901
|
Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase. THE NEW PHYTOLOGIST 2017; 214:668-681. [PMID: 28112386 DOI: 10.1111/nph.14425] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and 1 O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.
Collapse
Affiliation(s)
- André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Anikó Galambos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
902
|
Carvalho V, Abreu ME, Mercier H, Nievola CC. Adjustments in CAM and enzymatic scavenging of H 2O 2 in juvenile plants of the epiphytic bromeliad Guzmania monostachia as affected by drought and rewatering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:32-39. [PMID: 28161646 DOI: 10.1016/j.plaphy.2017.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 05/12/2023]
Abstract
Juvenile plants of epiphytes such as bromeliads are highly prone to dehydration under drought conditions. It is likely that young epiphytes evolved mostly metabolic strategies to resist drought, which may include the plastic modulation of the enzymatic antioxidant system and crassulacean acid metabolism (CAM). Few studies have investigated such strategies in juvenile epiphytes, although such research is important to understand how these plants might face drought intensification derived from potential climatic alterations. The epiphytic CAM bromeliad Guzmania monostachia (L.) Rusby ex Mez var. monostachia is known to have plastic responses to drought, but no reports have focused on the metabolism of juvenile plants to drought and recovery. Hence, we aimed to verify how juvenile G. monostachia plants adjust malate (indicative of CAM), H2O2 content and enzymatic scavenging in response to drought (eight days without irrigation) and rewatering (six days of irrigation post-drought). Interestingly, drought decreased H2O2 content and activities of superoxide dismutase, catalase (CAT) and ascorbate peroxidase (APX) in the pre-dusk period, although glutathione reductase (GR) and CAM activity increased. Rewatering restored H2O2, but activities of APX, CAT and GR exceeded pre-stress levels in the pre-dusk and/or pre-dawn periods. Results suggest that recovery from a first drought redefines the homeostatic balance of H2O2 scavenging, in which rewatered plants stimulate the enzymatic antioxidant system while drought-exposed plants intensify CAM activity to regulate H2O2 content, a photosynthetic pathway known to prevent oxidative stress. Such data show that young G. monostachia plants adjust CAM and H2O2 scavenging to adapt to water availability.
Collapse
Affiliation(s)
- Victória Carvalho
- Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica SMA/SP, 04301-902, São Paulo, SP, Brazil
| | - Maria E Abreu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Helenice Mercier
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Catarina C Nievola
- Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica SMA/SP, 04301-902, São Paulo, SP, Brazil.
| |
Collapse
|
903
|
Hasanuzzaman M, Nahar K, Anee TI, Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:249-268. [PMID: 28461715 PMCID: PMC5391355 DOI: 10.1007/s12298-017-0422-2] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/28/2017] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Glutathione (GSH; γ-glutamyl-cysteinyl-glycine) is a small intracellular thiol molecule which is considered as a strong non-enzymatic antioxidant. Glutathione regulates multiple metabolic functions; for example, it protects membranes by maintaining the reduced state of both α-tocopherol and zeaxanthin, it prevents the oxidative denaturation of proteins under stress conditions by protecting their thiol groups, and it serves as a substrate for both glutathione peroxidase and glutathione S-transferase. By acting as a precursor of phytochelatins, GSH helps in the chelating of toxic metals/metalloids which are then transported and sequestered in the vacuole. The glyoxalase pathway (consisting of glyoxalase I and glyoxalase II enzymes) for detoxification of methylglyoxal, a cytotoxic molecule, also requires GSH in the first reaction step. For these reasons, much attention has recently been directed to elucidation of the role of this molecule in conferring tolerance to abiotic stress. Recently, this molecule has drawn much attention because of its interaction with other signaling molecules and phytohormones. In this review, we have discussed the recent progress in GSH biosynthesis, metabolism and its role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| |
Collapse
|
904
|
Yobi A, Schlauch KA, Tillett RL, Yim WC, Espinoza C, Wone BWM, Cushman JC, Oliver MJ. Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC PLANT BIOLOGY 2017; 17:67. [PMID: 28351347 PMCID: PMC5371216 DOI: 10.1186/s12870-017-1013-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Understanding the response of resurrection angiosperms to dehydration and rehydration is critical for deciphering the mechanisms of how plants cope with the rigors of water loss from their vegetative tissues. We have focused our studies on the C4 resurrection grass, Sporobolus stapfianus Gandoger, as a member of a group of important forage grasses. METHODS We have combined non-targeted metabolomics with transcriptomics, via a NimbleGen array platform, to develop an understanding of how gene expression and metabolite profiles can be linked to generate a more detailed mechanistic appreciation of the cellular response to both desiccation and rehydration. RESULTS The rehydration transcriptome and metabolome are primarily geared towards the rapid return of photosynthesis, energy metabolism, protein turnover, and protein synthesis during the rehydration phase. However, there are some metabolites associated with ROS protection that remain elevated during rehydration, most notably the tocopherols. The analysis of the dehydration transcriptome reveals a strong concordance between transcript abundance and the associated metabolite abundance reported earlier, but only in responses that are directly related to cellular protection during dehydration: carbohydrate metabolism and redox homeostasis. The transcriptome response also provides strong support for the involvement of cellular protection processes as exemplified by the increases in the abundance of transcripts encoding late embryogenesis abundant (LEA) proteins, anti-oxidant enzymes, early light-induced proteins (ELIP) proteins, and cell-wall modification enzymes. There is little concordance between transcript and metabolite abundance for processes such as amino acid metabolism that do not appear to contribute directly to cellular protection, but are nonetheless important for the desiccation tolerant phenotype of S. stapfianus. CONCLUSIONS The transcriptomes of both dehydration and rehydration offer insight into the complexity of the regulation of responses to these processes that involve complex signaling pathways and associated transcription factors. ABA appears to be important in the control of gene expression in both the latter stages of the dehydration and the early stages of rehydration. These findings add to the growing body of information detailing how plants tolerate and survive the severe cellular perturbations of dehydration, desiccation, and rehydration.
Collapse
Affiliation(s)
- Abou Yobi
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri Columbia, Missouri, 65211 USA
| | - Karen A. Schlauch
- Nevada INBRE Bioinformatics Core, University of Nevada Reno, Nevada, 89557 USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Nevada, 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada Reno, Nevada, 89557 USA
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Nevada, 89557 USA
| | - Catherine Espinoza
- Division of Plant Sciences, University of Missouri Columbia, Missouri, 65211 USA
| | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, 57069 USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Nevada, 89557 USA
| | - Melvin J. Oliver
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri Columbia, Missouri, 65211 USA
| |
Collapse
|
905
|
Djabou ASM, Carvalho LJCB, Li QX, Niemenak N, Chen S. Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death. ACTA PHYSIOLOGIAE PLANTARUM 2017; 39:91. [PMID: 28316353 PMCID: PMC5336541 DOI: 10.1007/s11738-017-2382-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/30/2017] [Accepted: 02/11/2017] [Indexed: 05/19/2023]
Abstract
Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is a complex physiological and biochemical process which involve many regulatory networks linked with specific proteins modulation and signaling transduction pathways. However, it is poorly understood regarding biological regulation, and the interactions among protein groups and signals to determine PPD syndrome in cassava storage roots. This review sheds some light on the possible molecular mechanisms involved in reactive oxygen species (ROS), calcium signaling transduction, and programmed cell death (PCD) in cassava PPD syndrome. A model for predicting crosstalk among calcium signaling, ROS and PCD is suggested to fine-tune PPD syndrome. This would clues to cassava molecular breeding to alleviate the PPD effects on the shelf-life.
