51
|
Gill J, Yogavel M, Kumar A, Belrhali H, Jain SK, Rug M, Brown M, Maier AG, Sharma A. Crystal structure of malaria parasite nucleosome assembly protein: distinct modes of protein localization and histone recognition. J Biol Chem 2009; 284:10076-87. [PMID: 19176479 PMCID: PMC2665062 DOI: 10.1074/jbc.m808633200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/09/2009] [Indexed: 01/08/2023] Open
Abstract
Nucleosome assembly proteins (NAPs) are histone chaperones that are essential for the transfer and incorporation of histones into nucleosomes. NAPs participate in assembly and disassembly of nucleosomes and in chromatin structure organization. Human malaria parasite Plasmodium falciparum contains two nucleosome assembly proteins termed PfNapL and PfNapS. To gain structural insights into the mechanism of NAPs, we have determined and analyzed the crystal structure of PfNapL at 2.3 A resolution. PfNapL, an ortholog of eukaryotic NAPs, is dimeric in nature and adopts a characteristic fold seen previously for yeast NAP-1 and Vps75 and for human SET/TAF-1b (beta)/INHAT. The PfNapL monomer is comprised of domain I, containing a dimerization alpha-helix, and a domain II, composed of alpha-helices and a beta-subdomain. Structural comparisons reveal that the "accessory domain," which is inserted between the domain I and domain II in yeast NAP-1 and other eukaryotic NAPs, is surprisingly absent in PfNapL. Expression of green fluorescent protein-tagged PfNapL confirmed its exclusive localization to the parasite cytoplasm. Attempts to disrupt the PfNapL gene were not successful, indicating its essential role for the malaria parasite. A detailed analysis of PfNapL structure suggests unique histone binding properties. The crucial structural differences observed between parasite and yeast NAPs shed light on possible new modes of histone recognition by nucleosome assembly proteins.
Collapse
Affiliation(s)
- Jasmita Gill
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Karetsou Z, Emmanouilidou A, Sanidas I, Liokatis S, Nikolakaki E, Politou AS, Papamarcaki T. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction. BMC BIOCHEMISTRY 2009; 10:10. [PMID: 19358706 PMCID: PMC2676315 DOI: 10.1186/1471-2091-10-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 04/09/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. RESULTS Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. CONCLUSION This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.
Collapse
Affiliation(s)
- Zoe Karetsou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 451 10 Ioannina, Greece.
| | | | | | | | | | | | | |
Collapse
|
53
|
Morozumi T, Naito T, Lan PD, Nakajima E, Mitsuhashi T, Mikawa S, Hayashi T, Awata T, Uenishi H, Nagata K, Watanabe T, Hamasima N. Molecular cloning and characterization of porcine Mx2 gene. Mol Immunol 2009; 46:858-65. [DOI: 10.1016/j.molimm.2008.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 07/30/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
|
54
|
Asaka MN, Murano K, Nagata K. Sp1-mediated transcription regulation of TAF-Ialpha gene encoding a histone chaperone. Biochem Biophys Res Commun 2008; 376:665-70. [PMID: 18809386 DOI: 10.1016/j.bbrc.2008.09.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/24/2022]
Abstract
TAF-I, one of histone chaperones, consists of two subtypes, TAF-Ialpha and TAF-Ibeta. The histone chaperone activity of TAF-I is regulated by dimer patterns of these subtypes. TAF-Ibeta is expressed ubiquitously, while the expression level of TAF-Ialpha with less activity than TAF-Ibeta differs among cell types. It is, therefore, assumed that the expression level of TAF-Ialpha in a cell is important for the TAF-I activity level. Here, we found that TAF-Ialpha and TAF-Ibeta genes are under the control of distinct promoters. Reporter assays and gel shift assays demonstrated that Sp1 binds to three regions in the TAF-Ialpha promoter and two or all mutaions of the three Sp1 binding regions reduced the TAF-Ialpha promoter activity. ChIP assays demonstrated that Sp1 binds to the TAF-Ialpha promoter in vivo. Furthermore, the expression level of TAF-Ialpha mRNA was reduced by knockdown of Sp1 using siRNA method. These studies indicated that the TAF-Ialpha promoter is under the control of Sp1.
Collapse
Affiliation(s)
- Masamitsu N Asaka
- Department of Infection Biology, Graduate School of Comprehensive Human Science and Institute of Basic Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | |
Collapse
|
55
|
Saito S, Nouno K, Shimizu R, Yamamoto M, Nagata K. Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol 2007; 214:322-33. [PMID: 17620317 DOI: 10.1002/jcp.21199] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SET-CAN associated with the t(9;9) in acute undifferentiated leukemia encodes almost the entire sequence of SET and the C-terminal two-third portion of CAN, including the FG repeat region. To clarify a role(s) of SET-CAN in leukemogenesis, we developed transgenic mice expressing SET-CAN under the control of the Gata1 gene hematopoietic regulatory domain that is active in distinct sets of hematopoietic cells. SET-CAN transgenic mice showed anemia, thrombocytopenia, and splenomegaly. A significant number of transgenic mice started dying after 6 months post-birth, being in good agreement with the fact that red blood cells and platelets decreased. We found that a significant number of c-kit+ myeloid cells appeared in peripheral blood in transgenic mice. Characterization of the bone marrow cells of transgenic mice indicated impairment in hematopoietic differentiation of erythroid, megakaryocytic, and B cell lineages by SET-CAN. Transgenic mice, in particular, exhibited a high population of the c-kit+Sca-1+Lin- fraction in bone marrow cells compared with that of the control littermates. Our results demonstrate that SET-CAN blocks the hematopoietic differentiation program--one of the characteristics of acute myeloid leukemia.
Collapse
Affiliation(s)
- Shoko Saito
- Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
56
|
Qu D, Zhang Y, Ma J, Guo K, Li R, Yin Y, Cao X, Park DS. The nuclear localization of SET mediated by impalpha3/impbeta attenuates its cytosolic toxicity in neurons. J Neurochem 2007; 103:408-22. [PMID: 17608644 DOI: 10.1111/j.1471-4159.2007.04747.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SET is a multi-functional protein in proliferating cells. Some of the proposed functions of SET suggest an important nuclear role. However, the nuclear import pathway of SET is also unknown and the function of SET in neurons is unclear. Presently, using cortical neurons, we report that the nuclear import of SET is mediated by an impalpha/impbeta-dependent pathway. Nuclear localization signal, (168)KRSSQTQNKASRKR(181), in SET interacts with impalpha3, which recruits impbeta to form a ternary complex, resulting in efficient transportation of SET into nucleus. By in vitro nuclear import assay based on digitonin-permeabilized neurons, we further demonstrated that the nuclear import of SET relies on Ran GTPase. We provide evidence that this nuclear localization of SET is important in neuronal survival. Under basal conditions, SET is predominately nuclear. However, upon death induced by genotoxic stress, endogenous SET decreases in the nucleus and increases in the cytoplasm. Consistent with a toxic role of SET in the cytoplasm, targeted expression of SET to the cytoplasm exacerbates death compared to wild type SET expression which is protective following DNA damage. Taken together, our results indicate that SET is imported into the nucleus through its association with impalpha3/impbeta, and that localization of SET is important in regulation of neuronal death.
