantly involved in immune regulation, stem cell maintenance and blood vessel function. It is now becoming evident that these functions, when defective, drive the development of complex diseases, such as various immunopathologies, chronic inflammatory disease, tissue fibrosis and cancer. Here, we provide a concise overview of the contextual contribution of fibroblastic mesenchymal cells in physiology and disease and bring into focus emerging evidence for both their heterogeneity at the single-cell level and their tissue-specific, spatiotemporal functional diversity.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece. .,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece. .,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
767
|
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol 2020; 17:487-505. [PMID: 32393771 PMCID: PMC8284850 DOI: 10.1038/s41575-020-0300-1] [Citation(s) in RCA: 563] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the Western world with limited therapeutic options and dismal long-term survival. The neoplastic epithelium exists within a dense stroma, which is recognized as a critical mediator of disease progression through direct effects on cancer cells and indirect effects on the tumour immune microenvironment. The three dominant entities in the PDAC stroma are extracellular matrix (ECM), vasculature and cancer-associated fibroblasts (CAFs). The ECM can function as a barrier to effective drug delivery to PDAC cancer cells, and a multitude of strategies to target the ECM have been attempted in the past decade. The tumour vasculature is a complex system and, although multiple anti-angiogenesis agents have already failed late-stage clinical trials in PDAC, other vasculature-targeting approaches aimed at vessel normalization and tumour immunosensitization have shown promise in preclinical models. Lastly, PDAC CAFs participate in active cross-talk with cancer cells within the tumour microenvironment. The existence of intratumoural CAF heterogeneity represents a paradigm shift in PDAC CAF biology, with myofibroblastic and inflammatory CAF subtypes that likely make distinct contributions to PDAC progression. In this Review, we discuss our current understanding of the three principal constituents of PDAC stroma, their effect on the prevalent immune landscape and promising therapeutic targets within this compartment.
Collapse
Affiliation(s)
- Abdel N Hosein
- Department of Internal Medicine, Division of Hematology & Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Therapeutic Oncology Research and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
768
|
Kanzaki R, Pietras K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci 2020; 111:2708-2717. [PMID: 32573845 PMCID: PMC7419037 DOI: 10.1111/cas.14537] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Despite marked development in cancer therapies during recent decades, the prognosis for advanced cancer remains poor. The conventional tumor-cell-centric view of cancer can only explain part of cancer progression, and thus a thorough understanding of the tumor microenvironment (TME) is crucial. Among cells within the TME, cancer-associated fibroblasts (CAFs) are attracting attention as a target for cancer therapy. However, CAFs present a heterogeneous population of cells and more detailed classification of CAFs and investigation of functions of each subset is needed to develop novel CAF-targeted therapies. In this context, application of newly developed approaches to single-cell analysis has already made an impact on our understanding of the heterogeneity of CAFs. Here, we review the recent literature on CAF heterogeneity and function, and discuss the possibility of novel therapies targeting CAF subsets.
Collapse
Affiliation(s)
- Ryu Kanzaki
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund University Cancer CentreLund UniversityLundSweden
| | - Kristian Pietras
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund University Cancer CentreLund UniversityLundSweden
| |
Collapse
|
769
|
Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid Models of Tumor Immunology. Trends Immunol 2020; 41:652-664. [PMID: 32654925 PMCID: PMC7416500 DOI: 10.1016/j.it.2020.06.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Cellular interactions in the tumor microenvironment (TME) significantly govern cancer progression and drug response. The efficacy of clinical immunotherapies has fostered an exponential interest in the tumor immune microenvironment, which in turn has engendered a pressing need for robust experimental systems modeling patient-specific tumor-immune interactions. Traditional 2D in vitro tumor immunotherapy models have reconstituted immortalized cancer cell lines with immune components, often from peripheral blood. However, newly developed 3D in vitro organoid culture methods now allow the routine culture of primary human tumor biopsies and increasingly incorporate immune components. Here, we present a viewpoint on recent advances, and propose translational applications of tumor organoids for immuno-oncology research, immunotherapy modeling, and precision medicine.
Collapse
Affiliation(s)
- Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ning Cheng
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michitaka Nakano
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
770
|
Zhu Z, Achreja A, Meurs N, Animasahun O, Owen S, Mittal A, Parikh P, Lo TW, Franco-Barraza J, Shi J, Gunchick V, Sherman MH, Cukierman E, Pickering AM, Maitra A, Sahai V, Morgan MA, Nagrath S, Lawrence TS, Nagrath D. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat Metab 2020; 2:775-792. [PMID: 32694827 PMCID: PMC7438275 DOI: 10.1038/s42255-020-0226-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Branched-chain amino acids (BCAAs) supply both carbon and nitrogen in pancreatic cancers, and increased levels of BCAAs have been associated with increased risk of pancreatic ductal adenocarcinomas (PDACs). It remains unclear, however, how stromal cells regulate BCAA metabolism in PDAC cells and how mutualistic determinants control BCAA metabolism in the tumour milieu. Here, we show distinct catabolic, oxidative and protein turnover fluxes between cancer-associated fibroblasts (CAFs) and cancer cells, and a marked reliance on branched-chain α-ketoacid (BCKA) in PDAC cells in stroma-rich tumours. We report that cancer-induced stromal reprogramming fuels this BCKA demand. The TGF-β-SMAD5 axis directly targets BCAT1 in CAFs and dictates internalization of the extracellular matrix from the tumour microenvironment to supply amino-acid precursors for BCKA secretion by CAFs. The in vitro results were corroborated with circulating tumour cells (CTCs) and PDAC tissue slices derived from people with PDAC. Our findings reveal therapeutically actionable targets in pancreatic stromal and cancer cells.
