851
|
Brown DR. Dependence of neurones on astrocytes in a coculture system renders neurones sensitive to transforming growth factor beta1-induced glutamate toxicity. J Neurochem 1999; 72:943-53. [PMID: 10037465 DOI: 10.1046/j.1471-4159.1999.0720943.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor beta1 (TGF-beta1) has been implicated in formation of astrocyte scars, which prevents axonal regeneration. A coculture system of astrocytes and cerebellar cells was used to investigate possible neurotoxic effects of TGF-beta1. Although not directly neurotoxic, TGF-beta1 was toxic to cerebellar cells in the presence of astrocytes. This toxicity is based on an effect of the cytokine on astrocytes, as conditioned medium from astrocyte cultures treated with TGF-beta1 was more toxic by a similar mechanism. This neurotoxicity was mediated by glutamate present in the culture medium as demonstrated by inhibition by MK-801. Astrocytic ability to metabolise glutamate was compromised by TGF-beta1, as this cytokine increased glutamate concentration. The astrocytes in the coculture system responded to the presence of neurones by secreting neuroprotective interleukin-6, which was partly protective against the TGF-beta1-induced toxicity. In the coculture system, neurones responded to the presence of astrocytes by a reduction in resistance to glutamate toxicity. On addition of TGF-beta1, which compromised astrocytic clearance of glutamate, this reduction in resistance to glutamate toxicity led to a reduction in neuronal survival. These results suggest that when neurones are cocultured with astrocytes they become dependent on astrocytes for survival. This dependence makes neurones susceptible to damage when astrocytes are activated by substances such as TGF-beta1.
Collapse
Affiliation(s)
- D R Brown
- MRC Cambridge Centre for Brain Repair, University of Cambridge, England
| |
Collapse
|
852
|
Ambrosini E, Ceccherini-Silberstein F, Erfle V, Aloisi F, Levi G. Gene transfer in astrocytes: comparison between different delivering methods and expression of the HIV-1 protein Nef. J Neurosci Res 1999; 55:569-77. [PMID: 10082079 DOI: 10.1002/(sici)1097-4547(19990301)55:5<569::aid-jnr4>3.0.co;2-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To identify a good system to introduce foreign genes into normal and tumoral astrocytes, we studied the efficiency of two chemical methods, calcium phosphate precipitation and lipofection, and of a viral-mediated transfer by a vector derived from the highly attenuated modified vaccinia virus Ankara (MVA). Using the beta-galactosidase (beta-gal) gene (lacZ) as reporter, we searched for optimal experimental conditions to obtain an efficient gene transfer into human embryonic and neonatal rat astrocytes and into a human astrocytoma cell line (U373 MG). The beta-gal protein production was evaluated by cytochemical staining and enzymatic activity assay. Among chemical methods, lipofection was the most efficient system to transfect astrocytes in providing up to 60% of beta-gal-positive cells in all the cell types analyzed. MVA infection also proved to be an efficient system to introduce heterologous genes into human embryonic astrocytes that appeared 80-100% positive 48-96 hr after an infection at a multiplicity of 1-10. In contrast, only a limited infection was observed with rat astrocytes, human astrocytoma cells, and human leptomeningeal cells. A recombinant MVA vector expressing the human immunodeficiency virus-1 (HIV-1) regulatory protein Nef was used to transfect human embryonic astrocytes, and the resulting Nef expression was compared with that detected after lipofection in the same cells. By Western blot analysis, Nef expression was observed in human astrocytes 24-96 hr after infection and was similar to that present in stably HIV-1-infected astrocytoma cells. Lipofection resulted in lower Nef expression. In spite of these promising results, the negative effects of MVA infection on cell viability and the possibility that a productive infection occurs in human embryonic astrocytes limit the use of this vector for gene delivery in developmentally immature human glial cells.
Collapse
Affiliation(s)
- E Ambrosini
- Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
853
|
Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 1999; 156:50-61. [PMID: 10192776 DOI: 10.1006/exnr.1998.6993] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In degenerative disorders of the CNS an immune system involvement in the pathological process is postulated. The MPTP model of Parkinson's disease seem to be a good model for studying an inflammation following toxic neurodegeneration. In this model, microglial and astroglial reactions were previously found around impaired neurons. In the present work we showed an immune reaction, including lymphocytic infiltration of CD4+ and CD8+ T cells in the substantia nigra and striatum and elevated MHC class I and II antigens expression on microglia. Many activated lymphocytes were present, showing increased LFA-1 and CD44 antigen expression. We found also that ICAM-1 expression increased on the endothelium and appeared on microglia in the injured regions. Treatment with dexamethasone inhibited T-cell infiltration and MHC class II expression, lessened the glial reaction, and also diminished neuronal impairment. These findings suggest that an immune mechanism may contribute to the neuronal damage following MPTP administration.
Collapse
Affiliation(s)
- I Kurkowska-Jastrzebska
- Department of Experimental and Clinical Pharmacology, Medical Academy in Warsaw, Krakowskie Przedmieście 26/28, Warsaw, 00-950, Poland
| | | | | | | | | |
Collapse
|
854
|
Abstract
TGFalpha is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR). Synthesis of TGFalpha and EGFR in reactive astrocytes developing after CNS insults is associated with the differentiative and mitogenic effects of TGFalpha on cultured astrocytes. This suggests a role for TGFalpha in the development of astrogliosis. We evaluated this hypothesis using transgenic mice bearing the human TGFalpha cDNA under the control of the zinc-inducible metallothionein promoter. Expression levels of glial fibrillary acidic protein (GFAP) and vimentin and morphological features of astrocytes were used as indices of astroglial reactivity in adult transgenic versus wild-type mice provided with ZnCl2 in their water for 3 weeks. In the striatum, the hippocampus, and the cervical spinal cord, the three CNS areas monitored, transgenic mice displayed enhanced GFAP mRNA and protein levels and elevated vimentin protein levels. GFAP-immunoreactive astrocytes exhibited numerous thick processes and hypertrophied somata, which are characteristic aspects of reactive astrocytes. Their number increased additionally in the striatum and the spinal cord, but no astrocytic proliferation was observed using bromodeoxyuridine immunohistochemistry. Neither the morphology nor the number of microglial cells appeared modified. A twofold increase in phosphorylated EGFR was detected in the striatum and was associated with the immunohistochemical detection of numerous GFAP-positive astrocytes bearing the EGFR, suggesting a direct action of TGFalpha on astrocytes. Altogether, these results demonstrate that enhanced TGFalpha synthesis is sufficient to trigger astrogliosis throughout the CNS, whereas microglial metabolism is unaffected.
Collapse
|
855
|
Abstract
Transforming growth factor-beta1 (TGF-beta1) is widely recognized for its multiple roles in development, cellular maintenance, and protection against injury. In the brain, TGF-beta1 upregulation in microglia/macrophages is a predominant response to lesion and during pathology. However, the precise functions of TGF-beta1 in this context are still enigmatic. The present study investigates changes in astroglial gene expression as a major target of TGF-beta1 signaling in the brain. Differential display reverse transcription-polymerase chain reaction (DDRT-PCR) was used to identify several gene fragments differentially regulated by TGF-beta1 in rat astrocytes and C6 glioma cells. Among the cDNAs regulated by TGF-beta1 in C6 cells two cDNAs showed homology to alpha-tropomyosin and glycerol-3-phosphate dehydrogenase, respectively. Cloning of a full length cDNA corresponding to a differentially regulated gene fragment revealed close homology to latent TGF-beta binding protein (LTBP)-2. Data using antisense LTBP-2 oligonucleotides to decrease LTBP-2 expression suggest that LTBP-2 functions to activate TGF-beta. Therefore, it is likely that upregulation of the rat LTBP-2 homolog mRNA in C6 cells and cortical astrocytes by TGF-1 might lead to self-activation and exaggeration of TGF-beta signaling. These data will extend our current understanding of TGF-beta1 functioning on lesion-related features of glial cells.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation/drug effects
- Glioma/genetics
- Glioma/metabolism
- Latent TGF-beta Binding Proteins
- Neuroglia/drug effects
- Neuroglia/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transforming Growth Factor beta/pharmacology
- Tumor Cells, Cultured/drug effects
- Up-Regulation
Collapse
Affiliation(s)
- K Krohn
- Department of Anatomy and Cell Biology III, University of Heidelberg, Germany.