Collapse
Affiliation(s)
- Dianbo Qu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Vera J, Estanyol JM, Canela N, Llorens F, Agell N, Itarte E, Bachs O, Jaumot M. Proteomic analysis of SET-binding proteins. Proteomics 2007; 7:578-587. [PMID: 17309103 DOI: 10.1002/pmic.200600458] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protein SET is involved in essential cell processes such as chromatin remodeling, apoptosis and cell cycle progression. It also plays a critical role in cell transformation and tumorogenesis. With the aim to study new SET functions we have developed a system to identify SET-binding proteins by combining affinity chromatography, MS, and functional studies. We prepared SET affinity chromatography columns by coupling the protein to activated Sepharose 4B. The proteins from mouse liver lysates that bind to the SET affinity columns were resolved with 2-DE and identified by MS using a MALDI-TOF. This experimental approach allowed the recognition of a number of SET-binding proteins which have been classified in functional clusters. The identification of four of these proteins (CK2, eIF2alpha, glycogen phosphorylase (GP), and TCP1-beta) was confirmed by Western blotting and their in vivo interactions with SET were demonstrated by immunoprecipitation. Functional experiments revealed that SET is a substrate of CK2 in vitro and that SET interacts with the active form of GP but not with its inactive form. These data confirm this proteomic approach as a useful tool for identifying new protein-protein interactions.
Collapse
Affiliation(s)
- Jorge Vera
- Departament de Biologia Cel·lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Josep M Estanyol
- Unitat de Proteòmica, Serveis Científico-tècnics, Universitat de Barcelona, Spain
| | - Nuria Canela
- Unitat de Proteòmica, Serveis Científico-tècnics, Universitat de Barcelona, Spain
| | - Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Agell
- Departament de Biologia Cel·lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Emilio Itarte
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Oriol Bachs
- Departament de Biologia Cel·lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Jaumot
- Departament de Biologia Cel·lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
58
|
Kato K, Miyaji-Yamaguchi M, Okuwaki M, Nagata K. Histone acetylation-independent transcription stimulation by a histone chaperone. Nucleic Acids Res 2006; 35:705-15. [PMID: 17179179 PMCID: PMC1807960 DOI: 10.1093/nar/gkl1077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histone chaperones are thought to be important for maintaining the physiological activity of histones; however, their exact roles are not fully understood. The physiological function of template activating factor (TAF)-I, one of the histone chaperones, also remains unclear; however, its biochemical properties have been well studied. By performing microarray analyses, we found that TAF-I stimulates the transcription of a sub-set of genes. The transcription of endogenous genes that was up-regulated by TAF-I was found to be additively stimulated by histone acetylation. On performing an experiment with a cell line containing a model gene integrated into the chromosome, TAF-I was found to stimulate the model gene transcription in a histone chaperone activity-dependent manner additively with histone acetylation. TAF-I bound to the core histones and remodeled the chromatin structure independent of the N-terminal histone tail and its acetylation level in vitro. These results suggest that TAF-I remodel the chromatin structure through its interaction with the core domain of the histones, including the histone fold, and this mechanism is independent of the histone acetylation status.
Collapse
Affiliation(s)
| | | | | | - Kyosuke Nagata
- To whom correspondence should be addressed. Tel: +81 29 853 3233; Fax: +81 29 853 3233;
| |
Collapse
|
59
|
Naito T, Momose F, Kawaguchi A, Nagata K. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 2006; 81:1339-49. [PMID: 17121807 PMCID: PMC1797515 DOI: 10.1128/jvi.01917-06] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription and replication of the influenza virus RNA genome occur in the nuclei of infected cells through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. We previously identified a host factor designated RAF-1 (RNA polymerase activating factor 1) that stimulates viral RNA synthesis. RAF-1 is found to be identical to Hsp90. Here, we examined the intracellular localization of Hsp90 and viral RNA polymerase subunits and their molecular interaction. Hsp90 was found to interact with PB2 and PB1, and it was relocalized to the nucleus upon viral infection. We found that the nuclear transport of Hsp90 occurs in cells expressing PB2 alone. The nuclear transport of Hsp90 was in parallel with that of the viral RNA polymerase binary complexes, either PB1 and PB2 or PB1 and PA, as well as with that of PB2 alone. Hsp90 also interacted with the binary RNA polymerase complex PB1-PB2, and it was dissociated from the PB1-PB2 complex upon its association with PA. Furthermore, Hsp90 could form a stable PB1-PB2-Hsp90 complex prior to the formation of a ternary polymerase complex by the assembly of PA in the infected cells. These results suggest that Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits, possibly as a molecular chaperone for the polymerase subunits prior to the formation of a mature ternary polymerase complex.
Collapse
Affiliation(s)
- Tadasuke Naito
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | |
Collapse
|
60
|
Wagner S, Weber S, Kleinschmidt MA, Nagata K, Bauer UM. SET-mediated promoter hypoacetylation is a prerequisite for coactivation of the estrogen-responsive pS2 gene by PRMT1. J Biol Chem 2006; 281:27242-50. [PMID: 16861234 DOI: 10.1074/jbc.m605172200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of transcription requires an ordered recruitment of coregulators and specific combinations of histone modifications at the promoter. Occurrence of histone H4 arginine (Arg) 3 methylation by protein arginine methyltransferase 1 (PRMT1) represents an early promoter event in ER (estrogen receptor)-regulated gene activation. However, its in vivo significance in ER signaling and the prerequisites for PRMT1 recruitment to promoters have not been established yet. We show here that endogenous PRMT1 is a crucial and non-redundant coactivator of ER-mediated pS2 gene induction in MCF7 cells. By investigating promoter requirements for PRMT1 recruitment we find that the patient SE translocation (SET) protein, which was reported to protect histone tails from acetylation, associates with the uninduced pS2 gene promoter and dissociates early upon estrogen treatment. Knockdown of SET or trichostatin A (TSA) treatment causes premature acetylation of H4 and abrogation of H4 Arg3 methylation at the pS2 gene promoter resulting in diminished transcriptional induction. Thus, SET prevents promoter acetylation and is a prerequisite for the initial acetylation-sensitive steps of pS2 gene activation, namely PRMT1 function. Similar to pS2 we identify lactoferrin as a PRMT1-dependent and TSA-sensitive ER target gene. In contrast, we find that the C3 gene, another ER target, is activated in a PRMT1-independent manner and that SET is involved in C3 gene repression. These findings establish the existence of PRMT1-dependent and -independent ER target genes and show that proteins guarding promoter hypoacetylation, like SET, execute a key function in the coactivation process by PRMT1.
