51
|
Marvanova M, Nichols CD. Identification of neuroprotective compounds of caenorhabditis elegans dopaminergic neurons against 6-OHDA. J Mol Neurosci 2008; 31:127-37. [PMID: 17478886 DOI: 10.1385/jmn/31:02:127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/30/1999] [Accepted: 08/26/2006] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is a severe debilitating disorder, characterized by progressive and selective dopaminergic (DAergic) neuron degeneration within the substantia nigra pars compacta. Although current pharmacological treatments are effective in early stages of the disease, with time, most patients fail to respond to medications and develop serious motor complications. Therefore, devising novel and efficacious therapeutics that address not only the symptoms of PD, but also the cause, are of great importance. Unfortunately, many obstacles are associated with current PD research in mammalian-based systems, which limit the rate of progress. One solution is to investigate mechanisms of PD in model genetic organisms like Caenorhabditis elegans. In general, striking and profound similarities underlie the basic cellular and molecular processes between the worm and humans. The use of C. elegans over traditional mammalian-based systems holds the promise of an enhanced rate of discovery with lower associated costs. Here, we have utilized C. elegans to screen a variety of compounds, including specific dopamine (DA), GABA, and NMDA receptor agonists, as well as antagonists to identify those that protect against 6-OHDA-induced DAergic toxicity. Two DA D2 receptor agonists, bromocriptine and quinpirole, were found to protect against 6-OHDA toxicity in a dose-dependent manner. Surprisingly, these protective effects appear to involve receptor-independent mechanisms. Given the high degree of conservation of cellular processes between the worm and mammalian systems, these results are likely relevant and important toward understanding potentially novel mechanisms leading to DAergic neuroprotection in mammalian systems and, ultimately, new therapeutics for PD.
Collapse
Affiliation(s)
- Marketa Marvanova
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37203, USA
| | | |
Collapse
|
52
|
Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson's disease. Mov Disord 2008; 22:1990-2017. [PMID: 17618524 DOI: 10.1002/mds.21440] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Future therapies in Parkinson's disease may substantially build on the existence of intra-membrane receptor-receptor interactions in DA receptor containing heteromeric receptor complexes. The A(2A)/D(2) heteromer is of substantial interest in view of its specific location in cortico-striatal glutamate terminals and in striato-pallidal GABA neurons. Antagonistic A(2A)/D(2) receptor interactions in this heteromer demonstrated at the cellular level, and at the level of the striato-pallidal GABA neuron and at the network level made it possible to suggest A(2A) antagonists as anti-parkinsonian drugs. The major mechanism is an enhancement of D(2) signaling leading to attenuation of hypokinesia, tremor, and rigidity in models of Parkinson's disease with inspiring results in two clinical trials. Other interactions are antagonism at the level of the adenylyl cyclase; heterologous sensitization at the A(2A) activated adenylyl cyclase by persistent D(2) activation and a compensatory up-regulation of A(2A) receptors in response to intermittent Levodopa treatment. An increased dominance of A(2A) homomers over D(2) homomers and A(2A)/D(2) heteromers after intermittent Levodopa treatment may therefore contribute to development of Levodopa induced dyskinesias and to the wearing off of the therapeutic actions of Levodopa giving additional therapeutic roles of A(2A) antagonists. Their neuroprotective actions may involve an increase in the retrograde trophic signaling in the nigro-striatal DA system.
Collapse
Affiliation(s)
- Kjell Fuxe
- Division of Cellular and Molecular Neurochemistry, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
53
|
Jin Y, Yan EZ, Fan Y, Guo XL, Zhao YJ, Zong ZH, Liu Z. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol Sin 2007; 28:1881-90. [PMID: 18031600 DOI: 10.1111/j.1745-7254.2007.00634.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate whether sodium ferulate (SF) can protect cortical neurons from glutamate-induced neurotoxicity and the mechanisms responsible for this protection. METHODS Cultured cortical neurons were incubated with 50 micromol/L glutamate for either 30 min or 24 h, with or without pre-incubation with SF (100, 200, and 500 micromol/L, respectively). LY294002, wortmannin, PD98059, and U0126 were added respectively to the cells 1 h prior to SF treatment. After incubation with glutamate for 24 h, neuronal apoptosis was quantified by scoring the percentage of cells with apoptotic nuclear morphology after Hoechst 33258 staining. After incubation with glutamate for either 30 min or 24 h, cellular extracts were prepared for Western blotting of active caspase-3, poly (ADP-ribose) polymerase (PARP), mu-calpain, Bcl-2, phospho-Akt, phosphorylated ribosomal protein S6 protein kinase (p70S6K), phospho-mitogen-activated protein kinase kinase (MEK1/2) and phosphorylated extracellular signal-regulated kinase (ERK) 1/2. RESULTS SF reduced glutamate-evoked apoptotic morphology, active caspase-3 protein expression, and PARP cleavage and inhibited the glutamate-induced upregulation of the mu-calpain protein level. The inhibition of the phosphatidylinositol 3-kinase (PI3K) and the MEK/ERK1/2 pathways partly abrogated the protective effect of SF against glutamate-induced neuronal apoptosis. SF prevented the glutamate-induced decrease in the activity of the PI3K/Akt/p70S6K and the MEK/ERK1/2 pathways. Moreover, incubation of cortical neurons with SF for 30 min inhibited the reduction of the Bcl-2 expression induced by glutamate. CONCLUSION The results indicate that PI3K/Akt/p70S6K and the MEK/ERK signaling pathways play important roles in the protective effect of SF against glutamate toxicity in cortical neurons.