Collapse
Affiliation(s)
- Astride S. M. Djabou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
- Laboratory of Plant Physiology, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, Yaounde, Cameroon
| | | | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, USA
| | - Nicolas Niemenak
- Laboratory of Plant Physiology, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, Yaounde, Cameroon
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
| |
Collapse
|
906
|
Woznicki TL, Sønsteby A, Aaby K, Martinsen BK, Heide OM, Wold AB, Remberg SF. Ascorbate pool, sugars and organic acids in black currant (Ribes nigrum L.) berries are strongly influenced by genotype and post-flowering temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1302-1309. [PMID: 27328984 DOI: 10.1002/jsfa.7864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/20/2016] [Accepted: 06/15/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Marked effects of the climatic environment on fruit chemical composition have often been demonstrated in field experiments. However, complex covariations of several climatic factors in the natural environment complicate the interpretation of such experiments and the identification of the causal factors. This can be better achieved in a phytotron where the various climatic factors can be varied systematically. Therefore, we grew four black currant cultivars of contrasting origin in a phytotron under controlled post-flowering temperature and photoperiod conditions and analysed the berries for their ascorbic acid, sugar and organic acid contents. RESULTS The analyses revealed significant effects of genotype on all investigated compounds. Particularly large cultivar differences were observed in the concentrations of l-ascorbic acid (AA) and sucrose. The concentrations of both AA and dehydroascorbic acid (DHAA), as well as the concentrations of all major sugars, decreased consistently with an increasing temperature over the temperature range 12-24 °C. Fructose and glucose were the predominant sugars with concentrations several fold higher than that for sucrose. AA was the main contributor to the total ascorbate pool in black currant berries. The AA/DHAA ratio varied from 5.6 to 10.3 among the studied cultivars. The concentration of citric acid, which was the predominant organic acid in black currant berries, increased with an increasing temperature, whereas the opposite trend was observed for malic and shikimic acid. Quninic acid was always present at relatively low concentrations. By contrast, photoperiod had no significant effect on berry content of any of the investigated compounds. CONCLUSION It is concluded that the post-flowering temperature has marked effects on the concentration of important chemical compounds responsible for taste and nutritional value of black currant berries, whereas photoperiod has no such effect in the studied cultivars. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomasz L Woznicki
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Anita Sønsteby
- NIBIO, Norwegian Institute for Bioeconomy Research, NO-1431, Ås, Norway
| | - Kjersti Aaby
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1430, Ås, Norway
| | - Berit K Martinsen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1430, Ås, Norway
| | - Ola M Heide
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Anne-Berit Wold
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Siv F Remberg
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| |
Collapse
|
907
|
Ugolini L, Righetti L, Carbone K, Paris R, Malaguti L, Di Francesco A, Micheli L, Paliotta M, Mari M, Lazzeri L. Postharvest application of brassica meal-derived allyl-isothiocyanate to kiwifruit: effect on fruit quality, nutraceutical parameters and physiological response. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:751-760. [PMID: 28298689 PMCID: PMC5334234 DOI: 10.1007/s13197-017-2515-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
The use of natural compounds to preserve fruit quality and develop high value functional products deserves attention especially in the growing industry of processing and packaging ready-to-eat fresh-cut fruit. In this work, potential mechanisms underlying the effects of postharvest biofumigation with brassica meal-derived allyl-isothiocyanate on the physiological responses and quality of 'Hayward' kiwifruits were studied. Fruits were treated with 0.15 mg L-1 of allyl-isothiocyanate vapours for 5 h and then stored in controlled atmosphere (2% O2, 4.5% CO2) at 0 °C and 95% relative humidity, maintaining an ethylene concentration <0.02 μL L-1. The short- and long-term effects of allyl-isothiocyanate on fruit quality traits, nutraceutical attributes, glutathione content, antiradical capacity and the activity of antioxidant enzymes were investigated. The treatment did not influence the overall fruit quality after 120 days of storage, but interestingly it enhanced the ascorbic acid, polyphenols and flavan-3-ol content, improving the antioxidant potential of kiwifruit. The short-term effect of allyl-isothiocyanate was evidenced by an increase of superoxide dismutase activity and of oxidative glutathione redox state, which were restored 24 h after the treatment. The expression levels of genes involved in detoxification functions, ethylene, ascorbate and phenylpropanoid biosynthesis, were also significantly affected upon allyl-isothiocyanate application. These results suggest that allyl-isothiocyanate treatment probably triggered an initial oxidative burst, followed by an induction of protective mechanisms, which finally increased the nutraceutical and technological value of treated kiwifruits.
Collapse
Affiliation(s)
- Luisa Ugolini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per le Colture Industriali, CREA-CIN, Via di Corticella 133, 40128 Bologna, Italy
| | - Laura Righetti
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per le Colture Industriali, CREA-CIN, Via di Corticella 133, 40128 Bologna, Italy
| | - Katya Carbone
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per la Frutticoltura, CREA-FRU, Via Fioranello 52, 00134 Rome, Italy
| | - Roberta Paris
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per le Colture Industriali, CREA-CIN, Via di Corticella 133, 40128 Bologna, Italy
| | - Lorena Malaguti
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per le Colture Industriali, CREA-CIN, Via di Corticella 133, 40128 Bologna, Italy
| | | | - Laura Micheli
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mariano Paliotta
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per la Frutticoltura, CREA-FRU, Via Fioranello 52, 00134 Rome, Italy
| | - Marta Mari
- CRIOF, Università di Bologna, Via Gandolfi 19, 40057 Cadriano, Bologna, Italy
| | - Luca Lazzeri
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per le Colture Industriali, CREA-CIN, Via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
908
|
Yang DY, Li M, Ma NN, Yang XH, Meng QW. Tomato SlGGP-LIKE gene participates in plant responses to chilling stress and pathogenic infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:218-226. [PMID: 28092850 DOI: 10.1016/j.plaphy.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Plants are always exposed to abiotic and biotic stresses which can adversely affect their growth and development. As an important antioxidant, AsA plays a vital role in plant defence against damage caused by stresses. In this study, we cloned a tomato GDP-L-galactose phosphorylase-like (SlGGP-LIKE) gene and investigated its role in resistance to abiotic and biotic stresses by using antisense transgenic (AS) tomato lines. The AsA content in AS plants was lower than that in WT plants. Under chilling stress, the growth of AS plants was inhibited significantly, and they yielded higher levels of ROS, REC and MDA but demonstrated weaker APX activity than that shown by WT plants. Additionally, the declined values of Pn, Fv/Fm, oxidisable P700, and D1 protein content of PSII in AS lines were significant. Furthermore, the effect on xanthophyll cycle of AS plants was more severe than that on WT plants, and the ratio of zeaxanthin (Z)/(V + A + Z) and (Z + 0.5 A)/(V + A + Z) in AS lines was lower than that in WT plants. In spite of chilling stress, under Pseudomonas syringae pv.tomato (Pst) DC3000 strain infection, AS plants showed lesser bacterial cell growth and dead cells than those shown by WT plants. This finding indicated that AS plants demonstrated stronger resistance against pathogenic infection. Results suggest that SlGGP-LIKE gene played an important role in plant defence against chilling stress and pathogenic infection.
Collapse
Affiliation(s)
- Dong-Yue Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China
| | - Meng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China
| | - Na-Na Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China
| | - Xing-Hong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China.
| | - Qing-Wei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, Shandong 271018, China.
| |
Collapse
|
909
|
Seta A, Tabara M, Nishibori Y, Hiraguri A, Ohkama-Ohtsu N, Yokoyama T, Hara S, Yoshida K, Hisabori T, Fukudome A, Koiwa H, Moriyama H, Takahashi N, Fukuhara T. Post-Translational Regulation of the Dicing Activities of Arabidopsis DICER-LIKE 3 and 4 by Inorganic Phosphate and the Redox State. PLANT & CELL PHYSIOLOGY 2017; 58:485-495. [PMID: 28069892 DOI: 10.1093/pcp/pcw226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
In Arabidopsis thaliana, small interfering RNAs (siRNAs) generated by two Dicer isoforms, DCL3 and DCL4, function in distinct epigenetic processes, i.e. RNA-directed DNA methylation and post-transcriptional gene silencing, respectively. Plants often respond to their environment by producing a distinct set of small RNAs; however, the mechanism for controlling the production of different siRNAs from the same dsRNA substrate remains unclear. We established a simple biochemical method to visualize the dsRNA-cleaving activities of DCL3 and DCL4 in cell-free extracts prepared from Arabidopsis seedlings. Here, we demonstrate that different nutrient statuses of a host plant affect the post-translational regulation of the dicing activity of DCL3 and DCL4. Phosphate deficiency inhibited DCL3, and the activity of DCL3 was directly activated by inorganic phosphate. Sulfur deficiency inhibited DCL4 but not DCL3, and the activity of DCL4 was recovered by supplementation of the cell-free extracts with reductants containing a thiol group. Immunopurified DCL4 was activated by recombinant Arabidopsis thioredoxin-h1 with dithiothreitol. Therefore, DCL4 is subject to redox regulation. These results demonstrate that post-translational regulation of DCL activities fine-tunes the balance between branches of the gene silencing pathway according to the growth environment.