Collapse
Affiliation(s)
- Sabine Wagner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Emil-Mannkopff-Strasse 2, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
61
|
Chohan MO, Khatoon S, Iqbal IG, Iqbal K. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 2006; 580:3973-9. [PMID: 16806196 DOI: 10.1016/j.febslet.2006.06.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/22/2022]
Abstract
The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration.
Collapse
Affiliation(s)
- Muhammad Omar Chohan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | | | | | | |
Collapse
|
62
|
Haruki H, Okuwaki M, Miyagishi M, Taira K, Nagata K. Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. J Virol 2006; 80:794-801. [PMID: 16378981 PMCID: PMC1346848 DOI: 10.1128/jvi.80.2.794-801.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/21/2005] [Indexed: 02/04/2023] Open
Abstract
The adenovirus genome complexed with viral core protein VII (adenovirus DNA-protein VII complex) at least is the bona fide template for transcription of adenovirus early genes. It is believed that the highly basic protein VII, like cellular histones, is a negative regulator for genome functions. Analyses with in vitro replication and transcription systems using the adenovirus DNA-protein VII complex have revealed that remodeling of the complex is crucial for efficient DNA replication and transcription. We identified host acidic proteins, template-activating factor I (TAF-I), TAF-II, and TAF-III as stimulatory factors for replication from the adenovirus DNA-protein VII complex. Recently, it was reported that the adenovirus DNA interacts with TAF-I and pp32, another host acidic protein (Y. Xue, J. S. Johnson, D. A. Ornelles, J. Lieberman, and D. A. Engel, J. Virol. 79:2474-2483, 2005). We found that TAF-I interacts and colocalizes with protein VII in adenovirus-infected cells during the early phases of infection, but pp32 does not. Although pp32 had the potential ability to interact with protein VII, pp32 did not remodel the adenovirus DNA-protein VII complex in vitro. Small interfering RNA-mediated knockdown of TAF-I expression leads to the delay of the transcription timing of early genes. These results provide evidence that TAF-I plays an important role in the early stages of the adenovirus infection cycle.
Collapse
Affiliation(s)
- Hirohito Haruki
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | |
Collapse
|
63
|
Iki S, Yokota SI, Okabayashi T, Yokosawa N, Nagata K, Fujii N. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus. Virology 2005; 343:106-15. [PMID: 16154611 DOI: 10.1016/j.virol.2005.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/23/2005] [Accepted: 08/09/2005] [Indexed: 11/20/2022]
Abstract
The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection.
Collapse
Affiliation(s)
- Shigeo Iki
- Department of Microbiology, Sapporo Medical University School of Medicine, and Hokkaido Institute of Public Health, Kita-ku, Sapporo 060-0819, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Karetsou Z, Martic G, Sflomos G, Papamarcaki T. The histone chaperone SET/TAF-Iβ interacts functionally with the CREB-binding protein. Biochem Biophys Res Commun 2005; 335:322-7. [PMID: 16061203 DOI: 10.1016/j.bbrc.2005.06.210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 06/24/2005] [Indexed: 12/22/2022]
Abstract
The oncoprotein SET/TAF-Ibeta is a histone chaperone which is involved in cell-cycle control and chromatin remodeling. Confocal laser scanning microscopy reveals that SET is localized in distinct foci of variable size throughout the nucleoplasm of interphase cells. We report here that SET interacts directly with the acetyltransferase CREB-binding protein (CBP) and enhances the transactivation potential of the transcription coactivator. Our data suggest that the histone chaperone SET regulates the CBP-mediated transcription and may indicate a general principle by which transcriptional regulators cooperate with histone chaperones for gene activation.
Collapse
Affiliation(s)
- Zoe Karetsou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 451 10 Ioannina, Greece
| | | | | | | |
Collapse
|
65
|
Anazawa Y, Nakagawa H, Furihara M, Ashida S, Tamura K, Yoshioka H, Shuin T, Fujioka T, Katagiri T, Nakamura Y. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET. Cancer Res 2005; 65:4578-86. [PMID: 15930275 DOI: 10.1158/0008-5472.can-04-4564] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.
Collapse
Affiliation(s)
- Yoshio Anazawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Tanimukai H, Grundke-Iqbal I, Iqbal K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1761-71. [PMID: 15920161 PMCID: PMC1602412 DOI: 10.1016/s0002-9440(10)62486-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 11/23/2022]
Abstract
The activity of protein phosphatase-2A (PP2A) is compromised and is believed to be a cause of the abnormal hyperphosphorylation of tau in Alzheimer's disease (AD) brain. We investigated in AD the role of the two known endogenous PP2A inhibitors, called I1(PP2A) and I2(PP2A), which regulate the intracellular activity of PP2A in mammalian tissues. We found a significant increase in the neocortical levels of I1(PP2A) and I2(PP2A) in AD as compared to control cases by in situ hybridization. The immunohistochemical studies revealed that I2(PP2A) was translocated from neuronal nuclei to cytoplasm in AD. The 39-kd full-length I2(PP2A) was selectively cleaved into an approximately 20-kd fragment in AD brain cytosol. Digestion of the recombinant human I2(PP2A) with AD brain extract showed an increase in the generation of the approximately 20 kd and other fragments of the inhibitor as compared to control brain extract. Double-immunohistochemical studies revealed co-localization of PP2A with PP2A inhibitors in neuronal cytoplasm and co-localization of the inhibitors with abnormally hyperphosphorylated tau. These studies suggest the possible involvement of I1(PP2A) and I2(PP2A) in the abnormal hyperphosphorylation of tau in AD.