Collapse
Affiliation(s)
- Ying Jin
- Department of Pharmacology, Liaoning Medical University, Jinzhou 121001, China.
| | | | | | | | | | | | | |
Collapse
|
54
|
Bolan EA, Kivell B, Jaligam V, Oz M, Jayanthi LD, Han Y, Sen N, Urizar E, Gomes I, Devi LA, Ramamoorthy S, Javitch JA, Zapata A, Shippenberg TS. D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Mol Pharmacol 2007; 71:1222-32. [PMID: 17267664 DOI: 10.1124/mol.106.027763] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dopamine transporter (DAT) terminates dopamine (DA) neurotransmission by reuptake of DA into presynaptic neurons. Regulation of DA uptake by D(2) dopamine receptors (D(2)R) has been reported. The high affinity of DA and other DAT substrates for the D(2)R, however, has complicated investigation of the intracellular mechanisms mediating this effect. The present studies used the fluorescent DAT substrate, 4-[4-(diethylamino)-styryl]-N-methylpyridinium iodide (ASP(+)) with live cell imaging techniques to identify the role of two D(2)R-linked signaling pathways, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and phosphoinositide 3 kinase (PI3K) in mediating D(2)R regulation of DAT. Addition of the D(2)/D(3) receptor agonist quinpirole (0.1-10 muM) to human embryonic kidney cells coexpressing human DAT and D(2) receptor (short splice variant, D(2S)R) induced a rapid, concentration-dependent and pertussis toxin-sensitive increase in ASP(+) accumulation. The D(2)/D(3) agonist (S)-(+)-(4aR, 10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride (PD128907) also increased ASP(+) accumulation. D(2S)R activation increased phosphorylation of ERK1/2 and Akt, a major target of PI3K. The mitogen-activated protein kinase kinase inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) prevented the quinpirole-evoked increase in ASP(+) accumulation, whereas inhibition of PI3K was without effect. Fluorescence flow cytometry and biotinylation studies revealed a rapid increase in DAT cell-surface expression in response to D(2)R stimulation. These experiments demonstrate that D(2S)R stimulation increases DAT cell surface expression and therefore enhances substrate clearance. Furthermore, they show that the increase in DAT function is ERK1/2-dependent but PI3K-independent. Our data also suggest the possibility of a direct physical interaction between DAT and D(2)R. Together, these results suggest a novel mechanism by which D(2S)R autoreceptors may regulate DAT in the central nervous system.
Collapse
Affiliation(s)
- Elizabeth A Bolan
- Integrative Neuroscience Section, National Institute on Drug Abuse Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
56
|
Sevak RJ, Owens WA, Koek W, Galli A, Daws LC, France CP. Evidence for D2 receptor mediation of amphetamine-induced normalization of locomotion and dopamine transporter function in hypoinsulinemic rats. J Neurochem 2007; 101:151-9. [PMID: 17217413 DOI: 10.1111/j.1471-4159.2006.04358.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopamine (DA) D2 receptors regulate DA transporter (DAT) activity, and mediate some behavioral effects of amphetamine. DA clearance and amphetamine-stimulated locomotion are reduced in hypoinsulinemic [streptozotocin (STZ)-treated] rats, and these deficits are normalized by repeated treatment with amphetamine. Here, a role for D2 receptors in mediating amphetamine-induced normalization of these parameters was investigated. One week after a saline or STZ injection (50 mg/kg), rats were treated with amphetamine (1.78 mg/kg), raclopride (0.056 mg/kg), saline, or combinations thereof, every-other-day for 8 days with locomotor activity measured following each treatment. Conditioned place preference (CPP) for amphetamine and in vivo chronoamperometry to measure DA clearance were carried out on days 17 and 18, respectively, after STZ or saline. Baseline locomotion and DA clearance were significantly reduced in STZ-treated rats compared with control rats. In STZ-treated rats, amphetamine treatment normalized DA clearance, and restored the locomotor-stimulating effects of amphetamine. Raclopride prevented normalization of these parameters. Amphetamine produced CPP in both STZ-treated and control rats; raclopride significantly attenuated amphetamine-induced CPP in control and not in STZ-treated rats. These results support a role for D2 receptors in regulating DA transporter activity, and further demonstrate that D2 receptors contribute to changes in sensitivity to amphetamine in hypoinsulinemic rats.