Collapse
Affiliation(s)
- Ziwen Zhu
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Owen
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Parikh
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ting-Wen Lo
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Edna Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Meredith A Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sunitha Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
771
|
Lo YH, Karlsson K, Kuo CJ. Applications of Organoids for Cancer Biology and Precision Medicine. NATURE CANCER 2020; 1:761-773. [PMID: 34142093 PMCID: PMC8208643 DOI: 10.1038/s43018-020-0102-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Organoid technologies enable the creation of in vitro physiologic systems that model tissues of origin more accurately than classical culture approaches. Seminal characteristics, including three-dimensional structure and recapitulation of self-renewal, differentiation, and disease pathology, render organoids eminently suited as hybrids that combine the experimental tractability of traditional 2D cell lines with cellular attributes of in vivo model systems. Here, we describe recent advances in this rapidly evolving field and their applications in cancer biology, clinical translation and precision medicine.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
772
|
Tanaka HY, Kurihara T, Nakazawa T, Matsusaki M, Masamune A, Kano MR. Heterotypic 3D pancreatic cancer model with tunable proportion of fibrotic elements. Biomaterials 2020; 251:120077. [PMID: 32388166 DOI: 10.1016/j.biomaterials.2020.120077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an often lethal disease characterized by a dense, fibrotic stroma. However, the lack of relevant preclinical models that recapitulate the characteristic histopathology of human PDAC in vitro impedes the development of novel therapies. The amount of stromal elements differ largely within and between patients, but in vitro models of human PDAC often do not account for this heterogeneity. Indeed, analyses of human PDAC histopathology revealed that the proportion of stroma ranged from 40 to 80% across patients. We, therefore, generated a novel 3D model of human PDAC, consisting of co-cultured human PDAC tumor cells and fibroblasts/pancreatic stellate cells, in which the proportion of fibrotic elements can be tuned across the clinically observed range. Using this model, we analyzed the signaling pathways involved in the differentiation of myofibroblasts, a characteristic subpopulation of fibroblasts seen in PDAC. We show that both YAP and SMAD2/3 in fibroblasts are required for myofibroblastic differentiation and that both shared and distinct signaling pathways regulate the nuclear localization of these factors during this process. Our novel model will be useful in promoting the understanding of the complex mechanisms by which the fibrotic stroma develops and how it might be therapeutically targeted.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Tsuyoshi Kurihara
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan; Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan.
| |
Collapse
|
773
|
Sperb N, Tsesmelis M, Wirth T. Crosstalk between Tumor and Stromal Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E5486. [PMID: 32752017 PMCID: PMC7432853 DOI: 10.3390/ijms21155486] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer. The poor prognosis calls for a more detailed understanding of disease biology in order to pave the way for the development of effective therapies. Typically, the pancreatic tumor is composed of a minority of malignant cells within an excessive tumor microenvironment (TME) consisting of extracellular matrix (ECM), fibroblasts, immune cells, and endothelial cells. Research conducted in recent years has particularly focused on cancer-associated fibroblasts (CAFs) which represent the most prominent cellular component of the desmoplastic stroma. Here, we review the complex crosstalk between CAFs, tumor cells, and other components of the TME, and illustrate how these interactions drive disease progression. We also discuss the emerging field of CAF heterogeneity, their tumor-supportive versus tumor-suppressive capacity, and the consequences for designing stroma-targeted therapies in the future.
Collapse
Affiliation(s)
| | | | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, 89081 Ulm, Germany; (N.S.); (M.T.)
| |
Collapse
|
774
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
775
|
Melissari MT, Chalkidi N, Sarris ME, Koliaraki V. Fibroblast Reprogramming in Gastrointestinal Cancer. Front Cell Dev Biol 2020; 8:630. [PMID: 32760726 PMCID: PMC7373725 DOI: 10.3389/fcell.2020.00630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancers are a significant cause of cancer mortality worldwide and have been strongly linked with chronic inflammation. Current therapies focus on epithelial/cancer cells; however, the importance of the tumor microenvironment in the development and treatment of the disease is also now well established. Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment, and are actively participating in tumor initiation, promotion and metastasis. They structurally and functionally affect cancer cell proliferation, tumor immunity, angiogenesis, extracellular matrix remodeling and metastasis through a variety of signaling pathways. CAFs originate predominantly from resident mesenchymal cells, which are activated and reprogrammed in response to cues from cancer cells. In recent years, chronic inflammation of the gastrointestinal tract has also proven an important driver of mesenchymal cell activation and subsequent CAF development, which in turn are capable of regulating the transition from acute to chronic inflammation and cancer. In this review, we will provide a concise overview of the mechanisms that drive fibroblast reprogramming in cancer and the recent advances on the downstream signaling pathways that regulate the functional properties of the activated mesenchyme. This new mechanistic insight could pave the way for new therapeutic strategies and better prognosis for cancer patients.
Collapse
Affiliation(s)
- Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michalis E Sarris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|
776
|
Kandimalla R, Tomihara H, Banwait JK, Yamamura K, Singh G, Baba H, Goel A. A 15-Gene Immune, Stromal, and Proliferation Gene Signature that Significantly Associates with Poor Survival in Patients with Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020; 26:3641-3648. [PMID: 32234757 PMCID: PMC7367725 DOI: 10.1158/1078-0432.ccr-19-4044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with dismal survival rates. Tumor microenvironment (TME), comprising of immune cells and cancer-associated fibroblasts, plays a key role in driving poor prognosis and resistance to chemotherapy. Herein, we aimed to identify a TME-associated, risk-stratification gene biomarker signature in PDAC. EXPERIMENTAL DESIGN The initial biomarker discovery was performed in The Cancer Genome Atlas (TCGA, n = 163) transcriptomic data. This was followed by independent validation of the gene signature in the International Cancer Genome Consortium (ICGC, n = 95), E-MTAB-6134 (n = 288), and GSE71729 (n = 123) datasets for predicting overall survival (OS), and for its ability to detect poor molecular subtypes. Clinical validation and nomogram establishment was undertaken by performing multivariate Cox regression analysis. RESULTS Our biomarker discovery effort identified a 15-gene immune, stromal, and proliferation (ISP) gene signature that significantly associated with poor OS [HR, 3.90; 95% confidence interval (CI), 2.36-6.41; P < 0.0001]. This signature also robustly predicted survival in three independent validation cohorts ICGC [HR, 2.63 (1.56-4.41); P < 0.0001], E-MTAB-6134 [HR, 1.53 (1.14-2.04); P = 0.004], and GSE71729 [HR, 2.33 (1.49-3.63); P < 0.0001]. Interestingly, the ISP signature also permitted identification of poor molecular PDAC subtypes with excellent accuracy in all four cohorts; TCGA (AUC = 0.94), ICGC (AUC = 0.91), E-MTAB-6134 (AUC = 0.80), and GSE71729 (AUC = 0.83). The ISP-derived high-risk patients exhibited significantly poor OS in a clinical validation cohort [n = 119; HR, 2.62 (1.50-4.56); P = 0.0004]. A nomogram was established which included the ISP, CA19-9, and T- and N-stage for eventual clinical translation. CONCLUSIONS We report a novel gene signature for risk-stratification and robust identification of patients with PDAC with poor molecular subtypes.