| |
Collapse
|
856
|
Saas P, Boucraut J, Quiquerez AL, Schnuriger V, Perrin G, Desplat-Jego S, Bernard D, Walker PR, Dietrich PY. CD95 (Fas/Apo-1) as a Receptor Governing Astrocyte Apoptotic or Inflammatory Responses: A Key Role in Brain Inflammation? THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Astrocytes are a major cellular component of the brain that are capable of intense proliferation and metabolic activity during diverse inflammatory brain diseases (such as multiple sclerosis, Alzheimer’s dementia, tumor, HIV encephalitis, or prion disease). In this biological process, called reactive gliosis, astrocyte apoptosis is frequently observed and could be an important mechanism of regulation. However, the factors responsible for apoptosis in human astrocytes are poorly defined. Here, we report that short term cultured astrocytes derived from different brain regions express significant levels of CD95 at their surface. Only late passage astrocytes are sensitive to CD95 ligation using either CD95 mAb or recombinant CD95 ligand. Blocking experiments using caspase inhibitors with different specificities (DEVD-CHO, z-VAD-fmk, and YVAD-cmk), an enzymatic activity assay, and immunoblotting show that CPP32/caspase-3 play a prominent role in CD95-induced astrocyte death. In contrast, early passage astrocytes are totally resistant to death, but a significant increase in astrocytic IL-8 secretion (p < 0.001, by Wilcoxon’s test for paired samples) is observed after CD95 triggering. Production of IL-8 contributes to the resistance of astrocytes to CD95 ligation. Furthermore, in the presence of IFN-γ, resistant astrocytes became sensitive to CD95-mediated death. These data suggest that microenvironmental factors can influence the consequences of CD95 ligation on astrocytes. Therefore, we propose that CD95 expressed by human astrocytes plays a pivotal role in the regulation of astrocyte life and death and may be a key factor in inflammatory processes in the brain, such as reactive gliosis.
Collapse
Affiliation(s)
- Philippe Saas
- *Laboratory of Tumor Immunology, Division of Oncology, and
| | - José Boucraut
- ‡Laboratory of Immunopathology, Faculty of Medicine, Marseille, France
| | | | | | - Gaelle Perrin
- *Laboratory of Tumor Immunology, Division of Oncology, and
| | | | - Dominique Bernard
- ‡Laboratory of Immunopathology, Faculty of Medicine, Marseille, France
| | - Paul R. Walker
- *Laboratory of Tumor Immunology, Division of Oncology, and
- †Department of Neurosurgery, University Hospital, Geneva, Switzerland; and
| | | |
Collapse
|
857
|
Houweling DA, Bär PR, Gispen WH, Joosten EA. Spinal cord injury: bridging the lesion and the role of neurotrophic factors in repair. PROGRESS IN BRAIN RESEARCH 1999; 117:455-71. [PMID: 9932425 DOI: 10.1016/s0079-6123(08)64032-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- D A Houweling
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
858
|
|
859
|
Kato H, Kogure K. Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell Mol Neurobiol 1999; 19:93-108. [PMID: 10079969 PMCID: PMC11545405 DOI: 10.1023/a:1006920725663] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. We review the biochemical and molecular changes in brain with developing cerebral infarction, based on recent findings in experimental focal cerebral ischemia. 2. Occlusion of a cerebral artery produces focal ischemia with a gradual decline of blood flow, differentiating a severely ischemic core where infarct develops rapidly and an area peripheral to the core where the blood flow reduction is moderate (called penumbra). Neuronal injury in the penumbra is essentially reversible but only for several hours. The penumbra area tolerates a longer duration of ischemia than the core and may be salvageable by pharmacological agents such as glutamate antagonists or prompt reperfusion. 3. Upon reperfusion, brain cells alter their genomic properties so that protein synthesis becomes restricted to a small number of proteins such as stress proteins. Induction of the stress response is considered to be a rescue program to help to mitigate neuronal injury and to endow the cells with resistance to subsequent ischemic stress. The challenge now is to determine how the neuroprotection conferred by prior sublethal ischemia is achieved so that rational strategies can be developed to detect and manipulate gene expression in brain cells vulnerable to ischemia. 4. Expansion of infarction may be caused by an apoptotic mechanism. Investigation of apoptosis may also help in designing novel molecular strategies to prevent ischemic cell death. 5. Ischemia/reperfusion injury is accompanied by inflammatory reactions induced by neutrophils and monocytes/macrophages infiltrated and accumulated in ischemic areas. When the role of the inflammatory/immune systems in ischemic brain injury is revealed, new therapeutic targets and agents will emerge to complement and synergize with pharmacological intervention directed against glutamate and Ca2+ neurotoxicity.
Collapse
Affiliation(s)
- H Kato
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
860
|
Rizvi TA, Akunuru S, de Courten-Myers G, Switzer RC, Nordlund ML, Ratner N. Region-specific astrogliosis in brains of mice heterozygous for mutations in the neurofibromatosis type 1 (Nf1) tumor suppressor. Brain Res 1999; 816:111-23. [PMID: 9878702 PMCID: PMC2854494 DOI: 10.1016/s0006-8993(98)01133-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brains from human neurofibromatosis type 1 (NF1) patients show increased expression of glial fibrillary acidic protein (GFAP), consistent with activation of astrocytes (M.L. Nordlund, T.A. Rizvi, C.I. Brannan, N. Ratner, Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains, J. Neuropathol. Exp. Neurology 54 (1995) 588-600). We analyzed brains from transgenic mice in which the Nf1 gene was targeted by homologous recombination. We show here that, in all heterozygous mice analyzed, there are increased numbers of astrocytes expressing high levels of GFAP in medial regions of the periaqueductal gray and in the nucleus accumbens. More subtle, but significant, changes in the number of GFAP positive astrocytes were observed in the hippocampus in 60% of mutant mice analyzed. Astrocytes with elevated GFAP were present at 1 month, 2 months, 6 months and 12 months after birth. Most brain regions, including the cerebellum, basal ganglia, cerebral cortex, hypothalamus, thalamus, cortical amygdaloid area, and white matter tracts did not show any gliotic changes. No evidence of degenerating neurons was found using de Olmos' cupric silver stain. We conclude that Nf1/nf1 mice provide a model to study astrogliosis associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Tilat A. Rizvi
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | - Shailaja Akunuru
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | - Gabrielle de Courten-Myers
- Department of Pathology, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | | | - Michael L. Nordlund
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | - Nancy Ratner
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
- Corresponding author. Fax: +1-513-558-4454;
| |
Collapse
|
861
|
Abstract
The immune competence of astrocytes is still ill defined, especially their endocytic capacity, a prerequisite for efficient antigen presentation. We show that mannose receptor, a very important conduit for internalization of infectious agents and self antigens, is functionally expressed in the murine CNS. By in vitro assays, astrocytes and microglia were shown to be the prime cells expressing this receptor. Studies on astrocytes demonstrate that its expression and function are inversely regulated by anti-and pro-inflammatory compounds. Downregulation of the mannose receptor by IFN-gamma is concomitant with the induction of the invariant chain, which is also induced by GM-CSF + IL-4. Mannose receptor-expressing astrocytes may thus act as scavenger not only in CNS development but also in defense, against soluble and particulate mannosylated pathogens, presenting fragments thereof at strategic locations in the CNS. These findings unravel a new and putatively very important role of astrocytes in innate immunity and possibly development.
Collapse
Affiliation(s)
- E M Burudi
- Department of Neurobiology, University of Heidelberg, INF 364, Heidelberg, Germany
| | | | | | | |
Collapse
|
862
|
Andres-Barquin PJ, Hernandez MC, Israel MA. Injury selectively down-regulates the gene encoding for the Id4 transcription factor in primary cultures of forebrain astrocytes. Neuroreport 1998; 9:4075-80. [PMID: 9926850 DOI: 10.1097/00001756-199812210-00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Astrogliosis is an important component of the response to injury of the central nervous system (CNS). The Id family of helix-loop-helix (HLH) transcription factors has been implicated in the regulation of cellular differentiation in several different lineages and may contribute to the regulation of astrogliosis. We examined the expression of Id genes in primary cultures of mouse forebrain astrocytes under experimental conditions in which astrogliosis was elicited by mechanical injury. Astrocyte cultures expressed the four known members of the Id gene family, Id1, Id2, Id3, and Id4. After injury, at a time when astrocytes developed the characteristic phenotypic changes of astrogliosis, Id4 expression decreased dramatically. Id1, Id2, and Id3 mRNA levels did not change. These results identify Id4 as a candidate marker of astroglial activation in culture and suggest that Id4 expression plays a role in the process of astrogliosis.
