51
|
Wang X, Jia Y, Zhao J, Lesner NP, Menezes CJ, Shelton SD, Venigalla SSK, Xu J, Cai C, Mishra P. A mitofusin 2/HIF1α axis sets a maturation checkpoint in regenerating skeletal muscle. J Clin Invest 2022; 132:e161638. [PMID: 36125902 PMCID: PMC9711883 DOI: 10.1172/jci161638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
A fundamental issue in regenerative medicine is whether there exist endogenous regulatory mechanisms that limit the speed and efficiency of the repair process. We report the existence of a maturation checkpoint during muscle regeneration that pauses myofibers at a neonatal stage. This checkpoint is regulated by the mitochondrial protein mitofusin 2 (Mfn2), the expression of which is activated in response to muscle injury. Mfn2 is required for growth and maturation of regenerating myofibers; in the absence of Mfn2, new myofibers arrested at a neonatal stage, characterized by centrally nucleated myofibers and loss of H3K27me3 repressive marks at the neonatal myosin heavy chain gene. A similar arrest at the neonatal stage was observed in infantile cases of human centronuclear myopathy. Mechanistically, Mfn2 upregulation suppressed expression of hypoxia-induced factor 1α (HIF1α), which is induced in the setting of muscle damage. Sustained HIF1α signaling blocked maturation of new myofibers at the neonatal-to-adult fate transition, revealing the existence of a checkpoint that delays muscle regeneration. Correspondingly, inhibition of HIF1α allowed myofibers to bypass the checkpoint, thereby accelerating the repair process. We conclude that skeletal muscle contains a regenerative checkpoint that regulates the speed of myofiber maturation in response to Mfn2 and HIF1α activity.
Collapse
Affiliation(s)
- Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuemeng Jia
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiawei Zhao
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas P. Lesner
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine
- Department of Pediatrics, and
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center
- Department of Pediatrics, and
| |
Collapse
|
52
|
Ciliary neurotrophic factor-mediated neuroprotection involves enhanced glycolysis and anabolism in degenerating mouse retinas. Nat Commun 2022; 13:7037. [PMID: 36396639 PMCID: PMC9672129 DOI: 10.1038/s41467-022-34443-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective cytokine in multiple models of retinal degeneration. To understand mechanisms underlying its broad neuroprotective effects, we have investigated the influence of CNTF on metabolism in a mouse model of photoreceptor degeneration. CNTF treatment improves the morphology of photoreceptor mitochondria, but also leads to reduced oxygen consumption and suppressed respiratory chain activities. Molecular analyses show elevated glycolytic pathway gene transcripts and active enzymes. Metabolomics analyses detect significantly higher levels of ATP and the energy currency phosphocreatine, elevated glycolytic pathway metabolites, increased TCA cycle metabolites, lipid biosynthetic pathway intermediates, nucleotides, and amino acids. Moreover, CNTF treatment restores the key antioxidant glutathione to the wild type level. Therefore, CNTF significantly impacts the metabolic status of degenerating retinas by promoting aerobic glycolysis and augmenting anabolic activities. These findings reveal cellular mechanisms underlying enhanced neuronal viability and suggest potential therapies for treating retinal degeneration.
Collapse
|
53
|
Fang L, Zhang M, Li J, Zhou L, Tamm M, Roth M. Airway Smooth Muscle Cell Mitochondria Damage and Mitophagy in COPD via ERK1/2 MAPK. Int J Mol Sci 2022; 23:ijms232213987. [PMID: 36430467 PMCID: PMC9694999 DOI: 10.3390/ijms232213987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by irreversible deterioration of the airway wall. Cigarette smoking is the major trigger, and in vitro studies showed that cigarette smoke extract (CSE) induced mitophagy in airway epithelial cells via oxidative stress, but this mechanism was not studied in airway smooth muscle cells (ASMCs). Primary ASMCs isolated from COPD patients or non-disease donors were investigated for CSE-induced remodeling and mitochondria structure. Proteins were assessed by Western blots for remodeling: collagen type-I, α-smooth muscle actin (α-SMA) and fibronectin; autophagy: beclin-1, protein62 (p62), light chain (LC)3A/B; mitochondria activity: mitochondrially encoded cytochrome c oxidase II & -IV (MTCO2, MTCO4), peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α); lysosomes: early endosome antigen 1, lysosome activated membrane protein 1; and cell signaling: extracellular signal regulated kinase (ERK1/2). Lysotracker and Mitotracker were used to monitor mitochondria morphology and organelle co-localization. Compared with controls, untreated COPD ASMCs showed lower collagen type-I and α-SMA expressions, but increased fibronectin levels. CSE further downregulated collagen type-I and α-SMA expression, but upregulated fibronectin. CSE decreased PGC-1α, MTCO2, and MTCO4, but increased beclin-1, p62, and LC3. CSE upregulated mitophagy and lysosomes activity via ERK1/2 phosphorylation. In vitro, cigarette smoke induced the deterioration of ASMCs, which might explain the tissue loss and structural remodeling in COPD bronchi. The results suggest that preventing exceeded mitophagy in ASMCs might present a novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Ming Zhang
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
| | - Junling Li
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523000, China
| | - Liang Zhou
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence:
| |
Collapse
|
54
|
Borcherding N, Jia W, Giwa R, Field RL, Moley JR, Kopecky BJ, Chan MM, Yang BQ, Sabio JM, Walker EC, Osorio O, Bredemeyer AL, Pietka T, Alexander-Brett J, Morley SC, Artyomov MN, Abumrad NA, Schilling J, Lavine K, Crewe C, Brestoff JR. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab 2022; 34:1499-1513.e8. [PMID: 36070756 PMCID: PMC9547954 DOI: 10.1016/j.cmet.2022.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/06/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023]
Abstract
Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rocky Giwa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John R Moley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Benjamin J Kopecky
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mandy M Chan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bin Q Yang
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jessica M Sabio
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Emma C Walker
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Omar Osorio
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Andrea L Bredemeyer
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Terri Pietka
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jennifer Alexander-Brett
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sharon Celeste Morley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Nada A Abumrad
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel Schilling
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kory Lavine
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Clair Crewe
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
55
|
Sefton EM, Gallardo M, Tobin CE, Collins BC, Colasanto MP, Merrell AJ, Kardon G. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. eLife 2022; 11:e74592. [PMID: 36154712 PMCID: PMC9514848 DOI: 10.7554/elife.74592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The diaphragm is a domed muscle between the thorax and abdomen essential for breathing in mammals. Diaphragm development requires the coordinated development of muscle, connective tissue, and nerve, which are derived from different embryonic sources. Defects in diaphragm development cause the common and often lethal birth defect, congenital diaphragmatic hernias (CDH). HGF/MET signaling is required for diaphragm muscularization, but the source of HGF and the specific functions of this pathway in muscle progenitors and effects on phrenic nerve have not been explicitly tested. Using conditional mutagenesis in mice and pharmacological inhibition of MET, we demonstrate that the pleuroperitoneal folds (PPFs), transient embryonic structures that give rise to the connective tissue in the diaphragm, are the source of HGF critical for diaphragm muscularization. PPF-derived HGF is directly required for recruitment of MET+ muscle progenitors to the diaphragm and indirectly (via its effect on muscle development) required for phrenic nerve primary branching. In addition, HGF is continuously required for maintenance and motility of the pool of progenitors to enable full muscularization. Localization of HGF at the diaphragm's leading edges directs dorsal and ventral expansion of muscle and regulates its overall size and shape. Surprisingly, large muscleless regions in HGF and Met mutants do not lead to hernias. While these regions are likely more susceptible to CDH, muscle loss is not sufficient to cause CDH.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Mirialys Gallardo
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Claire E Tobin
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Brittany C Collins
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Mary P Colasanto
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | | | - Gabrielle Kardon
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
56
|
Bouchareb R, Yu L, Lassen E, Daehn IS. Isolation of Conditionally Immortalized Mouse Glomerular Endothelial Cells with Fluorescent Mitochondria. J Vis Exp 2022:10.3791/64147. [PMID: 36190268 PMCID: PMC10840453 DOI: 10.3791/64147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Glomerular endothelial cell (GEC) dysfunction can initiate and contribute to glomerular filtration barrier breakdown. Increased mitochondrial oxidative stress has been suggested as a mechanism resulting in GEC dysfunction in the pathogenesis of some glomerular diseases. Historically the isolation of GECs from in vivo models has been notoriously challenging due to difficulties in isolating pure cultures from glomeruli. GECs have complex growth requirements in vitro and a very limited lifespan. Here, we describe the procedure for isolating and culturing conditionally immortalized GECs with fluorescent mitochondria, enabling the tracking of mitochondrial fission and fusion events. GECs were isolated from the kidneys of a double transgenic mouse expressing the thermolabile SV40 TAg (from the Immortomouse), conditionally promoting proliferation and suppressing cell differentiation, and a photo-convertible fluorescent protein (Dendra2) in all mitochondria (from the photo-activatable mitochondria [PhAMexcised] mouse). The stable cell line generated allows for cell differentiation after inactivation of the immortalizing SV40 TAg gene and photo-activation of a subset of mitochondria causing a switch in fluorescence from green to red. The use of mitoDendra2-GECs allows for live imaging of fluorescent mitochondria's distribution, fusion, and fission events without staining the cells.