Collapse
Affiliation(s)
- Raju Kandimalla
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Hideo Tomihara
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jasjit K Banwait
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Kensuke Yamamura
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Gagandeep Singh
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
777
|
Bonneau C, Eliès A, Kieffer Y, Bourachot B, Ladoire S, Pelon F, Hequet D, Guinebretière JM, Blanchet C, Vincent-Salomon A, Rouzier R, Mechta-Grigoriou F. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res 2020; 22:76. [PMID: 32665033 PMCID: PMC7362513 DOI: 10.1186/s13058-020-01311-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Early luminal breast cancer (BC) represents 70% of newly diagnosed BC cases. Among them, small (under 2 cm) BC without lymph node metastasis (classified as T1N0) have been rarely studied, as their prognosis is generally favorable. Nevertheless, up to 5% of luminal T1N0 BC patients relapse with distant metastases that ultimately prove fatal. The aim of our work was to identify the mechanisms involved in metastatic recurrence in these patients. Methods Our study addresses the role that autonomous and non-autonomous tumor cell features play with regard to distant recurrence in early luminal BC patients. We created a cohort of T1N0 luminal BC patients (tumors between 0.5–2 cm without lymph node metastasis) with metastatic recurrence (“cases”) and corresponding “controls” (without relapse) matched 1:1 on main prognostic factors: age, grade, and proliferation. We deciphered different characteristics of cancer cells and their tumor micro-environment (TME) by deep analyses using immunohistochemistry. We performed in vitro functional assays and highlighted a new mechanism of cooperation between cancer cells and one particular subset of cancer-associated fibroblasts (CAF). Results We found that specific TME features are indicative of relapse in early luminal BC. Indeed, quantitative histological analyses reveal that “cases” are characterized by significant accumulation of a particular CAF subset (CAF-S1) and decrease in CD4+ T lymphocytes, without any other association with immune cells. In multivariate analysis, TME features, in particular CAF-S1 enrichment, remain significantly associated with recurrence, thereby demonstrating their clinical relevance. Finally, by performing functional analyses, we demonstrated that CAF-S1 pro-metastatic activity is mediated by the CDH11/osteoblast cadherin, consistent with bones being a major site of metastases in luminal BC patients. Conclusions This study shows that distant recurrence in T1N0 BC is strongly associated with the presence of CAF-S1 fibroblasts. Moreover, we identify CDH11 as a key player in CAF-S1-mediated pro-metastatic activity. This is independent of tumor cells and represents a new prognostic factor. These results could assist clinicians in identifying luminal BC patients with high risk of relapse. Targeted therapies against CAF-S1 using anti-FAP antibody or CDH11-targeting compounds might help in preventing relapse for such patients with activated stroma.
Collapse
Affiliation(s)
- Claire Bonneau
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Antoine Eliès
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France
| | - Brigitte Bourachot
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France
| | - Sylvain Ladoire
- Inserm U1231, Chemotherapy and immune response, Center Georges François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Floriane Pelon
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France
| | - Delphine Hequet
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Jean-Marc Guinebretière
- Department of Pathology, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Christophe Blanchet
- Inserm U1231, Chemotherapy and immune response, Center Georges François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie Hospital Group, 26, rue d'Ulm, 75248, Paris, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France.,Inserm U900, Cancer et génome : bioinformatique, biostatistiques et épidémiologie, Institut Curie, 35 rue Dailly, 92210, Saint-Cloud, France.,UR 7285, Risques cliniques et sécurité en santé des femmes et en santé périnatale, Versailles Saint Quentin en Yvelines University, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France. .,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
778
|
The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers (Basel) 2020; 12:cancers12071849. [PMID: 32659999 PMCID: PMC7408631 DOI: 10.3390/cancers12071849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy with rising incidence and limited therapeutic options. Obesity is a well-established risk factor for PC development. Moreover, it negatively affects outcome in PC patients. Excessive fat accumulation in obese, over- and normal-weight individuals induces metabolic and inflammatory changes of adipose tissue microenvironment leading to a dysfunctional adipose “organ”. This may drive the association between abnormal fat accumulation and pancreatic cancer. In this review, we describe several molecular mechanisms that underpin this association at both local and systemic levels. We focus on the role of adipose tissue-derived circulating factors including adipokines, hormones and pro-inflammatory cytokines, as well as on the impact of the local adipose tissue in promoting PC. A discussion on potential therapeutic interventions, interfering with pro-tumorigenic effects of dysfunctional adipose tissue in PC, is included. Considering the raise of global obesity, research efforts to uncover the molecular basis of the relationship between pancreatic cancer and adipose tissue dysfunction may provide novel insights for the prevention of this deadly disease. In addition, these efforts may uncover novel targets for personalized interventional strategies aimed at improving the currently unsatisfactory PC therapeutic options.
Collapse
|
779
|
Oni TE, Biffi G, Baker LA, Hao Y, Tonelli C, Somerville TD, Deschênes A, Belleau P, Hwang CI, Sánchez-Rivera FJ, Cox H, Brosnan E, Doshi A, Lumia RP, Khaledi K, Park Y, Trotman LC, Lowe SW, Krasnitz A, Vakoc CR, Tuveson DA. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med 2020; 217:151922. [PMID: 32633781 PMCID: PMC7478739 DOI: 10.1084/jem.20192389] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.