Collapse
Affiliation(s)
- P J Andres-Barquin
- Brain Tumor Research Center, Department of Neurological Surgery, School of Medicine, University of California San Francisco, 94143, USA
| | | | | |
Collapse
|
863
|
Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP. A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 1998; 18:10541-52. [PMID: 9852591 PMCID: PMC6793335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
TGFalpha is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR). Synthesis of TGFalpha and EGFR in reactive astrocytes developing after CNS insults is associated with the differentiative and mitogenic effects of TGFalpha on cultured astrocytes. This suggests a role for TGFalpha in the development of astrogliosis. We evaluated this hypothesis using transgenic mice bearing the human TGFalpha cDNA under the control of the zinc-inducible metallothionein promoter. Expression levels of glial fibrillary acidic protein (GFAP) and vimentin and morphological features of astrocytes were used as indices of astroglial reactivity in adult transgenic versus wild-type mice provided with ZnCl2 in their water for 3 weeks. In the striatum, the hippocampus, and the cervical spinal cord, the three CNS areas monitored, transgenic mice displayed enhanced GFAP mRNA and protein levels and elevated vimentin protein levels. GFAP-immunoreactive astrocytes exhibited numerous thick processes and hypertrophied somata, which are characteristic aspects of reactive astrocytes. Their number increased additionally in the striatum and the spinal cord, but no astrocytic proliferation was observed using bromodeoxyuridine immunohistochemistry. Neither the morphology nor the number of microglial cells appeared modified. A twofold increase in phosphorylated EGFR was detected in the striatum and was associated with the immunohistochemical detection of numerous GFAP-positive astrocytes bearing the EGFR, suggesting a direct action of TGFalpha on astrocytes. Altogether, these results demonstrate that enhanced TGFalpha synthesis is sufficient to trigger astrogliosis throughout the CNS, whereas microglial metabolism is unaffected.
Collapse
Affiliation(s)
- A G Rabchevsky
- Institut National de la Santé et de la Recherche Médicale Unité 421, Faculté de Médecine, U421 Créteil, France
| | | | | | | | | | | |
Collapse
|
864
|
Reuss B, Heinke A, Unsicker K. Gap junction uncoupling of neonatal rat astroglial cultures does not affect their expression of fibroblast growth factor 2. Neurosci Lett 1998; 258:45-8. [PMID: 9876048 DOI: 10.1016/s0304-3940(98)00847-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor (FGF)-2 is expressed by astroglial cells and regulates astroglial proliferation, differentiation, and gap junction communication. We show now that uncoupling of astroglial cells cultured from neonatal rat cortex, striatum and mesencephalon by 18alpha-glycirrhetinic acid (AGA) or arachidonic acid (AA) (demonstrated by intracellular injections of Lucifer Yellow) does affect neither levels of FGF-2 mRNA (investigated by a competitive RT-PCR method), nor protein (as revealed by Western blot analysis). This suggests that expression of FGF-2, which reduces gap junction communication of cortical and striatal astroglial cells [15], is not affected when astroglial cells are uncoupled. Regulation of FGF-2 expression and coupling in astroglial cells are thus not reciprocal suggesting more complex interrelationships between these two important parameters of astroglial cell differentiation.
Collapse
Affiliation(s)
- B Reuss
- Neuroanatomy, University of Heidelberg, Germany.
| | | | | |
Collapse
|
865
|
Noel F, Gumin GJ, Raju U, Tofilon PJ. Increased expression of prohormone convertase-2 in the irradiated rat brain. FASEB J 1998; 12:1725-30. [PMID: 9837862 DOI: 10.1096/fasebj.12.15.1725] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in gene expression have been suggested to play a role in radiotherapy-induced central nervous system (CNS) injury. To begin to identify radiation-inducible genes in the CNS, we have applied the differential display of reverse transcription-polymerase chain reaction products to RNA extracted from the brain of adult rats. RNA was isolated from a rat brain 6 h after whole-body exposure to 10 Gy and compared with RNA from unirradiated brain. A cDNA band was consistently observed at about 600 bp in samples from the irradiated rat but not from unirradiated (control) rat. Amplification and sequencing of the cDNA revealed that it corresponded to the prohormone convertase-2 (PC2) gene, which is involved in the processing of inert prohormones and neuropeptides to their bioactive forms. Enhanced PC2 expression was detected after irradiation of neuronal cultures but not in cultures of astrocytes, suggesting that the cell type in the CNS responsible for the PC2 induction after in vivo irradiation is the neuron. These results indicate that radiation induces the expression of a neuronal enzyme that is critical to the activation of a number of prohormones and neuropeptides, which may influence the radioresponse of the CNS.
Collapse
Affiliation(s)
- F Noel
- Departments of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
866
|
Martel J, Chopin P, Colpaert F, Marien M. Neuroprotective effects of the alpha2-adrenoceptor antagonists, (+)-efaroxan and (+/-)-idazoxan, against quinolinic acid-induced lesions of the rat striatum. Exp Neurol 1998; 154:595-601. [PMID: 9878194 DOI: 10.1006/exnr.1998.6942] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A deficient control of neuronal repair mechanisms by noradrenergic projections originating from the locus coeruleus may be a critical factor in the progression of neurodegenerative diseases. Blockade of presynaptic inhibitory alpha2-adrenergic autoreceptors can disinhibit this system, facilitating noradrenaline release. In order to test the neuroprotective potential of this approach in a model involving excitotoxicity, the effects of treatments with the alpha2-adreneceptor antagonists, (+)-efaroxan (0.63 mg/kg i.p., thrice daily for 7 days) or (+/-)-idazoxan (2.5 mg/kg i.p., thrice daily for 7 days), were evaluated in rats which received a quinolinic acid-induced lesion of the left striatum. Both drug treatments resulted in a reduced ipsiversive circling response to apomorphine and a reduced choline acetyltransferase deficit in the lesioned striatum. The mechanisms underlying this effect are not known for certain, but may include noradrenergic receptor modulation of glial cell function, growth factor synthesis and release, activity of glutamatergic corticostriatal afferents, and/or events initiated by NMDA receptor activation. These results suggest a therapeutic potential of alpha2-adrenoceptor antagonists in neurodegenerative disorders where excitotoxicity has been implicated.
Collapse
Affiliation(s)
- J Martel
- Centre de Recherche Pierre Fabre, 17 Avenue Jean Moulin, Castres Cédex, 81106, France
| | | | | | | |
Collapse
|
867
|
Abstract
Alzheimer's disease is a multifactor pathology, some of whose causes have been inferred from genetic studies, primarily of associated early-onset cases. Much evidence implicates the A beta amyloid peptide as a neurotoxic agent, with chronic inflammation as an accompanying physiological contributor to the disease. The two central questions of how A beta kills neurons and of the autogenic basis of disease remain unanswered. We hypothesize that specific interactions of A beta with the inflammatory serpin, alpha 1-antichymotrypsin, abolish the serpin proteinase inhibitor activity and stimulate formation of the neurotoxic fibrillar form of A beta. Further, the fibrillar A beta interacts with specific cell surface receptors, prompting its own biosynthesis and disrupting cellular cholesterol metabolism. These molecular and cellular interactions autogenically sustain the processes of A beta formation, fibrillization, and receptor interaction, the last of which culminates in neuronal death through disruption of cholesterol metabolism.
Collapse
Affiliation(s)
- S Janciauskiene
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond 23298-0133, USA
| | | |
Collapse
|
868
|
Casamenti F, Prosperi C, Scali C, Giovannelli L, Pepeu G. Morphological, biochemical and behavioural changes induced by neurotoxic and inflammatory insults to the nucleus basalis. Int J Dev Neurosci 1998; 16:705-14. [PMID: 10198818 DOI: 10.1016/s0736-5748(98)00080-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Interest in the basal forebrain cholinergic system has greatly increased since neuropathological studies in humans provided evidence that this system is severely affected in Alzheimer's disease and other dementing disorders. In laboratory animals, disruption of the nucleus basalis cholinergic neurones has been produced by several neurotoxic insults in order to obtain a model reproducing the behavioural impairment related to the cholinergic deficits. The experiments reported in this review demonstrate that excitotoxic amino acids, beta-amyloid and lipopolysaccharide, injected directly in the nucleus basalis are toxic to the cholinergic neurones in the rat. The excitotoxin lesions of the nucleus basalis, although not selective, are a useful tool for producing experimental animals with cholinergic hypofunction and for investigating drugs able to ameliorate the cholinergic functions. Local injections of amyloid peptides in the rat nucleus basalis produced cholinergic hypofunction and some behavioural impairment. Finally, an intense glia reaction with a limited cholinergic hypofunction and no behavioural impairment was induced by a 4-week infusion of lipopolysaccharide in the nucleus basalis. In conclusion, all three models, in spite of their limitations, offer useful tools for the study of the pathogenetic mechanisms of Alzheimer's disease and for investigating potentially useful drugs.
