51
|
Pradhan P, Toy R, Jhita N, Atalis A, Pandey B, Beach A, Blanchard EL, Moore SG, Gaul DA, Santangelo PJ, Shayakhmetov DM, Roy K. TRAF6-IRF5 kinetics, TRIF, and biophysical factors drive synergistic innate responses to particle-mediated MPLA-CpG co-presentation. SCIENCE ADVANCES 2021; 7:eabd4235. [PMID: 33523878 PMCID: PMC7806213 DOI: 10.1126/sciadv.abd4235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Innate immune responses to pathogens are driven by co-presentation of multiple pathogen-associated molecular patterns (PAMPs). Combinations of PAMPs can trigger synergistic immune responses, but the underlying molecular mechanisms of synergy are poorly understood. Here, we used synthetic particulate carriers co-loaded with monophosphoryl lipid A (MPLA) and CpG as pathogen-like particles (PLPs) to dissect the signaling pathways responsible for dual adjuvant immune responses. PLP-based co-delivery of MPLA and CpG to GM-CSF-driven mouse bone marrow-derived antigen-presenting cells (BM-APCs) elicited synergistic interferon-β (IFN-β) and interleukin-12p70 (IL-12p70) responses, which were strongly influenced by the biophysical properties of PLPs. Mechanistically, we found that MyD88 and interferon regulatory factor 5 (IRF5) were necessary for IFN-β and IL-12p70 production, while TRIF signaling was required for the synergistic response. Both the kinetics and magnitude of downstream TRAF6 and IRF5 signaling drove the synergy. These results identify the key mechanisms of synergistic Toll-like receptor 4 (TLR4)-TLR9 co-signaling in mouse BM-APCs and underscore the critical role of signaling kinetics and biophysical properties on the integrated response to combination adjuvants.
Collapse
Affiliation(s)
- P Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - R Toy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - N Jhita
- Lowance Center of Human Immunology, Department of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - A Atalis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - B Pandey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - A Beach
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - E L Blanchard
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - S G Moore
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - D A Gaul
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - P J Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - D M Shayakhmetov
- Lowance Center of Human Immunology, Department of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - K Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
52
|
Fleischmann D, Maslanka Figueroa S, Goepferich A. Steric Shielding of cRGD-Functionalized Nanoparticles from Premature Exposition to Off-Target Endothelial Cells under a Physiological Flow. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
53
|
Wieczorek K, Szutkowska B, Kierzek E. Anti-Influenza Strategies Based on Nanoparticle Applications. Pathogens 2020; 9:E1020. [PMID: 33287259 PMCID: PMC7761763 DOI: 10.3390/pathogens9121020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza virus has the potential for being one of the deadliest viruses, as we know from the pandemic's history. The influenza virus, with a constantly mutating genome, is becoming resistant to existing antiviral drugs and vaccines. For that reason, there is an urgent need for developing new therapeutics and therapies. Despite the fact that a new generation of universal vaccines or anti-influenza drugs are being developed, the perfect remedy has still not been found. In this review, various strategies for using nanoparticles (NPs) to defeat influenza virus infections are presented. Several categories of NP applications are highlighted: NPs as immuno-inducing vaccines, NPs used in gene silencing approaches, bare NPs influencing influenza virus life cycle and the use of NPs for drug delivery. This rapidly growing field of anti-influenza methods based on nanotechnology is very promising. Although profound research must be conducted to fully understand and control the potential side effects of the new generation of antivirals, the presented and discussed studies show that nanotechnology methods can effectively induce the immune responses or inhibit influenza virus activity both in vitro and in vivo. Moreover, with its variety of modification possibilities, nanotechnology has great potential for applications and may be helpful not only in anti-influenza but also in the general antiviral approaches.
Collapse
Affiliation(s)
- Klaudia Wieczorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
- NanoBioMedical Centre, Adam Mickiewicz University, 61-704 Poznan, Poland
| | - Barbara Szutkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| |
Collapse
|
54
|
Zhao YD, Muhetaerjiang M, An HW, Fang X, Zhao Y, Wang H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2020; 268:120552. [PMID: 33307365 DOI: 10.1016/j.biomaterials.2020.120552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy, leveraging the host's coordinated immune system to fight against tumor has been clinically validated. However, the modest response owing to the multiple ways of tumor immune evasion is one of the challenges in cancer immunotherapy. Tumor associated macrophages (TAMs), as a major component of the leukocytes infiltrating in all tumors, play crucial roles in driving cancer initiation, progress and metastasis via multiple mechanisms such as mediating chronic inflammation, promoting angiogenesis, taming protective immune responses, and supporting migration and intravasation. TAMs targeted therapeutics have achieved remarkable successes in clinical trials mostly through the use of small-molecule agents and antibodies. However, efforts for further application have met with challenges of limited efficacy and safety. Nanomaterials can provide versatile approaches to realize the superior spatiotemporal control over immunomodulation to amplify immune responses, ultimately enhancing the therapeutic benefits and reducing toxicity. Here, the potential drugs used in TAM-centered cancer treatment in clinic are summarized and the recent advances of TAMs targeted nanomedicines in this filed are highlighted. More importantly, we focus on how nanomedicine can exert their advantages in spatial and temporal control of immunomodulation.