Collapse
Affiliation(s)
- Hitoshi Tanimukai
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314-6399, USA
| | | | | |
Collapse
|
67
|
Shimoyama T, Kato K, Miyaji-Yamaguchi M, Nagata K. Synergistic action of MLL, a TRX protein with template activating factor-I, a histone chaperone. FEBS Lett 2005; 579:757-62. [PMID: 15670842 DOI: 10.1016/j.febslet.2004.12.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 12/13/2004] [Accepted: 12/21/2004] [Indexed: 11/18/2022]
Abstract
MLL is involved in the process of gene activity maintenance. It is shown that the amino-terminal region of MLL (MLLN) interacts with TAF-Ibeta/SET. In this study, using yeast two-hybrid assays, we have found that the acidic region of TAF-Ibeta is essential for its binding to MLLN. Pull-down assays using GST-MLLN demonstrated that TAF-Ibeta and histones interact with GST-MLLN. MLLN and TAF-Ibeta synergistically upregulated the transcription level of Hoxa9 and co-immunoprecipitated in chromatin containing the Hoxa9 promoter region. These results suggest that TAF-Ibeta plays an important role in MLL-mediated transcription and possibly chromatin maintenance.
Collapse
Affiliation(s)
- Tae Shimoyama
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba 305-8505, Japan
| | | | | | | |
Collapse
|
68
|
Tsujio I, Zaidi T, Xu J, Kotula L, Grundke-Iqbal I, Iqbal K. Inhibitors of protein phosphatase-2A from human brain structures, immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Lett 2005; 579:363-72. [PMID: 15642345 DOI: 10.1016/j.febslet.2004.11.097] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 11/10/2004] [Accepted: 11/30/2004] [Indexed: 10/26/2022]
Abstract
Protein phosphatase (PP)-2A, which regulates the phosphorylation of tau, is regulated by two endogenous inhibitor proteins, I(1)(PP2A) and I(2)(PP2A), in mammalian tissues. Here, we report the cloning of I(1)(PP2A) and I(2)(PP2A) from human brain, and show that in PC12 cells and in I(1)(PP2A)-GFP or I(2)(PP2A)-GFP transfected NIH3T3 and human neural progenitor cells, I(1)(PP2A) is localized mostly in the cell cytoplasm and I(2)(PP2A) mostly in the nucleus. The recombinant I(1)(PP-2A) and I(2)(PP-2A) inhibit PP-2A activity towards hyperphosphorylated tau in vitro; the dephosphorylation of the hyperphosphorylated tau at specific sites is selectively inhibited. Overexpression of I(1)(PP2A) as well as I(2)(PP2A) results in tau hyperphosphorylation and degeneration of PC 12 cells.
Collapse
Affiliation(s)
- Ichiro Tsujio
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | | | | | | | | | | |
Collapse
|
69
|
Tanimukai H, Grundke-Iqbal I, Iqbal K. Inhibitors of protein phosphatase-2A: topography and subcellular localization. ACTA ACUST UNITED AC 2004; 126:146-56. [PMID: 15249138 DOI: 10.1016/j.molbrainres.2004.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/27/2022]
Abstract
The mRNA and protein expressions of I1(PP2A) and I2(PP2A), the two inhibitors of protein phosphatase 2A (PP2A) were investigated in adult rat brain. The rat brain and human brain inhibitors showed similar molecular weights by Western blots. The cDNA probes for human brain I1(PP2A) and I2(PP2A) readily hybridized with the corresponding mRNAs of rat brain inhibitors in Northern blots. We detected 3.7 and 2.1 kb transcripts of I1(PP2A) and 2.9 and 2.0 kb transcripts of I2(PP2A) in rat brain. In situ hybridization revealed that the mRNAs of the two inhibitors were mainly localized in neurons. Strong expression of both I1(PP2A) and I2(PP2A) mRNAs were observed in the olfactory bulb, hippocampal pyramidal and dentate granule cell layers, and cerebellar Purkinje cell, granular and molecular layers. Moderate expression of I1(PP2A) and I2(PP2A) mRNAs were observed in the cerebral cortex, caudate putamen, thalamus, hypothalamus, amygdala and pontine nucleus. The expression of I1(PP2A) and I2(PP2A) and as well as of PP-2A was also investigated by immunohistochemistry using antibodies to each protein. The distribution patterns of the two inhibitor proteins were similar to those of their corresponding mRNAs and to the expression of PP-2A. While PP-2A was localized to neuronal perikarya, I1(PP2A) was observed both in the neuronal cytoplasm and the nucleus. I2(PP2A) had mainly nuclear localization but it could also be seen in the neuronal cytoplasm. All three proteins were also expressed in the neuropil. These studies suggest that PP-2A activity is probably regulated by I1(PP2A) and I2(PP2A) in the adult mammalian central nervous system, and that these inhibitors are conserved between rat and human brains.
Collapse
Affiliation(s)
- Hitoshi Tanimukai
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | | | | |
Collapse
|
70
|
Saito S, Miyaji-Yamaguchi M, Nagata K. Aberrant intracellular localization of SET-CAN fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 2004; 111:501-7. [PMID: 15239126 DOI: 10.1002/ijc.20296] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The SET-CAN fusion gene is the product of a chromosomal rearrangement found on 9q34 associated with an acute undifferentiated leukemia. SET-CAN encodes an almost complete SET protein fused to the C-terminal two-thirds of CAN. SET is also known as TAF-Ibeta, a histone chaperone and intracellular inhibitor of protein phosphatase 2A, whereas CAN is identical to Nup214, a nucleoporin protein. To obtain insight into the leukemogenic function of SET/TAF-Ibeta-CAN/Nup214, we have examined its subcellular localization. Immunofluorescence analyses showed that SET/TAF-Ibeta and CAN/Nup214 are found in the nucleus and the nuclear envelope, respectively, whereas the majority of SET/TAF-Ibeta-CAN/Nup214 is localized in the nucleus. SET/TAF-Ibeta-CAN/Nup214 interacted with hCRM1, one of the nuclear export factors, and caused aberrant intracellular localization of hCRM1. In cells expressing SET/TAF-Ibeta-CAN/Nup214, a protein containing a nuclear export signal accumulated in the nucleus. The export of this protein was partially restored by overexpression of hCRM1. These results suggest that aberrantly localized molecules associated with SET/TAF-Ibeta-CAN/Nup214 may be involved in oncogenesis.