Collapse
Affiliation(s)
- Tobiloba E. Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lindsey A. Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Claudia Tonelli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Chang-il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Rebecca P. Lumia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Kimia Khaledi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY,Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Correspondence to David A. Tuveson:
| |
Collapse
|
780
|
Oszvald Á, Szvicsek Z, Pápai M, Kelemen A, Varga Z, Tölgyes T, Dede K, Bursics A, Buzás EI, Wiener Z. Fibroblast-Derived Extracellular Vesicles Induce Colorectal Cancer Progression by Transmitting Amphiregulin. Front Cell Dev Biol 2020; 8:558. [PMID: 32775326 PMCID: PMC7381355 DOI: 10.3389/fcell.2020.00558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EV), structures surrounded by a biological membrane, transport biologically active molecules, and represent a recently identified way of intercellular communication. Colorectal cancer (CRC), one of the most common cancer types in the Western countries, is composed of both tumor and stromal cells and the amount of stromal fibroblasts negatively correlates with patient survival. Here we show that normal colon fibroblasts (NCF) release EVs with a characteristic miRNA cargo profile when stimulated with TGFβ, one of the most important activating factors of fibroblasts, without a significant increase in the amount of secreted EVs. Importantly, fibroblast-derived EVs induce cell proliferation in epidermal growth factor (EGF)-dependent patient-derived organoids, one of the best current systems to model the intra-tumoral heterogeneity of human cancers. In contrast, fibroblast-derived EVs have no effect in 3D models where EGF is dispensible. This EV-induced cell proliferation did not depend on whether NCFs or cancer-associated fibroblasts were studied or on the pre-activation by TGFβ, suggesting that TGFβ-induced sorting of specific miRNAs into EVs does not play a major role in enhancing CRC proliferation. Mechanistically, we provide evidence that amphiregulin, transported by EVs, is a major factor in inducing CRC cell proliferation. We found that neutralization of EV-bound amphiregulin blocked the effects of the fibroblast-derived EVs. Collectively, our data suggest a novel mechanism for fibroblast-induced CRC cell proliferation, coupled to EV-associated amphiregulin.
Collapse
Affiliation(s)
- Ádám Oszvald
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Szvicsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Márton Pápai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Varga
- Research Centre for Natural Sciences, Budapest, Hungary
| | | | | | | | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary.,HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
781
|
Biffi G. Tracing the Origin of Fibroblasts in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2020; 10:645-646. [PMID: 32640201 PMCID: PMC7474150 DOI: 10.1016/j.jcmgh.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Giulia Biffi
- Correspondence Address correspondence to: Giulia Biffi, PhD, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom.
| |
Collapse
|
782
|
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:112. [PMID: 32546182 PMCID: PMC7296768 DOI: 10.1186/s13046-020-01611-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that intratumoral heterogeneity contributes to the development of resistance to anticancer therapeutics. Fibroblasts, which are components of the paraneoplastic stroma, play a crucial role in the wound-healing process. Activated fibroblasts accumulate in the wound and are involved in many aspects of the tissue remodeling cascade that initiates the repair process and prevents further tissue damage. The pathophysiological roles of cancer-associated fibroblasts (CAFs) in the heterogeneous tumor microenvironment have attracted increasing interest. CAFs play crucial roles in tumor progression and the response to chemotherapy. Several cytokines and chemokines are involved in the conversion of normal fibroblasts into CAFs, and some of these form a feedback loop between cancer cells and CAFs. In addition, the physical force between tumor cells and CAFs promotes cooperative invasion or co-migration of both types of cells. Pro-inflammatory cytokines, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), are secreted by both cancer cells and CAFs, and mediate the epigenetic modification of CAFs. This enhances the pro-tumorigenic function of CAFs mediated by promoting actomyosin contractility and extracellular matrix remodeling to form the tracks used for collective cancer cell migration. The concept of intra-tumoral CAF heterogeneity refers to the presence of inflammatory CAFs with low levels of α-smooth muscle actin (α-SMA) and high levels of IL-6 expression, which are in striking contrast to transforming growth factor-β (TGF-β)-dependent myofibroblastic CAFs with high α-SMA expression levels. CAF populations that suppress tumor growth and progression through stroma-specific Hedgehog (Hh) activation have been detected in different murine tumor models including those of the bladder, colon, and pancreas. A new therapeutic strategy targeting CAFs is the "stromal switch," in which tumor-promoting CAFs are changed into tumor-retarding CAFs with attenuated stromal stiffness. Several molecular mechanisms that can be exploited to design personalized anticancer therapies targeting CAFs remain to be elucidated. Strategies aimed at targeting the tumor stroma as well as tumor cells themselves have attracted academic attention for their application in precision medicine. This novel review discusses the role of the activation of EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades in CAFs in relation to the chemoresistance and invasive/metastatic behavior of cancer cells. For instance, although activated EGFR signaling contributes to collective cell migration in cooperation with CAFs, an activated Hippo pathway is responsible for stromal stiffness resulting in the collapse of neoplastic blood vessels. Therefore, identifying the signaling pathways that are activated under specific conditions is crucial for precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
783
|
Storz P, Crawford HC. Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2020; 158:2072-2081. [PMID: 32199881 PMCID: PMC7282937 DOI: 10.1053/j.gastro.2020.02.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Although the estimated time for development of pancreatic ductal adenocarcinoma (PDA) is more than 20 years, PDAs are usually detected at late, metastatic stages. PDAs develop from duct-like cells through a multistep carcinogenesis process, from low-grade dysplastic lesions to carcinoma in situ and eventually to metastatic disease. This process involves gradual acquisition of mutations in oncogenes and tumor suppressor genes, as well as changes in the pancreatic environment from a pro-inflammatory microenvironment that favors the development of early lesions, to a desmoplastic tumor microenvironment that is highly fibrotic and immune suppressive. This review discusses our current understanding of how PDA originates.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.
| | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA, To whom correspondence should be addressed: Peter Storz, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL 32224. Phone: (904) 953-6909, ; or Howard Crawford, University of Michigan, 4304 Rogel Cancer Center, 1500 E. Medical Center Drive Ann Arbor, MI 48109. Phone: (734) 764-3815,
| |
Collapse
|
784
|
Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P, Li S. Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med 2020; 10:e41. [PMID: 32508052 PMCID: PMC7403727 DOI: 10.1002/ctm2.41] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are among the most prominent cells during the desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC). However, CAFs are heterogeneous and the precise origins are not fully elucidated. This study aimed to explore whether monocytes can transdifferentiate into fibroblasts in PDAC and evaluate the clinical significance of this event. METHODS CD14+ monocytes were freshly isolated from human peripheral blood. Immunofluorescence, reverse transcription-quantitative PCR, western blot, flow cytometry and enzyme-linked immunosorbent assay were used to detect the expression of αSMA, fibronectin, and other relevant molecules. In addition, latex beads with a mean particle size of 2.0 µm were used to assess the phagocytic capacity. Moreover, RNA sequencing (RNA-seq) was performed to identify the differences induced by H2 O2 and the underlying mechanisms. RESULTS Immunofluorescence identified αSMA and fibroblast-specific protein 1 expression by tumor-associated macrophages in PDAC. The in vitro experiment revealed that oxidative stress (H2 O2 or radiation) induced monocyte-to-myofibroblast transdifferentiation (MMT), as identified by upregulated αSMA expression at both the RNA and protein levels. In addition, compared with freshly isolated monocytes, human monocyte-derived macrophages increased fibronectin expression. RNA-seq analysis identified p53 activation and other signatures accompanying this transdifferentiation; however, the p53 stabilizer nutlin-3 induced αSMA expression through reactive oxygen species generation but not through the p53 transcription/mitochondria-dependent pathway, whereas the p38 inhibitor SB203580 could partially inhibit αSMA expression. Finally, MMT produced a unique subset of CAFs with reduced phagocytic capacity that could promote the proliferation of pancreatic cancer cells. CONCLUSIONS Oxidative stress in the tumor microenvironment could induce MMT in PDAC, thus inducing reactive stroma, modulating immunosuppression, and promoting tumor progression. Reducing oxidative stress may be a promising future therapeutic regimen.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Chaobin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xin Hua
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Anna Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Hepatic SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Yize Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shuxin Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Fangting Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Jun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
785
|
Cao Y, Cao W, Qiu Y, Zhou Y, Guo Q, Gao Y, Lu N. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol Res 2020; 159:104981. [PMID: 32492489 DOI: 10.1016/j.phrs.2020.104981] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 02/09/2023]
Abstract
Tumor initiation and progression are not only ascribed to the behavior of cancer cells, but also profoundly influenced by the tumor microenvironment. Inside, cancer-associated fibroblasts (CAFs) have become key factors to accelerate growth and metastasis for the abundance in most solid tumors. Our group previously reported that Oroxylin A (OA), a flavone from Scutellaria Baicalensis Georgi, possess the ability to suppress growth and invasion of several tumor cells. However, the regulatory effect of OA on stromal microenvironment is poorly understood. In this study, breast cancer-induced fibroblasts and primary breast CAFs from MMTV-PyMT mice were used to evaluate the influence of OA on the activation of fibroblasts. Results showed that OA could decrease the expression of α-SMA, fibronectin, vimentin and matrix metalloproteinases (MMPs). Thus, OA-deactivated CAFs did not further promote the proliferation and invasion in breast cancer cells. In vivo experiments, OA could also impede tumor metastasis through exhausting progressive CAFs. Mechanically, OA could specifically bind ACTN1 and significantly inhibit its expression to prevent CAF activation. As a consequence, OA could decrease the phosphorylation of FAK and STAT3, and reduce the secretion of CCL2 in CAFs. Altogether, OA could remodel stromal microenvironment and it is a potential therapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wangjia Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuan Gao
- Pharmaceutical Animal Experimental Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
786
|
Norberg KJ, Liu X, Fernández Moro C, Strell C, Nania S, Blümel M, Balboni A, Bozóky B, Heuchel RL, Löhr JM. A novel pancreatic tumour and stellate cell 3D co-culture spheroid model. BMC Cancer 2020; 20:475. [PMID: 32460715 PMCID: PMC7251727 DOI: 10.1186/s12885-020-06867-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a devastating disease with poor outcome, generally characterized by an excessive stroma component. The purpose of this study was to develop a simple and reproducible in vitro 3D-assay employing the main constituents of pancreatic ductal adenocarcinoma, namely pancreatic stellate and cancer cells. METHOD A spheroid assay, directly co-culturing human pancreatic stellate cells with human pancreatic tumour cells in 3D was established and characterized by electron microscopy, immunohistochemistry and real-time RT-PCR. In order to facilitate the cell type-specific crosstalk analysis by real-time RT-PCR, we developed a novel in vitro 3D co-culture model, where the participating cell types were from different species, human and mouse, respectively. Using species-specific PCR primers, we were able to investigate the crosstalk between stromal and cancer cells without previous cell separation and sorting. RESULTS We found clear evidence for mutual influence, such as increased proliferation and a shift towards a more mesenchymal phenotype in cancer cells and an activation of pancreatic stellate cells towards the myofibroblast phenotype. Using a heterospecies approach, which we coined virtual sorting, confirmed the findings we made initially in the human-human spheroids. CONCLUSIONS We developed and characterized different easy to set up 3D models to investigate the crosstalk between cancer and stroma cells for pancreatic cancer.
Collapse
Affiliation(s)
- K J Norberg
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - X Liu
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - C Fernández Moro
- Department of Laboratory Medicine (LabMed), Division of Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - C Strell
- Department of Cancer, Division of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - S Nania
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - M Blümel
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - A Balboni
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - B Bozóky
- Department of Laboratory Medicine (LabMed), Division of Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - R L Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden.
| | - J M Löhr
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden.,Department of Cancer, Division of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
787
|
Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers (Basel) 2020; 12:cancers12051347. [PMID: 32466266 PMCID: PMC7281461 DOI: 10.3390/cancers12051347] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the 4th leading cause of cancer deaths in the United States. The pancreatic cancer phenotype is primarily a consequence of oncogenes disturbing the resident pancreas parenchymal cell repair program. Many solid tumor types including pancreatic cancer have severe tumor fibrosis called desmoplasia. Desmoplastic stroma is coopted by the tumor as a support structure and CAFs aid in tumor growth, invasion, and metastases. This stroma is caused by cancer associated fibroblasts (CAFs), which lay down extensive connective tissue in and around the tumor cells. CAFs represent a heterogeneous population of cells that produce various paracrine molecules such as transforming growth factor-beta (TGF-beta) and platelet derived growth factors (PDGFs) that aid tumor growth, local invasion, and development of metastases. The hard, fibrotic shell of desmoplasia serves as a barrier to the infiltration of both chemo- and immunotherapy drugs and host immune cells to the tumor. Although there have been recent improvements in chemotherapy and surgical techniques for management of pancreatic cancer, the majority of patients will die from this disease. Therefore, new treatment strategies are clearly needed. CAFs represent an under-explored potential therapeutic target. This paper discusses what we know about the role of CAFs in pancreatic cancer cell growth, invasion, and metastases. Additionally, we present different strategies that are being and could be explored as anti-CAF treatments for pancreatic cancer.