Collapse
Affiliation(s)
- Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai;
| | - Liping Yu
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai
| | - Emelie Lassen
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai
| | - Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
57
|
Ataide MA, Knöpper K, Cruz de Casas P, Ugur M, Eickhoff S, Zou M, Shaikh H, Trivedi A, Grafen A, Yang T, Prinz I, Ohlsen K, Gomez de Agüero M, Beilhack A, Huehn J, Gaya M, Saliba AE, Gasteiger G, Kastenmüller W. Lymphatic migration of unconventional T cells promotes site-specific immunity in distinct lymph nodes. Immunity 2022; 55:1813-1828.e9. [PMID: 36002023 DOI: 10.1016/j.immuni.2022.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 07/27/2022] [Indexed: 12/31/2022]
Abstract
Lymphatic transport of molecules and migration of myeloid cells to lymph nodes (LNs) continuously inform lymphocytes on changes in drained tissues. Here, using LN transplantation, single-cell RNA-seq, spectral flow cytometry, and a transgenic mouse model for photolabeling, we showed that tissue-derived unconventional T cells (UTCs) migrate via the lymphatic route to locally draining LNs. As each tissue harbored a distinct spectrum of UTCs with locally adapted differentiation states and distinct T cell receptor repertoires, every draining LN was thus populated by a distinctive tissue-determined mix of these lymphocytes. By making use of single UTC lineage-deficient mouse models, we found that UTCs functionally cooperated in interconnected units and generated and shaped characteristic innate and adaptive immune responses that differed between LNs that drained distinct tissues. Lymphatic migration of UTCs is, therefore, a key determinant of site-specific immunity initiated in distinct LNs with potential implications for vaccination strategies and immunotherapeutic approaches.
Collapse
Affiliation(s)
- Marco A Ataide
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Paulina Cruz de Casas
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Sarah Eickhoff
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Haroon Shaikh
- Department of Medicine II and Pediatrics, Würzburg University Hospital, ZEMM, 97078 Würzburg, Germany
| | - Apurwa Trivedi
- Centre d'Immunologie de Marseille-Luminy (CIML), Department of Immunology, 13288 Marseille, France
| | - Anika Grafen
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), 97078 Würzburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II and Pediatrics, Würzburg University Hospital, ZEMM, 97078 Würzburg, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Mauro Gaya
- Centre d'Immunologie de Marseille-Luminy (CIML), Department of Immunology, 13288 Marseille, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
58
|
Neutrophils restrain sepsis associated coagulopathy via extracellular vesicles carrying superoxide dismutase 2 in a murine model of lipopolysaccharide induced sepsis. Nat Commun 2022; 13:4583. [PMID: 35933512 PMCID: PMC9357088 DOI: 10.1038/s41467-022-32325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a complication of sepsis currently lacking effective therapeutic options. Excessive inflammatory responses are emerging triggers of coagulopathy during sepsis, but the interplay between the immune system and coagulation are not fully understood. Here we utilize a murine model of intraperitoneal lipopolysaccharide stimulation and show neutrophils in the circulation mitigate the occurrence of DIC, preventing subsequent septic death. We show circulating neutrophils release extracellular vesicles containing mitochondria, which contain superoxide dismutase 2 upon exposure to lipopolysaccharide. Extracellular superoxide dismutase 2 is necessary to induce neutrophils' antithrombotic function by preventing endothelial reactive oxygen species accumulation and alleviating endothelial dysfunction. Intervening endothelial reactive oxygen species accumulation by antioxidants significantly ameliorates disseminated intravascular coagulation improving survival in this murine model of lipopolysaccharide challenge. These findings reveal an interaction between neutrophils and vascular endothelium which critically regulate coagulation in a model of sepsis and may have potential implications for the management of disseminated intravascular coagulation.
Collapse
|
59
|
Hagemann C, Moreno Gonzalez C, Guetta L, Tyzack G, Chiappini C, Legati A, Patani R, Serio A. Axonal Length Determines Distinct Homeostatic Phenotypes in Human iPSC Derived Motor Neurons on a Bioengineered Platform. Adv Healthc Mater 2022; 11:e2101817. [PMID: 35118820 DOI: 10.1002/adhm.202101817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Stem cell-based experimental platforms for neuroscience can effectively model key mechanistic aspects of human development and disease. However, conventional culture systems often overlook the engineering constraints that cells face in vivo. This is particularly relevant for neurons covering long range connections such as spinal motor neurons (MNs). Their axons extend up to 1m in length and require a complex interplay of mechanisms to maintain cellular homeostasis. However, shorter axons in conventional cultures may not faithfully capture important aspects of their longer counterparts. Here this issue is directly addressed by establishing a bioengineered platform to assemble arrays of human axons ranging from micrometers to centimeters, which allows systematic investigation of the effects of length on human axonas for the first time. This approach reveales a link between length and metabolism in human MNs in vitro, where axons above a "threshold" size induce specific molecular adaptations in cytoskeleton composition, functional properties, local translation, and mitochondrial homeostasis. The findings specifically demonstrate the existence of a length-dependent mechanism that switches homeostatic processes within human MNs. The findings have critical implications for in vitro modeling of several neurodegenerative disorders and reinforce the importance of modeling cell shape and biophysical constraints with fidelity and precision in vitro.
Collapse
Affiliation(s)
- Cathleen Hagemann
- Centre for Craniofacial & Regenerative Biology, King's College London, London, SE1 1UL, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Carmen Moreno Gonzalez
- Centre for Craniofacial & Regenerative Biology, King's College London, London, SE1 1UL, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Ludovica Guetta
- Centre for Craniofacial & Regenerative Biology, King's College London, London, SE1 1UL, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Giulia Tyzack
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ciro Chiappini
- Centre for Craniofacial & Regenerative Biology, King's College London, London, SE1 1UL, UK
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Rickie Patani
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Andrea Serio
- Centre for Craniofacial & Regenerative Biology, King's College London, London, SE1 1UL, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
60
|
Dorn GW, Dang X. Predicting Mitochondrial Dynamic Behavior in Genetically Defined Neurodegenerative Diseases. Cells 2022; 11:cells11061049. [PMID: 35326500 PMCID: PMC8947719 DOI: 10.3390/cells11061049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dynamics encompass mitochondrial fusion, fission, and movement. Mitochondrial fission and fusion are seemingly ubiquitous, whereas mitochondrial movement is especially important for organelle transport through neuronal axons. Here, we review the roles of different mitochondrial dynamic processes in mitochondrial quantity and quality control, emphasizing their impact on the neurological system in Charcot–Marie–Tooth disease type 2A, amyotrophic lateral sclerosis, Friedrich’s ataxia, dominant optic atrophy, and Alzheimer’s, Huntington’s, and Parkinson’s diseases. In addition to mechanisms and concepts, we explore in detail different technical approaches for measuring mitochondrial dynamic dysfunction in vitro, describe how results from tissue culture studies may be applied to a better understanding of mitochondrial dysdynamism in human neurodegenerative diseases, and suggest how this experimental platform can be used to evaluate candidate therapeutics in different diseases or in individual patients sharing the same clinical diagnosis.