Collapse
Affiliation(s)
- Shoko Saito
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | |
Collapse
|
71
|
Kandilci A, Mientjes E, Grosveld G. Effects of SET and SET-CAN on the differentiation of the human promonocytic cell line U937. Leukemia 2004; 18:337-40. [PMID: 14671643 DOI: 10.1038/sj.leu.2403227] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 08/25/2003] [Indexed: 11/08/2022]
Abstract
Human SET encodes a nuclear phosphoprotein with a highly acidic carboxyl-terminus, forming a SET-CAN fusion gene in a patient with acute undifferentiated leukemia. SET is highly conserved between species and is ubiquitously expressed, suggesting a widespread biological role. Even though SET is involved in chromatin remodeling and transcriptional activation, its precise role in hematopoietic cells and the contribution of SET-CAN to leukemogenesis remains unknown. We determined the effect of tetracycline-regulatable expression of SET, a deletion mutant of SET, and SET-CAN on the human promonocytic cell line U937T. The expression of SET and SET-CAN inhibited proliferation of these cells. SET accomplishes this through the induction of the differentiation program, an effect that depends on the presence of its acidic domain. SET-CAN most likely inhibits growth by interfering with hCRM1, but it also partially blocks differentiation. Our results are the first demonstration of a potential role of SET in hematopoietic differentiation.
Collapse
Affiliation(s)
- A Kandilci
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
72
|
Turan K, Mibayashi M, Sugiyama K, Saito S, Numajiri A, Nagata K. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res 2004; 32:643-52. [PMID: 14752052 PMCID: PMC373319 DOI: 10.1093/nar/gkh192] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mx proteins belong to the dynamin superfamily of high molecular weight GTPases and interfere with multiplication of a wide variety of viruses. Earlier studies show that nuclear mouse Mx1 and human MxA designed to be localized in the nucleus inhibit the transcription step of the influenza virus genome. Here we set a transient influenza virus transcription system using luciferase as a reporter gene and cells expressing the three RNA polymerase subunits, PB1, PB2 and PA, and NP. We used this reporter assay system and nuclear-localized MxA proteins to get clues for elucidating the anti-influenza virus activity of MxA. Nuclear-localized VP16-MxA and MxA-TAg NLS strongly interfered with the influenza virus transcription. Over-expression of PB2 led to a slight resumption of the transcription inhibition by nuclear MxA, whereas over-expression of PB1 and PA did not affect the MxA activity. Of interest is that the inhibitory activity of the nuclear MxA was markedly neutralized by over-expression of NP. An NP devoid of its C-terminal region, but containing the N-terminal RNA binding domain, also neutralized the VP16-MxA activity in a dose-dependent manner, whereas an NP lacking the N-terminal region did not affect the VP16-MxA activity. Further, not only VP16-MxA but also the wild-type MxA was found to interact with NP in influenza virus-infected cells. This indicates that the nuclear MxA suppresses the influenza virus transcription by interacting with not only PB2 but also NP.
Collapse
Affiliation(s)
- Kadir Turan
- University of Marmara, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Haydarpasa, Kadikoy, Istanbul 34668, Turkey
| | | | | | | | | | | |
Collapse
|
73
|
Haruki H, Gyurcsik B, Okuwaki M, Nagata K. Ternary complex formation between DNA-adenovirus core protein VII and TAF-Ibeta/SET, an acidic molecular chaperone. FEBS Lett 2004; 555:521-7. [PMID: 14675767 DOI: 10.1016/s0014-5793(03)01336-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The adenovirus (Ad) genome complexed with viral core proteins designated Ad core is the template for transcription of early genes and the first round of replication in Ad-infected cells. A cellular protein designated template-activating factor-I (TAF-I) is found to be involved in remodeling of the Ad core in vitro. Here we found that TAF-I interacts with the Ad DNA through core protein VII in infected cells in early phases of infection. In vitro binding assays using recombinant proteins showed that TAF-I forms ternary complexes with DNA-protein VII complexes.
Collapse
Affiliation(s)
- Hirohito Haruki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | |
Collapse
|
74
|
Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, Nagai R. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 2003; 23:8528-41. [PMID: 14612398 PMCID: PMC262669 DOI: 10.1128/mcb.23.23.8528-8541.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here we show a novel pathway of transcriptional regulation of a DNA-binding transcription factor by coupled interaction and modification (e.g., acetylation) through the DNA-binding domain (DBD). The oncogenic regulator SET was isolated by affinity purification of factors interacting with the DBD of the cardiovascular transcription factor KLF5. SET negatively regulated KLF5 DNA binding, transactivation, and cell-proliferative activities. Down-regulation of the negative regulator SET was seen in response to KLF5-mediated gene activation. The coactivator/acetylase p300, on the other hand, interacted with and acetylated KLF5 DBD, and activated its transcription. Interestingly, SET inhibited KLF5 acetylation, and a nonacetylated mutant of KLF5 showed reduced transcriptional activation and cell growth complementary to the actions of SET. These findings suggest a new pathway for regulation of a DNA-binding transcription factor on the DBD through interaction and coupled acetylation by two opposing regulatory factors of a coactivator/acetylase and a negative cofactor harboring activity to inhibit acetylation.
Collapse
Affiliation(s)
- Saku Miyamoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ohkuni K, Okuda A, Kikuchi A. Yeast Nap1-Binding Protein Nbp2p Is Required for Mitotic Growth at High Temperatures and for Cell Wall Integrity. Genetics 2003; 165:517-29. [PMID: 14573466 PMCID: PMC1462787 DOI: 10.1093/genetics/165.2.517] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractNbp2p is a Nap1-binding protein in Saccharomyces cerevisiae identified by its interaction with Nap1 by a two-hybrid system. NBP2 encodes a novel protein consisting of 236 amino acids with a Src homology 3 (SH3) domain. We showed that NBP2 functions to promote mitotic cell growth at high temperatures and cell wall integrity. Loss of Nbp2 results in cell death at high temperatures and in sensitivity to calcofluor white. Cell death at high temperature is thought not to be due to a weakened cell wall. Additionally, we have isolated several type-2C serine threonine protein phosphatases (PTCs) as multicopy suppressors and MAP kinase-kinase (MAPKK), related to the yeast PKC MAPK pathway, as deletion suppressors of the nbp2Δ mutant. Screening for deletion suppressors is a new genetic approach to identify and characterize additional proteins in the Nbp2-dependent pathway. Genetic analyses suggested that Ptc1, which interacts with Nbp2 by the two-hybrid system, acts downstream of Nbp2 and that cells lacking the function of Nbp2 prefer to lose Mkk1, but the PKC MAPK pathway itself is indispensable when Nbp2 is deleted at high temperature.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
76
|
van Leeuwen H, Okuwaki M, Hong R, Chakravarti D, Nagata K, O'Hare P. Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT. J Gen Virol 2003; 84:2501-2510. [PMID: 12917472 DOI: 10.1099/vir.0.19326-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Affinity chromatography was used to identify cellular proteins that interact with the herpes simplex virus (HSV) tegument protein VP22. Among a small set of proteins that bind specifically to VP22, we identified TAF-I (template-activating factor I), a chromatin remodelling protein and close homologue of the histone chaperone protein NAP-1. TAF-I has been shown previously to promote more ordered transfer of histones to naked DNA through a direct interaction with histones. TAF-I, as a subunit of the INHAT (inhibitor of acetyltransferases) protein complex, also binds to histones and masks them from being substrates for the acetyltransferases p300 and PCAF. Using in vitro assays for TAF-I activity in chromatin assembly, we show that VP22 inhibits nucleosome deposition on DNA by binding to TAF-I. We also observed that VP22 binds non-specifically to DNA, an activity that is abolished by TAF-I. However, the presence of VP22 does not affect the property of INHAT in inhibiting the histone acetyltransferase activity of p300 or PCAF in vitro. We speculate that this interaction could be relevant to HSV DNA organization early in infection, for example, by interfering with nucleosomal deposition on the genome. Consistent with this possibility was the observation that overexpression of TAF-I in transfected cells interferes with the progression of HSV-1 infection.