Collapse
Affiliation(s)
- Yong-Dan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Pharmacy, Shanxi Medical University, Shanxi, 030009, PR China
| | - Mamuti Muhetaerjiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
55
|
Tsai SJ, Black SK, Jewell CM. Leveraging the modularity of biomaterial carriers to tune immune responses. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2004119. [PMID: 33692662 PMCID: PMC7939076 DOI: 10.1002/adfm.202004119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 05/11/2023]
Abstract
Biomaterial carriers offer modular features to control the delivery and presentation of vaccines and immunotherapies. This tunability is a distinct capability of biomaterials. Understanding how tunable material features impact immune responses is important to improve vaccine and immunotherapy design, as well as clinical translation. Here we discuss the modularity of biomaterial properties as a means of controlling encounters with immune signals across scales - tissue, cell, molecular, and time - and ultimately, to direct stimulation or regulation of immune function. We highlight these advances using illustrations from recent literature across infectious disease, cancer, and autoimmunity. As the immune engineering field matures, informed design criteria could support more rational biomaterial carriers for vaccination and immunotherapy.
Collapse
Affiliation(s)
- Shannon J Tsai
- Fischell Department of Bioengineering, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Sheneil K Black
- Fischell Department of Bioengineering, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, 8278 Paint Branch Drive, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
56
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
57
|
Green JJ. Immunoengineering has arrived. J Biomed Mater Res A 2020; 109:397-403. [PMID: 32588490 DOI: 10.1002/jbm.a.37041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Immunoengineering is a new discipline that creates and applies engineering tools and principles to investigate and modulate the immune system. It spans from the molecular scale to the scale of populations and is critically important in both health and disease. This perspective discusses the rapid development of immunoengineering as a field, including advances to research and education. On the research side, immunoengineering is poised to revolutionize technologies for tissue engineering, drug delivery, and medical devices, among others. Immunoengineering is shown to unlock new tools for biomedical discovery and innovation and has the potential to safely and effectively treat myriad diseases, from cancer to infectious diseases to type 1 diabetes and autoimmune diseases in novel ways. On the educational side, it is described how immunoengineering centers and educational focus areas are being created at leading universities. Furthermore, data are presented to show how grant agencies are making major investments into the field and high-impact research and translational biotechnologies are being developed.
Collapse
Affiliation(s)
- Jordan J Green
- Department of Biomedical Engineering, Materials Science and Engineering, Chemical and Biomolecular Engineering, Ophthalmology, Oncology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Cancer, Institute for NanoBioTechnology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
58
|
Divieto C, Barrera G, Celegato F, D'Agostino G, Di Luzio M, Coïsson M, Lapini A, Mortati L, Zucco M, Pavarelli S, Sassi MP, Tiberto P. Au-Coated Ni80Fe20 Submicron Magnetic Nanodisks: Interactions With Tumor Cells. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
59
|
Zottig X, Côté-Cyr M, Arpin D, Archambault D, Bourgault S. Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1008. [PMID: 32466176 PMCID: PMC7281494 DOI: 10.3390/nano10051008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Life-inspired protein supramolecular assemblies have recently attracted considerable attention for the development of next-generation vaccines to fight against infectious diseases, as well as autoimmune diseases and cancer. Protein self-assembly enables atomic scale precision over the final architecture, with a remarkable diversity of structures and functionalities. Self-assembling protein nanovaccines are associated with numerous advantages, including biocompatibility, stability, molecular specificity and multivalency. Owing to their nanoscale size, proteinaceous nature, symmetrical organization and repetitive antigen display, protein assemblies closely mimic most invading pathogens, serving as danger signals for the immune system. Elucidating how the structural and physicochemical properties of the assemblies modulate the potency and the polarization of the immune responses is critical for bottom-up design of vaccines. In this context, this review briefly covers the fundamentals of supramolecular interactions involved in protein self-assembly and presents the strategies to design and functionalize these assemblies. Examples of advanced nanovaccines are presented, and properties of protein supramolecular structures enabling modulation of the immune responses are discussed. Combining the understanding of the self-assembly process at the molecular level with knowledge regarding the activation of the innate and adaptive immune responses will support the design of safe and effective nanovaccines.
Collapse
Affiliation(s)
- Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Dominic Arpin
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
60
|
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020; 108:1-21. [PMID: 32268235 PMCID: PMC7163188 DOI: 10.1016/j.actbio.2020.03.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. ‘Nanovaccines’ have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. Statement of Significance Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.
Collapse
|
61
|
Gaspar N, Zambito G, Löwik CMWG, Mezzanotte L. Active Nano-targeting of Macrophages. Curr Pharm Des 2020; 25:1951-1961. [PMID: 31291874 DOI: 10.2174/1381612825666190710114108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
Macrophages play a role in almost every disease such as cancer, infections, injuries, metabolic and inflammatory diseases and are becoming an attractive therapeutic target. However, understanding macrophage diversity, tissue distribution and plasticity will help in defining precise targeting strategies and effective therapies. Active targeting of macrophages using nanoparticles for therapeutic purposes is still at its infancy but holds promises since macrophages have shown high specific uptake of nanoparticles. Here, we highlight recent progress in active nanotechnology-based systems gaining pivotal roles to target diverse macrophage subsets in diseased tissues.
Collapse
Affiliation(s)
- Natasa Gaspar
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Percuros B.V., Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Giorgia Zambito
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Medres-Medical Research gmbh, Cologne, Germany
| | - Clemens M W G Löwik
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Oncology, Lausanne University Hospital (CHUV), UNIL, Switzerland
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
62
|
Nanotechnology in the arena of cancer immunotherapy. Arch Pharm Res 2020; 43:58-79. [DOI: 10.1007/s12272-020-01207-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
|
63
|
Hasanzadeh Kafshgari M, Goldmann WH. Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NANO-MICRO LETTERS 2020; 12:22. [PMID: 34138062 PMCID: PMC7770757 DOI: 10.1007/s40820-019-0362-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/08/2019] [Indexed: 05/02/2023]
Abstract
Titanium dioxide (TiO2) nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications. TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement, thermal conversion, specific surface area, and surface activity. This review highlights certain important aspects of fabrication strategies, which are employed to generate multifunctional TiO2 nanostructures, while outlining post-fabrication techniques with an emphasis on their suitability for nanomedicine. The biodistribution, toxicity, biocompatibility, cellular adhesion, and endocytosis of these nanostructures, when exposed to biological microenvironments, are examined in regard to their geometry, size, and surface chemistry. The final section focuses on recent biomedical applications of TiO2 nanostructures, specifically evaluating therapeutic delivery, photodynamic and sonodynamic therapy, bioimaging, biosensing, tissue regeneration, as well as chronic wound healing.