Collapse
Affiliation(s)
- Rajkumar J Sevak
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
57
|
Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A. Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 2006; 51:474-86. [PMID: 16762377 DOI: 10.1016/j.neuropharm.2006.04.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
We show here that donepezil, galanathamine and tacrine, therapeutic acetylcholinesterase inhibitors currently being used for treatment of Alzheimer's disease, protect neuronal cells in a time- and concentration-dependent manner from glutamate neurotoxicity that involves apoptosis. The neuroprotective effects were antagonized by mecamylamine, an inhibitor of nicotinic acetylcholine receptors (nAChRs). Dihydro-beta-erythroidine and methyllycaconitine, antagonists for alpha4-nAChR and alpha7-nAChR, respectively, antagonized the protective effect of donepezil and galanthamine, but not that of tacrine. Previous reports suggest the involvement of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway in the nicotine-induced neuroprotection. Inhibitors for a non-receptor type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. Furthermore, LY294002, a PI3K inhibitor, also suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galanthamine treatment, but not with tacrine treatment. These results suggest that donepezil and galanthamine prevent glutamate neurotoxicity through alpha4- and alpha7-nAChRs, followed by the PI3K-Akt pathway, and that tacrine protects neuronal cells through a different pathway.
Collapse
Affiliation(s)
- Yuki Takada-Takatori
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Zou S, Li L, Pei L, Vukusic B, Van Tol HHM, Lee FJS, Wan Q, Liu F. Protein-protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 2006; 25:4385-95. [PMID: 15858065 PMCID: PMC6725121 DOI: 10.1523/jneurosci.5099-04.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
here is considerable evidence that dopamine D2 receptors can modulate AMPA receptor-mediated neurotoxicity. However, the molecular mechanism underlying this process remains essentially unclear. Here we report that D2 receptors inhibit AMPA-mediated neurotoxicity through two pathways: the activation of phosphoinositide-3 kinase (PI-3K) and downregulation of AMPA receptor plasma membrane expression, both involving a series of protein-protein coupling/uncoupling events. Agonist stimulation of D2 receptors promotes the formation of the direct protein-protein interaction between the third intracellular loop of the D2 receptor and the ATPase N-ethylmaleimide-sensitive factor (NSF) while uncoupling the NSF interaction with the carboxyl tail (CT) of the glutamate receptor GluR2 subunit of AMPA receptors. Previous studies have shown that full-length NSF directly couples to the GluR2CT and facilitates AMPA receptor plasma membrane expression. Furthermore, the CT region of GluR2 subunit is also responsible for several other intracellular protein couplings, including p85 subunit of PI-3K. Therefore, the direct coupling of D2-NSF and concomitant decrease in the NSF-GluR2 interaction results in a decrease of AMPA receptor membrane expression and an increase in the interaction between GluR2 and the p85 and subsequent activation of PI-3K. Disruption of the D2-NSF interaction abolished the ability of D2 receptor to attenuate AMPA-mediated neurotoxicity by blocking the D2 activation-induced changes in PI-3K activity and AMPA receptor plasma membrane expression. Furthermore, the D2-NSF-GluR2-p85 interactions are also responsible for the D2 inhibition of ischemia-induced cell death. These data may provide a new avenue to identify specific targets for therapeutics to modulate glutamate receptor-governed diseases, such as stroke.