Collapse
Affiliation(s)
- Gerald W. Dorn
- Correspondence: ; Tel.: +314-362-4892; Fax: +314-362-8844
| | | |
Collapse
|
61
|
Tjiang N, Zempel H. A mitochondria cluster at the proximal axon initial segment controls axodendritic TAU trafficking in rodent primary and human iPSC-derived neurons. Cell Mol Life Sci 2022; 79:120. [PMID: 35119496 PMCID: PMC8816743 DOI: 10.1007/s00018-022-04150-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
Loss of neuronal polarity and missorting of the axonal microtubule-associated-protein TAU are hallmarks of Alzheimer’s disease (AD) and related tauopathies. Impairment of mitochondrial function is causative for various mitochondriopathies, but the role of mitochondria in tauopathies and in axonal TAU-sorting is unclear. The axon-initial-segment (AIS) is vital for maintaining neuronal polarity, action potential generation, and—here important—TAU-sorting. Here, we investigate the role of mitochondria in the AIS for maintenance of TAU cellular polarity. Using not only global and local mitochondria impairment via inhibitors of the respiratory chain and a locally activatable protonophore/uncoupler, but also live-cell-imaging and photoconversion methods, we specifically tracked and selectively impaired mitochondria in the AIS in primary mouse and human iPSC-derived forebrain/cortical neurons, and assessed somatic presence of TAU. Global application of mitochondrial toxins efficiently induced tauopathy-like TAU-missorting, indicating involvement of mitochondria in TAU-polarity. Mitochondria show a biased distribution within the AIS, with a proximal cluster and relative absence in the central AIS. The mitochondria of this cluster are largely immobile and only sparsely participate in axonal mitochondria-trafficking. Locally constricted impairment of the AIS-mitochondria-cluster leads to detectable increases of somatic TAU, reminiscent of AD-like TAU-missorting. Mechanistically, mitochondrial impairment sufficient to induce TAU-missorting results in decreases of calcium oscillation but increases in baseline calcium, yet chelating intracellular calcium did not prevent mitochondrial impairment-induced TAU-missorting. Stabilizing microtubules via taxol prevented TAU-missorting, hinting towards a role for impaired microtubule dynamics in mitochondrial-dysfunction-induced TAU-missorting. We provide evidence that the mitochondrial distribution within the proximal axon is biased towards the proximal AIS and that proper function of this newly described mitochondrial cluster may be essential for the maintenance of TAU polarity. Mitochondrial impairment may be an upstream event in and therapeutic target for AD/tauopathy.
Collapse
Affiliation(s)
- Noah Tjiang
- Institute of Human Genetics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
62
|
Wang X, Shelton SD, Bordieanu B, Frank AR, Yi Y, Venigalla SSK, Gu Z, Lenser NP, Glogauer M, Chandel NS, Zhao H, Zhao Z, McFadden DG, Mishra P. Scinderin promotes fusion of electron transport chain dysfunctional muscle stem cells with myofibers. NATURE AGING 2022; 2:155-169. [PMID: 35342888 PMCID: PMC8954567 DOI: 10.1038/s43587-021-00164-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Muscle stem cells (MuSCs) experience age-associated declines in number and function, accompanied by mitochondrial electron transport chain (ETC) dysfunction and increased reactive oxygen species (ROS). The source of these changes, and how MuSCs respond to mitochondrial dysfunction, is unknown. We report here that in response to mitochondrial ROS, murine MuSCs directly fuse with neighboring myofibers; this phenomenon removes ETC-dysfunctional MuSCs from the stem cell compartment. MuSC-myofiber fusion is dependent on the induction of Scinderin, which promotes formation of actin-dependent protrusions required for membrane fusion. During aging, we find that the declining MuSC population accumulates mutations in the mitochondrial genome, but selects against dysfunctional variants. In the absence of clearance by Scinderin, the decline in MuSC numbers during aging is repressed; however, ETC-dysfunctional MuSCs are retained and can regenerate dysfunctional myofibers. We propose a model in which ETC-dysfunctional MuSCs are removed from the stem cell compartment by fusing with differentiated tissue.
Collapse
Affiliation(s)
- Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bogdan Bordieanu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Present Address: Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Anderson R Frank
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
- Present address: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Siva Sai Krishna Venigalla
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas P Lenser
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Present address: Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
- Present address: The Chinese Institute for Brain Research, Beijing, China
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
63
|
Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, Crespo-Avilan GE, Rosdah AA, Lees JG, Costa JRSD, Ling NXY, Holien JK, Samangouei P, Chinda K, Yap EP, Riquelme JA, Ketteler R, Yellon DM, Lim SY, Hausenloy DJ. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res 2022; 118:282-294. [PMID: 33386841 PMCID: PMC8752357 DOI: 10.1093/cvr/cvaa343] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Ludwigstraße 23, 35390 Giessen, Germany
| | - Ayeshah A Rosdah
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Faculty of Medicine, Universitas Sriwijaya, Palembang, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, 30139 Sumatera Selatan, Indonesia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Jarmon G Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | | | - Naomi X Y Ling
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy Victoria, 3065, Australia
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Tha Pho, Mueang Phitsanulok, 65000, Thailand
| | - En Ping Yap
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Jaime A Riquelme
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
| | - Shiang Y Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Lioufeng Rd., Wufeng, 41354 Taichung, Taiwan
| |
Collapse
|
64
|
Saha T, Dash C, Jayabalan R, Khiste S, Kulkarni A, Kurmi K, Mondal J, Majumder PK, Bardia A, Jang HL, Sengupta S. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. NATURE NANOTECHNOLOGY 2022; 17:98-106. [PMID: 34795441 PMCID: PMC10071558 DOI: 10.1038/s41565-021-01000-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Cancer progresses by evading the immune system. Elucidating diverse immune evasion strategies is a critical step in the search for next-generation immunotherapies for cancer. Here we report that cancer cells can hijack the mitochondria from immune cells via physical nanotubes. Mitochondria are essential for metabolism and activation of immune cells. By using field-emission scanning electron microscopy, fluorophore-tagged mitochondrial transfer tracing and metabolic quantification, we demonstrate that the nanotube-mediated transfer of mitochondria from immune cells to cancer cells metabolically empowers the cancer cells and depletes the immune cells. Inhibiting the nanotube assembly machinery significantly reduced mitochondrial transfer and prevented the depletion of immune cells. Combining a farnesyltransferase and geranylgeranyltransferase 1 inhibitor, namely, L-778123, which partially inhibited nanotube formation and mitochondrial transfer, with a programmed cell death protein 1 immune checkpoint inhibitor improved the antitumour outcomes in an aggressive immunocompetent breast cancer model. Nanotube-mediated mitochondrial hijacking can emerge as a novel target for developing next-generation immunotherapy agents for cancer.
Collapse
Affiliation(s)
- Tanmoy Saha
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Chinmayee Dash
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Ruparoshni Jayabalan
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Sachin Khiste
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Arpita Kulkarni
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jayanta Mondal
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | - Aditya Bardia
- Mass General Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Hae Lin Jang
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
65
|
Shin J, Hong SG, Choi SY, Rath ME, Saredy J, Jovin DG, Sayoc J, Park HS, Eguchi S, Rizzo V, Scalia R, Wang H, Houser SR, Park JY. Flow-induced endothelial mitochondrial remodeling mitigates mitochondrial reactive oxygen species production and promotes mitochondrial DNA integrity in a p53-dependent manner. Redox Biol 2022; 50:102252. [PMID: 35121402 PMCID: PMC8818582 DOI: 10.1016/j.redox.2022.102252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor suppressor p53 plays a pivotal role in orchestrating mitochondrial remodeling by regulating their content, fusion/fission processes, and intracellular signaling molecules that are associated with mitophagy and apoptosis pathways. In order to determine a molecular mechanism underlying flow-mediated mitochondrial remodeling in endothelial cells, we examined, herein, the role of p53 on mitochondrial adaptations to physiological flow and its relevance to vascular function using endothelial cell-specific p53 deficient mice. We observed no changes in aerobic capacity, basal blood pressure, or endothelial mitochondrial phenotypes in the endothelial p53 mull animals. However, after 7 weeks of voluntary wheel running exercise, blood pressure reduction and endothelial mitochondrial remodeling (biogenesis, elongation, and mtDNA replication) were substantially blunted in endothelial p53 null animals compared to the wild-type, subjected to angiotensin II-induced hypertension. In addition, endothelial mtDNA lesions were significantly reduced following voluntary running exercise in wild-type mice, but not in the endothelial p53 null mice. Moreover, in vitro studies demonstrated that unidirectional laminar flow exposure significantly increased key putative regulators for mitochondrial remodeling and reduced mitochondrial reactive oxygen species generation and mtDNA damage in a p53-dependent manner. Mechanistically, unidirectional laminar flow instigated translocalization of p53 into the mitochondrial matrix where it binds to mitochondrial transcription factor A, TFAM, resulting in improving mtDNA integrity. Taken together, our findings suggest that p53 plays an integral role in mitochondrial remodeling under physiological flow condition and the flow-induced p53-TFAM axis may be a novel molecular intersection for enhancing mitochondrial homeostasis in endothelial cells.
Collapse
|
66
|
Therapeutic applications of mitochondrial transplantation. Biochimie 2022; 195:1-15. [DOI: 10.1016/j.biochi.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
|
67
|
Miao J, Chen W, Wang P, Zhang X, Wang L, Wang S, Wang Y. MFN1 and MFN2 Are Dispensable for Sperm Development and Functions in Mice. Int J Mol Sci 2021; 22:13507. [PMID: 34948301 PMCID: PMC8707932 DOI: 10.3390/ijms222413507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.