Collapse
Affiliation(s)
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052, Erlangen, Germany.
| |
Collapse
|
64
|
Hess KL, Jewell CM. Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med 2020; 5:e10142. [PMID: 31989033 PMCID: PMC6971447 DOI: 10.1002/btm2.10142] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages, or phages, are viruses that specifically infect bacteria and coopt the cellular machinery to create more phage proteins, eventually resulting in the release of new phage particles. Phages are heavily utilized in bioengineering for applications ranging from tissue engineering scaffolds to immune signal delivery. Of specific interest to vaccines and immunotherapies, phages have demonstrated an ability to activate both the innate and adaptive immune systems. The genome of these viral particles can be harnessed for DNA vaccination, or the surface proteins can be exploited for antigen display. More specifically, genes that encode an antigen of interest can be spliced into the phage genome, allowing antigenic proteins or peptides to be displayed by fusion to phage capsid proteins. Phages therefore present antigens to immune cells in a highly ordered and repetitive manner. This review discusses the use of phage with adjuvanting activity as antigen delivery vehicles for vaccination against infectious disease and cancer.
Collapse
Affiliation(s)
- Krystina L. Hess
- U.S. Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMaryland
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMaryland
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMaryland
- U.S. Department of Veterans AffairsBaltimoreMaryland
| |
Collapse
|
65
|
De Angelis B, Depalo N, Petronella F, Quintarelli C, Curri ML, Pani R, Calogero A, Locatelli F, De Sio L. Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. J Mater Chem B 2020; 8:1823-1840. [DOI: 10.1039/c9tb02246e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between photo-thermal therapy and immunotherapy allows the realization of new nanotechnology-based cancer treatments for solid tumors.
Collapse
Affiliation(s)
- Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Nicoletta Depalo
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Francesca Petronella
- CNR-IC
- National Research Council of Italy
- Institute Crystallography
- 00015 Monterotondo – Rome
- Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - M. Lucia Curri
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Roberto Pani
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Antonella Calogero
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Luciano De Sio
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| |
Collapse
|
66
|
Cagliani R, Gatto F, Cibecchini G, Marotta R, Catalano F, Sanchez-Moreno P, Pompa PP, Bardi G. CXCL5 Modified Nanoparticle Surface Improves CXCR2 + Cell Selective Internalization. Cells 2019; 9:cells9010056. [PMID: 31878341 PMCID: PMC7016632 DOI: 10.3390/cells9010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Driving nanomaterials to specific cell populations is still a major challenge for different biomedical applications. Several strategies to improve cell binding and uptake have been tried thus far by intrinsic material modifications or decoration with active molecules onto their surface. In the present work, we covalently bound the chemokine CXCL5 on fluorescently labeled amino-functionalized SiO2 nanoparticles to precisely targeting CXCR2+ immune cells. We synthesized and precisely characterized the physicochemical features of the modified particles. The presence of CXCL5 on the surface was detected by z-potential variation and CXCL5-specific electron microscopy immunogold labeling. CXCL5-amino SiO2 nanoparticle cell binding and internalization performances were analyzed in CXCR2+ THP-1 cells by flow cytometry and confocal microscopy. We showed improved internalization of the chemokine modified particles in the absence or the presence of serum. This internalization was reduced by cell pre-treatment with free CXCL5. Furthermore, we demonstrated CXCR2+ cell preferential targeting by comparing particle uptake in THP-1 vs. low-CXCR2 expressing HeLa cells. Our results provide the proof of principle that chemokine decorated nanomaterials enhance uptake and allow precise cell subset localization. The possibility to aim at selective chemokine receptor-expressing cells can be beneficial for the diverse pathological conditions involving immune reactions.
Collapse
Affiliation(s)
- Roberta Cagliani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
| | - Giulia Cibecchini
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.M.); (F.C.)
| | - Federico Catalano
- Electron Microscopy Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.M.); (F.C.)
| | - Paola Sanchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (R.C.); (F.G.); (G.C.); (P.S.-M.); (P.P.P.)