Collapse
Affiliation(s)
- Shengwei Zou
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Bozzi Y, Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci 2006; 29:167-74. [PMID: 16443286 DOI: 10.1016/j.tins.2006.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/09/2005] [Accepted: 01/06/2006] [Indexed: 11/19/2022]
Abstract
Accurate control of dopamine levels and/or the resulting dopamine-receptor interaction is essential for brain function. Indeed, several human neurological and psychiatric disorders are characterized by dysfunctions of the dopaminergic system. Dopamine has been reported to exert either protective or toxic effects on neurons, yet it is unclear whether these effects are receptor-dependent and, if so, which dopamine receptor could be involved. The D(2) dopamine receptor occupies a privileged position because its signalling might be neuroprotective in human diseases, such as Parkinson's disease, ischaemia and epilepsy. Unravelling the role of D(2) receptors in neuronal death and survival might be central to understanding the mechanisms that underlie several neuropathologies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Istituto di Neuroscienze del CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | |
Collapse
|
60
|
Alimohamad H, Sutton L, Mouyal J, Rajakumar N, Rushlow WJ. The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats. J Neurochem 2005; 95:513-25. [PMID: 16144542 DOI: 10.1111/j.1471-4159.2005.03388.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase B and glycogen synthase kinase-3 have been identified as susceptibility genes for schizophrenia and altered protein and mRNA levels have been detected in the brains of schizophrenics post-mortem. Recently, we reported that haloperidol, clozapine and risperidone alter glycogen synthase kinase-3 and beta-catenin protein expression and glycogen synthase kinase-3 phosphorylation levels in the rat prefrontal cortex and striatum. In the current study, beta-catenin, adenomatous polyposis coli, Wnt1, dishevelled and glycogen synthase kinase-3 were examined in the ventral midbrain and hippocampus using western blotting. In addition, beta-catenin and GSK-3 were examined in the substantia nigra and ventral tegmental area using confocal and fluorescence microscopy. The results indicate that repeated antipsychotic administration results in significant elevations in glycogen synthase kinase-3, beta-catenin and dishevelled-3 protein levels in the ventral midbrain and hippocampus. Raclopride causes similar changes in beta-catenin and GSK-3 in the ventral midbrain, suggesting that D2 dopamine receptor antagonism mediated the changes observed following antipsychotic administration. In contrast, amphetamine, a drug capable of inducing psychotic episodes, had the opposite effect on beta-catenin and GSK-3 in the ventral midbrain. Collectively, the results suggest that antipsychotics may exert their beneficial effects through modifications to proteins that are associated with the canonical Wnt pathway.
Collapse
Affiliation(s)
- H Alimohamad
- Department of Anatomy and Cell Biology, The University of Western Ontario and The London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
61
|
Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia 2005; 52:336-43. [PMID: 16078234 DOI: 10.1002/glia.20250] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dopamine receptor activation is thought to contribute adversely to several neuropathological disorders, including Parkinson's disease and schizophrenia. In addition, dopamine may have a neuroprotective role: dopamine receptor agonists are reported to protect nerve cells by virtue of their antioxidant properties as well as by receptor-mediated mechanisms. White matter injury can also be a significant factor in neurological disorders. Using real-time RT-PCR, we show that differentiated rat cortical oligodendrocytes express dopamine D2 receptor and D3 receptor mRNA. Oligodendrocytes were vulnerable to oxidative glutamate toxicity and to oxygen/glucose deprivation injury. Agonists for dopamine D2 and D3 receptors provided significant protection of oligodendrocytes against these two forms of injury, and the protective effect was diminished by D2 and D3 antagonists. Levels of oligodendrocyte D2 receptor and D3 receptor protein, as measured by Western blotting, appeared to increase following combined oxygen and glucose deprivation. Our results suggest that dopamine D2 and D3 receptor activation may play an important role in oligodendrocyte protection against oxidative glutamate toxicity and oxygen-glucose deprivation injury.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cell Death/physiology
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Glucose/metabolism
- Glutamic Acid/metabolism
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/prevention & control