Collapse
Affiliation(s)
- F Casamenti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | |
Collapse
|
869
|
Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 1998; 154:57-65. [PMID: 9875268 DOI: 10.1006/exnr.1998.6930] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant angiogenesis occurs only after injury in the adult mammalian brain; capillaries proliferate and astrocytes are activated by presently unresolved cellular mechanisms. Because of the intimate relationship between astrocytes and brain capillaries we examined the expression of the specific endothelial mitogen vascular endothelial growth factor (VEGF) in reactive astrocytes following CNS trauma models: neural grafting, stab wounds, and glioma implantation. In situ hybridization was combined with GFAP immunohistochemistry to delineate VEGF mRNA expression in reactive astrocytes. In addition, VEGF and its receptor flt-1 protein expression were detected immunohistochemically. In all three models we found unexpectedly that only reactive astrocytes, not endothelium, expressed the VEGF receptor flt-1, VEGF mRNA, and VEGF protein in a spatiotemporal manner, suggesting that activated astroglia may have a direct role in the induction of angiogenesis or permeability in mature brain. In addition, secreted VEGF may play a part in astroglial signalling by the induction of its own receptor in reactive astroglia following injury. These findings may have significant implications with regard to growth and reparative mechanisms of the adult cerebrovasculature.
Collapse
Affiliation(s)
- J M Krum
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
870
|
Landolfi C, Soldo L, Polenzani L, Apicella C, Capezzone de Joannon A, Coletta I, Di Cesare F, Brufani M, Pinza M, Milanese C. Inflammatory molecule release by beta-amyloid-treated T98G astrocytoma cells: role of prostaglandins and modulation by paracetamol. Eur J Pharmacol 1998; 360:55-64. [PMID: 9845273 DOI: 10.1016/s0014-2999(98)00663-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Deposition of beta-amyloid in the brain triggers an inflammatory response which accompanies the neuropathologic events of Alzheimer's disease and contributes to the destruction of brain tissue. The present study shows that beta-amyloid can stimulate human astrocytoma cells (T98G) to secrete the proinflammatory factors interleukin-6 and prostaglandins. Furthermore, prostaglandins can stimulate T98G to secrete interleukin-6, which in turn triggers the formation of additional prostaglandins. Prostaglandins are, therefore, a key element in the induction and maintenance of a state of chronic inflammation in the brain which may exacerbate the fundamental pathology in Alzheimer patients. Paracetamol (0.01-1000 microM), an unusual analgesic/antipyretic drug which acts preferentially by reducing prostaglandin production within the central nervous system, and indomethacin (0.001-10 microM) caused a clear dose-dependent reduction of prostaglandin E2 production by stimulated T98G cells whereas interleukin-6 release was not affected. These data provide further evidence of the involvement of non-steroidal anti-inflammatory drugs in the inflammatory processes that can be generated by glial cells in intact brain.
Collapse
|
871
|
Matsushima K, Schmidt-Kastner R, Hogan MJ, Hakim AM. Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 1998; 807:47-60. [PMID: 9756993 DOI: 10.1016/s0006-8993(98)00716-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that cortical spreading depression (CSD), used to precondition rat brain, reduced cortical infarction volume resulting from focal cerebral ischemia by middle cerebral artery occlusion (MCAO) 3 days later. The mechanisms underlying this protective effect by CSD remains to be explored. In this study, we confirm that CSD is neuroprotective when KCl is applied epidurally rather than intracortically. Neocortical infarct volume was 101.3+/-48.5 mm3 and 45.3+/-44.1 mm3 in the sham and CSD group, respectively (p<0.05). Using image analysis, we identified the cortical region spared from infarction by the prior CSD. We then determined the distribution of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) mRNA and the time course of their expression in groups of animals treated with CSD and their controls. We also examined the response of astrocytes to CSD using glial fibrillary acidic protein (GFAP) as a marker. In situ hybridization (done at 0, 3, 12, 24, 72 or 168 h after CSD) showed significant elevation of BDNF mRNA in the cortex immediately after CSD in a distribution surrounding the spared cortex, while bFGF mRNA rose 12 h after CSD and appeared more within the core of the ischemic region. Immunohistochemistry (done at 1, 3 or 7 days after CSD) demonstrated GFAP in the neocortex, with a peak at 3 days after CSD. Heat shock protein 72 (HSP72) expression was not affected by CSD. We concluded that upregulation of trophic factors and activation of glial cells may contribute to the neuroprotection induced by CSD.
Collapse
Affiliation(s)
- K Matsushima
- Neuroscience Research Institute, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
872
|
Perry VH. A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 1998; 90:113-21. [PMID: 9817438 DOI: 10.1016/s0165-5728(98)00145-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There are numerous observations reporting that phagocytes expressing major histocompatibility complex (MHC) Class II molecules are associated with the central nervous system (CNS) in normal and pathological conditions. Although MHC Class II expression is necessary for antigen presentation to CD4 + T-cells, it is not sufficient and co-stimulatory molecules are also required. We review here recent in vivo studies demonstrating that the microglia and perivascular macrophages are unable to initiate a primary immune response in the CNS microenvironment, but may support secondary immune responses. Although in vitro studies show that microglia do not support a primary immune response leading to T-cell proliferation, they do show that microglia may protect the CNS from the unwanted attentions of autoreactive T-cells by inducing their apoptosis. The lack of cells in the CNS parenchyma with the ability to initiate a primary immune response has a cost, namely that pathogens may persist in the CNS undetected by the immune system.
Collapse
Affiliation(s)
- V H Perry
- CNS Inflammation Group, University Department of Pharmacology, Oxford, UK
| |
Collapse
|
873
|
Abstract
1. Uridine triphosphate (UTP), uridine diphosphate (UDP), cytidine triphosphate (CTP), and deoxythymidine triphosphate (TTP) caused concentration-dependent increases in the release of thromboxane A2 (TXA2) from cultured glia prepared from the newborn rat cerebral cortex. Although each of the pyrimidine nucleotides displayed similar potencies, CTP and TTP were considerably less effective than either UTP or UDP. The purine nucleotide ATP was equally as potent as the pyrimidine nucleotides but was marginally less effective than either UTP or UDP. 2. The ability of UTP, UDP, TTP, and CTP to promote TXA2 release from cultured glia was inhibited in a concentration-dependent manner by suramin and was markedly reduced when incubations were performed either in Ca(2+)-free medium or on cultures which had been maintained in serum-free growth medium for 4 days prior to experimentation. 3. Challenges with UTP and UDP in combination were found to elicit a response which was no different from the effects of these nucleotides alone; in addition, their effects were reversed by the phospholipase A2 inhibitor ONO-RS-082. A slight reduction in UTP- and UDP-stimulated TXA2 release was observed in cultures grown in the presence of leucine methyl ester, a treatment reported to limit microglial survival. 4. These results suggest that glia are targets for extracellular pyrimidine nucleotides and that their ability to release eicosanoids from these cells may be important in the brain's response to damage.
Collapse
Affiliation(s)
- D Langley
- Department of Pharmacology, School of Pharmacy, London, UK
| | | |
Collapse
|
874
|
Won JS, Suh HW, Kim YH, Song DK, Huh SO, Lee JK, Lee KJ. Prostaglandin E2 increases proenkephalin mRNA level in rat astrocyte-enriched culture. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:203-14. [PMID: 9757037 DOI: 10.1016/s0169-328x(98)00182-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of prostaglandin E2 (PGE2) on proenkephalin (proENK) mRNA expression in primary cultured rat astrocytes was studied. The proENK mRNA level was significantly increased about 3.3-fold 4 h after PGE2 (10 microM) treatment and this increase was potentiated by the pre-treatment with cycloheximide (CHX; 15 microM) about 1.7-fold as much as PGE2 alone treated cells. The pretreatment with staurosporine (1 microM) completely inhibited the increase of PGE2-induced proENK mRNA level, although only a partial inhibition of PGE2-induced proENK mRNA level (approximately 1.5-fold) by H89 (10 microM) was observed. The increase of PGE2-induced proENK mRNA level was not affected by the pretreatment with PD98059 (1, 5, and 10 microM), omega-conotoxin GIVA (1 microM), nimodipine (1 microM), calmidazolium (1 microM), or KN-62 (1 microM). In addition to the proENK mRNA level, PGE2 also increased c-Fos (approximately 4.3-fold), Fra-1 ( approximately 3.8 fold), and Fra-2 (approximately 8.2-fold) protein levels at 4 h after drug treatment. However, c-Jun, JunB, and JunD protein levels were not affected by PGE2. Indeed, PGE2 failed to up-regulate c-jun mRNA expression as well as its protein product. Surprisingly, although three Jun proteins were not induced by PGE2, AP-1 and ENKCRE-2 DNA binding activities were increased by PGE2, (approximately 5 and approximately 2.8-fold, respectively) and which were effectively reduced by CHX (approximately 2.5 and 2-fold, respectively). In western blot analyses, PGE2 enhanced the phosphorylation of CREB (approximately 2.6-fold at 1 h), and CHX showed a potentiative effect on PGE2-induced CREB phosphorylation ( approximately 1.7 fold at 1 h) which is similar to the action on proENK mRNA regulation. Our results suggest that PGE2 increases proENK mRNA expression via activating serine/threonine protein kinase such as PKA, but not calcium/calmodulin dependent protein kinase and MAPK. In addition, phosphorylation of CREB rather than the increase of AP-1 may have a possible role at least early stage in PGE2-induced proENK mRNA level and CHX-evoked potentiation.