- Correspondence: ; Tel.: +39-010-2896519
| |
Collapse
|
67
|
Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9:7906-7923. [PMID: 31695807 PMCID: PMC6831456 DOI: 10.7150/thno.38425] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity. In particular, NP-based drug delivery systems alter the pharmacokinetic (PK) profile of encapsulated or conjugated immunotherapeutic agents to targeted cancer cells or immune cells and facilitate the delivery of multiple therapeutic combinations to targeted cells using single NPs. Recently, advanced NP-based drug delivery systems were effectively utilized in cancer immunotherapy to reduce the toxic side effects and immune-related adverse events. Repurposing these NPs as delivery systems of immunotherapeutic agents may overcome the limitations of current cancer immunotherapy. In this review, we focus on recent advances in NP-based immunotherapeutic delivery systems, such as immunogenic cell death (ICD)-inducing drugs, cytokines and adjuvants for promising cancer immunotherapy. Finally, we discuss the challenges facing current NP-based drug delivery systems that need to be addressed for successful clinical application.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
68
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
69
|
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
70
|
Tran TH, Tran TTP, Truong DH, Nguyen HT, Pham TT, Yong CS, Kim JO. Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomater 2019; 94:82-96. [PMID: 31129358 DOI: 10.1016/j.actbio.2019.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
The expression of Toll-like receptors (TLRs) on antigen presenting cells, especially dendritic cells, offers several sensitive mediators to trigger an adaptive immune response, which potentially can be exploited to detect and eliminate pathogenic objects. Consequently, numerous agonists that target TLRs are being used clinically either alone or in combination with other therapies to strengthen the immune system in the battle against cancer. This review summarizes the roles of TLRs in tumor biology, and focuses on relevant TLR-dependent antitumor pathways and the conjugation of TLR agonists as adjuvants to nano- and micro-particles for boosting responses leading to cancer suppression and eradication. STATEMENT OF SIGNIFICANCE: Toll-like receptors (TLRs), which express on antigen presenting cells, such as dendritic cells and macrophages, play an important role in sensing pathogenic agents and inducing adaptive immunity. As a result, several TLR agonists have been investigating as therapeutic agents individually or in combination with other treatment modalities for cancer treatment through boosting the immune system. This review aims to focus on the roles of TLRs in cancer and TLR-dependent antitumor pathways as well as the use of different nano- or micro-particles bearing TLR agonists for tumor inhibition and elimination.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
71
|
Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, Salimi B, Karami H. The Role of Nanomaterials in the Treatment of Diseases and Their Effects on the Immune System. Open Access Maced J Med Sci 2019; 7:1884-1890. [PMID: 31316678 PMCID: PMC6614262 DOI: 10.3889/oamjms.2019.486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been widely exploited in recent years in various applications. Different sectors of medicine and treatment have also focused on the use of nanoproducts. One of the areas of interest in the treatment measures is the interaction between nanomaterials and immune system components. Engineered nanomaterials can stimulate the inhibition or enhancement of immune responses and prevent the detection ability of the immune system. Changes in immune function, in addition to the benefits, may also lead to some damage. Therefore, adequate assessment of the novel nanomaterials seems to be necessary before practical use in treatment. However, there is little information on the toxicological and biological effects of nanomaterials, especially on the potential ways of contacting and handling nanomaterials in the body and the body response to these materials. Extensive variation and different properties of nanomaterials have made it much more difficult to access their toxicological effects to the present. The present study aims to raise knowledge about the potential benefits and risks of using the nanomaterials on the immune system to design and safely employ these compounds in therapeutic purposes.
Collapse
Affiliation(s)
- Razieh Rezaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Reza Mozaffari
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Karami
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behroz Salimi
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Karami
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
72
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
73
|
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019; 143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles modified with ligands for specific targeting towards receptors expressed on the surface of target cells are discussed in literature towards improved delivery strategies. In such concepts the ligand density on the surface of the nanoparticles plays an important role. How many ligands per nanoparticle are best for the most efficient delivery? Importantly, this number may be different for in vitro and in vivo scenarios. In this review first viruses as "biological" nanoparticles are analyzed towards their ligand density, which is then compared to the ligand density of engineered nanoparticles. Then, experiments are reviewed in which in vitro and in vivo nanoparticle delivery has been analyzed in terms of ligand density. These results help to understand which ligand densities should be attempted for better targeting. Finally synthetic methods for controlling the ligand density of nanoparticles are described.
Collapse
|
74
|
Abstract
Immunotherapy has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing, with numerous treatments in clinical and preclinical development. However, a key challenge in the broad implementation of immunotherapies for cancer remains the controlled modulation of the immune system, as these therapeutics have serious adverse effects including autoimmunity and nonspecific inflammation. Understanding how to increase the response rates to various classes of immunotherapy is key to improving efficacy and controlling these adverse effects. Advanced biomaterials and drug delivery systems, such as nanoparticles and the use of T cells to deliver therapies, could effectively harness immunotherapies and improve their potency while reducing toxic side effects. Here, we discuss these research advances, as well as the opportunities and challenges for integrating delivery technologies into cancer immunotherapy, and we critically analyse the outlook for these emerging areas.
Collapse
Affiliation(s)
- Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Tan A, Hong L, Du JD, Boyd BJ. Self-Assembled Nanostructured Lipid Systems: Is There a Link between Structure and Cytotoxicity? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801223. [PMID: 30775224 PMCID: PMC6364503 DOI: 10.1002/advs.201801223] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/05/2018] [Indexed: 05/20/2023]
Abstract
Self-assembly of lipid-based liquid crystalline (LLC) nanoparticles is a formulation art arising from the hydrophilic-lipophilic qualities and the geometric packing of amphiphilic lipid molecules in an aqueous environment. The diversity of commercialized amphiphilic lipids and an increased understanding of the physicochemical factors dictating their membrane curvature has enabled versatile architectural design and engineering of LLC nanoparticles. While these exotic nanostructured materials are hypothesized to form the next generation of smart therapeutics for a broad field of biomedical applications, biological knowledge particularly on the systemic biocompatibility or cytotoxicity of LLC materials remains unclear. Here, an overview on the interactions between LLCs of different internal nanostructures and biological components (including soluble plasma constituents, blood cells, and isolated tissue cell lines) is provided. Factors affecting cell-nanoparticle tolerability such as the type of lipids, type of steric stabilizers, nanoparticle surface charges, and internal nanostructures (or lipid phase behaviors) are elucidated. The mechanisms of cellular uptake and lipid transfer between neighboring membrane domains are also reviewed. A critical analysis of these studies sheds light on future strategies to transform LLC materials into a viable therapeutic entity ideal for internal applications.