Collapse
Affiliation(s)
- Atsushi Seta
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Yuki Nishibori
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Akihiro Hiraguri
- Department of Clinical Plant Science, Hosei University, Kajino-cho, Koganei, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Biological Production Science, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Tadashi Yokoyama
- Biological Production Science, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Satoshi Hara
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Keisuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Akihito Fukudome
- Department of Horticultural Sciences, Vegetable and Fruit Improvement Center, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Department of Horticultural Sciences, Vegetable and Fruit Improvement Center, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, USA
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| |
Collapse
|
910
|
Yuan LB, Dai YS, Xie LJ, Yu LJ, Zhou Y, Lai YX, Yang YC, Xu L, Chen QF, Xiao S. Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis. PLANT PHYSIOLOGY 2017; 173:1864-1880. [PMID: 28082717 PMCID: PMC5338657 DOI: 10.1104/pp.16.01803] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Submergence induces hypoxia in plants; exposure to oxygen following submergence, termed reoxygenation, produces a burst of reactive oxygen species. The mechanisms of hypoxia sensing and signaling in plants have been well studied, but how plants respond to reoxygenation remains unclear. Here, we show that reoxygenation in Arabidopsis (Arabidopsis thaliana) involves rapid accumulation of jasmonates (JAs) and increased transcript levels of JA biosynthesis genes. Application of exogenous methyl jasmonate improved tolerance to reoxygenation in wild-type Arabidopsis; also, mutants deficient in JA biosynthesis and signaling were very sensitive to reoxygenation. Moreover, overexpression of the transcription factor gene MYC2 enhanced tolerance to posthypoxic stress, and myc2 knockout mutants showed increased sensitivity to reoxygenation, indicating that MYC2 functions as a key regulator in the JA-mediated reoxygenation response. MYC2 transcriptionally activates members of the VITAMIN C DEFECTIVE (VTC) and GLUTATHIONE SYNTHETASE (GSH) gene families, which encode rate-limiting enzymes in the ascorbate and glutathione synthesis pathways. Overexpression of VTC1 and GSH1 in the myc2-2 mutant suppressed the posthypoxic hypersensitive phenotype. The JA-inducible accumulation of antioxidants may alleviate oxidative damage caused by reoxygenation, improving plant survival after submergence. Taken together, our findings demonstrate that JA signaling interacts with the antioxidant pathway to regulate reoxygenation responses in Arabidopsis.
Collapse
Affiliation(s)
- Li-Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang-Shuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Cong Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Le Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
911
|
Gulyás Z, Simon-Sarkadi L, Badics E, Novák A, Mednyánszky Z, Szalai G, Galiba G, Kocsy G. Redox regulation of free amino acid levels in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 159:264-276. [PMID: 27605256 DOI: 10.1111/ppl.12510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
Abiotic stresses induce oxidative stress, which modifies the level of several metabolites including amino acids. The redox control of free amino acid profile was monitored in wild-type and ascorbate or glutathione deficient mutant Arabidopsis thaliana plants before and after hydroponic treatment with various redox agents. Both mutations and treatments modified the size and redox state of the ascorbate (AsA) and/or glutathione (GSH) pools. The total free amino acid content was increased by AsA, GSH and H2 O2 in all three genotypes and a very large (threefold) increase was observed in the GSH-deficient pad2-1 mutant after GSH treatment compared with the untreated wild-type plants. Addition of GSH reduced the ratio of amino acids belonging to the glutamate family on a large scale and increased the relative amount of non-proteinogenic amino acids. The latter change was because of the large increase in the content of alpha-aminoadipate, an inhibitor of glutamatic acid (Glu) transport. Most of the treatments increased the proline (Pro) content, which effect was due to the activation of genes involved in Pro synthesis. Although all studied redox compounds influenced the amount of free amino acids and a mostly positive, very close (r > 0.9) correlation exists between these parameters, a special regulatory role of GSH could be presumed due to its more powerful effect. This may originate from the thiol/disulphide conversion or (de)glutathionylation of enzymes participating in the amino acid metabolism.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Livia Simon-Sarkadi
- Department of Food Chemistry and Nutrition, Szent István University, Budapest, H-1118, Hungary
| | - Eszter Badics
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Zsuzsanna Mednyánszky
- Department of Food Chemistry and Nutrition, Szent István University, Budapest, H-1118, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, H-8360, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| |
Collapse
|
912
|
Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AA, Hellens RP. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr Opin Biotechnol 2017; 44:153-160. [PMID: 28231513 DOI: 10.1016/j.copbio.2017.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
Ascorbate (or vitamin C) is an essential human micronutrient predominantly obtained from plants. In addition to preventing scurvy, it is now known to have broader roles in human health, for example as a cofactor for enzymes involved in epigenetic programming and as regulator of cellular iron uptake. Furthermore, ascorbate is the major antioxidant in plants and underpins many environmentally induced abiotic stress responses. Biotechnological approaches to enhance the ascorbate content of crops therefore have potential to improve both human health and abiotic stress tolerance of crops. Identifying the genetic basis of ascorbate variation between plant varieties and discovering how some 'super fruits' accumulate extremely high levels of ascorbate should reveal new ways to more effectively manipulate the production of ascorbate in crops.
Collapse
Affiliation(s)
- Richard C Macknight
- University of Otago, Department of Biochemistry, PO Box 56, Dunedin 9054, New Zealand; Queensland University of Technology, Centre for Tropical Crops and Biocommodities, Institute for Future Environments, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - William A Laing
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Bachelor Road, Palmerston North 4474, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant & Food Research Limited, 412 No 1 Road, RD 2, Te Puke 3182, New Zealand
| | - Ronan C Broad
- The University of Melbourne, School of BioSciences, Parkville, Melbourne, 3010 VIC, Australia
| | - Alexander At Johnson
- The University of Melbourne, School of BioSciences, Parkville, Melbourne, 3010 VIC, Australia
| | - Roger P Hellens
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, Institute for Future Environments, GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
913
|
Metabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
914
|
Distéfano AM, Martin MV, Córdoba JP, Bellido AM, D'Ippólito S, Colman SL, Soto D, Roldán JA, Bartoli CG, Zabaleta EJ, Fiol DF, Stockwell BR, Dixon SJ, Pagnussat GC. Heat stress induces ferroptosis-like cell death in plants. J Cell Biol 2017; 216:463-476. [PMID: 28100685 PMCID: PMC5294777 DOI: 10.1083/jcb.201605110] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrés Martín Bellido
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Silvana Lorena Colman
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Juan Alfredo Roldán
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carlos Guillermo Bartoli
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales, Universidad Nacional de La Plata Centro Científico Technológico La Plata CONICET, 1900 La Plata, Argentina
| | - Eduardo Julián Zabaleta
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027.,Department of Chemistry, Columbia University, New York, NY 10027
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
915
|
Eshel G, Shaked R, Kazachkova Y, Khan A, Eppel A, Cisneros A, Acuna T, Gutterman Y, Tel-Zur N, Rachmilevitch S, Fait A, Barak S. Anastatica hierochuntica, an Arabidopsis Desert Relative, Is Tolerant to Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance Strategies with Its Halophytic Relative, Eutrema ( Thellungiella) salsugineum. FRONTIERS IN PLANT SCIENCE 2017; 7:1992. [PMID: 28144244 PMCID: PMC5239783 DOI: 10.3389/fpls.2016.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments - so called "extremophytes." One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Simon Barak
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevSde Boker, Israel
| |
Collapse
|
916
|
Gardner SG, Nielsen DA, Laczka O, Shimmon R, Beltran VH, Ralph PJ, Petrou K. Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc Biol Sci 2017; 283:rspb.2015.2418. [PMID: 26865302 DOI: 10.1098/rspb.2015.2418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Corals are among the most active producers of dimethylsulfoniopropionate (DMSP), a key molecule in marine sulfur cycling, yet the specific physiological role of DMSP in corals remains elusive. Here, we examine the oxidative stress response of three coral species (Acropora millepora, Stylophora pistillata and Pocillopora damicornis) and explore the antioxidant role of DMSP and its breakdown products under short-term hyposalinity stress. Symbiont photosynthetic activity declined with hyposalinity exposure in all three reef-building corals. This corresponded with the upregulation of superoxide dismutase and glutathione in the animal host of all three species. For the symbiont component, there were differences in antioxidant regulation, demonstrating differential responses to oxidative stress between the Symbiodinium subclades. Of the three coral species investigated, only A. millepora provided any evidence of the role of DMSP in the oxidative stress response. Our study reveals variability in antioxidant regulation in corals and highlights the influence life-history traits, and the subcladal differences can have on coral physiology. Our data expand on the emerging understanding of the role of DMSP in coral stress regulation and emphasizes the importance of exploring both the host and symbiont responses for defining the threshold of the coral holobiont to hyposalinity stress.