Collapse
|
788
|
Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, Wellik DM, Crawford HC, Pasca di Magliano M. Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cell Mol Gastroenterol Hepatol 2020; 10:581-599. [PMID: 32454112 PMCID: PMC7399194 DOI: 10.1016/j.jcmgh.2020.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Although the healthy pancreas consists mostly of epithelial cells, pancreatic cancer and the precursor lesions known as pancreatic intraepithelial neoplasia, are characterized by an extensive accumulation of fibroinflammatory stroma that includes a substantial and heterogeneous fibroblast population. The cellular origin of fibroblasts within the stroma has not been determined. Here, we show that the Gli1 and Hoxb6 markers label distinct fibroblast populations in the healthy mouse pancreas. We then set out to determine whether these distinct fibroblast populations expanded during carcinogenesis. METHODS We developed genetically engineered models using a dual-recombinase approach that allowed us to induce pancreatic cancer formation through codon-optimized Flp recombinase-driven epithelial recombination of Kirsten rat sarcoma viral oncogene homolog while labeling Gli1+ or Hoxb6+ fibroblasts in an inducible manner. By using these models, we lineage-traced these 2 fibroblast populations during the process of carcinogenesis. RESULTS Although in the healthy pancreas Gli1+ fibroblasts and Hoxb6+ fibroblasts are present in similar numbers, they contribute differently to the stroma in carcinogenesis. Namely, Gli1+ fibroblasts expand dramatically, whereas Hoxb6+ cells do not. CONCLUSIONS Fibroblasts present in the healthy pancreas expand during carcinogenesis, but with a different prevalence for different subtypes. Here, we compared Gli1+ and Hoxb6+ fibroblasts and found only Gli1+ expanded to contribute to the stroma during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Paloma E Garcia
- Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan
| | - Maeva Adoumie
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Esther C Kim
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yara S El-Tawil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Amara Z Shaikh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Ben L Allen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Deneen M Wellik
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
789
|
Cancer associated fibroblast: Mediators of tumorigenesis. Matrix Biol 2020; 91-92:19-34. [PMID: 32450219 DOI: 10.1016/j.matbio.2020.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
It is well accepted that the tumor microenvironment plays a pivotal role in cancer onset, development, and progression. The majority of clinical interventions are designed to target either cancer or stroma cells. These emphases have been directed by one of two prevailing theories in the field, the Somatic Mutation Theory and the Tissue Organization Field Theory, which represent two seemingly opposing concepts. This review proposes that the two theories are mutually inclusive and should be concurrently considered for cancer treatments. Specifically, this review discusses the dynamic and reciprocal processes between stromal cells and extracellular matrices, using pancreatic cancer as an example, to demonstrate the inclusivity of the theories. Furthermore, this review highlights the functions of cancer associated fibroblasts, which represent the major stromal cell type, as important mediators of the known cancer hallmarks that the two theories attempt to explain.
Collapse
|
790
|
Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA, Loots GG. Single-Cell Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer. Cancers (Basel) 2020; 12:cancers12051307. [PMID: 32455670 PMCID: PMC7281266 DOI: 10.3390/cancers12051307] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a prominent stromal cell type in solid tumors and molecules secreted by CAFs play an important role in tumor progression and metastasis. CAFs coexist as heterogeneous populations with potentially different biological functions. Although CAFs are a major component of the breast cancer stroma, molecular and phenotypic heterogeneity of CAFs in breast cancer is poorly understood. In this study, we investigated CAF heterogeneity in triple-negative breast cancer (TNBC) using a syngeneic mouse model, BALB/c-derived 4T1 mammary tumors. Using single-cell RNA sequencing (scRNA-seq), we identified six CAF subpopulations in 4T1 tumors including: 1) myofibroblastic CAFs, enriched for α-smooth muscle actin and several other contractile proteins; 2) ‘inflammatory’ CAFs with elevated expression of inflammatory cytokines; and 3) a CAF subpopulation expressing major histocompatibility complex (MHC) class II proteins that are generally expressed in antigen-presenting cells. Comparison of 4T1-derived CAFs to CAFs from pancreatic cancer revealed that these three CAF subpopulations exist in both tumor types. Interestingly, cells with inflammatory and MHC class II-expressing CAF profiles were also detected in normal breast/pancreas tissue, suggesting that these phenotypes are not tumor microenvironment-induced. This work enhances our understanding of CAF heterogeneity, and specifically targeting these CAF subpopulations could be an effective therapeutic approach for treating highly aggressive TNBCs.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (I.P.); (S.W.B.)
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (I.P.); (S.W.B.)
| | - Elizabeth K. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-925-423-0923
| |
Collapse
|
791
|
Huang H, Brekken RA. Recent advances in understanding cancer-associated fibroblasts in pancreatic cancer. Am J Physiol Cell Physiol 2020; 319:C233-C243. [PMID: 32432930 DOI: 10.1152/ajpcell.00079.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a devastating disease with a poor survival rate. It is resistant to therapy in part due to its unique tumor microenvironment, characterized by a desmoplastic reaction resulting in a dense stroma that constitutes a large fraction of the tumor volume. A major contributor to the desmoplastic reaction are cancer-associated fibroblasts (CAFs). CAFs actively interact with cancer cells and promote tumor progression by different mechanisms, including extracellular matrix deposition, remodeling, and secretion of tumor promoting factors, making CAFs an attractive target for PDA. However, emerging evidences indicate significant tumor-suppressive functions of CAFs, highlighting the complexity of CAF biology. CAFs were once considered as a uniform cell type within the cancer stroma. Recently, the existence of CAF heterogeneity in PDA has become appreciated. Due to advances in single cell technology, distinct subtypes of CAFs have been identified in PDA. Here we review recent updates in CAF biology in PDA, which may help develop effective CAF-targeted therapies in the future.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
792
|
Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, Tarte K, Zinovyev A, Baulande S, Zalcman G, Vincent-Salomon A, Mechta-Grigoriou F. Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discov 2020; 10:1330-1351. [PMID: 32434947 DOI: 10.1158/2159-8290.cd-19-1384] [Citation(s) in RCA: 497] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