Collapse
Affiliation(s)
- Hans van Leeuwen
- Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - Mitsuru Okuwaki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Rui Hong
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Debabrata Chakravarti
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kyosuke Nagata
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Peter O'Hare
- Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| |
Collapse
|
77
|
Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 2003; 112:659-72. [PMID: 12628186 DOI: 10.1016/s0092-8674(03)00150-8] [Citation(s) in RCA: 422] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Granzyme A (GzmA) induces a caspase-independent cell death pathway characterized by single-stranded DNA nicks and other features of apoptosis. A GzmA-activated DNase (GAAD) is in an ER associated complex containing pp32 and the GzmA substrates SET, HMG-2, and Ape1. We show that GAAD is NM23-H1, a nucleoside diphosphate kinase implicated in suppression of tumor metastasis, and its specific inhibitor (IGAAD) is SET. NM23-H1 binds to SET and is released from inhibition by GzmA cleavage of SET. After GzmA loading or CTL attack, SET and NM23-H1 translocate to the nucleus and SET is degraded, allowing NM23-H1 to nick chromosomal DNA. GzmA-treated cells with silenced NM23-H1 expression are resistant to GzmA-mediated DNA damage and cytolysis, while cells overexpressing NM23-H1 are more sensitive.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
78
|
Abstract
Protocadherins are members of the cadherin superfamily of cell adhesion molecules proposed to play important roles in early development, but whose mechanisms of action are largely unknown. We examined the function of NF-protocadherin (NFPC), a novel cell adhesion molecule essential for the histogenesis of the embryonic ectoderm in Xenopus, and demonstrate that the cellular protein TAF1, previously identified as a histone-associated protein, binds the NFPC cytoplasmic domain. NFPC and TAF1 coprecipitate from embryo extracts when ectopically expressed, and TAF1 can rescue the ectodermal disruptions caused by a dominant-negative NFPC construct lacking the extracellular domain. Furthermore, disruptions in either NFPC or TAF1 expression, using NFPC- or TAF1-specific antisense morpholinos, result in essentially identical ectodermal defects. These results indicate a role for TAF1 in the differentiation of the embryonic ectoderm, as a cytosolic cofactor of NFPC.
Collapse
Affiliation(s)
- Mike A Heggem
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
79
|
Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 2003; 4:145-53. [PMID: 12524539 DOI: 10.1038/ni885] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 11/01/2002] [Indexed: 12/20/2022]
Abstract
The cytolytic T lymphocyte protease granzyme A (GzmA) initiates a caspase-independent cell death pathway. Here we report that the rate-limiting enzyme of DNA base excision repair, apurinic endonuclease-1 (Ape1), which is also known as redox factor-1 (Ref-1), binds to GzmA and is contained in the SET complex, a macromolecular complex of 270-420 kDa that is associated with the endoplasmic reticulum and is targeted by GzmA during cell-mediated death. GzmA cleaves Ape1 after Lys31 and destroys its known oxidative repair functions. In so doing, GzmA may block cellular repair and force apoptosis. In support of this, cells with silenced Ape1 expression are more sensitive, whereas cells overexpressing noncleavable Ape1 are more resistant, to GzmA-mediated death.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Pandey AV, Mellon SH, Miller WL. Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J Biol Chem 2003; 278:2837-44. [PMID: 12444089 DOI: 10.1074/jbc.m209527200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450c17 catalyzes 17 alpha-hydroxylation needed for cortisol synthesis and 17,20 lyase activity needed to produce sex steroids. Serine phosphorylation of P450c17 specifically increases 17,20 lyase activity, but the physiological factors regulating this effect remain unknown. Treating human adrenal NCI-H295A cells with the phosphatase inhibitors okadaic acid, fostriecin, and cantharidin increased 17,20 lyase activity, suggesting involvement of protein phosphatase 2A (PP2A) or 4 (PP4). PP2A but not PP4 inhibited 17,20 lyase activity in microsomes from cultured cells, but neither affected 17 alpha-hydroxylation. Inhibition of 17,20 lyase activity by PP2A was concentration-dependent, could be inhibited by okadaic acid, and was restored by endogenous protein kinases. PP2A but not PP4 coimmunoprecipitated with P450c17, and suppression of PP2A by small interfering RNA increased 17,20 lyase activity. Phosphoprotein SET found in adrenals inhibited PP2A, but not PP4, and fostered 17,20 lyase activity. The identification of PP2A and SET as post-translational regulators of androgen biosynthesis suggests potential additional mechanisms contributing to adrenarche and hyperandrogenic disorders such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics, University of California, San Francisco, California 94143-0978, USA
| | | | | |
Collapse
|
81
|
Mibayashi M, Nakad K, Nagata K. Promoted cell death of cells expressing human MxA by influenza virus infection. Microbiol Immunol 2002; 46:29-36. [PMID: 11911186 DOI: 10.1111/j.1348-0421.2002.tb02673.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interferon-inducible MxA protein plays a crucial role in cellular protection from RNA virus infection, although the protection mechanism is not completely clarified. Here, we examined effects of MxA on either uninfected or influenza virus A/PR/8/34-infected cells. Viral protein synthesis was reduced in cells expressing MxA. Under serum-starved conditions, not only viral but also cellular protein synthesis was reduced by expression of MxA. Of interest is that MxA promoted cell death induced by apoptotic stimuli as well as influenza virus infection. These results lead to a possibility that MxA suppresses multiplication of influenza virus by affecting cellular functions including the apoptotic pathway.