Collapse
Affiliation(s)
- Junru Miao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| | - Wei Chen
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Xin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Lei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Shuai Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
68
|
Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 2021; 110:613-626.e9. [PMID: 34921782 DOI: 10.1016/j.neuron.2021.11.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain.
Collapse
|
69
|
Guo J, Chiang WC. Mitophagy in aging and longevity. IUBMB Life 2021; 74:296-316. [PMID: 34889504 DOI: 10.1002/iub.2585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
The clearance of damaged or unwanted mitochondria by autophagy (also known as mitophagy) is a mitochondrial quality control mechanism postulated to play an essential role in cellular homeostasis, metabolism, and development and confers protection against a wide range of diseases. Proper removal of damaged or unwanted mitochondria is essential for organismal health. Defects in mitophagy are associated with Parkinson's, Alzheimer's disease, cancer, and other degenerative disorders. Mitochondria regulate organismal fitness and longevity via multiple pathways, including cellular senescence, stem cell function, inflammation, mitochondrial unfolded protein response (mtUPR), and bioenergetics. Thus, mitophagy is postulated to be pivotal for maintaining organismal healthspan and lifespan and the protection against aged-related degeneration. In this review, we will summarize recent understanding of the mechanism of mitophagy and aspects of mitochondrial functions. We will focus on mitochondria-related cellular processes that are linked to aging and examine current genetic evidence that supports the hypothesis that mitophagy is a pro-longevity mechanism.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
70
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
71
|
Della-Flora Nunes G, Wilson ER, Hurley E, He B, O'Malley BW, Poitelon Y, Wrabetz L, Feltri ML. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. eLife 2021; 10:e66278. [PMID: 34519641 PMCID: PMC8478418 DOI: 10.7554/elife.66278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Emma R Wilson
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
| | - Bin He
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist HospitalHoustonUnited States
| | - Bert W O'Malley
- Department of Medicine and Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical CollegeAlbanyUnited States
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
72
|
Varuzhanyan G, Ladinsky MS, Yamashita SI, Abe M, Sakimura K, Kanki T, Chan DC. Fis1 ablation in the male germline disrupts mitochondrial morphology and mitophagy, and arrests spermatid maturation. Development 2021; 148:271183. [PMID: 34355730 PMCID: PMC8380467 DOI: 10.1242/dev.199686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
Male germline development involves choreographed changes to mitochondrial number, morphology and organization. Mitochondrial reorganization during spermatogenesis was recently shown to require mitochondrial fusion and fission. Mitophagy, the autophagic degradation of mitochondria, is another mechanism for controlling mitochondrial number and physiology, but its role during spermatogenesis is largely unknown. During post-meiotic spermatid development, restructuring of the mitochondrial network results in packing of mitochondria into a tight array in the sperm midpiece to fuel motility. Here, we show that disruption of mouse Fis1 in the male germline results in early spermatid arrest that is associated with increased mitochondrial content. Mutant spermatids coalesce into multinucleated giant cells that accumulate mitochondria of aberrant ultrastructure and numerous mitophagic and autophagic intermediates, suggesting a defect in mitophagy. We conclude that Fis1 regulates mitochondrial morphology and turnover to promote spermatid maturation.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA
| |
Collapse
|
73
|
Giovarelli M, Zecchini S, Catarinella G, Moscheni C, Sartori P, Barbieri C, Roux-Biejat P, Napoli A, Vantaggiato C, Cervia D, Perrotta C, Clementi E, Latella L, De Palma C. Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacol Res 2021; 170:105751. [PMID: 34197911 DOI: 10.1016/j.phrs.2021.105751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.
Collapse
MESH Headings
- Acetylation
- Animals
- Carbamates/pharmacology
- Disease Models, Animal
- Energy Metabolism/drug effects
- Epigenesis, Genetic
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organelle Biogenesis
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Giorgia Catarinella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy
| | - Cecilia Barbieri
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Alessandra Napoli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy; Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Lucia Latella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
74
|
Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci 2021; 22:ijms22158179. [PMID: 34360946 PMCID: PMC8348122 DOI: 10.3390/ijms22158179] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy—the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Correspondence: ; Tel.: +1-514-476-6688
| | - Sabah N. A. Hussain
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting & Cachexia in Chronic Respiratory Diseases & Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
| |
Collapse
|
75
|
Luo N, Yue F, Jia Z, Chen J, Deng Q, Zhao Y, Kuang S. Reduced electron transport chain complex I protein abundance and function in Mfn2-deficient myogenic progenitors lead to oxidative stress and mitochondria swelling. FASEB J 2021; 35:e21426. [PMID: 33749882 DOI: 10.1096/fj.202002464r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
Mitochondrial remodeling through fusion and fission is crucial for progenitor cell differentiation but its role in myogenesis is poorly understood. Here, we characterized the function of mitofusin 2 (Mfn2), a mitochondrial outer membrane protein critical for mitochondrial fusion, in muscle progenitor cells (myoblasts). Mfn2 expression is upregulated during myoblast differentiation in vitro and muscle regeneration in vivo. Targeted deletion of Mfn2 gene in myoblasts (Mfn2MKO ) increases oxygen-consumption rates (OCR) associated with the maximal respiration and spare respiratory capacity, and increased levels of reactive oxygen species (ROS). Skeletal muscles of Mfn2MKO mice exhibit robust mitochondrial swelling with normal mitochondrial DNA content. Additionally, mitochondria isolated from Mfn2MKO muscles have reduced OCR at basal state and for complex I respiration, associated with decreased levels of complex I proteins NDUFB8 (NADH ubiquinone oxidoreductase subunit B8) and NDUFS3 (NADH ubiquinone oxidoreductase subunit S3). However, Mfn2MKO has no obvious effects on myoblast differentiation, muscle development and function, and muscle regeneration. These results demonstrate a novel role of Mfn2 in regulating mitochondrial complex I protein abundance and respiratory functions in myogenic progenitors and myofibers.
Collapse
Affiliation(s)
- Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| |
Collapse
|
76
|
Hiltensperger M, Beltrán E, Kant R, Tyystjärvi S, Lepennetier G, Domínguez Moreno H, Bauer IJ, Grassmann S, Jarosch S, Schober K, Buchholz VR, Kenet S, Gasperi C, Öllinger R, Rad R, Muschaweckh A, Sie C, Aly L, Knier B, Garg G, Afzali AM, Gerdes LA, Kümpfel T, Franzenburg S, Kawakami N, Hemmer B, Busch DH, Misgeld T, Dornmair K, Korn T. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat Immunol 2021; 22:880-892. [PMID: 34099917 PMCID: PMC7611097 DOI: 10.1038/s41590-021-00948-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Autoimmunity/drug effects
- Brain/drug effects
- Brain/immunology
- Brain/metabolism
- Calcium Signaling
- Cell Lineage
- Cerebrospinal Fluid/immunology
- Cerebrospinal Fluid/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Fingolimod Hydrochloride/pharmacology
- Gene Expression Profiling
- Genes, T-Cell Receptor
- HEK293 Cells
- Humans
- Immunosuppressive Agents/pharmacology
- Intestines/drug effects
- Intestines/immunology
- Intravital Microscopy
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Multiple Sclerosis, Relapsing-Remitting/genetics
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/metabolism
- Phenotype
- Prospective Studies
- RNA-Seq
- Receptors, CXCR6/genetics
- Receptors, CXCR6/metabolism
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- Single-Cell Analysis
- Skin/drug effects
- Skin/immunology
- Skin/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/transplantation
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Michael Hiltensperger
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ravi Kant
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sofia Tyystjärvi
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gildas Lepennetier
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helena Domínguez Moreno
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Isabel J Bauer
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Simon Grassmann
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Selin Kenet
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher Sie
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lilian Aly
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Garima Garg
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ali M Afzali
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
77
|
Kontou G, Antonoudiou P, Podpolny M, Szulc BR, Arancibia-Carcamo IL, Higgs NF, Lopez-Domenech G, Salinas PC, Mann EO, Kittler JT. Miro1-dependent mitochondrial dynamics in parvalbumin interneurons. eLife 2021; 10:65215. [PMID: 34190042 PMCID: PMC8294849 DOI: 10.7554/elife.65215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.