Collapse
Affiliation(s)
- J S Won
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
875
|
Junier MP, Legendre P, Esguerra CV, Tinel M, Coulpier M, Dreyfus PA, Bähr M. Regulation of growth factor gene expression in degenerating motoneurons of the murine mutant wobbler: a cellular patch-sampling/RT-PCR study. Mol Cell Neurosci 1998; 12:168-77. [PMID: 9790737 DOI: 10.1006/mcne.1998.0708] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motoneuronal degenerative diseases are characterized by their progressivity; once affected, the motoneurons remain in altered states during an intermediate phase of degeneration prior to their final disappearance. Whether this survival period coincides with active metabolic rearrangements in the affected neuron remains unknown. As a first step toward the elucidation of this question, we developed cDNA pooled samples obtained from degenerating and control motoneuron mRNA populations through cellular patch sampling and RT-PCR, using the murine wobbler mutant as a model of spinal atrophy. Hybridization of the cDNA pools to various markers of intact or degenerating motoneurons allowed us to verify the cellular specificity of the patch sampling and indicated conservation of the original mRNA population complexity. Exploration of transcriptional alterations of genes encoding growth factors thought to be involved in motoneuronal development revealed that gene expression of the neurotrophin BDNF was induced in affected motoneurons, while expression of neurotrophin-3 was present in both neuronal types. Likewise, expression of a member of the epidermal growth factor (EGF) family, the neuregulin transcript sensory motor neuron-derived factor, was detected in both control and degenerating motoneurons, while transforming growth factor alpha, the functional homolog of EGF, was present only in the affected motoneurons. Immunohistochemical detection of corresponding proteins corroborated these observations. These results demonstrate that, during the course of their degeneration, motoneurons can initiate expression of novel genes which lead to the production of molecules endowed with trophic and/or differentiative properties for the neurons themselves and their glial environment. They also validate the use of the developed cDNA pooled samples for further exploration of transcriptional alterations taking place in degenerating motoneurons.
Collapse
Affiliation(s)
- M P Junier
- IM3, Fac Médecine, INSERM U421, 8 rue du Gal Sarrail, Créteil, 94010, France.
| | | | | | | | | | | | | |
Collapse
|
876
|
Morrison BM, Morrison JH, Gordon JW. Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(199809/10)282:1/2<32::aid-jez7>3.0.co;2-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
877
|
|
878
|
Lam HH, Bhardwaj A, O'Connell MT, Hanley DF, Traystman RJ, Sofroniew MV. Nerve growth factor rapidly suppresses basal, NMDA-evoked, and AMPA-evoked nitric oxide synthase activity in rat hippocampus in vivo. Proc Natl Acad Sci U S A 1998; 95:10926-31. [PMID: 9724806 PMCID: PMC27997 DOI: 10.1073/pnas.95.18.10926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Accepted: 06/30/1998] [Indexed: 11/18/2022] Open
Abstract
In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of L-[14C]arginine to L-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.
Collapse
Affiliation(s)
- H H Lam
- Medical Research Council Cambridge Centre for Brain Repair and Department of Anatomy, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 2PY, United Kingdom
| | | | | | | | | | | |
Collapse
|
879
|
Ajtai BM, Kálmán M. Glial fibrillary acidic protein expression but no glial demarcation follows the lesion in the molecular layer of cerebellum. Brain Res 1998; 802:285-8. [PMID: 9748631 DOI: 10.1016/s0006-8993(98)00622-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study investigates the reactive gliosis following a simple stab wound lesion to a brain area in which a characteristic astroglial architecture exists, i.e., the Bergmann-glia in the molecular layer of cerebellum. While in mammalian brain the Bergmann-glia contains glial fibrillary acidic protein (GFAP), in the avian Bergmann-glia, the cytoskeletal protein is vimentin, which is characteristic for immature astroglia in mammals. The operations were performed on chickens and rats under deep anaesthesia, using a sterile disposable needle. After a 1-week survival period, the animals were overdosed with ether and perfused transcardially with 4% buffered paraformaldehyde. Free-floating sections cut with a vibration microtome were processed for immunohistochemistry against GFAP and vimentin. GFAP immunopositivity of Bergmann-glia appeared in chicken and increased in rat in the lesioned area but the lesion was not surrounded by typical astrocytes and no demarcation was formed in the molecular layer, in contrast to the usual appearance of reactive gliosis, which was observed in the granular layer and in the white matter in both species. Vimentin immunopositivity of the Bergmann-glia also increased around the lesion in both species. The results suggest that a highly developed glial architecture fails to re-arrange into a demarcating scar, which offers an interesting model system to study the importance of glial demarcation. The observations also support that the resident glia is the main component of the glial reaction, and prove the capability of avian Bergmann-glia to express GFAP.
Collapse
Affiliation(s)
- B M Ajtai
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medicine, Budapest, Hungary.
| | | |
Collapse
|
880
|
Induction of interleukin-1 associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegenerative disease. J Neurosci 1998. [PMID: 9671653 DOI: 10.1523/jneurosci.18-15-05614.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Young mice challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), which selectively destroys the substantia nigra dopaminergic neurons in the midbrain, exhibit spontaneous recovery of dopaminergic nerve terminals. However, such recovery becomes attenuated with age. Here we report that newly sprouted fibers originate from spared dopaminergic neurons in the ventral tegmental area. We found that interleukin-1 (IL-1), an immune response-generated cytokine that can enhance dopaminergic sprouting when exogenously applied, increased dramatically in the denervated striatum of young mice (2 months) compared with middle-aged mice (8 months) after MPTP treatment. Young mice displayed a maximal 500% induction of IL-1alpha synthesis that remained elevated for several weeks in the dorsal and ventral striatum, whereas middle-aged mice exhibited a modest 135% induction exclusively in the dorsal striatum for a week. IL-1alpha immunoreactivity was localized in GFAP-immunoreactive hypertrophied astrocytes and neurons within the denervated striatum of young mice. However, no induction of IL-1alpha mRNA was seen in the midbrain in either age group despite glial activation. Because we have reported that IL-1 can regulate astroglia-derived dopaminergic neurotrophic factors, it was surprising that no changes were observed in acidic and basic fibroblast growth factor or glial cell line-derived neurotrophic factor mRNA levels associated with MPTP-induced plasticity of dopaminergic neurons in the striatum of young mice. Interestingly, we found that dopaminergic neurons express IL-1 receptors, thus suggesting that IL-1alpha could directly act as a target-derived dopaminergic neurotrophic factor to initiate or enhance the sprouting of dopaminergic axonal terminals. These findings strongly suggest that IL-1alpha could play an important role in MPTP-induced plasticity of dopaminergic neurons.
Collapse
|
881
|
Nakamura A, Johns EJ, Imaizumi A, Abe T, Kohsaka T. Regulation of tumour necrosis factor and interleukin-6 gene transcription by beta2-adrenoceptor in the rat astrocytes. J Neuroimmunol 1998; 88:144-53. [PMID: 9688336 DOI: 10.1016/s0165-5728(98)00109-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study was designed to clarify the role of beta2-adrenoceptors in modulating the level of TNF and IL-6 gene transcription and their respective mRNA accumulations. Astrocytes were transfected with the 5'-flanking region of the TNF and IL-6 genes linked to a luciferase coding sequence as a reporter. The addition of isoproterenol had an inhibitory effect on the TNF and IL-6 promoter activity induced by LPS. The inhibitory effect was blocked in the presence of a beta2-adrenoceptor antagonist but not in the presence of a beta1-adrenoceptor antagonist. TNF and IL-6 mRNA and protein levels in the astrocytes were depressed by beta2-adrenoceptor activation which corresponded to changes in TNF and IL-6 promoter activity. These studies demonstrated that isoproterenol, via beta2-adrenoceptors, suppressed LPS-induced TNF and IL-6 promoter activities, mRNA accumulations, and protein levels in the astrocytes. Beta2-adrenoceptor activation may be an important mechanism for regulating TNF and IL-6 expression in brain diseases.