Collapse
Affiliation(s)
- Masaki Mibayashi
- Department of Infection Biology, Institute of Basic Medical Science, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
82
|
Cervoni N, Detich N, Seo SB, Chakravarti D, Szyf M. The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 2002; 277:25026-31. [PMID: 11978794 DOI: 10.1074/jbc.m202256200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone hypoacetylation and DNA hypermethylation are hallmarks of gene silencing. Although a role for DNA methylation in regulating histone acetylation has been established, it is not clear how and whether epigenetic histone markings influence DNA modifications in transcriptional silencing. We have previously shown that induction of histone acetylation by trichostatin A promotes demethylation of ectopically methylated DNA (Cervoni, N., and Szyf, M. (2001) J. Biol. Chem. 276, 40778-40787). The oncoprotein Set/TAF-Ibeta is a subunit of the recently identified inhibitor of acetyltransferases complex that inhibits histone acetylation by binding to and masking histone acetyltransferase targets (Seo, S. B., McNamara, P., Heo, S., Turner, A., Lane, W. S., and Chakravarti, D. (2001) Cell 104, 119-130). We show here that the overexpression of Set/TAF-Ibeta, whose expression is up-regulated in multiple tumor tissues, inhibits demethylation of ectopically methylated DNA resulting in gene silencing. Overexpression of a mutant Set/TAF-Ibeta that does not inhibit histone acetylation is defective in inhibiting DNA demethylation. Taken together, these results are consistent with a novel regulatory role for Set/TAF-Ibeta, integrating epigenetic states of histones and DNA in gene regulation and provide a new mechanism that can explain how hypermethylation of specific regions might come about by inhibition of demethylation in cancer cells.
Collapse
Affiliation(s)
- Nadia Cervoni
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
83
|
Okuwaki M, Tsujimoto M, Nagata K. The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 2002; 13:2016-30. [PMID: 12058066 PMCID: PMC117621 DOI: 10.1091/mbc.02-03-0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleophosmin/B23 is a nucleolar phosphoprotein. It has been shown that B23 binds to nucleic acids, digests RNA, and is localized in nucleolar granular components from which preribosomal particles are transported to cytoplasm. The intracellular localization of B23 is significantly changed during the cell cycle. Here, we have examined the cellular localization of B23 proteins and the effect of mitotic phosphorylation of B23.1 on its RNA binding activity. Two splicing variants of B23 proteins, termed B23.1 and B23.2, were complexed both in vivo and in vitro. The RNA binding activity of B23.1 was impaired by hetero-oligomer formation with B23.2. Both subtypes of B23 proteins were phosphorylated during mitosis by cyclin B/cdc2. The RNA binding activity of B23.1 was repressed through cyclin B/cdc2-mediated phosphorylation at specific sites in B23. Thus, the RNA binding activity of B23.1 is stringently modulated by its phosphorylation and subtype association. Interphase B23.1 was mainly localized in nucleoli, whereas B23.2 and mitotic B23.1, those of which were incapable of binding to RNA, were dispersed throughout the nucleoplasm and cytoplasm, respectively. These results suggest that nucleolar localization of B23.1 is mediated by its ability to associate with RNA.
Collapse
Affiliation(s)
- Mitsuru Okuwaki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | | | | |
Collapse
|
84
|
Fan Z, Beresford PJ, Zhang D, Lieberman J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol Cell Biol 2002; 22:2810-20. [PMID: 11909973 PMCID: PMC133744 DOI: 10.1128/mcb.22.8.2810-2820.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic T-lymphocyte protease granzyme A induces caspase-independent cell death in which DNA single-stranded nicking is observed instead of oligonucleosomal fragmentation. A 270- to 420-kDa endoplasmic reticulum-associated complex (SET complex) containing the nucleosome assembly protein SET, the tumor suppressor pp32, and the base excision repair enzyme APE can induce single-stranded DNA damage in isolated nuclei in a granzyme A-dependent manner. The normal functions of the SET complex are unknown, but the functions of its components suggest that it is involved in activating transcription and DNA repair. We now find that the SET complex contains DNA binding and bending activities mediated by the chromatin-associated protein HMG2. HMG2 facilitates assembly of nucleoprotein higher-order structures by bending and looping DNA or by stabilizing underwound DNA. HMG2 is in the SET complex and coprecipitates with SET. By confocal microscopy, it is observed that cytoplasmic HMG2 colocalizes with SET in association with the endoplasmic reticulum, but most nuclear HMG2 is unassociated with SET. This physical association suggests that HMG2 may facilitate the nucleosome assembly, transcriptional activation, and DNA repair functions of SET and/or APE. HMG2, like SET and APE, is a physiologically relevant granzyme A substrate in targeted cells. HMG1, however, is not a substrate. Granzyme A cleavage after Lys65 in the midst of HMG box A destroys HMG2-mediated DNA binding and bending functions. Granzyme A cleavage and functional disruption of key nuclear substrates, including HMG2, SET, APE, lamins, and histones, are likely to cripple the cellular repair response to promote cell death in this novel caspase-independent death pathway.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
85
|
Qu D, Li Q, Lim HY, Cheung NS, Li R, Wang JH, Qi RZ. The protein SET binds the neuronal Cdk5 activator p35nck5a and modulates Cdk5/p35nck5a activity. J Biol Chem 2002; 277:7324-32. [PMID: 11741927 DOI: 10.1074/jbc.m107270200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a).
Collapse
Affiliation(s)
- Dianbo Qu
- Proteomics Group, Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609
| | | | | | | | | | | | | |
Collapse
|
86
|
Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML, Jaju M, Lieberman J. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem 2001; 276:43285-93. [PMID: 11555662 DOI: 10.1074/jbc.m108137200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic T lymphocyte protease granzyme A (GzmA) initiates a novel caspase-independent cell death pathway characterized by single-stranded DNA nicking. The previously identified GzmA substrate SET is in a multimeric 270-420-kDa endoplasmic reticulum-associated complex that also contains the tumor suppressor protein pp32. GzmA cleaved the nucleosome assembly protein SET after Lys(176) and disrupted its nucleosome assembly activity. The purified SET complex required only GzmA to reconstitute single-stranded DNA nicking in isolated nuclei. DNA nicking occurred independently of caspase activation. The SET complex contains a 25-kDa Mg(2+)-dependent nuclease that degrades calf thymus DNA and plasmid DNA. Thus, GzmA activates a DNase (GzmA-activated DNase) within the SET complex to produce a novel form of DNA damage during cytotoxic T lymphocyte-mediated death.