Collapse
Affiliation(s)
- Georgina Kontou
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Pantelis Antonoudiou
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Blanka R Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - I Lorena Arancibia-Carcamo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Ion Channel Initiative, University of Oxford, Oxford, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
78
|
López-Doménech G, Howden JH, Covill-Cooke C, Morfill C, Patel JV, Bürli R, Crowther D, Birsa N, Brandon NJ, Kittler JT. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J 2021; 40:e100715. [PMID: 34152608 PMCID: PMC8280823 DOI: 10.15252/embj.2018100715] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/31/2022] Open
Abstract
Clearance of mitochondria following damage is critical for neuronal homeostasis. Here, we investigate the role of Miro proteins in mitochondrial turnover by the PINK1/Parkin mitochondrial quality control system in vitro and in vivo. We find that upon mitochondrial damage, Miro is promiscuously ubiquitinated on multiple lysine residues. Genetic deletion of Miro or block of Miro1 ubiquitination and subsequent degradation lead to delayed translocation of the E3 ubiquitin ligase Parkin onto damaged mitochondria and reduced mitochondrial clearance in both fibroblasts and cultured neurons. Disrupted mitophagy in vivo, upon post-natal knockout of Miro1 in hippocampus and cortex, leads to a dramatic increase in mitofusin levels, the appearance of enlarged and hyperfused mitochondria and hyperactivation of the integrated stress response (ISR). Altogether, our results provide new insights into the central role of Miro1 in the regulation of mitochondrial homeostasis and further implicate Miro1 dysfunction in the pathogenesis of human neurodegenerative disease.
Collapse
Affiliation(s)
| | - Jack H Howden
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Corinne Morfill
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Jigna V Patel
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Roland Bürli
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Nicol Birsa
- UCL Institute of Neurology, Queen Square, London, UK
| | | | - Josef T Kittler
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
79
|
Della-Flora Nunes G, Wilson ER, Marziali LN, Hurley E, Silvestri N, He B, O'Malley BW, Beirowski B, Poitelon Y, Wrabetz L, Feltri ML. Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells. Nat Commun 2021; 12:3285. [PMID: 34078899 PMCID: PMC8172551 DOI: 10.1038/s41467-021-23552-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In peripheral nerves, Schwann cells form myelin and provide trophic support to axons. We previously showed that the mitochondrial protein prohibitin 2 can localize to the axon-Schwann-cell interface and is required for developmental myelination. Whether the homologous protein prohibitin 1 has a similar role, and whether prohibitins also play important roles in Schwann cell mitochondria is unknown. Here, we show that deletion of prohibitin 1 in Schwann cells minimally perturbs development, but later triggers a severe demyelinating peripheral neuropathy. Moreover, mitochondria are heavily affected by ablation of prohibitin 1 and demyelination occurs preferentially in cells with apparent mitochondrial loss. Furthermore, in response to mitochondrial damage, Schwann cells trigger the integrated stress response, but, contrary to what was previously suggested, this response is not detrimental in this context. These results identify a role for prohibitin 1 in myelin integrity and advance our understanding about the Schwann cell response to mitochondrial damage.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Emma R Wilson
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Leandro N Marziali
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Edward Hurley
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nicholas Silvestri
- Departments of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bin He
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Bert W O'Malley
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Albany Medical College, Dept of Neuroscience and Experimental Therapeutics, Albany, NY, USA
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Departments of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
- Departments of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
- Departments of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
80
|
Yang C, Endoh M, Tan DQ, Nakamura-Ishizu A, Takihara Y, Matsumura T, Suda T. Mitochondria transfer from early stages of erythroblasts to their macrophage niche via tunnelling nanotubes. Br J Haematol 2021; 193:1260-1274. [PMID: 34036571 DOI: 10.1111/bjh.17531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Adult erythropoiesis entails a series of well-coordinated events that produce mature red blood cells. One of such events is the mitochondria clearance that occurs cell-autonomously via autophagy-dependent mechanisms. Interestingly, recent studies have shown mitochondria transfer activities between various cell types. In the context of erythropoiesis, macrophages are known to interact closely with the early stages of erythroblasts to provide a specialized niche, termed erythroblastic islands (EBI). However, whether mitochondria transfer can occur in the EBI niche has not been explored. Here, we report that mitochondria transfer in the EBI niche occurs in vivo. We observed mitochondria transfer activities from the early stages of erythroblasts to macrophages in the reconstituted in vitro murine EBI via different modes, including tunnelling nanotubes (TNT). Moreover, we demonstrated that Wiskott-Aldrich syndrome protein (WASp) in macrophages mediates TNT formation and mitochondria transfer via the modulation of F-actin filamentation, thus promoting mitochondria clearance from erythroid cells, to potentially enhance their differentiation. Taken together, our findings provide novel insight into the mitochondria clearance machineries that mediate erythroid maturation.
Collapse
Affiliation(s)
- Chong Yang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitsuhiro Endoh
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Darren Q Tan
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ayako Nakamura-Ishizu
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuji Takihara
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Takayoshi Matsumura
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
81
|
Varuzhanyan G, Chen H, Rojansky R, Ladinsky MS, McCaffery JM, Chan DC. Mitochondrial fission factor (Mff) is required for organization of the mitochondrial sheath in spermatids. Biochim Biophys Acta Gen Subj 2021; 1865:129845. [PMID: 33476744 PMCID: PMC7904653 DOI: 10.1016/j.bbagen.2021.129845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mitochondrial fission counterbalances fusion to maintain organelle morphology, but its role during development remains poorly characterized. Mammalian spermatogenesis is a complex developmental process involving several drastic changes to mitochondrial shape and organization. Mitochondria are generally small and spherical in spermatogonia, elongate during meiosis, and fragment in haploid round spermatids. Near the end of spermatid maturation, small mitochondrial spheres line the axoneme, elongate, and tightly wrap around the midpiece to form the mitochondrial sheath, which is critical for fueling flagellar movements. It remains unclear how these changes in mitochondrial morphology are regulated and how they affect sperm development. METHODS We used genetic ablation of Mff (mitochondrial fission factor) in mice to investigate the role of mitochondrial fission during mammalian spermatogenesis. RESULTS Our analysis indicates that Mff is required for mitochondrial fragmentation in haploid round spermatids and for organizing mitochondria in the midpiece in elongating spermatids. In Mff mutant mice, round spermatids have aberrantly elongated mitochondria that often show central constrictions, suggestive of failed fission events. In elongating spermatids and spermatozoa, mitochondrial sheaths are disjointed, containing swollen mitochondria with large gaps between organelles. These mitochondrial abnormalities in Mff mutant sperm are associated with reduced respiratory chain Complex IV activity, aberrant sperm morphology and motility, and reduced fertility. CONCLUSIONS Mff is required for organization of the mitochondrial sheath in mouse sperm. GENERAL SIGNIFICANCE Mitochondrial fission plays an important role in regulating mitochondrial organization during a complex developmental process.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hsiuchen Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rebecca Rojansky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
82
|
Mahendralingam MJ, Kim H, McCloskey CW, Aliar K, Casey AE, Tharmapalan P, Pellacani D, Ignatchenko V, Garcia-Valero M, Palomero L, Sinha A, Cruickshank J, Shetty R, Vellanki RN, Koritzinsky M, Stambolic V, Alam M, Schimmer AD, Berman HK, Eaves CJ, Pujana MA, Kislinger T, Khokha R. Mammary epithelial cells have lineage-rooted metabolic identities. Nat Metab 2021; 3:665-681. [PMID: 34031589 DOI: 10.1038/s42255-021-00388-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy.
Collapse
Affiliation(s)
- Mathepan Jeya Mahendralingam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hyeyeon Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Curtis William McCloskey
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Pirashaanthy Tharmapalan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mar Garcia-Valero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Ankit Sinha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ronak Shetty
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Vid Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mina Alam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron David Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hal Kenneth Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
83
|
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 2021; 28:1473-1482.e7. [PMID: 33848471 DOI: 10.1016/j.stem.2021.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Decline in hematopoietic stem cell (HSC) function with age underlies limited health span of our blood and immune systems. In order to preserve health into older age, it is necessary to understand the nature and timing of initiating events that cause HSC aging. By performing a cross-sectional study in mice, we discover that hallmarks of aging in HSCs and hematopoiesis begin to accumulate by middle age and that the bone marrow (BM) microenvironment at middle age induces and is indispensable for hematopoietic aging. Using unbiased approaches, we find that decreased levels of the longevity-associated molecule IGF1 in the local middle-aged BM microenvironment are a factor causing HSC aging. Direct stimulation of middle-aged HSCs with IGF1 rescues molecular and functional hallmarks of aging, including restored mitochondrial activity. Thus, although decline in IGF1 supports longevity, our work indicates that this also compromises HSC function and limits hematopoietic health span.
Collapse
|
84
|
Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 2021; 136:2607-2619. [PMID: 32929449 DOI: 10.1182/blood.2020005399] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.