Collapse
Affiliation(s)
- Angel Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| | - Linda Hong
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| | - Joanne D. Du
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| | - Ben J. Boyd
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| |
Collapse
|
76
|
Im S, Lee J, Park D, Park A, Kim YM, Kim WJ. Hypoxia-Triggered Transforming Immunomodulator for Cancer Immunotherapy via Photodynamically Enhanced Antigen Presentation of Dendritic Cell. ACS NANO 2019; 13:476-488. [PMID: 30563320 DOI: 10.1021/acsnano.8b07045] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A key factor for successful cancer immunotherapy (CIT) is the extent of antigen presentation by dendritic cells (DCs) that phagocytize tumor-associated antigens (TAA) in the tumor site and migrate to tumor draining lymph nodes (TDLN) for the activation of T cells. Although various types of adjuvant delivery have been studied to enhance the activity of the DCs, poor delivery efficiency and depleted population of tumor infiltrating DCs have limited the efficacy of CIT. Herein, we report a hypoxia-responsive mesoporous silica nanocarrier (denoted as CAGE) for an enhanced CIT assisted by photodynamic therapy (PDT). In this study, CAGE was designed as a hypoxia-responsive transforming carrier to improve the intracellular uptake of nanocarriers and the delivery of adjuvants to DCs. Furthermore, PDT was exploited for the generation of immunogenic debris and recruitment of DCs in a tumor site, followed by enhanced antigen presentation. Finally, a significant inhibition of tumor growth was observed in vivo, signifying that the PDT would be a promising solution for DC-based immunotherapy.
Collapse
Affiliation(s)
- Sooseok Im
- School of Interdisciplinary Bioscience and Bioengineering , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
| | - Junseok Lee
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Cheongam-ro 77 , Nam-gu, Pohang 37673 , Republic of Korea
| | - Dongsik Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Cheongam-ro 77 , Nam-gu, Pohang 37673 , Republic of Korea
| | - Areum Park
- Division of Integrative Biosciences and Biotechnology , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Cheongam-ro 77 , Nam-gu, Pohang 37673 , Republic of Korea
| |
Collapse
|
77
|
Gomes Dos Reis L, Lee WH, Svolos M, Moir LM, Jaber R, Windhab N, Young PM, Traini D. Nanotoxicologic Effects of PLGA Nanoparticles Formulated with a Cell-Penetrating Peptide: Searching for a Safe pDNA Delivery System for the Lungs. Pharmaceutics 2019; 11:E12. [PMID: 30609825 PMCID: PMC6359528 DOI: 10.3390/pharmaceutics11010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
The use of cell-penetrating peptides (CPPs) in combination with nanoparticles (NPs) shows great potential for intracellular delivery of DNA. Currently, its application is limited due to the potential toxicity and unknown long-term side effects. In this study NPs prepared using a biodegradable polymer, poly(lactic⁻co⁻glycolic acid (PLGA) in association with a CPP, was assessed on two lung epithelial cell lines (adenocarcinomic human alveolar basal epithelial cells (A549) and normal bronchial epithelial cells (Beas-2B cells)). Addition of CPP was essential for intracellular internalization. No effects were observed on the mitochondrial activity and membrane integrity. Cells exposed to the NPs⁻DNA⁻CPP showed low inflammatory response, low levels of apoptosis and no activation of caspase-3. Increase in necrotic cells (between 10%⁻15%) after 24 h of incubation and increase in autophagy, induced by NPs⁻DNA⁻CPP, are likely to be related to the lysosomal escape mechanism. Although oxidative stress is one of the main toxic mechanisms of NPs, NPs⁻DNA⁻CPP showed decreased reactive oxygen species (ROS) production on Beas-2B cells, with potential antioxidant effect of CPP and no effect on A549 cells. This NP system appears to be safe for intracellular delivery of plasmid DNA to the lung epithelial cells. Further investigations should be conducted in other lung-related systems to better understand its potential effects on the lungs.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, (UniKL-RCMP), 30450 Ipoh, Perak, Malaysia.
| | - Maree Svolos
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Lyn Margaret Moir
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Rima Jaber
- Evonik Industries AG, Kirschenallee, 64293 Darmstadt, Germany.
| | - Norbert Windhab
- Evonik Industries AG, Kirschenallee, 64293 Darmstadt, Germany.
| | - Paul Michael Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| |
Collapse
|
78
|
Iscaro A, Howard NF, Muthana M. Nanoparticles: Properties and Applications in Cancer Immunotherapy. Curr Pharm Des 2019; 25:1962-1979. [PMID: 31566122 DOI: 10.2174/1381612825666190708214240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications. AIM In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles. CONCLUSION Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Nutter F Howard
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| |
Collapse
|
79
|
Abstract
Annually recurring seasonal influenza causes massive economic loss and poses severe threats to public health worldwide. The current seasonal influenza vaccines are the most effective means of preventing influenza infections but possess major weaknesses. Seasonal influenza vaccines require annual updating of the vaccine strains. However, it is an unreachable task to accurately predict the future circulating strains. Vaccines with mismatched strains dramatically compromise the vaccine efficacy. In addition, the seasonal influenza vaccines are ineffective against an unpredictable pandemic. A universal influenza vaccine would overcome these weaknesses of the seasonal vaccines and abolish the threat of influenza pandemics. One approach under investigation is to design influenza vaccine immunogens based on conserved, type-specific amino acid sequences and conformational epitopes, rather than strain-specific. Such vaccines can elicit broadly reactive humoral and cellular immunity. Universal influenza vaccine development has intensively employed nanotechnology because the structural and morphological properties of nanoparticles dramatically improve vaccine immunogenicity and the induced immunity duration. Layered protein nanoparticles can decrease off-target immune responses, fine-tune antigen recognition and processing, and facilitate comprehensive immune response induction. Herein, we review the designs of effective nanoparticle universal influenza vaccines, the recent discoveries of specific nanoparticle features that contribute to immunogenicity enhancement, and recent progress in clinical trials.