A subset of cancer-associated fibroblasts (FAP+/CAF-S1) mediates immunosuppression in breast cancers, but its heterogeneity and its impact on immunotherapy response remain unknown. Here, we identify 8 CAF-S1 clusters by analyzing more than 19,000 single CAF-S1 fibroblasts from breast cancer. We validate the five most abundant clusters by flow cytometry and in silico analyses in other cancer types, highlighting their relevance. Myofibroblasts from clusters 0 and 3, characterized by extracellular matrix proteins and TGFβ signaling, respectively, are indicative of primary resistance to immunotherapies. Cluster 0/ecm-myCAF upregulates PD-1 and CTLA4 protein levels in regulatory T lymphocytes (Tregs), which, in turn, increases CAF-S1 cluster 3/TGFβ-myCAF cellular content. Thus, our study highlights a positive feedback loop between specific CAF-S1 clusters and Tregs and uncovers their role in immunotherapy resistance. SIGNIFICANCE: Our work provides a significant advance in characterizing and understanding FAP+ CAF in cancer. We reached a high resolution at single-cell level, which enabled us to identify specific clusters associated with immunosuppression and immunotherapy resistance. Identification of cluster-specific signatures paves the way for therapeutic options in combination with immunotherapies.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France
| | - Hocine R Hocine
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France
| | - Géraldine Gentric
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France
| | - Floriane Pelon
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France
| | - Charles Bernard
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France
| | - Brigitte Bourachot
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France
| | - Sonia Lameiras
- ICGex Next-Generation Sequencing Platform, Institut Curie, SIRIC, Paris, France
| | - Luca Albergante
- Institut Curie, Inserm, U900, PSL Research University, Paris, France.,Mines ParisTech, CBIO-Centre for Computational Biology, Paris, France
| | - Claire Bonneau
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France.,Department of Surgery, Institut Curie Hospital Group, Saint-Cloud, France
| | - Alice Guyard
- Department of Pathology Bichat Claude Bernard Hospital Group, Paris Diderot University, Paris, France
| | - Karin Tarte
- UMR U1236-MICMAC, Immunology and Cell Therapy Lab, Rennes University, Rennes, France
| | - Andrei Zinovyev
- Institut Curie, Inserm, U900, PSL Research University, Paris, France.,Mines ParisTech, CBIO-Centre for Computational Biology, Paris, France
| | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, Institut Curie, SIRIC, Paris, France
| | - Gerard Zalcman
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France.,Inserm, U830, Paris, France.,Thoracic Oncology Department, CIC 1425-CLIP2, Bichat Claude Bernard Hospital Group, Paris Diderot University, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, Paris, France
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, Paris, France. .,Inserm, U830, Paris, France
| |
Collapse
|
793
|
Devarasetty M, Forsythe SD, Shelkey E, Soker S. In Vitro Modeling of the Tumor Microenvironment in Tumor Organoids. Tissue Eng Regen Med 2020; 17:759-771. [PMID: 32399776 DOI: 10.1007/s13770-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) represents the many components occupying the space within and surrounding a tumor, including cells, signaling factors, extracellular matrix, and vasculature. Each component has the potential to assume many forms and functions which in turn contribute to the overall state of the TME, and further contribute to the progression and disposition of the tumor itself. The sum of these components can drive a tumor towards progression, keep a migratory tumor at bay, or even control chemotherapeutic response. The wide potential for interaction that the TME is an integral part of a tumor's ecosystem, and it is imperative to include it when studying and modeling cancer in vitro. Fortunately, the development of tissue engineering and biofabrication technologies and methodologies have allowed widespread inclusion of TME-based factors into in vitro tissue-equivalent models. METHODS In this review, we compiled contemporary literature sources to provide an overview of the field of TME models, ranging from simple to complex. RESULTS We have identified important components of the TME, how they can be included in in vitro study, and cover examples across a range of cancer types. CONCLUSION Our goal with this text is to provide a foundation for prospective research into the TME.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
794
|
Heidary Z, Ghaisari J, Moein S, Haghjooy Javanmard S. The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach. PLoS One 2020; 15:e0232965. [PMID: 32384110 PMCID: PMC7209353 DOI: 10.1371/journal.pone.0232965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts as key components of tumor microenvironment show different features in the interaction with cancer cells. Although, Normal fibroblasts demonstrate anti-tumor effects, cancer associated fibroblasts are principal participant in tumor growth and invasion. The ambiguity of fibroblasts function can be regarded as two heads of its behavioral spectrum and can be subjected for mathematical modeling to identify their switching behavior. In this research, an agent-based model of mutual interactions between fibroblast and cancer cell was created. The proposed model is based on nonlinear differential equations which describes biochemical reactions of the main factors involved in fibroblasts and cancer cells communication. Also, most of the model parameters are estimated using hybrid unscented Kalman filter. The interactions between two cell types are illustrated by the dynamic modeling of TGFβ and LIF pathways as well as their crosstalk. Using analytical and computational approaches, reciprocal effects of cancer cells and fibroblasts are constructed and the role of signaling molecules in tumor progression or prevention are determined. Finally, the model is validated using a set of experimental data. The proposed dynamic modeling might be useful for designing more efficient therapies in cancer metastasis treatment and prevention.
Collapse
Affiliation(s)
- Zarifeh Heidary
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- * E-mail:
| |
Collapse
|
795
|
Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21093345. [PMID: 32397303 PMCID: PMC7246613 DOI: 10.3390/ijms21093345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
- Correspondence:
| |
Collapse
|
796
|
Steins A, van Mackelenbergh MG, van der Zalm AP, Klaassen R, Serrels B, Goris SG, Kocher HM, Waasdorp C, de Jong JH, Tekin C, Besselink MG, Busch OR, van de Vijver MJ, Verheij J, Dijk F, van Tienhoven G, Wilmink JW, Medema JP, van Laarhoven HWM, Bijlsma MF. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep 2020; 21:e48780. [PMID: 32173982 PMCID: PMC7202203 DOI: 10.15252/embr.201948780] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundance of stroma. Multiple molecular classification efforts have identified a mesenchymal tumor subtype that is consistently characterized by high-grade growth and poor clinical outcome. The relation between PDAC stroma and tumor subtypes is still unclear. Here, we aimed to identify how PDAC cells instruct the main cellular component of stroma, the pancreatic stellate cells (PSCs). We found in primary tissue that high-grade PDAC had reduced collagen deposition compared to low-grade PDAC. Xenografts and organotypic co-cultures established from mesenchymal-like PDAC cells featured reduced collagen and activated PSC content. Medium transfer experiments using a large set of PDAC cell lines revealed that mesenchymal-like PDAC cells consistently downregulated ACTA2 and COL1A1 expression in PSCs and reduced proliferation. We identified colony-stimulating factor 1 as the mesenchymal PDAC-derived ligand that deactivates PSCs, and inhibition of its receptor CSF1R was able to counteract this effect. In conclusion, high-grade PDAC features stroma that is low in collagen and activated PSC content, and targeting CSF1R offers direct options to maintain a tumor-restricting microenvironment.