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Oxygen/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine/genetics
- Receptors, Dopamine/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
Collapse
Affiliation(s)
- Claudia Rosin
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, Harlow, United Kingdom
| | | | | | | | | |
Collapse
|
62
|
|
63
|
Presgraves SP, Borwege S, Millan MJ, Joyce JN. Involvement of dopamine D2/D3 receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SH-SY5Y cells. Exp Neurol 2004; 190:157-70. [PMID: 15473989 DOI: 10.1016/j.expneurol.2004.06.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/14/2004] [Accepted: 06/18/2004] [Indexed: 12/15/2022]
Abstract
Anti-parkinsonian agents possessing both D(2) and D(3) receptor agonist properties are neuroprotective against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in a variety of in vitro models. The mechanisms underlying protection by these D(2)/D(3) receptor agonists remain poorly defined. To test if the D(3) receptor preferring agonists S32504 and pramipexole act through D(2) or D(3) receptors and via brain-derived neurotrophic factor (BDNF)-dependent pathways, we utilized a terminally differentiated neuroblastoma SH-SY5Y cell line exhibiting a dopaminergic phenotype. The cytotoxic effects of MPP(+) (LD(50) of 100 microM) were stereospecifically antagonized by S32504 (EC(50) = 2.0 microM) and, less potently, by pramipexole (EC(50) = 64.3 microM), but not by their inactive stereoisomers, R(+) pramipexole and S32601, respectively. Neuroprotective effects afforded by EC(50) doses of S32504 and pramipexole were antagonized by the selective D(3) antagonists S33084, U99194A, and SB269652, and by the D(2)/D(3) antagonist raclopride. However, the preferential D(2) receptor antagonist LY741626 was ineffective as was the D1 antagonist SCH23390. BDNF (1 nM) potently protected against MPP(+)-induced neurotoxicity. Antibody directed against BDNF concentration-dependently blocked both the neuroprotective effects of BDNF and those of pramipexole and S32504 against MPP(+). The protection afforded by BDNF was blocked by the P3K-AKT pathway inhibitor LY249002 and less so by the MEK/MAPKK pathway inhibitor PD98059. LY249002, but not PD98059, blocked the neuroprotective effects of pramipexole and S32504 against MPP(+) toxicity. In conclusion, S32504 and, less potently, pramipexole show robust, stereospecific, and long-lasting neuroprotective effects against MPP(+) toxicity that involve D(3) receptors. Their actions also reflect downstream recruitment of BDNF and via a PK3-AKT pathway.
Collapse
Affiliation(s)
- Steve P Presgraves
- Thomas H. Christopher Center for Parkinson's Disease Research, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA
| | | | | | | |
Collapse
|
64
|
Narkar V, Kunduzova O, Hussain T, Cambon C, Parini A, Lokhandwala M. Dopamine D2-like receptor agonist bromocriptine protects against ischemia/reperfusion injury in rat kidney. Kidney Int 2004; 66:633-40. [PMID: 15253716 DOI: 10.1111/j.1523-1755.2004.00783.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dopamine, via activation of D1-like and D2-like receptors, plays an important role in the regulation of renal sodium excretion. Recently, we demonstrated that dopamine D2-like receptor agonist (bromocriptine) stimulates p44/42 mitogen-activated protein kinases (MAPKs) and Na+,K(+)ATPase (NKA) activity in proximal tubular epithelial cells. Since both these parameters are compromised in ischemia/reperfusion (I/R) injury to the kidney, we investigated whether bromocriptine protects against the injury. METHODS In this study we used unilateral rat model of renal I/R injury. The Sprague-Dawley rats were divided into vehicle and bromocriptine groups. The vehicle and bromocriptine group was treated with vehicle and bromocriptine (500 microg/kg intravenously), respectively, 15 minutes before the induction of unilateral ischemia followed by 24- or 48-hour reperfusion. At the end of 24 or 48 hours the animals were sacrificed to collect control and ischemic kidney cortices, in which necrosis, apoptosis, NKA activity, NKA alpha1 subunit expression, and p44/42 MAPK phosphorylation were measured. RESULTS We found extensive necrosis, apoptosis, and decreased NKA activity (with no change in alpha1 subunit) in the ischemic kidney cortex compared to the nonischemic cortex from the vehicle-treated rats as early as 24 hours post-reperfusion. In contrast, I/R injury-induced necrotic, apoptotic, and decrease in NKA activity were absent in the outer cortex of bromocriptine-treated rats after 24 or 48 hours. Interestingly, we detected significantly higher phosphorylation of p44/42 MAPKs in control and ischemic kidneys of bromocriptine-treated rats compared to those of vehicle-treated rats. CONCLUSION Therefore, bromocriptine, a D1-like receptor agonist, may protect against I/R injury to proximal tubules of the kidney, via p44/42 MAPK activation.