Collapse
Affiliation(s)
- Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University, 145 Piedmont Avenue SE, Atlanta, Georgia 30302-3965, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, 145 Piedmont Avenue SE, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
80
|
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive Nanoparticles for Cancer Immunotherapy. Int J Mol Sci 2018; 19:E3877. [PMID: 30518139 PMCID: PMC6321368 DOI: 10.3390/ijms19123877] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, immunotherapy is considered to be one of the effective treatment modalities for cancer. All the developments and discoveries in this field up to the recent Nobel Prize add to the interest for research into this vast area of study. Targeting tumor environment as well as the immune system is a suitable strategy to be applied for cancer treatment. Usage of nanoparticle systems for delivery of immunotherapeutic agents to the body being widely studied and found to be a promising area of research to be considered and investigated further. Nanoparticles for immunotherapy would be one of the effective treatment options for cancer therapy in the future due to their high specificity, efficacy, ability to diagnose, imaging, and therapeutic effect. Among the many nanoparticle systems, polylactic-co-glycolic acid (PLGA) nanoparticles, liposomes, micelles, gold nanoparticles, iron oxide, dendrimers, and artificial exosomes are widely used for immunotherapy of cancer. Moreover, the combination therapy found to be the more effective way of treating the tumor. Here, we review the current trends in nanoparticle therapy and efficiency of these nanosystems in delivering antigens, adjuvants, therapeutic drugs, and other immunotherapeutic agents. This review summarizes the currently available bioactive nanoparticle systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| |
Collapse
|
81
|
Lamichhane P, Amin NP, Agarwal M, Lamichhane N. Checkpoint Inhibition: Will Combination with Radiotherapy and Nanoparticle-Mediated Delivery Improve Efficacy? MEDICINES (BASEL, SWITZERLAND) 2018; 5:E114. [PMID: 30360504 PMCID: PMC6313567 DOI: 10.3390/medicines5040114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Checkpoint inhibition (CPI) has been a rare success story in the field of cancer immunotherapy. Knowledge gleaned from preclinical studies and patients that do not respond to these therapies suggest that the presence of tumor-infiltrating lymphocytes and establishment of immunostimulatory conditions, prior to CPI treatment, are required for efficacy of CPI. To this end, radiation therapy (RT) has been shown to promote immunogenic cell-death-mediated tumor-antigen release, increase infiltration and cross-priming of T cells, and decreasing immunosuppressive milieu in the tumor microenvironment, hence allowing CPI to take effect. Preclinical and clinical studies evaluating the combination of RT with CPI have been shown to overcome the resistance to either therapy alone. Additionally, nanoparticle and liposome-mediated delivery of checkpoint inhibitors has been shown to overcome toxicities and improve therapeutic efficacy, providing a rationale for clinical investigations of nanoparticle, microparticle, and liposomal delivery of checkpoint inhibitors. In this review, we summarize the preclinical and clinical studies of combined RT and CPI therapies in various cancers, and review findings from studies that evaluated nanoparticle and liposomal delivery of checkpoint inhibitors for cancer treatments.
Collapse
Affiliation(s)
| | - Neha P Amin
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Manuj Agarwal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
82
|
Deng H, Zhang Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control Release 2018; 290:28-45. [PMID: 30287266 DOI: 10.1016/j.jconrel.2018.09.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy, which could utilize the host's immune system to kill tumor cells, has great potential in long-term inhibition of tumor growth and recurrence compared to chemotherapy and radiotherapy. As we know, tumors exhibit powerful adaption to escape the destruction of immune system at the late stage of diseases due to overactivation of immune checkpoint pathways which function as natural "brakes" for immune responses. The newly emerging immune checkpoint inhibitors are regarded as the breakthrough for cancer immunotherapy as they can re-boost the host's immune system by restoring T cells function and promoting cytotoxic T lymphocytes (CTLs) responses. However, there is still scope for improvement in enhancing the clinical efficacy and reducing side effects of these immune modulators. In this review, we mainly introduce the basic mechanisms of the immune checkpoint pathways and outline the recent successes of immune checkpoint blockade (ICB) therapy in combination with nanoparticle delivery system. Furthermore, the underexplored potential in application of nanotechnology to enhance the efficacy of immune checkpoint therapy and overcome the limits of immune checkpoint inhibitors is also discussed.
Collapse
Affiliation(s)
| | - Zhiping Zhang
- Tongji School of Pharmacy, China; National Engineering Research Center for Nanomedcine, China; Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
83
|
Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 2018; 288:239-263. [PMID: 30223043 DOI: 10.1016/j.jconrel.2018.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aimed at boosting cancer-specific immunoresponses to eradicate tumor cells has evolved as a new treatment modality. Nanoparticles incorporating antigens and immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance anti-tumor immunity. The nanotechnology approach has been demonstrated to be superior to standard formulations in in-vivo settings. In this article, we focus on recent advances made within the last 5 years in nanoparticle-based cancer immunotherapy, including peptide- and nucleic acid-based nanovaccines, nanomedicines containing an immunoadjuvant to activate anti-tumor immunity, nanoparticle delivery of immune checkpoint inhibitors and the combination of the above approaches. Encouraging results and new emerging nanotechnologies in drug delivery promise the continuous growth of this field and ultimately clinical translation of enhanced immunotherapy of cancer.