Collapse
Affiliation(s)
- Stephanie G Gardner
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales, Australia
| | - Daniel A Nielsen
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales, Australia
| | - Olivier Laczka
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ronald Shimmon
- School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Victor H Beltran
- Symbiont Culture Facility (SCF), Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales, Australia
| | - Katherina Petrou
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
917
|
Guo K, Tu L, Wang P, Du X, Ye S, Luo M, Zhang X. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton ( Gossypium hirsutum) by Modulating ABA Levels. FRONTIERS IN PLANT SCIENCE 2017; 7:1997. [PMID: 28101095 PMCID: PMC5209387 DOI: 10.3389/fpls.2016.01997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/16/2016] [Indexed: 05/30/2023]
Abstract
Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase-oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8'-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Shue Ye
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
918
|
Khan MN, Mobin M, Abbas ZK, Siddiqui MH. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 2017; 68:91-102. [PMID: 28062279 DOI: 10.1016/j.niox.2017.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) have been shown to act as signaling molecules in various physiological processes, play significant roles in plant cellular processes, and also mediate responses to both biotic and abiotic stresses in plants. The present investigation was carried out to test the effect of exogenous NO on endogenous synthesis of H2S in osmotic-stressed wheat (Triticum aestivum L.) seedlings. The results show that application of NO to wheat seedlings, suffered from PEG8000-induced osmotic stress, considerably enhanced the activities of H2S-synthesizing enzymes l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) leading to enhanced level of endogenous H2S content. At the same time exogenous NO also enhanced the activity of cysteine (Cys)-synthesizing enzyme O-acetylserine(thiol)lyase (OAS-TL) and maintained Cys homeostasis under osmotic stress. NO and H2S together markedly improved the activities of antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT). Furthermore, NO and H2S caused additional accumulation of osmolytes proline (Pro) and glycine betaine (GB), all these collectively resulted in the protection of plants against osmotic stress-induced oxidative stress. On the other hand, NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] and H2S scavenger HT (hypotaurine) invalidated the effect of NO on endogenous H2S levels and Cys homeostasis which resulted in weak protection against osmotic stress. Application of N-ethylmaleimide (NEM) suppressed GR activity and caused an increase in oxidative stress. We concluded that NO in association with endogenous H2S activates the defense system to the level required to counter osmotic stress and maintains normal functioning of cellular machinery.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia.
| | - M Mobin
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| |
Collapse
|
919
|
Marmiroli M, Mussi F, Imperiale D, Lencioni G, Marmiroli N. Abiotic Stress Response to As and As+Si, Composite Reprogramming of Fruit Metabolites in Tomato Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:2201. [PMID: 29312426 PMCID: PMC5744081 DOI: 10.3389/fpls.2017.02201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/07/2023]
Abstract
The toxic element arsenic interacts with the beneficial element silicon at many levels of the plant metabolism. The ability of the tomato plant to take up and translocate As into its fruit has risen concerns that it could facilitate the entry of this element into the human food chain above the admitted level. Here, the fruit of two contrasting tomato cultivars, Aragon and Gladis, were evaluated following exposures of either 48 h or 14 days to As-contaminated irrigation water, with or without supplementary Si. The focus was on selected biochemical stress response indicators to dissect metabolic fruit reprogramming induced by As and Si. A multivariate statistical approach was utilized to establish the relationship between tissue As and Si concentrations and selected biochemical aspects of the stress response mechanisms to identify a set of relevant stress response descriptors. This resulted in the recognition of strong cultivar and temporal effects on metabolic and biochemical stress parameters following the treatments. In this paper the metabolic changes in H2O2 content, lipid peroxidation, lycopene and carotenoids content, ascorbate and GSH redox state, total phenolics, ABTS and DPPH radicals inhibition were in favor of an oxidative stress. The significance of some of these parameters as reliable arsenic exposition biomarkers is discussed in the context of the limited knowledge on the As-induced stress response mechanisms at the level of the ripening fruit which presents a distinctive molecular background dissimilar from roots and shoots.
Collapse
|
920
|
Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X. Exogenous Melatonin Confers Salt Stress Tolerance to Watermelon by Improving Photosynthesis and Redox Homeostasis. FRONTIERS IN PLANT SCIENCE 2017; 8:295. [PMID: 28298921 PMCID: PMC5331065 DOI: 10.3389/fpls.2017.00295] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/17/2017] [Indexed: 05/17/2023]
Abstract
Melatonin, a pleiotropic signal molecule, has been shown to play important roles in the regulation of plant growth, development, and responses to environmental stresses. Since a few species have been investigated to unveil the effect of exogenous melatonin on salt stress, the underlying mechanism of melatonin-mediated salt stress tolerance in other plant species still remains largely unknown. In this study, the effects of melatonin on leaf photosynthesis and redox homeostasis in watermelon were examined under salt stress (300 mM NaCl) along with different doses of melatonin (50, 150, and 500 μM) pretreatment. NaCl stress inhibited photosynthesis and increased accumulation of reactive oxygen species and membrane damage in leaves of watermelon seedlings. However, pretreatment with melatonin on roots alleviated NaCl-induced decrease in photosynthetic rate and oxidative stress in a dose-dependent manner. The protection of photosynthesis by melatonin was closely associated with the inhibition of stomatal closure and improved light energy absorption and electron transport in photosystem II, while the reduction of oxidative stress by melatonin was attributed to the improved redox homeostasis coupled with the enhanced activities of antioxidant enzymes. This study unraveled crucial role of melatonin in salt stress mitigation and thus can be implicated in the management of salinity in watermelon cultivation.
Collapse
Affiliation(s)
- Hao Li
- *Correspondence: Xian Zhang, Hao Li,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
921
|
Wang Z, Li Q, Wu W, Guo J, Yang Y. Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:75-81. [PMID: 27693680 DOI: 10.1016/j.ecoenv.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Ascorbic acid (AsA) and nitric oxide (NO) are well known and widespread antioxidants and gaseous molecules that regulate plant tolerance to several stresses. However, the relationship between them in plant response to stress, especially heavy stress, is largely unclear. This study demonstrated that both AsA and NO could enhance the tolerance of wheat seedlings to cadmium stress evidenced by root length change, which resulted from their roles in maintaining the balance in reactive oxygen species (ROS) and reducing the absorption of Cd. Furthermore, exogenous AsA led to a significant increase of NO content and endogenous AsA content in wheat roots, which could be weakened by the NO scavenger c-PTIO. In addition, c-PTIO also inhibits the NO-induced production of endogenous AsA. Although the AsA synthesis inhibitor lycorine significantly inhibited the inductive effect of exogenous AsA on endogenous AsA production, it has little effect on NO content. In addition, we found that the protective effects of NO and AsA on Cd stress were removed by c-PTIO and lycorine. These results indicated that NO accumulation could be necessary for exogenous AsA-induced cadmium tolerance and endogenous AsA production, and the exogenous AsA-induced endogenous AsA production was likely mediated by NO signaling pathways and together they induced the tolerance of wheat to cadmium stress.