Collapse
|
85
|
Tomura M, Ikebuchi R, Moriya T, Kusumoto Y. Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 2021; 355:109127. [PMID: 33722643 DOI: 10.1016/j.jneumeth.2021.109127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Cell migration and cell proliferation are the basic principles that make up a living organism, and both biologically and medically. In order to understand living organism and biological phenomena, it is essential to track the migration, proliferation, and fate of cells in living cells and animals and to clarify the properties and molecular expression of cells. Recent developments in novel fluorescent proteins have made it possible to observe cell migration and proliferation as the cell cycle at the single-cell level in living individuals and tissues. Here, we introduce cell cycle visualization of living cells and animals by Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator) system and in situ cell labeling of cells and tracking cell migration by photoactivatable and photoconvertible proteins. In addition, we will present our established methods as an example of combines above tools with single-cell molecular expression analysis to reveal the fate of migrating cells at single cell level.
Collapse
Affiliation(s)
- Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
86
|
Liu K, Zhou Z, Pan M, Zhang L. Stem cell-derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther 2021; 27:733-742. [PMID: 33538116 PMCID: PMC8193690 DOI: 10.1111/cns.13618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial encephalomyopathies are disorders caused by mitochondrial and nuclear DNA mutations which affect the nervous and muscular systems. Current therapies for mitochondrial encephalomyopathies are inadequate and mostly palliative. However, stem cell‐derived mitochondria transplantation has been demonstrated to play an key part in metabolic rescue, which offers great promise for mitochondrial encephalomyopathies. Here, we summarize the present status of stem cell therapy for mitochondrial encephalomyopathy and discuss mitochondrial transfer routes and the protection mechanisms of stem cells. We also identify and summarize future perspectives and challenges for the treatment of these intractable disorders based on the concept of mitochondrial transfer from stem cells.
Collapse
Affiliation(s)
- Kaiming Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Zhou
- Department of Neurology, Shaoxing Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengxiong Pan
- Department of Neurology, First People's Hospital of Huzhou, Huzhou, China
| | - Lining Zhang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
87
|
Brestoff JR, Wilen CB, Moley JR, Li Y, Zou W, Malvin NP, Rowen MN, Saunders BT, Ma H, Mack MR, Hykes BL, Balce DR, Orvedahl A, Williams JW, Rohatgi N, Wang X, McAllaster MR, Handley SA, Kim BS, Doench JG, Zinselmeyer BH, Diamond MS, Virgin HW, Gelman AE, Teitelbaum SL. Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metab 2021; 33:270-282.e8. [PMID: 33278339 PMCID: PMC7858234 DOI: 10.1016/j.cmet.2020.11.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that mitochondria can be transferred between cells to support the survival of metabolically compromised cells. However, whether intercellular mitochondria transfer occurs in white adipose tissue (WAT) or regulates metabolic homeostasis in vivo remains unknown. We found that macrophages acquire mitochondria from neighboring adipocytes in vivo and that this process defines a transcriptionally distinct macrophage subpopulation. A genome-wide CRISPR-Cas9 knockout screen revealed that mitochondria uptake depends on heparan sulfates (HS). High-fat diet (HFD)-induced obese mice exhibit lower HS levels on WAT macrophages and decreased intercellular mitochondria transfer from adipocytes to macrophages. Deletion of the HS biosynthetic gene Ext1 in myeloid cells decreases mitochondria uptake by WAT macrophages, increases WAT mass, lowers energy expenditure, and exacerbates HFD-induced obesity in vivo. Collectively, this study suggests that adipocytes and macrophages employ intercellular mitochondria transfer as a mechanism of immunometabolic crosstalk that regulates metabolic homeostasis and is impaired in obesity.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Craig B Wilen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - John R Moley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjia Li
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina N Rowen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongming Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Madison R Mack
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barry L Hykes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Vir Biotechnology, San Francisco, CA 94158, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyan Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R McAllaster
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Vir Biotechnology, San Francisco, CA 94158, USA; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew E Gelman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
88
|
Tehrani KF, Pendleton EG, Southern WM, Call JA, Mortensen LJ. Spatial frequency metrics for analysis of microscopic images of musculoskeletal tissues. Connect Tissue Res 2021; 62:4-14. [PMID: 33028134 PMCID: PMC7718369 DOI: 10.1080/03008207.2020.1828381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Imaging-based metrics for analysis of biological tissues are powerful tools that can extract information such as shape, size, periodicity, and many other features to assess the requested qualities of a tissue. Muscular and osseous tissues consist of periodic structures that are directly related to their function, and so analysis of these patterns likely reflects tissue health and regeneration.Methods: A method for assessment of periodic structures is by analyzing them in the spatial frequency domain using the Fourier transform. In this paper, we present two filters which we developed in the spatial frequency domain for the purpose of analyzing musculoskeletal structures. These filters provide information about 1) the angular orientation of the tissues and 2) their periodicity. We explore periodic structural patterns in the mitochondrial network of skeletal muscles that are reflective of muscle metabolism and myogenesis; and patterns of collagen fibers in the bone that are reflective of the organization and health of bone extracellular matrix.Results: We present an analysis of mouse skeletal muscle in healthy and injured muscles. We used a transgenic mouse that ubiquitously expresses fluorescent protein in their mitochondria and performed 2-photon microscopy to image the structures. To acquire the collagen structure of the bone we used non-linear SHG microscopy of mouse flat bone. We analyze and compare juvenile versus adult mice, which have different structural patterns.Conclusions: Our results indicate that these metrics can quantify musculoskeletal tissues during development and regeneration.
Collapse
Affiliation(s)
- Kayvan Forouhesh Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA
| | - Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA
| | - W. Michael Southern
- Department of Kinesiology, University of Georgia, Athens,
GA 30602, USA,Currently with Department of Biochemistry, Molecular
Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jarrod A. Call
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA,Department of Kinesiology, University of Georgia, Athens,
GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA,School of Chemical, Materials and Biomedical Engineering,
University of Georgia, Athens, GA 30602, USA,
| |
Collapse
|
89
|
Saragovi A, Abramovich I, Omar I, Arbib E, Toker O, Gottlieb E, Berger M. Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. eLife 2020; 9:56612. [PMID: 33226340 PMCID: PMC7728436 DOI: 10.7554/elife.56612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/21/2020] [Indexed: 11/30/2022] Open
Abstract
Systemic oxygen restriction (SOR) is prevalent in numerous clinical conditions, including chronic obstructive pulmonary disease (COPD), and is associated with increased susceptibility to viral infections. However, the influence of SOR on T cell immunity remains uncharacterized. Here we show the detrimental effect of hypoxia on mitochondrial-biogenesis in activated mouse CD8+ T cells. We find that low oxygen level diminishes CD8+ T cell anti-viral response in vivo. We reveal that respiratory restriction inhibits ATP-dependent matrix processes that are critical for mitochondrial-biogenesis. This respiratory restriction-mediated effect could be rescued by TCA cycle re-stimulation, which yielded increased mitochondrial matrix-localized ATP via substrate-level phosphorylation. Finally, we demonstrate that the hypoxia-arrested CD8+ T cell anti-viral response could be rescued in vivo through brief exposure to atmospheric oxygen pressure. Overall, these findings elucidate the detrimental effect of hypoxia on mitochondrial-biogenesis in activated CD8+ T cells, and suggest a new approach for reducing viral infections in COPD.
Collapse
Affiliation(s)
- Amijai Saragovi
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Jerusalem, Israel
| | - Ibrahim Omar
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - Eliran Arbib
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - Ori Toker
- Faculty of Medicine, Hebrew University of Jerusalem; The Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Jerusalem, Israel
| | - Michael Berger
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
90
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
91
|
Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, Kacerovsky JB, Dotigny F, Murai KK, Prat A, Drapeau P, Di Polo A. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 2020; 585:91-95. [DOI: 10.1038/s41586-020-2589-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
|
92
|
High mitochondrial mass is associated with reconstitution capacity and quiescence of hematopoietic stem cells. Blood Adv 2020; 3:2323-2327. [PMID: 31387881 DOI: 10.1182/bloodadvances.2019032169] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023] Open
Abstract
Key Points
HSCs can be separated based on high or low mitochondrial mass. Higher mitochondrial mass is associated with quiescence and greater reconstitution capacity of HSCs.