Collapse
Affiliation(s)
- Vihang Narkar
- Heart and Kidney Institute College of Pharmacy, University of Houston, Houston, Texas 77204-5041, USA
| | | | | | | | | | | |
Collapse
|
65
|
Agnati LF, Leo G, Vergoni AV, Martínez E, Hockemeyer J, Lluis C, Franco R, Fuxe K, Ferré S. Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res Bull 2004; 64:155-64. [PMID: 15342103 DOI: 10.1016/j.brainresbull.2004.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/04/2004] [Accepted: 06/09/2004] [Indexed: 11/24/2022]
Abstract
Adenosine A2A receptors are a new target for drug development in Parkinson's disease. Some experimental and clinical data suggest that A2A receptor antagonists can provide symptomatic improvement by potentiating the effects of L-DOPA as well as a decrease in secondary effects such as L-DOPA-induced dyskinesia. L-DOPA-induced behavioral sensitization in unilateral 6-hydroxydopamine-lesioned rats is frequently used as an experimental model of L-DOPA-induced dyskinesia. In the present work this model was used to evaluate the effect of the A2A receptor agonist CGS 21680 and the A2A receptor antagonist MSX-3 on L-DOPA-induced behavioral sensitization and 6-hydroxydopamine-induced striatal dopamine denervation. L-DOPA-induced behavioral sensitization was determined as an increase in L-DOPA-induced abnormal involuntary movements and enhancement of apomorphine-induced turning behavior. Striatal dopamine innervation was determined by measuring tyrosine-hydroxylase immunoreactivity. Chronic administration of MSX-3 was not found to be effective at counteracting L-DOPA-induced behavioral sensitization. On the other hand, CGS 21680 completely avoided the development of L-DOPA-induced behavioral sensitization. The analysis of the striatal dopamine innervation showed that L-DOPA-CGS 21680 co-treatment conferred neuroprotection to the toxic effects of 6-hydroxydopamine. This neuroprotective effect was dependent on A2A and D2 receptor stimulation, since it was counteracted by MSX-3 and by the D2 receptor antagonist haloperidol. These results open new therapeutic avenues in early events in Parkinson's disease.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedial Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Maragnoli ME, Fumagalli F, Gennarelli M, Racagni G, Riva MA. Fluoxetine and olanzapine have synergistic effects in the modulation of fibroblast growth factor 2 expression within the rat brain. Biol Psychiatry 2004; 55:1095-102. [PMID: 15158429 DOI: 10.1016/j.biopsych.2004.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 01/26/2004] [Accepted: 02/02/2004] [Indexed: 01/19/2023]
Abstract
BACKGROUND The combination of the antidepressant fluoxetine (FLX) and the atypical antipsychotic olanzapine (OLA) appears to be more effective for the treatment of resistant depression than single drugs. We hypothesize that such combination may determine a specific modulation of neuroplastic genes, which could contribute to therapeutic activity. METHODS We investigated the expression of the neurotrophic molecule basic fibroblast growth factor 2 (FGF-2) after acute or chronic administration of FLX and OLA, alone or in combination. Ribonuclease (RNase) protection assay and Western blot analysis were employed to determine FGF-2 expression in different brain structures and to identify the intracellular pathways possibly involved in FGF-2 modulation. RESULTS After single injection, we found that FGF-2 mRNA levels were selectively upregulated in the prefrontal cortex only when the two drugs were coadministered, an effect paralleled by a significant increase of phosphorylated protein kinase B (P-Akt) levels. Conversely, chronic treatment with a combination of FLX and OLA (FLX+OLA) increased FGF-2 mRNA levels in prefrontal cortex, as well as in hippocampus and striatum. CONCLUSIONS Based on these data, we hypothesize a role of endogenously synthesized FGF-2 in the effects of FLX/OLA combination on brain function and plasticity, which could contribute to its superior efficacy for the treatment of resistant depression.
Collapse
Affiliation(s)
- Maria Elisabetta Maragnoli
- Center of Neuropharmacology and Center of Excellence for Neurodegenerative Disorders, Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
67
|
Miglio G, Varsaldi F, Francioli E, Battaglia A, Canonico PL, Lombardi G. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. Eur J Pharmacol 2004; 489:157-65. [PMID: 15087238 DOI: 10.1016/j.ejphar.2004.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 02/26/2004] [Accepted: 03/02/2004] [Indexed: 11/21/2022]
Abstract
Dopamine receptor agonists are protective in different models of neurodegeneration by both receptor-dependent and -independent mechanisms. We used SH-SY5Y cells, differentiated into neuron-like type, to evaluate if cabergoline, a dopamine D2 receptor agonist endowed with anti-oxidant activity, protects the cells against ischemia (oxygen-glucose deprivation model). Cabergoline protected the cells from ischemia-induced cell death in a concentration-dependent manner (EC(50)=1.2 microM), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and fluorescein diacetate-propidium iodide staining. This effect, observed even when the drug was added after oxygen-glucose deprivation, was not mediated by either dopamine D2 receptor activation or anti-apoptotic Bcl-2 protein over-expression (Western blotting analysis), but was linked to a reduction in cellular free radical loading (2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining) and membrane lipid peroxidation (thiobarbituric acid-reacting test). In conclusion, cabergoline protects in vitro neurons against ischemia-induced cell death, suggesting its possible use in the therapy of other neurodegenerative diseases in addition to Parkinson's disease.