Collapse
Affiliation(s)
- Zhaofeng Wang
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Qien Li
- Tibetan medical college, Qinghai University, Xining 810016, PR China
| | - Weiguo Wu
- Economic Crops and Beer Material Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, PR China
| | - Jie Guo
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Yingli Yang
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
922
|
Pétriacq P, de Bont L, Genestout L, Hao J, Laureau C, Florez-Sarasa I, Rzigui T, Queval G, Gilard F, Mauve C, Guérard F, Lamothe-Sibold M, Marion J, Fresneau C, Brown S, Danon A, Krieger-Liszkay A, Berthomé R, Ribas-Carbo M, Tcherkez G, Cornic G, Pineau B, Gakière B, De Paepe R. Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants. PLANT PHYSIOLOGY 2017; 173:434-455. [PMID: 27852950 PMCID: PMC5210746 DOI: 10.1104/pp.16.01484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/16/2016] [Indexed: 05/07/2023]
Abstract
Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Linda de Bont
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Lucie Genestout
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Jingfang Hao
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Constance Laureau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Igor Florez-Sarasa
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Touhami Rzigui
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Guillaume Queval
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Marlène Lamothe-Sibold
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Jessica Marion
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Chantal Fresneau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Spencer Brown
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Antoine Danon
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Anja Krieger-Liszkay
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Richard Berthomé
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Miquel Ribas-Carbo
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Guillaume Tcherkez
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Gabriel Cornic
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Bernard Pineau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.);
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.);
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.);
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.);
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.);
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.);
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Rosine De Paepe
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| |
Collapse
|
923
|
Gomes MP, Le Manac’h SG, Hénault-Ethier L, Labrecque M, Lucotte M, Juneau P. Glyphosate-Dependent Inhibition of Photosynthesis in Willow. FRONTIERS IN PLANT SCIENCE 2017; 8:207. [PMID: 28261257 PMCID: PMC5314154 DOI: 10.3389/fpls.2017.00207] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/03/2017] [Indexed: 05/05/2023]
Abstract
We studied the physiological mechanisms involved in the deleterious effects of a glyphosate-based herbicide (Factor® 540) on photosynthesis and related physiological processes of willow (Salix miyabeana cultivar SX64) plants. Sixty-day-old plants grown under greenhouse conditions were sprayed with different rates (0, 1.4, 2.1, and 2.8 kg a.e ha-1) of the commercial glyphosate formulated salt Factor® 540. Evaluations were performed at 0, 6, 24, 48, and 72 h after herbicide exposure. We established that the herbicide decreases chlorophyll, carotenoid and plastoquinone contents, and promotes changes in the photosynthetic apparatus leading to decreased photochemistry which results in hydrogen peroxide (H2O2) accumulation. H2O2 accumulation triggers proline production which can be associated with oxidative protection, NADP+ recovery and shikimate pathway stimulation. Ascorbate peroxidase and glutathione peroxidase appeared to be the main peroxidases involved in the H2O2 scavenging. In addition to promoting decreases of the activity of the antioxidant enzymes, the herbicide induced decreases in ascorbate pool. For the first time, a glyphosate-based herbicide mode of action interconnecting its effects on shikimate pathway, photosynthetic process and oxidative events in plants were presented.
Collapse
Affiliation(s)
- Marcelo P. Gomes
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, MontréalQC, Canada
- Laboratório de Fisiologia Vegetal, Instituto de Ciências Biológicas, Departamento de Botânica, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
- *Correspondence: Marcelo P. Gomes, Philippe Juneau,
| | - Sarah G. Le Manac’h
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, MontréalQC, Canada
| | - Louise Hénault-Ethier
- Institut des Sciences de l’Environnement, Université du Québec à Montréal, MontréalQC, Canada
| | - Michel Labrecque
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, MontréalQC, Canada
| | - Marc Lucotte
- Institut des Sciences de l’Environnement, Université du Québec à Montréal, MontréalQC, Canada
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, MontréalQC, Canada
- Institut des Sciences de l’Environnement, Université du Québec à Montréal, MontréalQC, Canada
- *Correspondence: Marcelo P. Gomes, Philippe Juneau,
| |
Collapse
|
924
|
Gill RA, Ali B, Yang S, Tong C, Islam F, Gill MB, Mwamba TM, Ali S, Mao B, Liu S, Zhou W. Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L. FRONTIERS IN PLANT SCIENCE 2017; 8:2037. [PMID: 29312362 PMCID: PMC5732361 DOI: 10.3389/fpls.2017.02037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
Chromium (Cr) as a toxic metal is widely used for commercial purposes and its residues have become a potential environmental threat to both human and plant health. Oilseed rape (Brassica napus L.) is one of the candidate plants that can absorb the considerable quantity of toxic metals from the soil. Here, we used two cultivars of B. napus cvs. ZS 758 (metal-tolerant) and Zheda 622 (metal-susceptible) to investigate the phenological attributes, cell ultrastructure, protein kinases (PKs) and molecular transporters (MTs) under the combined treatments of Cr stress and reduced glutathione (GSH). Seeds of these cultivars were grown in vitro at different treatments i.e., 0, 400 μM Cr, and 400 μM Cr + 1 mM GSH in control growth chamber for 6 days. Results had confirmed that Cr significantly reduced the plant length, stem and root, and fresh biomass such as leaf, stem and root. Cr noticeably caused the damages in leaf mesophyll cells. Exogenous application of GSH significantly recovered both phenological and cell structural damages in two cultivars under Cr stress. For the PKs, transcriptomic data advocated that Cr stress alone significantly increased the gene expressions of BnaA08g16610D, BnaCnng19320D, and BnaA08g00390D over that seen in controls (Ck). These genes encoded both nucleic acid and transition metal ion binding proteins, and protein kinase activity (PKA) and phosphotransferase activities in both cultivars. Similarly, the presence of Cr revealed elite MT genes [BnaA04g26560D, BnaA02g28130D, and BnaA02g01980D (novel)] that were responsible for water transmembrane transporter activity. However, GSH in combination with Cr stress significantly up-regulated the genes for PKs [such as BnaCnng69940D (novel) and BnaC08g49360D] that were related to PKA, signal transduction, and oxidoreductase activities. For MTs, BnaC01g29930D and BnaA07g14320D were responsible for secondary active transmembrane transporter and protein transporter activities that were expressed more in GSH treatment than either Ck or Cr-treated cells. In general, it can be concluded that cultivar ZS 758 is more tolerant toward Cr-induced stress than Zheda 622.
Collapse
Affiliation(s)
- Rafaqat A. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Su Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Chaobo Tong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Bilal Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Theodore M. Mwamba
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou
| |
Collapse
|
925
|
Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:953. [PMID: 28638395 PMCID: PMC5461256 DOI: 10.3389/fpls.2017.00953] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/22/2017] [Indexed: 05/19/2023]
Abstract
Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS). Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.
Collapse
|
926
|
Abstract
Chemical, physical, and biotic factors continuously vary in the natural environment. Such parameters are considered as stressors if the magnitude of their change exceeds the current acclimation norm of the plant. Activation of genetic programs allows for conditional expansion of the acclimation norm and depends on specific sensing mechanisms, intracellular communication, and regulation. The redox and reactive oxygen species (ROS) network plays a fundamental role in directing the acclimation response. These highly reactive compounds like H2O2 are generated and scavenged under normal conditions and participate in realizing a basal acclimation level. Spatial and temporal changes in ROS levels and redox state provide valuable information for regulating epigenetic processes, transcription factors (TF), translation, protein turnover, metabolic pathways, and cross-feed, e.g., into hormone-, NO-, or Ca2+-dependent signaling pathways. At elevated ROS levels uncontrolled oxidation reactions compromise cell functions, impair fitness and yield, and in extreme cases may cause plant death.
Collapse
Affiliation(s)
- Michael Liebthal
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, University Str. 25, 33501, Bielefeld, Germany
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, University Str. 25, 33501, Bielefeld, Germany.
| |
Collapse
|
927
|
Dai C, Cui W, Pan J, Xie Y, Wang J, Shen W. Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa. J Proteomics 2017; 152:109-120. [DOI: 10.1016/j.jprot.2016.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
|
928
|
Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC, Sahi S, Chauhan DK. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate-Glutathione Cycle. FRONTIERS IN PLANT SCIENCE 2017; 8:1. [PMID: 28220127 PMCID: PMC5292406 DOI: 10.3389/fpls.2017.00001] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate-glutatione cycle (AsA-GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA-GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA-GSH cycle.