Collapse
Affiliation(s)
- A Nakamura
- Department of Paediatrics, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
882
|
Ho A, Blum M. Induction of interleukin-1 associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegenerative disease. J Neurosci 1998; 18:5614-29. [PMID: 9671653 PMCID: PMC6793059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1998] [Revised: 05/22/1998] [Accepted: 05/25/1998] [Indexed: 02/08/2023] Open
Abstract
Young mice challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), which selectively destroys the substantia nigra dopaminergic neurons in the midbrain, exhibit spontaneous recovery of dopaminergic nerve terminals. However, such recovery becomes attenuated with age. Here we report that newly sprouted fibers originate from spared dopaminergic neurons in the ventral tegmental area. We found that interleukin-1 (IL-1), an immune response-generated cytokine that can enhance dopaminergic sprouting when exogenously applied, increased dramatically in the denervated striatum of young mice (2 months) compared with middle-aged mice (8 months) after MPTP treatment. Young mice displayed a maximal 500% induction of IL-1alpha synthesis that remained elevated for several weeks in the dorsal and ventral striatum, whereas middle-aged mice exhibited a modest 135% induction exclusively in the dorsal striatum for a week. IL-1alpha immunoreactivity was localized in GFAP-immunoreactive hypertrophied astrocytes and neurons within the denervated striatum of young mice. However, no induction of IL-1alpha mRNA was seen in the midbrain in either age group despite glial activation. Because we have reported that IL-1 can regulate astroglia-derived dopaminergic neurotrophic factors, it was surprising that no changes were observed in acidic and basic fibroblast growth factor or glial cell line-derived neurotrophic factor mRNA levels associated with MPTP-induced plasticity of dopaminergic neurons in the striatum of young mice. Interestingly, we found that dopaminergic neurons express IL-1 receptors, thus suggesting that IL-1alpha could directly act as a target-derived dopaminergic neurotrophic factor to initiate or enhance the sprouting of dopaminergic axonal terminals. These findings strongly suggest that IL-1alpha could play an important role in MPTP-induced plasticity of dopaminergic neurons.
Collapse
Affiliation(s)
- A Ho
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
883
|
Affiliation(s)
- M Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Germany
| | | |
Collapse
|
884
|
Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 1998. [PMID: 9634555 DOI: 10.1523/jneurosci.18-13-04891.1998] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A short ischemic period induced by the transient occlusion of major brain arteries induces neuronal damage in selectively vulnerable regions of the hippocampus. Adenosine is considered to be one of the major neuroprotective substances produced in the ischemic brain. It can be released from damaged cells, but it also could be generated extracellularly from released ATP via a surface-located enzyme chain. Using the rat model of global forebrain ischemia, we applied a short (10 min) transient interruption of blood flow and studied the distribution of ectonucleotidase activities in the hippocampus. Northern hybridization of mRNA isolated from hippocampi of sham-operated and ischemic animals revealed an upregulation of ectoapyrase (capable of hydrolyzing nucleoside 5'-tri- and diphosphates) and ecto-5'-nucleotidase (capable of hydrolyzing nucleoside 5'-monophosphates). A histochemical analysis that used ATP, UTP, ADP, or AMP as substrates revealed a strong and selective increase in enzyme activity in the injured areas of the hippocampus. Enhanced staining could be observed first at 2 d. Staining increased within the next days and persisted at 28 d after ischemia. The spatiotemporal development of catalytic activities was identical for all substrates. It was most pronounced in the CA1 subfield and also could be detected in the dentate hilus and to a marginal extent in CA3. The histochemical staining corresponded closely to the development of markers for reactive glia, in particular of microglia. The upregulation of ectonucleotidase activities implies increased nucleotide release from the damaged tissue and could play a role in the postischemic control of nucleotide-mediated cellular responses.
Collapse
|
885
|
Kirsch M, Schneider T, Lee M, Hofmann H. Lesion‐induced changes in the expression of ciliary neurotrophic factor and its receptor in rat optic nerve. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199807)23:3<239::aid-glia6>3.0.co;2-#] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthias Kirsch
- Institute of Anatomy I, University of Freiburg, Freiburg, Germany
| | - Thomas Schneider
- Institute of Anatomy I, University of Freiburg, Freiburg, Germany
| | - Mun‐Yong Lee
- Institute of Anatomy I, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
886
|
Lewczuk P, Reiber H, Tumani H. Intercellular adhesion molecule-1 in cerebrospinal fluid--the evaluation of blood-derived and brain-derived fractions in neurological diseases. J Neuroimmunol 1998; 87:156-61. [PMID: 9670857 DOI: 10.1016/s0165-5728(98)00084-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The soluble intercellular adhesion molecule-1 (sICAM-1) was measured in paired CSF and serum samples from 128 patients with different neurological diseases. The reference range of blood-derived sICAM-1 fractions in CSF was characterized with reference to the albumin CSF/serum quotients. The low mean concentrations of sICAM-1 of normal controls (n=33) in CSF (1.5 ng/ml; C.V.=40%) compared to serum (285.1 ng/ml; C.V.=32%) indicate that about 60% to 80% of sICAM-1 in normal lumbar CSF derives from blood. This calculation is based on the theoretically expected molecular size-dependent blood-CSF gradient between 300:1 to 250:1. In patients with non-inflammatory diseases (n=21) the sICAM-1 CSF/serum quotient increased non-linearly with increasing albumin CSF/serum quotient (blood-CSF barrier dysfunction) displaying the shape of a saturation-like curve in contrast to hyperbolic curves of other blood-derived proteins in CSF. This non-linear relation between sICAM-1 and albumin quotients does not allow a linear index evaluation reported in earlier studies. In bacterial meningitis (n=31) and viral meningoencephalitis (n=28) in addition to the increased blood-derived fraction, the brain-derived fraction of sICAM-1 in CSF was up to 12-fold higher than that in controls. The sICAM-1 CSF/serum quotients in MS (n=15) did not differ from non-inflammatory controls, i.e., there was no brain-dependent sICAM-1 fluctuation in CSF in contrast to the known fluctuations in blood. Earlier published reports on sICAM-1 have been controversial due to less sensitive assays and unsuitable linear evaluation concepts for blood-CSF barrier dysfunction.
Collapse
Affiliation(s)
- P Lewczuk
- Neurochemistry Laboratory, University of Göttingen, Germany
| | | | | |
Collapse
|
887
|
Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H. Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 1998; 18:4891-900. [PMID: 9634555 PMCID: PMC6792564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A short ischemic period induced by the transient occlusion of major brain arteries induces neuronal damage in selectively vulnerable regions of the hippocampus. Adenosine is considered to be one of the major neuroprotective substances produced in the ischemic brain. It can be released from damaged cells, but it also could be generated extracellularly from released ATP via a surface-located enzyme chain. Using the rat model of global forebrain ischemia, we applied a short (10 min) transient interruption of blood flow and studied the distribution of ectonucleotidase activities in the hippocampus. Northern hybridization of mRNA isolated from hippocampi of sham-operated and ischemic animals revealed an upregulation of ectoapyrase (capable of hydrolyzing nucleoside 5'-tri- and diphosphates) and ecto-5'-nucleotidase (capable of hydrolyzing nucleoside 5'-monophosphates). A histochemical analysis that used ATP, UTP, ADP, or AMP as substrates revealed a strong and selective increase in enzyme activity in the injured areas of the hippocampus. Enhanced staining could be observed first at 2 d. Staining increased within the next days and persisted at 28 d after ischemia. The spatiotemporal development of catalytic activities was identical for all substrates. It was most pronounced in the CA1 subfield and also could be detected in the dentate hilus and to a marginal extent in CA3. The histochemical staining corresponded closely to the development of markers for reactive glia, in particular of microglia. The upregulation of ectonucleotidase activities implies increased nucleotide release from the damaged tissue and could play a role in the postischemic control of nucleotide-mediated cellular responses.
Collapse
Affiliation(s)
- N Braun
- Biozentrum der J.W. Goethe-Universität, AK Neurochemie, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
888
|
Barnes DA, Huston M, Perez HD. TNF-alpha and IL-1beta cross-desensitization of astrocytes and astrocytoma cell lines. J Neuroimmunol 1998; 87:17-26. [PMID: 9670841 DOI: 10.1016/s0165-5728(98)00041-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure of human astrocytes and astrocytoma cell lines to TNF-alpha, IL-1beta and gammaIFN induce expression of a specific member of the intercrine/chemokine family of cytokines, RANTES. Pre-incubation with non-stimulatory concentrations of TNF-alpha inhibit IL-1beta-stimulated RANTES expression and similarly, non-stimulatory concentrations of IL-1beta inhibits TNF-alpha induced RANTES expression. The lowered responsiveness of these cells is stably maintained for at least 24 h. The inhibitory effect of TNF-alpha on IL-1beta-induced responses was mediated by TNF receptor-1 since low concentrations of a specific anti-TNF receptor-1 antiserum mimicked the inhibitory effect. These results indicate that TNF and IL-1 receptors mediate pro- and antiinflammatory responses in a concentration dependent manner, suggesting that at low receptor occupancy, TNF and IL-1 receptors may share a common signaling pathway and behave as endogenous antiinflammatory cytokines.