Collapse
|
93
|
Si M, Wang Q, Li Y, Lin H, Luo D, Zhao W, Dou X, Liu J, Zhang H, Huang Y, Lou T, Hu Z, Peng H. Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci Transl Med 2020; 11:11/495/eaav5341. [PMID: 31167927 DOI: 10.1126/scitranslmed.aav5341] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Progressive peritoneal fibrosis affects patients receiving peritoneal dialysis (PD) and has no reliable treatment. The mechanisms that initiate and sustain peritoneal fibrosis remain incompletely elucidated. To overcome these problems, we developed a strategy that prevents peritoneal fibrosis by suppressing PD-stimulated mesothelial-to-mesenchymal transition (MMT). We evaluated single-cell transcriptomes of mesothelial cells obtained from normal peritoneal biopsy and effluent from PD-treated patients. In cells undergoing MMT, we found cellular heterogeneity and intermediate transition states associated with up-regulation of enzymes involved in glycolysis. The expression of glycolytic enzymes was correlated with the development of MMT. Using gene expression profiling and metabolomics analyses, we confirmed that PD fluid induces metabolic reprogramming, characterized as hyperglycolysis, in mouse peritoneum. We found that transforming growth factor β1 (TGF-β1) can substitute for PD fluid to stimulate hyperglycolysis, suppressing mitochondrial respiration in mesothelial cells. Blockade of hyperglycolysis with 2-deoxyglucose (2-DG) inhibited TGF-β1-induced profibrotic cellular phenotype and peritoneal fibrosis in mice. We developed a triad of adeno-associated viruses that overexpressed microRNA-26a and microRNA-200a while inhibiting microRNA-21a to target hyperglycolysis and fibrotic signaling. Intraperitoneal injection of the viral triad inhibited the development of peritoneal fibrosis induced by PD fluid in mice. We conclude that hyperglycolysis is responsible for MMT and peritoneal fibrogenesis, and this aberrant metabolic state can be corrected by modulating microRNAs in the peritoneum. These results could provide a therapeutic strategy to combat peritoneal fibrosis.
Collapse
Affiliation(s)
- Meijun Si
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qianqian Wang
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Nephrology Division, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yin Li
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hongchun Lin
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dan Luo
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenbo Zhao
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xianrui Dou
- Nephrology Division, Shunde Hospital of Southern Medical University, Foshan 528300, China
| | - Jun Liu
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Huang
- Division of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tanqi Lou
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hui Peng
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
94
|
Rousselle TV, Kuscu C, Kuscu C, Schlegel K, Huang L, Namwanje M, Eason JD, Makowski L, Maluf D, Mas V, Bajwa A. FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front Immunol 2020; 11:1278. [PMID: 32670281 PMCID: PMC7328774 DOI: 10.3389/fimmu.2020.01278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are central in regulating immune responses of kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in mice treated with S1PR agonist, FTY720 (FTY). We tested if ex vivo propagation of DCs with FTY could be used as cellular therapy to limit the off-target effects associated with systemic FTY administration in kidney IRI. DCs have the ability of regulate innate and adaptive responses and we posited that treatment of DC with FTY may underlie improvements in kidney IRI. Herein, it was observed that treatment of bone marrow derived dendritic cells (BMDCs) with FTY induced mitochondrial biogenesis, FTY-treated BMDCs (FTY-DCs) showed significantly higher oxygen consumption rate and ATP production compared to vehicle treated BMDCs (Veh-DCs). Adoptive transfer of FTY-DCs to mice 24 h before or 4 h after IRI significantly protected the kidneys from injury compared to mice treated with Veh-DCs. Additionally, allogeneic adoptive transfer of C57BL/6J FTY-DCs into BALB/c mice equally protected the kidneys from IRI. FTY-DCs propagated from S1pr1-deficient DCs derived from CD11cCreS1pr1fl/fl mice as well as blunting mitochondrial oxidation in wildtype (WT) FTY-DCs prior to transfer abrogated the protection observed by FTY-DCs. We queried if DC mitochondrial content alters kidney responses after IRI, a novel but little studied phenomenon shown to be integral to regulation of the immune response. Transfer of mitochondria rich FTY-DCs protects kidneys from IRI as transferred FTY-DCs donated their mitochondria to recipient splenocytes (i.e., macrophages) and prior splenectomy abrogated this protection. Adoptive transfer of FTY-DCs either prior to or after ischemic injury protects kidneys from IRI demonstrating a potent role for donor DC-mitochondria in FTY's efficacy. This is the first evidence, to our knowledge, that DCs have the potential to protect against kidney injury by donating mitochondria to splenic macrophages to alter their bioenergetics thus making them anti-inflammatory. In conclusion, the results support that ex vivo FTY720-induction of the regulatory DC phenotype could have therapeutic relevance that can be preventively infused to reduce acute kidney injury.
Collapse
Affiliation(s)
- Thomas V Rousselle
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kailo Schlegel
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - LiPing Huang
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Maria Namwanje
- Department of Pediatrics and Genetics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Liza Makowski
- Department of Medicine - Division of Hematology and Oncology, College of Medicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
95
|
Al-Zubaidi U, Liu J, Cinar O, Robker RL, Adhikari D, Carroll J. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Mol Hum Reprod 2020; 25:695-705. [PMID: 31579926 PMCID: PMC6884418 DOI: 10.1093/molehr/gaz055] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are highly dynamic organelles and their distribution, structure and activity affect a wide range of cellular functions. Mitochondrial membrane potential (∆Ψm) is an indicator of mitochondrial activity and plays a major role in ATP production, redox balance, signaling and metabolism. Despite the absolute reliance of oocyte and early embryo development on mitochondrial function, there is little known about the spatial and temporal aspects of ΔΨm during oocyte maturation. The one exception is that previous findings using a ΔΨm indicator, JC-1, report that mitochondria in the cortex show a preferentially increased ΔΨm, relative to the rest of the cytoplasm. Using live-cell imaging and a new ratiometric approach for measuring ΔΨm in mouse oocytes, we find that ΔΨm increases through the time course of oocyte maturation and that mitochondria in the vicinity of the first meiotic spindle show an increase in ΔΨm, compared to other regions of the cytoplasm. We find no evidence for an elevated ΔΨm in the oocyte cortex. These findings suggest that mitochondrial activity is adaptive and responsive to the events of oocyte maturation at both a global and local level. In conclusion, we have provided a new approach to reliably measure ΔΨm that has shed new light onto the spatio-temporal regulation of mitochondrial function in oocytes and early embryos.
Collapse
Affiliation(s)
- Usama Al-Zubaidi
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Applied Embryology Department, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, AL-Nahrain University, Baghdad, Iraq
| | - Jun Liu
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ozgur Cinar
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Rebecca L Robker
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,School of Pediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
96
|
Durand MJ, Ait-Aissa K, Levchenko V, Staruschenko A, Gutterman DD, Beyer AM. Visualization and quantification of mitochondrial structure in the endothelium of intact arteries. Cardiovasc Res 2020; 115:1546-1556. [PMID: 30476208 DOI: 10.1093/cvr/cvy294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/07/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
AIM To quantify the mitochondrial structure of ECs in intact arteries vs. cultured cells. METHODS AND RESULTS Cre-stop mito-Dendra2 mice, expressing the fluorescent protein Dendra2 in the mitochondrial matrix only, were used to label EC mitochondria using Cre-recombinase under the control of the VE-cadherin promoter. Conduit arteries, resistance arterioles and veins were fixed, mounted on glass slides and fluorescent images were obtained using a laser scanning confocal microscope (ex 488 nm; em 550 nm). ImageJ was used to calculate form factor (FF) and aspect ratio (AR) of the mitochondrial segments. Mitochondrial fragmentation count (MFC) was calculated by counting non-contiguous mitochondrial particles and dividing by the number of pixels which comprise the mitochondrial network. Primary aortic EC cultures (48 h on culture plates) were generated to compare the mitochondrial structure of cultured ECs vs. intact arteries. Aortic segments were also exposed to high glucose overnight (33 mM) ex vivo, and separate groups of mice were either infused with a high-glucose saline solution (300 mM) via tail vein catheter for 1 h or injected with streptozotocin (STZ; 50 mg/kg) to cause hyperglycaemia. Compared with cultured ECs, the mitochondria of ECs from the intact aorta were more fragmented (MFC: 6.4 ± 2.5 vs. 18.6 ± 9.4, respectively; P < 0.05). The mitochondrial segments of ECs within the aorta were more circular in shape (FF: 3.5 ± 0.75 vs. 1.8 ± 0.30, respectively; P < 0.05) and had less branching (AR: 2.9 ± 0.60 vs. 2.0 ± 0.25, respectively; P < 0.05) compared with cultured ECs. Ex vivo exposure of the intact aorta to high glucose overnight caused mitochondrial fission compared with normal glucose conditions (5 mM; MFC: 25.5 ± 11.1 high glucose vs. 11.0 ± 3.6 normal glucose; P < 0.05). Both 1-h infusion of high glucose saline (MFC: 22.4 ± 4.3) and STZ treatment (MFC: 40.3 ± 14.2) caused mitochondrial fission compared with freshly fixed aortas from control mice (MFC: 18.6 ± 9.4; P < 0.05 vs. high-glucose infusion and STZ treatment). CONCLUSIONS Using a novel mouse model, we were able to, for the first time, obtain high resolution images of EC mitochondrial structure in intact arteries. We reveal the endothelial mitochondrial network is more fragmented in the intact aorta compared with cultured ECs, indicating that mitochondria assume a more elongated and branched phenotype in cell culture.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Karima Ait-Aissa
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Alexander Staruschenko
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
97
|
Hernandez‐Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ. Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med 2020; 24:6571-6585. [PMID: 32406208 PMCID: PMC7299693 DOI: 10.1111/jcmm.15384] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
New treatments are needed to protect the myocardium against the detrimental effects of acute ischaemia/reperfusion (IR) injury following an acute myocardial infarction (AMI), in order to limit myocardial infarct (MI) size, preserve cardiac function and prevent the onset of heart failure (HF). Given the critical role of mitochondria in energy production for cardiac contractile function, prevention of mitochondrial dysfunction during acute myocardial IRI may provide novel cardioprotective strategies. In this regard, the mitochondrial fusion and fissions proteins, which regulate changes in mitochondrial morphology, are known to impact on mitochondrial quality control by modulating mitochondrial biogenesis, mitophagy and the mitochondrial unfolded protein response. In this article, we review how targeting these inter-related processes may provide novel treatment targets and new therapeutic strategies for reducing MI size, preventing the onset of HF following AMI.