Collapse
Affiliation(s)
- Durgesh K. Tripathi
- Centre of Advanced in Botany, Banaras Hindu University VaranasiVaranasi, India
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of TechnologyAllahabad, India
- *Correspondence: Durgesh K. Tripathi, Vijay P. Singh, Devendra K. Chauhan, Prashant K. Singh,
| | - Rohit K. Mishra
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of TechnologyAllahabad, India
| | - Swati Singh
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of TechnologyAllahabad, India
| | - Shivesh Sharma
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of TechnologyAllahabad, India
- Department of Biotechnology, Motilal Nehru National Institute of TechnologyAllahabad, India
| | - Vijay P. Singh
- Government Ramanuj Pratap Singhdev Post Graduate CollegeKoriya, India
- *Correspondence: Durgesh K. Tripathi, Vijay P. Singh, Devendra K. Chauhan, Prashant K. Singh,
| | - Prashant K. Singh
- Nanotechnology Application Centre, University of AllahabadAllahabad, India
- *Correspondence: Durgesh K. Tripathi, Vijay P. Singh, Devendra K. Chauhan, Prashant K. Singh,
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Nawal K. Dubey
- Centre of Advanced in Botany, Banaras Hindu University VaranasiVaranasi, India
| | - Avinash C. Pandey
- Nanotechnology Application Centre, University of AllahabadAllahabad, India
| | - Shivendra Sahi
- Department of Biology, Western Kentucky University, Bowling GreenKY, USA
| | - Devendra K. Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of AllahabadAllahabad, India
- *Correspondence: Durgesh K. Tripathi, Vijay P. Singh, Devendra K. Chauhan, Prashant K. Singh,
| |
Collapse
|
929
|
Penella C, Calatayud Á, Melgar JC. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering. FRONTIERS IN PLANT SCIENCE 2017; 8:1627. [PMID: 28979284 PMCID: PMC5611396 DOI: 10.3389/fpls.2017.01627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.
Collapse
Affiliation(s)
- Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Ángeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Juan C. Melgar
- Department of Plant and Environmental Sciences, Clemson University, ClemsonSC, United States
- *Correspondence: Juan C. Melgar,
| |
Collapse
|
930
|
Seminario A, Song L, Zulet A, Nguyen HT, González EM, Larrainzar E. Drought Stress Causes a Reduction in the Biosynthesis of Ascorbic Acid in Soybean Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1042. [PMID: 28663755 PMCID: PMC5471321 DOI: 10.3389/fpls.2017.01042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/30/2017] [Indexed: 05/03/2023]
Abstract
Drought provokes a number of physiological changes in plants including oxidative damage. Ascorbic acid (AsA), also known as vitamin C, is one of the most abundant water-soluble antioxidant compound present in plant tissues. However, little is known on the regulation of AsA biosynthesis under drought stress conditions. In the current work we analyze the effects of water deficit on the biosynthesis of AsA by measuring its content, in vivo biosynthesis and the expression level of genes in the Smirnoff-Wheeler pathway in one of the major legume crop, soybean (Glycine max L. Merr). Since the pathway has not been described in legumes, we first searched for the putative orthologous genes in the soybean genome. We observed a significant genetic redundancy, with multiple genes encoding each step in the pathway. Based on RNA-seq analysis, expression of the complete pathway was detected not only in leaves but also in root tissue. Putative paralogous genes presented differential expression patterns in response to drought, suggesting the existence of functional specialization mechanisms. We found a correlation between the levels of AsA and GalLDH biosynthetic rates in leaves of drought-stressed soybean plants. However, the levels of GalLDH transcripts did not show significant differences under water deficit conditions. Among the other known regulators of the pathway, only the expression of VTC1 genes correlated with the observed decline in AsA in leaves.
Collapse
Affiliation(s)
- Amaia Seminario
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
| | - Li Song
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, ColumbiaMO, United States
| | - Amaia Zulet
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
| | - Henry T. Nguyen
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, ColumbiaMO, United States
| | - Esther M. González
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar, Esther M. González,
| | - Estíbaliz Larrainzar
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar, Esther M. González,
| |
Collapse
|
931
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
932
|
Hanson AD, Beaudoin GA, McCarty DR, Gregory JF. Does Abiotic Stress Cause Functional B Vitamin Deficiency in Plants? PLANT PHYSIOLOGY 2016; 172:2082-2097. [PMID: 27807106 PMCID: PMC5129723 DOI: 10.1104/pp.16.01371] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Guillaume A Beaudoin
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Donald R McCarty
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Jesse F Gregory
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| |
Collapse
|
933
|
Fraga HPDF, Vieira LDN, Puttkammer CC, Dos Santos HP, Garighan JDA, Guerra MP. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:98-106. [PMID: 27969001 DOI: 10.1016/j.plantsci.2016.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 05/08/2023]
Abstract
Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized.
Collapse
Affiliation(s)
- Hugo Pacheco de Freitas Fraga
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Catarina Corrêa Puttkammer
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Henrique Pessoa Dos Santos
- Laboratório de Fisiologia Vegetal, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Uva e Vinho, Bento Gonçalves, RS, 95700-000, Brazil
| | - Julio de Andrade Garighan
- Laboratório de Fisiologia Vegetal, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Uva e Vinho, Bento Gonçalves, RS, 95700-000, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
934
|
Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle N, Jones PC, Agh R, Weston DJ, Wullschleger SD, Tschaplinski T, Jacobson D, Cushman JC, Hettich RL, Tuskan GA, Yang X. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. NATURE PLANTS 2016; 2:16178. [PMID: 27869799 DOI: 10.1038/nplants.2016.178] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/20/2016] [Indexed: 05/19/2023]
Abstract
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C3 model plant Arabidopsis. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. Here, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more efficient CAM traits into economically valuable C3 crops.
Collapse
Affiliation(s)
- Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Hengfu Yin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Anne M Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- School of Biology, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Deborah Weighill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sung Don Lim
- Department of Biochemistry and Molecular Biology, University of Nevada, MS330, Reno, Nevada 89557-0330, USA
| | | | - Nancy Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ryan Agh
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Timothy Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, MS330, Reno, Nevada 89557-0330, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
935
|
Noshi M, Yamada H, Hatanaka R, Tanabe N, Tamoi M, Shigeoka S. Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress. Biosci Biotechnol Biochem 2016; 81:523-533. [PMID: 27852156 DOI: 10.1080/09168451.2016.1256759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ascorbate and glutathione are indispensable cellular redox buffers and allow plants to acclimate stressful conditions. Arabidopsis contains three functional dehydroascorbate reductases (DHAR1-3), which catalyzes the conversion of dehydroascorbate into its reduced form using glutathione as a reductant. We herein attempted to elucidate the physiological role in DHAR1 and DHAR2 in stress responses. The total DHAR activities in DHAR knockout Arabidopsis plants, dhar1 and dhar2, were 22 and 92%, respectively, that in wild-type leaves. Under high light (HL), the levels of total ascorbate and dehydroascorbate were only reduced and increased, respectively, in dhar1. The oxidation of glutathione under HL was significantly inhibited in both dhar1 and dhar2, while glutathione contents were only enhanced in dhar1. The dhar1 showed stronger visible symptoms than the dhar2 under photooxidative stress conditions. Our results demonstrated a pivotal role of DHAR1 in the modulation of cellular redox states under photooxidative stress.
Collapse
Affiliation(s)
- Masahiro Noshi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Hiroki Yamada
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Risa Hatanaka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Noriaki Tanabe
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Masahiro Tamoi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| |
Collapse
|
936
|
Matsubara S, Schneider T, Maurino VG. Dissecting Long-Term Adjustments of Photoprotective and Photo-Oxidative Stress Acclimation Occurring in Dynamic Light Environments. FRONTIERS IN PLANT SCIENCE 2016; 7:1690. [PMID: 27881991 PMCID: PMC5101218 DOI: 10.3389/fpls.2016.01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/26/2016] [Indexed: 05/23/2023]
Abstract
Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cells' needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating) light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants) under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments.