Collapse
Affiliation(s)
- D A Barnes
- Department of Immunology, Berlex Biosciences, Richmond, CA 94804, USA.
| | | | | |
Collapse
|
889
|
Fok-Seang J, DiProspero NA, Meiners S, Muir E, Fawcett JW. Cytokine-induced changes in the ability of astrocytes to support migration of oligodendrocyte precursors and axon growth. Eur J Neurosci 1998; 10:2400-15. [PMID: 9749768 DOI: 10.1046/j.1460-9568.1998.00251.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Repair of demyelination in the CNS requires that oligodendrocyte precursors (OPs) migrate, divide and then myelinate. Repair of axon damage requires axonal regeneration. Limited remyelination and axon regeneration occurs soon after injury, but usually ceases in a few days. In vivo and in vitro experiments have shown that astrocytic environments are not very permissive for migration of OPs or for axonal re-growth. Yet remyelination and axon sprouting early after injury occurs in association with astrocytes, while later astrocytes can exclude remyelination and prevent axon regeneration. A large and changing cast of cytokines are released following CNS injury, so we investigated whether some of these alone or in combination can affect the ability of astrocytes to support migration of OPs and neuritic outgrowth. Interleukin (IL) 1alpha, tumour necrosis factor alpha, transforming growth factor (TGF) beta, basic fibroblast growth factor (bFGF), platelet-derived growth factor and epidermal growth factor alone exerted little or no effect on migration of OPs on astrocytes, whereas interferon (IFN) gamma was inhibitory. The combination of IL-1alpha + bFGF was found to be pro-migratory, and this effect could be neutralized by TGFbeta. We also examined neuritic outgrowth from dorsal root ganglion explants in three-dimensional astrocyte cultures treated with cytokines and found that IL-1alpha + bFGF greatly increased axon outgrowth and that this effect could be blocked by TGFbeta and IFNgamma. All these effects were absent or much smaller when OP migration or axon growth was tested on laminin, so the main effect of the cytokines was via astrocytes. The cytokine effects did not correlate with expression on astrocytes of laminin, fibronectin, tenascin, chondroitin sulphate proteoglycan, N-cadherin, polysialyated NCAM (PSA-NCAM), tissue plasminogen activator (tPA) or urokinase (uPA).
Collapse
Affiliation(s)
- J Fok-Seang
- Physiological Laboratory, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
890
|
Brodie C, Blumberg PM, Jacobson KA. Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 1998; 429:139-42. [PMID: 9650577 PMCID: PMC5454773 DOI: 10.1016/s0014-5793(98)00556-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective adenosine receptor agonists and antagonists have marked effects on the outcome of cerebral ischemia, and adenosine receptors are expressed on astrocytes. In this study we examined the effects of various adenosine receptor agonists on the production of nitric oxide and the induction of iNOS in astrocytes activated by LPS/IFN-gamma and TNF-alpha/IL-1beta and on the production of TNF-alpha. Treatment of the cells with the A2A receptor agonist CGS 21680 inhibited both NO production and iNOS expression induced by stimulation with either LPS/IFN-gamma or TNF-alpha/IL-1beta, whereas the A1 and A3 receptor agonists, CPA and Cl-IB-MECA, respectively, did not have significant inhibitory effects. The inhibitory effect of the A2A receptor agonist was antagonized by the specific A2A receptor antagonist CSC. The A2A agonist also exerted a small inhibitory effect on the production of TNF-alpha. Similar inhibitory effects on the production of NO were obtained by cyclic AMP-elevating reagents, such as forskolin and dibutyryl cyclic AMP. Our findings suggest that activation of the A2A receptor inhibits NO production and iNOS expression likely via increased cAMP.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Science, Bar-Ilan University, Ramat Gan, Israel.
| | | | | |
Collapse
|
891
|
Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 1998; 95:7086-91. [PMID: 9618543 PMCID: PMC22748 DOI: 10.1073/pnas.95.12.7086] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription-PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood-brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
892
|
Borlongan CV, Saporta S, Sanberg PR. Intrastriatal transplantation of rat adrenal chromaffin cells seeded on microcarrier beads promote long-term functional recovery in hemiparkinsonian rats. Exp Neurol 1998; 151:203-14. [PMID: 9628755 DOI: 10.1006/exnr.1998.6790] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Possible biologic treatments for Parkinson's disease, a disorder caused by the deterioration of dopaminergic neurons bridging the nigrostriatal system, have recently focused on fetal cell transplantation. Because of ethical and tissue availability issues concerning fetal cell transplantation, alternative cell sources are being developed. The adrenal medulla has been used as a cell transplant source because of the capacity of the cells to provide catecholamines and to transform into a neuronal phenotype. However, adrenal tissue transplants have shown limited success, primarily because of their lack of long-term viability. Recently, seeding adrenal chromaffin cells on microcarrier beads has been shown to enhance the cell viability following neural transplantation. In the present study, we further investigated whether transplantation of rat adrenal chromaffin cells seeded on microcarrier beads into the striatum of 6-hydroxydopamine-induced hemiparkinsonian rats would result in a sustained functional recovery. Behavioral tests using the apomorphine-induced rotational and elevated body swing tests up to 12 months posttransplantation revealed a significant behavioral recovery in animals that received adrenal chromaffin cells seeded on microcarrier beads compared to animals that received adrenal chromaffin cells alone, medium alone, or beads alone. Histological examination of tissue at 14 months posttransplantation revealed evidence of tyrosine hydroxylase-positive cells and an on-going glial response in animals transplanted with adrenal chromaffin cells seeded on microcarrier beads, in contrast to absence of such immunoreactive responses in the other groups. These findings support a facilitator role for microcarrier beads in transplantation of adrenal chromaffin cells or other cells that are easily rejected by the CNS.
Collapse
Affiliation(s)
- C V Borlongan
- Division of Neurological Surgery, Departments of Anatomy, Surgery, Neurology, Psychiatry, and Pharmacology, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | | | | |
Collapse
|
893
|
Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Członkowski A, Członkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). IMMUNOPHARMACOLOGY 1998; 39:167-80. [PMID: 9754903 DOI: 10.1016/s0162-3109(98)00022-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have studied the reaction of glial cells in mice treated with an intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a selective neurotoxin of dopaminergic nigrostriatal neurons. Signs of injury to the dopaminergic neurons started on the 1st day after MPTP administration and progressed up to the end of the observation time (21st day). A transient microglial reaction was demonstrated from the 1st until the 14th day in the substantia nigra (SN) and striatum. The cells showed an increase in number and changes in morphology. At the ultrastructural level, signs of phagocytosis and features indicating the secretion of biologically active substances were observed. Astrocytosis followed the microglial reaction by one day and was noticed until the end of the observation time. Interleukin-6 immunoreactivity was observed within microglia and astrocytes in the SN on days 2 and 3. There were no signs of depletion of dopaminergic cells or glial activation after the administration of MPTP simultaneously with pargyline, an inhibitor of monoamine oxidase-B that prevents MPTP neurotoxicity. Our study indicates that microglia and astrocytes are involved in the pathological process in the nigrostriatal system following MPTP administration. MPTP alone is not responsible for glial cell activation but its metabolite MPP+ and/or agents released by injured neurons may participate in this process.
Collapse
Affiliation(s)
- M Kohutnicka
- Department of Experimental and Clinical Pharmacology, Medical Academy of Warsaw, Poland
| | | | | | | | | |
Collapse
|
894
|
Shields DC, Tyor WR, Deibler GE, Hogan EL, Banik NL. Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 1998; 95:5768-72. [PMID: 9576959 PMCID: PMC20454 DOI: 10.1073/pnas.95.10.5768] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 03/04/1998] [Indexed: 02/07/2023] Open
Abstract
In demyelinating diseases such as multiple sclerosis (MS), myelin membrane structure is destabilized as myelin proteins are lost. Calcium-activated neutral proteinase (calpain) is believed to participate in myelin protein degradation because known calpain substrates [myelin basic protein (MBP); myelin-associated glycoprotein] are degraded in this disease. In exploring the role of calpain in demyelinating diseases, we examined calpain expression in Lewis rats with acute experimental allergic encephalomyelitis (EAE), an animal model for MS. Using double-immunofluorescence labeling to identify cells expressing calpain, we labeled rat spinal cord sections for calpain with a polyclonal millicalpain antibody and with mAbs for glial (GFAP, OX42, GalC) and inflammatory (CD2, ED2, interferon gamma) cell-specific markers. Calpain expression was increased in activated microglia (OX42) and infiltrating macrophages (ED2) compared with controls. Oligodendrocytes (galactocerebroside) and astrocytes (GFAP) had constitutive calpain expression in normal spinal cords whereas reactive astrocytes in spinal cords from animals with EAE exhibited markedly increased calpain levels compared with astrocytes in adjuvant controls. Oligodendrocytes in spinal cords from rats with EAE expressed increased calpain levels in some areas, but overall the increases in calpain expression were small. Most T cells in grade 4 EAE expressed low levels of calpain, but interferon gamma-positive cells demonstrated markedly increased calpain expression. These findings suggest that increased levels of calpain in activated glial and inflammatory cells in EAE may contribute to myelin destruction in demyelinating diseases such as MS.