Collapse
Affiliation(s)
- Anne Steins
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Madelaine G van Mackelenbergh
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Amber P van der Zalm
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Remy Klaassen
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Bryan Serrels
- Wolfson Wohl Cancer Research CentreGlasgow Precision Oncology LaboratoryUniversity of GlasgowGlasgowUK
| | - Sandrine G Goris
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hemant M Kocher
- Centre for Tumor BiologyBarts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Joan H de Jong
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Cansu Tekin
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc G Besselink
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Olivier R Busch
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc J van de Vijver
- Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Joanne Verheij
- Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frederike Dijk
- Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation OncologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johanna W Wilmink
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hanneke WM van Laarhoven
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
797
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|
798
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol 2020; 10:641. [PMID: 32426283 PMCID: PMC7203475 DOI: 10.3389/fonc.2020.00641] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Normal tissue homeostasis and architecture restrain tumor growth. Thus, for a tumor to develop and spread, malignant cells must overcome growth-repressive inputs from surrounding tissue and escape immune surveillance mechanisms that curb cancer progression. This is achieved by promoting the conversion of a physiological microenvironment to a pro-tumoral state and it requires a constant dialog between malignant cells and ostensibly normal cells of adjacent tissue. Pro-tumoral reprogramming of the stroma is accompanied by an upregulation of certain extracellular matrix (ECM) proteins and their cognate receptors. Fibronectin (FN) is one such component of the tumor matrisome. This large multidomain glycoprotein dimer expressed over a wide range of human cancers is assembled by cell-driven forces into a fibrillar array that provides an obligate scaffold for the deposition of other matrix proteins and binding sites for functionalization by soluble factors in the tumor microenvironment. Encoded by a single gene, FN regulates the proliferation, motile behavior and fate of multiple cell types, largely through mechanisms that involve integrin-mediated signaling. These processes are coordinated by distinct isoforms of FN, collectively known as cellular FN (as opposed to circulating plasma FN) that arise through alternative splicing of the FN1 gene. Cellular FN isoforms differ in their solubility, receptor binding ability and spatiotemporal expression, and functions that have yet to be fully defined. FN induction at tumor sites constitutes an important step in the acquisition of biological capabilities required for several cancer hallmarks such as sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity and regulating anti-tumoral immunity. In this review, we will first provide an overview of ECM reprogramming through tumor-stroma crosstalk, then focus on the role of cellular FN in tumor progression with respect to these hallmarks. Last, we will discuss the impact of dysregulated ECM on clinical efficacy of classical (radio-/chemo-) therapies and emerging treatments that target immune checkpoints and explore how our expanding knowledge of the tumor ECM and the central role of FN can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
| | - Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.,Centre Antoine Lacassagne, Nice, France
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | |
Collapse
|
799
|
Somerville TDD, Biffi G, Daßler-Plenker J, Hur SK, He XY, Vance KE, Miyabayashi K, Xu Y, Maia-Silva D, Klingbeil O, Demerdash OE, Preall JB, Hollingsworth MA, Egeblad M, Tuveson DA, Vakoc CR. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. eLife 2020; 9:e53381. [PMID: 32329713 PMCID: PMC7200154 DOI: 10.7554/elife.53381] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
A highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. Here, we investigated whether squamous trans-differentiation of human and mouse pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous pancreatic cancer cells secrete factors that recruit neutrophils and convert pancreatic stellate cells into cancer-associated fibroblasts (CAFs) that express inflammatory cytokines at high levels. We use gain- and loss-of-function approaches to show that squamous-subtype pancreatic tumor models become enriched with neutrophils and inflammatory CAFs in a p63-dependent manner. These effects occur, at least in part, through p63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A and CXCL1 as key targets. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.
Collapse
Affiliation(s)
| | - Giulia Biffi
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborUnited States
- Cancer Research United Kingdom Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | | | - Stella K Hur
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Xue-Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Krysten E Vance
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Koji Miyabayashi
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborUnited States
| | - Yali Xu
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Diogo Maia-Silva
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Watson School of Biological SciencesCold Spring HarborUnited States
| | - Olaf Klingbeil
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | | | | | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - David A Tuveson
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborUnited States
| | | |
Collapse
|
800
|
Pompella L, Tirino G, Pappalardo A, Caterino M, Ventriglia A, Nacca V, Orditura M, Ciardiello F, De Vita F. Pancreatic Cancer Molecular Classifications: From Bulk Genomics to Single Cell Analysis. Int J Mol Sci 2020; 21:E2814. [PMID: 32316602 PMCID: PMC7215357 DOI: 10.3390/ijms21082814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer represents one of the most lethal disease worldwide but still orphan of a molecularly driven therapeutic approach, although many genomic and transcriptomic classifications have been proposed over the years. Clinical heterogeneity is a hallmark of this disease, as different patients show different responses to the same therapeutic regimens. However, genomic analyses revealed quite a homogeneous disease picture, with very common mutations in four genes only (KRAS, TP53, CDKN2A, and SMAD4) and a long tail of other mutated genes, with doubtful pathogenic meaning. Even bulk transcriptomic classifications could not resolve this great heterogeneity, as many informations related to small cell populations within cancer tissue could be lost. At the same time, single cell analysis has emerged as a powerful tool to dissect intratumoral heterogeneity like never before, with possibility of generating a new disease taxonomy at unprecedented molecular resolution. In this review, we summarize the most relevant genomic, bulk and single-cell transcriptomic classifications of pancreatic cancer, and try to understand how novel technologies, like single cell analysis, could lead to novel therapeutic strategies for this highly lethal disease.
Collapse
Affiliation(s)
- Luca Pompella
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania “L. Vanvitelli”, Via Pansini n. 5, 80131 Naples, Italy; (G.T.); (A.P.); (M.C.); (A.V.); (V.N.); (M.O.); (F.C.)
| | | | | | | | | | | | | | | | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania “L. Vanvitelli”, Via Pansini n. 5, 80131 Naples, Italy; (G.T.); (A.P.); (M.C.); (A.V.); (V.N.); (M.O.); (F.C.)
| |
Collapse
|