Collapse
Affiliation(s)
- Gianluca Miglio
- DISCAFF Department, University of Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | | | |
Collapse
|
68
|
Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 2004; 101:5099-104. [PMID: 15044694 PMCID: PMC387380 DOI: 10.1073/pnas.0307921101] [Citation(s) in RCA: 636] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine (DA) is a neurotransmitter involved in the control of locomotion, emotion, cognition, and reward. Administration of lithium salts is known to inhibit DA-associated behaviors in experimental animal models through unknown mechanisms. Here, we used a pharmacogenetic approach to show that DA can exert its behavioral effects by acting on a lithium-sensitive signaling cascade involving Akt/PKB and glycogen synthase kinase 3 (GSK-3). In the mouse striatum, increased DA neurotransmission arising either from administration of amphetamine or from the lack of the DA transporter results in inactivation of Akt and concomitant activation of GSK-3alpha and GSK-3beta. These biochemical changes are not affected by activation of the cAMP pathway but are effectively reversed either by inhibition of DA synthesis, D2 receptor blockade, or administration of lithium salts. Furthermore, pharmacological or genetic inhibition of GSK-3 significantly reduces DA-dependent locomotor behaviors. These data support the involvement of GSK-3 as an important mediator of DA and lithium action in vivo and suggest that modulation of the Akt/GSK-3 pathway might be relevant to DA-related disorders, such as attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Howard Hughes Medical Institute, Department of Cell Biology and Center for Models of Human Disease, Institute of Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Götz ME, Riederer P. Advances in Neuroprotection Research for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:1-19. [PMID: 14977205 DOI: 10.1007/978-1-4419-8969-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mario E Götz
- Institute of Pharmacology and Toxicology, 97078 Würzburg, Germany
| | | |
Collapse
|
70
|
Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM, Clardy J, Sellers WR, Silver PA. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 2003; 4:463-76. [PMID: 14706338 DOI: 10.1016/s1535-6108(03)00303-9] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The PI3K/PTEN/Akt signal transduction pathway plays a key role in many tumors. Downstream targets of this pathway include the Forkhead family of transcription factors (FOXO1a, FOXO3a, FOXO4). In PTEN null cells, FOXO1a is inactivated by PI3K-dependent phosphorylation and mislocalization to the cytoplasm, yet still undergoes nucleocytoplasmic shuttling. Since forcible localization of FOXO1a to the nucleus can reverse tumorigenicity of PTEN null cells, a high-content, chemical genetic screen for inhibitors of FOXO1a nuclear export was performed. The compounds detected in the primary screen were retested in secondary assays, and structure-function relationships were identified. Novel general export inhibitors were found that react with CRM1 as well as a number of compounds that inhibit PI3K/Akt signaling, among which are included multiple antagonists of calmodulin signaling.
Collapse
Affiliation(s)
- Tweeny R Kau
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Nair VD, Sealfon SC. Agonist-specific transactivation of phosphoinositide 3-kinase signaling pathway mediated by the dopamine D2 receptor. J Biol Chem 2003; 278:47053-61. [PMID: 12970364 DOI: 10.1074/jbc.m303364200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
72
|
Tuite P, Riss J. Recent developments in the pharmacological treatment of Parkinson's disease. Expert Opin Investig Drugs 2003; 12:1335-52. [PMID: 12882620 DOI: 10.1517/13543784.12.8.1335] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the loss of dopaminergic neurons in the substantia nigra. The decline of dopamine leads to motor dysfunctions manifested as tremor, rigidity and bradykinesia. The pharmacological treatment of choice for the past 30 years has primarily been the dopamine precursor levodopa. Although it is the most effective treatment available, it is clear that other drugs are needed in order to sustain a therapeutic benefit and to alleviate fluctuations in mobility (i.e., motor fluctuations). Furthermore, there is some evidence that levodopa may hasten the occurrence of motor fluctuations and involuntary movements called dyskinesias. Hence, many clinicians delay the use of levodopa and employ the use of other symptomatic treatments including monoamine oxidase type B (MAO-B) inhibitors and dopamine agonists as first-line therapy in de novo patients. Regardless of treatment, the disease continues to progress as there is still no obvious means of altering disease progression (i.e., no neuroprotective therapy), to restore loss of dopamine (i.e., no restorative therapy) or prevent the disease (i.e. preventative therapy). With disease progression, polypharmacy is common and often employs a combination of antiparkinsonian agents. There have been some key advances in treatment with the advent of MAO-B inhibitors, dopamine agonists and catechol-O-methyltransferase inhibitors; however, the arsenal of drug treatment remains limited. As the mechanism of PD is further elucidated, novel drug treatments will continue to emerge in the areas of preventative, restorative or symptomatic therapy. Despite the purpose of treatment, the ideal pharmacological drug for PD will include the presence of a safe side-effect profile, a simple dosing schedule, the ability to provide symptomatic relief and the potential to alter disease progression. The purpose of this article is to examine upcoming antiparkinsonian drugs in clinical trials based on their pharmacology, safety and efficacy.