Collapse
Affiliation(s)
- Sauri Hernandez‐Resendiz
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Centro de Biotecnologia‐FEMSATecnologico de MonterreyNuevo LeonMexico
| | - Fabrice Prunier
- Institut MITOVASCCNRS UMR 6015 INSERM U1083University Hospital Center of AngersUniversity of AngersAngersFrance
| | - Henrique Girao
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraPortugal
- Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Gerald Dorn
- Department of Internal MedicineCenter for PharmacogenomicsWashington University School of MedicineSt. LouisMOUSA
| | - Derek J. Hausenloy
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichungTaiwan
| | | |
Collapse
|
98
|
Liu T, Woo JAA, Bukhari MZ, LePochat P, Chacko A, Selenica MLB, Yan Y, Kotsiviras P, Buosi SC, Zhao X, Kang DE. CHCHD10-regulated OPA1-mitofilin complex mediates TDP-43-induced mitochondrial phenotypes associated with frontotemporal dementia. FASEB J 2020; 34:8493-8509. [PMID: 32369233 PMCID: PMC7482311 DOI: 10.1096/fj.201903133rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Mutations in CHCHD10, a gene coding for a mitochondrial protein, are implicated in ALS-FTD spectrum disorders, which are pathologically characterized by transactive response DNA binding protein 43 kDa (TDP-43) accumulation. While both TDP-43 and CHCHD10 mutations drive mitochondrial pathogenesis, mechanisms underlying such phenotypes are unclear. Moreover, despite the disruption of the mitochondrial mitofilin protein complex at cristae junctions in patient fibroblasts bearing the CHCHD10S59L mutation, the role of CHCHD10 variants in mitofilin-associated protein complexes in brain has not been examined. Here, we utilized novel CHCHD10 transgenic mouse variants (WT, R15L, & S59L), TDP-43 transgenic mice, FTLD-TDP patient brains, and transfected cells to assess the interplay between CHCHD10 and TDP-43 on mitochondrial phenotypes. We show that CHCHD10 mutations disrupt mitochondrial OPA1-mitofilin complexes in brain, associated with impaired mitochondrial fusion and respiration. Likewise, CHCHD10 levels and OPA1-mitofilin complexes are significantly reduced in brains of FTLD-TDP patients and TDP-43 transgenic mice. In cultured cells, CHCHD10 knockdown results in OPA1-mitofilin complex disassembly, while TDP-43 overexpression also reduces CHCHD10, promotes OPA1-mitofilin complex disassembly via CHCHD10, and impairs mitochondrial fusion and respiration, phenotypes that are rescued by wild type (WT) CHCHD10. These results indicate that disruption of CHCHD10-regulated OPA1-mitofilin complex contributes to mitochondrial abnormalities in FTLD-TDP and suggest that CHCHD10 restoration could ameliorate mitochondrial dysfunction in FTLD-TDP.
Collapse
Affiliation(s)
- Tian Liu
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Jung-A A. Woo
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular Pharmacology and Physiology, USF
Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Patrick LePochat
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Ann Chacko
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | | | - Yan Yan
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Peter Kotsiviras
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Sara Cazzaro Buosi
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Xingyu Zhao
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - David E. Kang
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
- James A. Haley Veterans Administration Hospital, Tampa, FL
33612, USA
| |
Collapse
|
99
|
Rutkai I, Evans WR, Bess N, Salter-Cid T, Čikić S, Chandra PK, Katakam PVG, Mostany R, Busija DW. Chronic imaging of mitochondria in the murine cerebral vasculature using in vivo two-photon microscopy. Am J Physiol Heart Circ Physiol 2020; 318:H1379-H1386. [PMID: 32330090 DOI: 10.1152/ajpheart.00751.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are important regulators of cerebral vascular function in health and disease, but progress in understanding their roles has been hindered by methodological limitations. We report the first in vivo imaging of mitochondria specific to the cerebral endothelium in real time in the same mouse for extended periods. Mice expressing Dendra2 fluorescent protein in mitochondria (mito-Dendra2) in the cerebral vascular endothelium were generated by breeding PhAM-floxed and Tie2-Cre mice. We used mito-Dendra2 expression, cranial window implantation, and two-photon microscopy to visualize mitochondria in the cerebral vascular endothelium of mice. Immunohistochemistry and mitochondrial staining were used to confirm the localization of the mitochondrial signal to endothelial cells and the specificity of mito-Dendra2 to mitochondria. Mito-Dendra2 and Rhodamine B-conjugated dextran allowed simultaneous determinations of mitochondrial density, vessel diameters, area, and mitochondria-to-vessel ratio in vivo, repeatedly, in the same mouse. Endothelial expression of mito-Dendra2 was confirmed in vitro on brain slices and aorta. In addition, we observed an overlapping mito-Dendra2 and Chromeo mitochondrial staining of cultured brain microvascular endothelial cells. Repeated imaging of the same location in the cerebral microcirculation in the same mouse demonstrated stability of mito-Dendra2. While the overall mitochondrial signal was stable over time, mitochondria within the same endothelial cell were mobile. In conclusion, our results indicate that the mito-Dendra2 signal and vascular parameters are suitable for real-time and longitudinal examination of mitochondria in vivo in the cerebral vasculature of mice.NEW & NOTEWORTHY We introduce an innovative in vivo approach to study mitochondria in the cerebral circulation in their physiological environment by demonstrating the feasibility of long-term imaging and three-dimensional reconstruction. We postulate that the appropriate combination of Cre/Lox system and two-photon microscopy will contribute to a better understanding of the role of mitochondria in not only endothelium but also the different cell types of the cerebral circulation.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Nikita Bess
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tomas Salter-Cid
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Siniša Čikić
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
100
|
Abrisch RG, Gumbin SC, Wisniewski BT, Lackner LL, Voeltz GK. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J Cell Biol 2020; 219:e201911122. [PMID: 32328629 PMCID: PMC7147108 DOI: 10.1083/jcb.201911122] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022] Open
Abstract
The steady-state morphology of the mitochondrial network is maintained by a balance of constitutive fission and fusion reactions. Disruption of this steady-state morphology results in either a fragmented or elongated network, both of which are associated with altered metabolic states and disease. How the processes of fission and fusion are balanced by the cell is unclear. Here we show that mitochondrial fission and fusion are spatially coordinated at ER membrane contact sites (MCSs). Multiple measures indicate that the mitochondrial fusion machinery, Mitofusins, accumulate at ER MCSs where fusion occurs. Furthermore, fission and fusion machineries colocalize to form hotspots for membrane dynamics at ER MCSs that can persist through sequential events. Because these hotspots can undergo fission and fusion, they have the potential to quickly respond to metabolic cues. Indeed, we discover that ER MCSs define the interface between polarized and depolarized segments of mitochondria and can rescue the membrane potential of damaged mitochondria by ER-associated fusion.
Collapse
Affiliation(s)
- Robert G. Abrisch
- Department of Biochemistry, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Samantha C. Gumbin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, Chevy Chase, MD
| | | | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Gia K. Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|