Collapse
|
84
|
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018; 29:3072-3083. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
85
|
Clauson RM, Chen M, Scheetz LM, Berg B, Chertok B. Size-Controlled Iron Oxide Nanoplatforms with Lipidoid-Stabilized Shells for Efficient Magnetic Resonance Imaging-Trackable Lymph Node Targeting and High-Capacity Biomolecule Display. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20281-20295. [PMID: 29883088 DOI: 10.1021/acsami.8b02830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoplatforms for biomolecule delivery to the lymph nodes have attracted considerable interest as vectors for immunotherapy. Core-shell iron oxide nanoparticles are particularly appealing because of their potential as theranostic magnetic resonance imaging (MRI)-trackable vehicles for biomolecule delivery. The key challenge for utilizing iron oxide nanoparticles in this capacity is control of their coating shells to produce particles with predictable size. Size determines both the carrier capacity for biomolecule display and the carrier ability to target the lymph nodes. In this study, we develop a novel coating method to produce core-shell iron oxide nanoparticles with controlled size. We utilize lipidlike molecules to stabilize self-assembled lipid shells on the surface of iron oxide nanocrystals, allowing the formation of consistent coatings on nanocrystals of varying size (10-40 nm). We further demonstrate the feasibility of leveraging the ensuing control of nanocarrier size for optimizing the carrier functionalities. Coated nanoparticles with 10 and 30 nm cores supported biomolecule display at 10-fold and 200-fold higher capacities than previously reported iron oxide nanoparticles, while preserving monodisperse sub-100 nm size populations. In addition, accumulation of the coated nanoparticles in the lymph nodes could be tracked by MRI and at 1 h post injection demonstrated significantly enhanced lymph node targeting. Notably, lymph node targeting was 9-40 folds higher than that for previously reported nanocarriers, likely due to the ability of these nanoparticles to robustly maintain their sub-100 nm size in vivo. This approach can be broadly applicable for rational design of theranostic nanoplatforms for image-monitored immunotherapy.
Collapse
|
86
|
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18:313-322. [PMID: 29449659 PMCID: PMC5912991 DOI: 10.1038/nrc.2018.6] [Citation(s) in RCA: 825] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 60 years ago, the effect whereby radiotherapy at one site may lead to regression of metastatic cancer at distant sites that are not irradiated was described and called the abscopal effect (from 'ab scopus', that is, away from the target). The abscopal effect has been connected to mechanisms involving the immune system. However, the effect is rare because at the time of treatment, established immune-tolerance mechanisms may hamper the development of sufficiently robust abscopal responses. Today, the growing consensus is that combining radiotherapy with immunotherapy provides an opportunity to boost abscopal response rates, extending the use of radiotherapy to treatment of both local and metastatic disease. In this Opinion article, we review evidence for this growing consensus and highlight emerging limitations to boosting the abscopal effect using immunotherapy. This is followed by a perspective on current and potential cross-disciplinary approaches, including the use of smart materials to address these limitations.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Omoruyi Credit Irabor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jonathan D. Schoenfeld
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jürgen Hesser
- University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3. D-68167, Mannheim, Germany
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| |
Collapse
|
87
|
Cho E, Nam GH, Hong Y, Kim YK, Kim DH, Yang Y, Kim IS. Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J Control Release 2018; 279:326-335. [PMID: 29679665 DOI: 10.1016/j.jconrel.2018.04.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022]
Abstract
Exosomes are small membrane vesicles secreted by most cell types that play an important role in intercellular communication. Due to the characteristic of transferring their biomacromolecules, exosomes have potential as a new alternative for delivering protein therapeutics. Here, we investigate whether exosomes provide crucial advantages over other nanoparticles, in particular protein nanocage formulations, as a delivery system for membrane protein therapeutics. We characterized membrane-scaffold-based exosomes and protein-scaffold-based ferritin nanocages, both harboring SIRPα (signal regulatory protein α), an antagonist of CD47 on tumor cells. The efficacy of these two systems in delivering protein therapeutics was compared by testing their ability to enhance phagocytosis of tumor cells by bone-marrow-derived macrophages and subsequent inhibition of in vivo tumor growth. These analyses allowed us to comprehensively conclude that the therapeutic index of exosome-mediated CD47 blockade against tumor growth inhibition was higher than that of the same dose of ferritin-SIRPα. The results of this analysis reveal the importance of the unique characteristics of exosomes, in particular their membrane scaffold, in improving therapeutic protein delivery compared with protein-scaffold-based nanocages.
Collapse
Affiliation(s)
- Eunji Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoon Kyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
88
|
Brown SD. Multivalent Display Using Hybrid Virus Nanoparticles. Methods Mol Biol 2018; 1798:119-140. [PMID: 29868956 DOI: 10.1007/978-1-4939-7893-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many important biological interactions are multivalent and often sensitive to spatial organization. Nonenveloped viruses are a natural source of scaffolds for building multivalent ligands to probe these types of interactions which avoid complex synthetic schemes required for other types of scaffolds. The coat protein (CP) of bacteriophage Qβ can be fused to protein domains and coexpressed with the unfused CP to produce hybrid nanoparticles with high exterior loading of xenogenic protein domains. These hybrid nanoparticles are simple to produce in large quantity. Starting from cDNAs for the virus CP and a codon-optimized ligand domain of interest, bulk purification can be completed in as little as 3 weeks. Major phases of the work involve the cloning of cDNAs into plasmid vectors, test expressions for hybrid nanoparticle formation, and purification by selective precipitation and ultracentrifugation. For uncomplicated protein domains, laboratory culture yields as high as 50 mg/L and 30 protein domains per particle have been routinely achieved.