Collapse
Affiliation(s)
- Shizue Matsubara
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum JülichJülich, Germany
| | - Trang Schneider
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum JülichJülich, Germany
- iGRAD-Plant, Heinrich-Heine-UniversitätDüsseldorf, Germany
| | - Veronica G. Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität and Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| |
Collapse
|
937
|
Ahmad N, Malagoli M, Wirtz M, Hell R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC PLANT BIOLOGY 2016; 16:247. [PMID: 27829370 PMCID: PMC5103438 DOI: 10.1186/s12870-016-0940-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought is the most important environmental stress that limits crop yield in a global warming world. Despite the compelling evidence of an important role of oxidized and reduced sulfur-containing compounds during the response of plants to drought stress (e.g. sulfate for stomata closure or glutathione for scavenging of reactive oxygen species), the assimilatory sulfate reduction pathway is almost not investigated at the molecular or at the whole plant level during drought. RESULTS In the present study, we elucidated the role of assimilatory sulfate reduction in roots and leaves of the staple crop maize after application of drought stress. The time-resolved dynamics of the adaption processes to the stress was analyzed in a physiological relevant situation -when prolonged drought caused significant oxidation stress but root growth should be maintained. The allocation of sulfate was significantly shifted to the roots upon drought and allowed for significant increase of thiols derived from sulfate assimilation in roots. This enabled roots to produce biomass, while leaf growth was stopped. Accumulation of harmful reactive oxygen species caused oxidation of the glutathione pool and decreased glutathione levels in leaves. Surprisingly, flux analysis using [35S]-sulfate demonstrated a significant down-regulation of sulfate assimilation and cysteine synthesis in leaves due to the substantial decrease of serine acetyltransferase activity. The insufficient cysteine supply caused depletion of glutathione pool in spite of significant transcriptional induction of glutathione synthesis limiting GSH1. Furthermore, drought impinges on transcription of membrane-localized sulfate transport systems in leaves and roots, which provides a potential molecular mechanism for the reallocation of sulfur upon prolonged water withdrawal. CONCLUSIONS The study demonstrated a significant and organ-specific impact of drought upon sulfate assimilation. The sulfur metabolism related alterations at the transcriptional, metabolic and enzyme activity level are consistent with a promotion of root growth to search for water at the expense of leaf growth. The results provide evidence for the importance of antagonistic regulation of sulfur metabolism in leaves and roots to enable successful drought stress response at the whole plant level.
Collapse
Affiliation(s)
- Nisar Ahmad
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
- University of Science & Technology Bannu, Bannu, Pakistan
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| |
Collapse
|
938
|
Fesenko I, Seredina A, Arapidi G, Ptushenko V, Urban A, Butenko I, Kovalchuk S, Babalyan K, Knyazev A, Khazigaleeva R, Pushkova E, Anikanov N, Ivanov V, Govorun VM. The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation. FRONTIERS IN PLANT SCIENCE 2016; 7:1661. [PMID: 27867392 PMCID: PMC5095126 DOI: 10.3389/fpls.2016.01661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 05/29/2023]
Abstract
Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Anna Seredina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Georgij Arapidi
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vasily Ptushenko
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
- Department of Biocatalysis, Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, Russia
| | - Anatoly Urban
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Ivan Butenko
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| | - Sergey Kovalchuk
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Konstantin Babalyan
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Andrey Knyazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Regina Khazigaleeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Elena Pushkova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Nikolai Anikanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim M. Govorun
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| |
Collapse
|
939
|
Vidović M, Morina F, Prokić L, Milić-Komić S, Živanović B, Jovanović SV. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H 2O 2 in (peri)vascular tissue induced by sunlight and paraquat. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:25-39. [PMID: 27688091 DOI: 10.1016/j.jplph.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.
Collapse
Affiliation(s)
- Marija Vidović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Filis Morina
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Sonja Milić-Komić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Bojana Živanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Sonja Veljović Jovanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
940
|
Brunetto G, Bastos de Melo GW, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. CHEMOSPHERE 2016; 162:293-307. [PMID: 27513550 DOI: 10.1016/j.chemosphere.2016.07.104] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 05/23/2023]
Abstract
Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms.
Collapse
Affiliation(s)
- Gustavo Brunetto
- Departament of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - George Wellington Bastos de Melo
- National Research Center of Grape and Wine (Centro Nacional de Pesquisa de Uva e Vinho - CNPUV), Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária - Embrapa), Bento Gonçalves, Rio Grande do Sul, CEP: 95700-000, Brazil
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", I-70126, Bari, Italy
| | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), Università della Tuscia, Viterbo, I-01100, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, I-33100, Udine, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
941
|
Prasad SM, Kumar S, Parihar P, Singh R. Interactive effects of herbicide and enhanced UV-B on growth, oxidative damage and the ascorbate-glutathione cycle in two Azolla species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:341-9. [PMID: 27497078 DOI: 10.1016/j.ecoenv.2016.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 05/24/2023]
Abstract
A field experiment was conducted to investigate the impact of alone and combined exposures of herbicide pretilachlor (5, 10 and 20μgml(-1)) and enhanced UV-B radiation (UV-B1; ambient +2.2kJm(-2) day(-1) and UV-B2; ambient +4.4kJm(-2) day(-1)) on growth, oxidative stress and the ascorbate-glutathione (AsA-GSH) cycle in two agronomically important Azolla spp. viz., Azolla microphylla and Azolla pinnata. Decreased relative growth rate (RGR) in both the species under tested stress could be linked to enhanced oxidative stress, thus higher H2O2 accumulation was observed, that in turn might have caused severe damage to lipids and proteins, thereby decreasing membrane stability. The effects were exacerbated when spp. were exposed to combined treatments of enhanced UV-B and pretilachlor. Detoxification of H2O2 is regulated by enzymes/metabolites of AsA-GSH cycle such as ascorbate peroxidase (APX) and glutathione reductase (GR) activity that were found to be stimulated. While, dehydroascorabte reductase (DHAR) activity, and the amount of metabolites: ascorbate (AsA), glutathione (GSH) and ratios of reduced/oxidized AsA (AsA/DHA) and GSH (GSH/GSSG), showed significant reduction with increasing doses of both the stressors, either applied alone or in combination. Glutathione-S-transferase (GST), an enzyme involved in scavenging of xenobiotics, was found to be stimulated under the tested stress. This study suggests that decline in DHAR activity and in AsA/DHA ratio might have led to enhanced H2O2 accumulation, thus decreased RGR was noticed under tested stress in both the species and the effect was more pronounced in A. pinnata. Owing to better performance of AsA-GSH cycle in A. microphylla, this study substantiates the view that A. microphylla is more tolerant than A. pinnata.
Collapse
Affiliation(s)
- Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002 India.
| | - Sushil Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002 India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002 India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002 India
| |
Collapse
|
942
|
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT. Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance. PLANT PHYSIOLOGY 2016; 172:1480-1493. [PMID: 27634426 PMCID: PMC5100767 DOI: 10.1104/pp.16.01084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 05/20/2023]
Abstract
In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP+ Both NADPH and reduced Fd (Fdred) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fdred to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help "prime" the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription.
Collapse
Affiliation(s)
- Marina Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Tatjana Goss
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Manuel Twachtmann
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Katherina Rudi
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Trapka
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Selinski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Boris Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Prashanth Garapati
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Heinz-Juergen Steinhoff
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Toshiharu Hase
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Renate Scheibe
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Johann P Klare
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Guy T Hanke
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.);
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany;
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| |
Collapse
|
943
|
Johansen KS. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation. TRENDS IN PLANT SCIENCE 2016; 21:926-936. [PMID: 27527668 DOI: 10.1016/j.tplants.2016.07.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 05/05/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-enzymes that catalyze oxidative cleavage of glycosidic bonds. These enzymes are secreted by many microorganisms to initiate infection and degradation processes. In particular, the concept of fungal degradation of lignocellulose has been revised in the light of this recent finding. LPMOs require a source of electrons for activity, and both enzymatic and plant-derived sources have been identified. Importantly, light-induced electron delivery from light-harvesting pigments can efficiently drive LPMO activity. The possible implications of LPMOs in plant-symbiont and -pathogen interactions are discussed in the context of the very powerful oxidative capacity of these enzymes.
Collapse
Affiliation(s)
- Katja Salomon Johansen
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Department of Geoscience and Natural Resources Management, Copenhagen University, DK-1958 Frederiksberg, Denmark.
| |
Collapse
|
944
|
Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep 2016; 6:35424. [PMID: 27752105 PMCID: PMC5067582 DOI: 10.1038/srep35424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/29/2016] [Indexed: 11/30/2022] Open
Abstract
To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation.