Collapse
Affiliation(s)
- Paul Tuite
- University of Minnesota, Department of Neurology, MMC 295, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
73
|
Nair VD, Olanow CW, Sealfon SC. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines. Biochem J 2003; 373:25-32. [PMID: 12683952 PMCID: PMC1223482 DOI: 10.1042/bj20030017] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 03/25/2003] [Accepted: 04/08/2003] [Indexed: 12/22/2022]
Abstract
Whereas dopamine agonists are known to provide symptomatic benefits for Parkinson's disease, recent clinical trials suggest that they might also be neuroprotective. Laboratory studies demonstrate that dopamine agonists can provide neuroprotective effects in a number of model systems, but the role of receptor-mediated signalling in these effects is controversial. We find that dopamine agonists have robust, concentration-dependent anti-apoptotic activity in PC12 cells that stably express human D(2L) receptors from cell death due to H(2)O(2) or trophic withdrawal and that the protective effects are abolished in the presence of D(2)-receptor antagonists. D(2) agonists are also neuroprotective in the nigral dopamine cell line SN4741, which express endogenous D(2) receptors, whereas no anti-apoptotic activity is observed in native PC12 cells, which do not express detectable D(2) receptors. Notably, the agonists studied differ in their relative efficacy to mediate anti-apoptotic effects and in their capacity to stimulate [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding, an indicator of G-protein activation. Studies with inhibitors of phosphoinositide 3-kinase (PI 3-kinase), extracellular-signal-regulated kinase or p38 mitogen-activated protein kinase indicate that the PI 3-kinase pathway is required for D(2) receptor-mediated cell survival. These studies indicate that certain dopamine agonists can complex with D(2) receptors to preferentially transactivate neuroprotective signalling pathways and to mediate increased cell survival.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
74
|
Koopman WJH, Bosch RR, van Emst-de Vries SE, Spaargaren M, De Pont JJHHM, Willems PHGM. R-Ras alters Ca2+ homeostasis by increasing the Ca2+ leak across the endoplasmic reticular membrane. J Biol Chem 2003; 278:13672-9. [PMID: 12586830 DOI: 10.1074/jbc.m211256200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence in the literature implicating both Ras-like Ras (R-Ras) and intracellular Ca(2+) in programmed cell death and integrin-mediated adhesion prompted us to investigate the possibility that R-Ras alters cellular Ca(2+) handling. Chinese hamster ovary cells expressing the cholecystokinin (CCK)-A receptor were loaded with indo-1 to study the effects of constitutively active V38R-Ras and dominant negative N43R-Ras on the kinetics of the thapsigargin (Tg)- and CCK(8)-induced Ca(2+) rises using high speed confocal microscopy. In the absence of extracellular Ca(2+), both 1 microm Tg, a potent and selective inhibitor of the Ca(2+) pump of the intracellular Ca(2+) store, and 100 nm CCK(8) evoked a transient rise in Ca(2+), the size of which was decreased significantly after expression of V38R-Ras. At 0.1 nm, CCK(8) evoked periodic Ca(2+) rises. The frequency of these Ca(2+) oscillations was reduced significantly in V38R-Ras-expressing cells. In contrast to V38R-Ras, N43R-Ras did not alter the kinetics of the Tg- and CCK(8)-induced Ca(2+) rises. The present findings are compatible with the idea that V38R-Ras expression increases the passive leak of Ca(2+) of the store leading to a decrease in Ca(2+) content of this store, which, in turn, leads to a decrease in frequency of the CCK(8)-induced cytosolic Ca(2+) oscillations. The effect of V38R-Ras on the Ca(2+) content of the intracellular Ca(2+) store closely resembles that of the antiapoptotic protein Bcl-2 observed earlier. Together with reports on the role of dynamic Ca(2+) changes in integrin-mediated adhesion, this leads us to propose that the reduction in endoplasmic reticulum Ca(2+) content may underlie the antiapoptotic effect of R-Ras, whereas the decrease in frequency of stimulus-induced Ca(2+) oscillations may play a role in the inhibitory effect of R-Ras on stimulus-induced cell detachment and migration.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, The Netherlands
| | | | | | | | | | | |
Collapse
|