Collapse
Affiliation(s)
- Steven D Brown
- Department of Gastroenterology, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
89
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
90
|
Ahmad S, Zamry AA, Tan HTT, Wong KK, Lim J, Mohamud R. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties. Mol Immunol 2017; 91:123-133. [DOI: 10.1016/j.molimm.2017.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/15/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
91
|
Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 2017; 12:1873-1889. [PMID: 28703636 DOI: 10.2217/nnm-2017-0043] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unique chemical and functional properties of nanoparticles can be harnessed for the delivery of large quantities of various therapeutic biomolecules. Active targeting of nanoparticles by conjugating ligands that bind to target cells strongly facilitates accumulation, internalization into target cells and longer retention at the target site, with consequent enhanced therapeutic effects. Recombinant antibodies with high selectivity and availability for a vast range of targets will dominate the future. In this review, we systematically outline the tremendous progress in the conjugation of antibodies to nanoparticles and the clear advantages that recombinant antibodies offer in the therapeutic targeting of nanoparticles. The demonstrated flexibility of recombinant antibody coupling to nanoparticles highlights the bright future of this technology for modern therapeutic nanomedicine.
Collapse
Affiliation(s)
- Geoffrey A Pietersz
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Burnet Institute, Centre for Biomedical Research, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Xiaowei Wang
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| | - May Lin Yap
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Bock Lim
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Karlheinz Peter
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
92
|
Andorko JI, Jewell CM. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med 2017; 2:139-155. [PMID: 28932817 PMCID: PMC5579731 DOI: 10.1002/btm2.10063] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties-size, shape, chemical functionality-impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system-B and T cell lymphocytes-to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- James I. Andorko
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD 20742
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD 20742
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD 21201
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD 21201
- United States Department of Veterans AffairsBaltimoreMD 21201
| |
Collapse
|
93
|
Mata A, Azevedo HS, Botto L, Gavara N, Su L. New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. CURRENT STEM CELL REPORTS 2017; 3:83-97. [PMID: 28596936 PMCID: PMC5445180 DOI: 10.1007/s40778-017-0081-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this review, we provide a general overview of recent bioengineering breakthroughs and enabling tools that are transforming the field of regenerative medicine (RM). We focus on five key areas that are evolving and increasingly interacting including mechanobiology, biomaterials and scaffolds, intracellular delivery strategies, imaging techniques, and computational and mathematical modeling. RECENT FINDINGS Mechanobiology plays an increasingly important role in tissue regeneration and design of therapies. This knowledge is aiding the design of more precise and effective biomaterials and scaffolds. Likewise, this enhanced precision is enabling ways to communicate with and stimulate cells down to their genome. Novel imaging technologies are permitting visualization and monitoring of all these events with increasing resolution from the research stages up to the clinic. Finally, algorithmic mining of data and soft matter physics and engineering are creating growing opportunities to predict biological scenarios, device performance, and therapeutic outcomes. SUMMARY We have found that the development of these areas is not only leading to revolutionary technological advances but also enabling a conceptual leap focused on targeting regenerative strategies in a holistic manner. This approach is bringing us ever more closer to the reality of personalized and precise RM.
Collapse
Affiliation(s)
- Alvaro Mata
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lorenzo Botto
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Nuria Gavara
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lei Su
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|
94
|
Moser BA, Steinhardt RC, Esser-Kahn AP. Surface Coating of Nanoparticles Reduces Background Inflammatory Activity while Increasing Particle Uptake and Delivery. ACS Biomater Sci Eng 2017; 3:206-213. [PMID: 28936479 PMCID: PMC5604483 DOI: 10.1021/acsbiomaterials.6b00473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the study of host-pathogen interactions, vaccines and drug delivery, particulate delivery system are widely used to mimic pathogen size, pattern recognition receptor agonist presentation, and target cells or organs. However, some of the polymeric systems used in particulate delivery have inherent inflammatory properties that are variable and nonspecific. These properties enhance their adjuvant activity, but confound the analysis of signaling mechanisms. Here, we present a method for particle coating with minimal background immune activation via passivation of the surface with silica-silane. We show herein that a silica-silane shell passivates polymer particles rendering them inert to activation of innate immune cells. The method is broadly applicable and can be used to coat polymeric particles of many different compositions. This method of silica-silane coating also allows conjugation of amine-bearing agonists and provides for controlled variation of agonist loading. Finally, we demonstrate our particles maintain and enhance qualities of known pathogens, making this a potentially general method for improving immune agonist activity.
Collapse
Affiliation(s)
| | | | - Aaron P. Esser-Kahn
- Department of Chemistry, Chemical Engineering & Materials Science, Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
95
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
96
|
Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017; 46:2091-2126. [DOI: 10.1039/c6cs00632a] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a comprehensive overview of the synthesis strategies and the progress made so far of bringing colloidal capsules closer to technical and biomedical applications.
Collapse
Affiliation(s)
- Tobias Bollhorst
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Kurosch Rezwan
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Michael Maas
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| |
Collapse
|
97
|
Decuzzi P, Mitragotri S. Introduction to special issue on "Nanoparticles in Medicine: Targeting, Optimization and Clinical Applications". Bioeng Transl Med 2016; 1:8-9. [PMID: 29313003 PMCID: PMC5689509 DOI: 10.1002/btm2.10012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/28/2022] Open
Affiliation(s)
- Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology
| | | |
Collapse
|
98
|
Wang L. Synthetic methods of CuS nanoparticles and their applications for imaging and cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra18355g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A comprehensive survey of basic concepts and up-to-date literature results concerning the potential use of CuS nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Lu Wang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|