Collapse
|
945
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
946
|
Chaudhary PR, Yu X, Jayaprakasha GK, Patil BS. Influence of storage temperature and low-temperature conditioning on the levels of health-promoting compounds in Rio Red grapefruit. Food Sci Nutr 2016; 5:545-553. [PMID: 28572940 PMCID: PMC5448389 DOI: 10.1002/fsn3.429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023] Open
Abstract
Commercial operations use low‐temperature conditioning of citrus fruits to reduce the incidence of chilling injury (CI) during cold storage and quarantine treatments. Rio Red grapefruits (Citrus paradisi Macf) were stored for 12 weeks at 11°C or 5°C; an additional set was temperature conditioned at 16°C for 7 days before storing at 5°C (CD). Every 3 weeks, samples were assessed for chilling injury (CI) and health‐promoting compounds such as ascorbic acid, carotenoids, limonoids, flavonoids, and furocoumarins. Low‐temperature conditioning significantly reduced CI but did not affect the total soluble solids, acidity, and ripening ratio. After 12 weeks of storage, grapefruits showed no significant differences in lycopene, narirutin, poncirin, furocoumarins, and radical scavenging activity in all the three treatments. Limonin was significantly higher (p < .05) in CD fruits, nomilin was significantly higher in fruits stored at 11°C, whereas fruits stored at 5°C had lower levels of naringin, neohesperidin, and didymin after 12 weeks of storage. Low‐temperature conditioning treatment helped fruits to retain similar or higher levels of most of the health‐promoting compounds by the end of storage period while maintaining better quality than the nonconditioned fruits.
Collapse
Affiliation(s)
- Priyanka R Chaudhary
- Vegetable and Fruit Improvement Center Department of Horticultural Sciences Texas A&M University College Station TX 77845 USA
| | - Xiang Yu
- Vegetable and Fruit Improvement Center Department of Horticultural Sciences Texas A&M University College Station TX 77845 USA
| | | | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center Department of Horticultural Sciences Texas A&M University College Station TX 77845 USA
| |
Collapse
|
947
|
Jiang L, Chen Z, Gao Q, Ci L, Cao S, Han Y, Wang W. Loss-of-function mutations in the APX1 gene result in enhanced selenium tolerance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2016; 39:2133-44. [PMID: 27149098 DOI: 10.1111/pce.12762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 05/21/2023]
Abstract
It is generally recognized that excess selenium (Se) has a negative effect on the growth and development of plants. Numerous studies have identified key genes involved in selenium tolerance in plants; however, our understanding of its molecular mechanisms is far from complete. In this study, we isolated an Arabidopsis selenium-resistant mutant from the mutant XVE pool lines because of its increased root growth and fresh weight in Se stress, and cloned the gene, which encodes the cytosolic ascorbate peroxidase (APX1). Two other APX1 gene knockout allelic lines were also selenium resistant, and the APX1-complementary COM1 restored the growth state of wild type under Se stress. In addition, these APX1 allelic lines accumulated more Se than did wild-type plants when subjected to Se stress. Further analysis revealed that the APX1-mediated Se tolerance was associated, at least in part, with the enhanced activities of antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Moreover, enhanced Se resistance of the mutants was associated with glutathione (GSH), which had the higher expression level of GSH1 gene involved in GSH synthesis and consequently increased GSH content. Our results provide genetic evidence indicating that loss-of-function of APX1 results in tolerance to Se stress.
Collapse
Affiliation(s)
- Li Jiang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Ziping Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- School of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qiuchen Gao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Lingkun Ci
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shuqing Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yi Han
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Weiyan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| |
Collapse
|
948
|
Dworak A, Nykiel M, Walczak B, Miazek A, Szworst-Łupina D, Zagdańska B, Kiełkiewicz M. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. PLANTA 2016; 244:939-60. [PMID: 27334025 PMCID: PMC5018026 DOI: 10.1007/s00425-016-2559-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
In maize, leaf proteome responses evoked by soil drought applied separately differ from those evoked by mite feeding or both types of stresses occurring simultaneously. This study focuses on the involvement of proteomic changes in defence responses of a conventional maize cultivar (Bosman) to the two-spotted spider mite infestation, soil drought and both stresses coexisting for 6 days. Under watering cessation or mite feeding applied separately, the protein carbonylation was not directly linked to the antioxidant enzymes' activities. Protein carbonylation increased at higher and lower SOD, APX, GR, POX, PPO activities following soil drought and mite feeding, respectively. Combination of these stresses resulted in protein carbonylation decrease despite the increased activity of all antioxidant enzymes (except the CAT). However, maize protein network modification remains unknown upon biotic/abiotic stresses overlapping. Here, using multivariate chemometric methods, 94 leaf protein spots (out of 358 considered; 2-DE) were identified (LC-MS/MS) as differentiating the studied treatments. Only 43 of them had individual discrimination power. The soil drought increased abundance of leaf proteins related mainly to photosynthesis, carbohydrate metabolism, defence (molecular chaperons) and protection. On the contrary, mite feeding decreased the abundance of photosynthesis related proteins and enhanced the abundance of proteins protecting the mite-infested leaf against photoinhibition. The drought and mites occurring simultaneously increased abundance of proteins that may improve the efficiency of carbon fixation, as well as carbohydrate and amino acid metabolism. Furthermore, increased abundance of the Rubisco large subunit-binding protein (subunit β), fructose-bisphosphate aldolase and mitochondrial precursor of Mn-SOD and decreased abundance of the glycolysis-related enzymes in the mite-free leaf (in the vicinity of mite-infested leaf) illustrate the involvement of these proteins in systemic maize response to mite feeding.
Collapse
Affiliation(s)
- Anna Dworak
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Beata Walczak
- Institute of Chemistry, Silesian University, 9 Szkolna, 40-006, Katowice, Poland
| | - Anna Miazek
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Dagmara Szworst-Łupina
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Barbara Zagdańska
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Kiełkiewicz
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland.
| |
Collapse
|
949
|
Lin ST, Chiou CW, Chu YL, Hsiao Y, Tseng YF, Chen YC, Chen HJ, Chang HY, Lee TM. Enhanced Ascorbate Regeneration Via Dehydroascorbate Reductase Confers Tolerance to Photo-Oxidative Stress in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2016; 57:2104-2121. [PMID: 27440549 DOI: 10.1093/pcp/pcw129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/12/2016] [Indexed: 05/26/2023]
Abstract
The role of ascorbate (AsA) recycling via dehydroascorbate reductase (DHAR) in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress was examined. The activity of DHAR and the abundance of the CrDHAR1 (Cre10.g456750) transcript increased after moderate light (ML; 750 µmol m-2 s-1) or high light (HL; 1,800 µmol m-2 s-1) illumination, accompanied by dehydroascorbate (DHA) accumulation, decreased AsA redox state, photo-inhibition, lipid peroxidation, H2O2 overaccumulation, growth inhibition and cell death. It suggests that DHAR and AsA recycling is limiting under high-intensity light stress. The CrDHAR1 gene was cloned and its recombinant CrDHAR1 protein was a monomer (25 kDa) detected by Western blot that exhibits an enzymatic activity of 965 µmol min-1 mg-1 protein. CrDHAR1 was overexpressed driven by a HSP70A:RBCS2 fusion promoter or down-regulated by artificial microRNA (amiRNA) to examine whether DHAR-mediated AsA recycling is critical for the tolerance of C. reinahartii cells to photo-oxidative stress. The overexpression of CrDHAR1 increased DHAR protein abundance and enzyme activity, AsA pool size, AsA:DHA ratio and the tolerance to ML-, HL-, methyl viologen- or H2O2-induced oxidative stress. The CrDHAR1-knockdown amiRNA lines that have lower DHAR expression and AsA recycling ability were sensitive to high-intensity illumination and oxidative stress. The glutathione pool size, glutathione:oxidized glutathione ratio and glutathione reductase and ascorbate peroxidase activities were increased in CrDHAR1-overexpressing cells and showed a further increase after high-intensity illumination but decreased in wild-type cells after light stress. The present results suggest that increasing AsA regeneration via enhanced DHAR activity modulates the ascorbate-glutathione cycle activity in C. reinhardtii against photo-oxidative stress.
Collapse
Affiliation(s)
- Shu-Tseng Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- These authors contributed equally to this work
| | - Chih-Wen Chiou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- These authors contributed equally to this work
| | - Yen-Lin Chu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu Hsiao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Fei Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Chun Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
950
|
Czaja AJ. Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:2784-2803. [PMID: 27411555 DOI: 10.1007/s10620-016-4247-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin-thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|