Collapse
Affiliation(s)
- D C Shields
- Department of Neurology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
895
|
Abstract
BACKGROUND The motivation of this study was to more precisely define the in vivo role of astrocytes in forebrain ischemia. Controversy exists in the literature as to whether they protect or injure neurons in this setting. METHODS Astrocytes in the rat hippocampus were disabled with stereotactic administration of a gliotoxin, ethidium bromide, 3 days prior to induction of forebrain ischemia. The extent of neuronal injury in this group was compared to a control category receiving intrahippocampal saline only. RESULTS Saline-injected animals demonstrated decreased hippocampal CA1 sector injury, and increased gliosis on the side of the injection compared to the contralateral side (P < 0.01) or ethidium bromide-treated animals (P < 0.05). CONCLUSIONS The results suggest that activated astrocytes are protective to neurons subjected to an ischemic insult. This may result from their ability to elaborate neurotrophic factors, buffer potassium and metabolize a variety of neurotransmitters.
Collapse
Affiliation(s)
- D F Louw
- Department of Clinical Neurosciences, University of Calgary, Canada
| | | | | |
Collapse
|
896
|
Tan L, Gordon KB, Mueller JP, Matis LA, Miller SD. Presentation of Proteolipid Protein Epitopes and B7-1-Dependent Activation of Encephalitogenic T Cells by IFN-γ-Activated SJL/J Astrocytes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
There is controversy regarding the possible role of glial cells as APCs in the pathogenesis of central nervous system (CNS) demyelinating diseases such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Microglia have been clearly shown to present Ag in the CNS, and due to the proximity of activated astroglial cells to infiltrating T cells and macrophages in demyelinating lesions, it is also possible that astrocytes positively or negatively regulate disease initiation and/or progression. We examined the capacity of IFN-γ-treated astrocytes from EAE-susceptible SJL/J mice to process and present myelin epitopes. IFN-γ activation up-regulated ICAM-1, VCAM-1, MHC class II, invariant chain, H2-M, CD40, and B7-1 as determined by FACS and/or RT-PCR analyses. B7-2 expression was only marginally enhanced on SJL/J astrocytes. Consistent with the expression of these accessory molecules, IFN-γ-treated SJL/J astrocytes induced the B7-1-dependent activation of Th1 lines and lymph node T cells specific for the immunodominant encephalitogenic proteolipid protein (PLP) epitope (PLP139–151) as assessed by proliferation and activation for the adoptive transfer of EAE. Interestingly, IFN-γ-activated astrocytes efficiently processed and presented PLP139–151, but not the subdominant PLP178–191, PLP56–70, or PLP104–117 epitopes, from intact PLP and a recombinant variant fusion protein of PLP (MP4). The data are consistent with the hypothesis that astrocytes in the proinflammatory CNS environment have the capability of activating CNS-infiltrating encephalitogenic T cells specific for immunodominant epitopes on various myelin proteins that may be involved in either the initial or the relapsing stages of EAE.
Collapse
Affiliation(s)
- Litjen Tan
- *Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University Medical School, Chicago, IL 60611; and the
| | - Kenneth B. Gordon
- *Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University Medical School, Chicago, IL 60611; and the
| | - John P. Mueller
- †Division of Immunobiology, Alexion Pharmaceuticals, Inc., New Haven, CT 06511
| | - Louis A. Matis
- †Division of Immunobiology, Alexion Pharmaceuticals, Inc., New Haven, CT 06511
| | - Stephen D. Miller
- *Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University Medical School, Chicago, IL 60611; and the
| |
Collapse
|
897
|
Abstract
Cytokines are powerful mediators of biologic responses in the CNS and may contribute to cellular injury in pathophysiologic states. In order to better understand the actions of cytokines in the intact mammalian CNS, a transgenic approach was employed that targeted the expression of different cytokines to astrocytes in mice. Fusion gene constructs consisting of a GFAP expression vector into which was inserted the DNA encoding the cytokines interleukin-6 (IL-6), IL-3, or TNF-alpha were used to generate transgenic mice. Expression of the transgene-encoded cytokines in astrocytes was confirmed at both the RNA and protein levels. Transgenic mice were subject to multilevel analysis to determine the extent of structural and functional CNS alterations. Transgenic mice exhibited distinct adult-onset, chronic-progressive neurological disorders that correlated with the level and anatomic distribution of transgene-encoded cytokine expression. The principal findings were neurodegeneration and cognitive decline due to IL-6 expression, macrophage/microglial-mediated primary demyelination with motor disease resulting from IL-3 expression, and lymphocytic meningoencephalomyelitis with paralysis induced by TNF-alpha expression. These transgenic models (1) indicate that expression of cytokines per se in the intact CNS is pathogenic, with cytokine-specific neural cell injury leading to unique functional deficits; (2) recapitulate many of the structural and functional changes seen in human inflammatory neurological disorders; (3) provide a valuable tool for advancing our understanding of the CNS pathobiology of cytokines; and (4) offer a unique resource for the development and testing of therapies aimed at abrogating the harmful actions of these important mediators.
Collapse
Affiliation(s)
- I L Campbell
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
898
|
Lyons SA, Kettenmann H. Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro. J Cereb Blood Flow Metab 1998; 18:521-30. [PMID: 9591844 DOI: 10.1097/00004647-199805000-00007] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The major classes of glial cells, namely astrocytes, oligodendrocytes, and microglial cells were compared in parallel for their susceptibility to damage after combined hypoxia and hypoglycemia or hypoxia alone. The three glial cell types were isolated from neonatal rat brains, separated, and incubated in N2/CO2-gassed buffer-containing glucose or glucose substitutes, 2-deoxyglucose or mannitol (both nonmetabolizable sugars). The damage to the cells after 6 hours' exposure was determined at 0, 1, 3, 7 days based on release of lactate dehydrogenase and counting of ethidium bromide-stained dead cells, double-stained with cell-type specific markers. When 2-deoxyglucose replaced glucose during 6 hours of hypoxia, both oligodendrocytes and microglia rarely survived (18% and 12%, respectively). Astroglia initially increased the release of lactate dehydrogenase but maintained 98% to 99% viability. When mannitol, a radical scavenger and osmolarity stabilizer, replaced glucose during 6 hours of hypoxia, oligodendrocytes rarely survived (10%), astroglia survival remained at 99%, but microglia survival increased to 50%. After exposure to 6 and 42 hours, respectively, of hypoxic conditions alone, oligodendrocytes exhibited 10% survival whereas microglia and astroglia were only temporarily stressed and subsequently survived. In conclusion, oligodendrocytes, then microglia, are the most vulnerable glial cell types in response to hypoxia or hypoglycemia conditions, whereas astrocytes from the same preparations recover.
Collapse
Affiliation(s)
- S A Lyons
- Max Delbrueck Center for Molecular Medicine, Department of Cellular Neurosciences, Berlin, Germany
| | | |
Collapse
|
899
|
Malek-Ahmadi P. Cytokines in dementia of the Alzheimer's type (DAT): relevance to research and treatment. Neurosci Biobehav Rev 1998; 22:389-94. [PMID: 9579327 DOI: 10.1016/s0149-7634(97)00027-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is indirect evidence suggesting that some cytokines may be involved in the pathophysiology of dementia of the Alzheimer type (DAT). Measurement of proinflammatory cytokines in the biologic fluids and brain tissues of DAT patients have provided some support for such a role. However, these studies are limited in scope and have included a relatively small number of patients. Future studies are needed to elucidate the role of cytokines in the pathogenesis and treatment of DAT.
Collapse
Affiliation(s)
- P Malek-Ahmadi
- Department of Neuropsychiatry School of Medicine Texas Tech University Health Sciences Center, Lubbock 79430, USA
| |
Collapse
|
900
|
Abstract
Astrocytes are ubiquitous in the brain and have multiple functions. It is becoming increasingly clear that they play an important role in monitoring the neuromicroenvironment in CNS and in information processing or signaling in the nervous system in normal conditions and respond to CNS injuries in a gradual and varied way. It is still debated whether such reactions are beneficial or detrimental. It was believed that reactive astrogliosis observed in most neurological disorders may regulate the removal of toxic compounds produced by damaged neurons and support neuronal growth by releasing trophic factors. However it was also suggested that astrocytes contribute to a decline of neurologic function, for example by accumulation and release of excitotoxic aminoacids after ischemia and oxidative stress, formation of epileptogenic scars in response to CNS injury and metabolism of protoxins to potent toxins. In a number of metabolic diseases astrocytes, not neurons, may be the primary target. The astrocyte's role in normal and pathological conditions will be discussed in the light of recent information about their metabolism, receptor distribution and release.
Collapse
Affiliation(s)
- M T Tacconi
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| |
Collapse
|