Collapse
Affiliation(s)
- P J Beresford
- Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett 2001; 506:272-6. [PMID: 11602260 DOI: 10.1016/s0014-5793(01)02939-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously identified and purified a nucleolar phosphoprotein, nucleophosmin/B23, as a stimulatory factor for replication from the adenovirus chromatin. We show here that nucleophosmin/B23 functions as a histone chaperone protein such as nucleoplasmin, TAF-I, and NAP-I. Nucleophosmin/B23 was shown to bind to histones, preferentially to histone H3, to mediate formation of nucleosome, and to decondense sperm chromatin. These activities of B23 were dependent on its acidic regions as other histone chaperones, suggesting that B23/nucleophosmin is a member of histone chaperone proteins.
Collapse
Affiliation(s)
- M Okuwaki
- Laboratory of Cellular Biochemistry, RIKEN (The Institute of Physical and Chemical Research), Wako, Japan
| | | | | | | |
Collapse
|
88
|
Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K. Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 2001; 311:41-55. [PMID: 11469856 DOI: 10.1006/jmbi.2001.4812] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The processes governing chromatin remodeling and assembly, which occur prior to and/or after transcription and replication, are not completely understood. To understand the mechanisms of transcription and replication from chromatin templates, we have established in vitro replication and transcription systems using adenovirus (Ad) DNA complexed with viral basic core proteins, called Ad core, as a template. Using this system, we have previously identified, from HeLa cells, template activating factor-I as a stimulatory factor for the Ad core DNA replication. Here, using this system as a tool, we identified and purified a novel template activating factor activity that consists of two acidic polypeptides whose apparent molecular masses are 38 kDa and 37 kDa. These two polypeptides correspond to two splicing variants of nucleolar phosphoprotein, nucleophosmin/B23. Recombinant B23 proteins stimulate the Ad core DNA replication, and the acidic regions of B23 proteins are important for its activity. In addition, B23 proteins directly bind to core histones and transfer them to naked DNA. Furthermore, chromatin components such as histones and topoisomerase II are co-immunoprecipitated with B23 from cell extracts. These observations lead to a hypothesis that nucleophosmin/B23 is involved in structural changes of chromatin, thereby regulating transcription and replication within the ribosomal DNA region or maintaining the nucleolar structure.
Collapse
Affiliation(s)
- M Okuwaki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | | | | | | |
Collapse
|
89
|
Zhang D, Pasternack MS, Beresford PJ, Wagner L, Greenberg AH, Lieberman J. Induction of rapid histone degradation by the cytotoxic T lymphocyte protease Granzyme A. J Biol Chem 2001; 276:3683-90. [PMID: 11060286 DOI: 10.1074/jbc.m005390200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic T lymphocyte protease granzyme A induces caspase-independent cell death in which DNA single-strand nicking is observed instead of oligonucleosomal fragmentation. Granzyme A is a specific tryptase that concentrates in the nucleus of targeted cells and synergistically enhances DNA fragmentation induced by the caspase activator granzyme B. Here we show that granzyme A treatment of isolated nuclei enhances DNA accessibility to exogenous endonucleases. In vitro and after cell loading with perforin, GrnA completely degrades histone H1 and cleaves core histones into approximately 16-kDa fragments. Histone digestion provides a mechanism for unfolding compacted chromatin and facilitating endogenous DNase access to DNA during T cell and natural killer cell granule-mediated apoptosis.
Collapse
Affiliation(s)
- D Zhang
- Center for Blood Research, Massachusetts General Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
90
|
Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 2001; 104:119-30. [PMID: 11163245 DOI: 10.1016/s0092-8674(01)00196-9] [Citation(s) in RCA: 394] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acetylation of histones by p300/CBP and PCAF is considered to be a critical step in transcriptional regulation. In order to understand the role of cellular activities that modulate histone acetylation and transcription, we have purified and characterized a multiprotein cellular complex that potently inhibits the histone acetyltransferase activity of p300/CBP and PCAF. We have mapped a novel acetyltransferase-inhibitory domain of this INHAT (inhibitor of acetyltransferases) complex that binds to histones and masks them from being acetyltransferase substrates. Endogenous INHAT subunits, which include the Set/TAF-Ibeta oncoprotein, associate with chromatin in vivo and can block coactivatormediated transcription when transfected in cells. We propose that histone masking by INHAT plays a regulatory role in chromatin modification and serves as a novel mechanism of transcriptional regulation.
Collapse
Affiliation(s)
- S B Seo
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
91
|
Wen C, Levitan D, Li X, Greenwald I. spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc Natl Acad Sci U S A 2000; 97:14524-9. [PMID: 11114162 PMCID: PMC18952 DOI: 10.1073/pnas.011446498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin plays critical roles in the genesis of Alzheimer's disease and in LIN-12/Notch signaling during development. Here, we describe a screen for genes that influence presenilin level or activity in Caenorhabditis elegans. We identified four spr (suppressor of presenilin) genes by reverting the egg-laying defective phenotype caused by a null allele of the sel-12 presenilin gene. We analyzed the spr-2 gene in some detail. We show that loss of spr-2 activity suppresses the egg-laying defective phenotype of different sel-12 alleles and requires activity of the hop-1 presenilin gene, suggesting that suppression is accomplished by elevating presenilin activity rather than by bypassing the need for presenilin activity. We also show that SPR-2 is a nuclear protein and is a member of a protein subfamily that includes human SET, which has been identified in numerous different biochemical assays and at translocation breakpoints associated with a subtype of acute myeloid leukemia.
Collapse
Affiliation(s)
- C Wen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
92
|
Morita A, Suzuki N, Matsumoto Y, Hirano K, Enomoto A, Zhu J, Sakai K. p41 as a possible marker for cell death is generated by caspase cleavage of p42/SETbeta in irradiated MOLT-4 cells. Biochem Biophys Res Commun 2000; 278:627-32. [PMID: 11095960 DOI: 10.1006/bbrc.2000.3860] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported previously that X-irradiated MOLT-4 cells during their rapid cell death exhibited dose and time dependently a new protein named p41 detected by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). An antibody, AM-1, raised against partial peptide of p41 stained two spots, p41 and p42, unexpectedly. Amino acid sequence analysis of partial peptides showed homology between p41 and a putative oncogene, set. In the present study, N-terminal amino acid sequencing of p41 and p42, and polyclonal antibodies newly prepared against different partial peptide sequences revealed that p41 was a N-terminal truncation form of p42, and p42 was identified as SETbeta. The cleavage site was at carboxyl end of SNHD 18 of p42. Radiation-induced p42 cleavage as well as apoptotic cell death was suppressed by a caspase-specific inhibitor Ac-DEVD-CHO but not by Ac-YVAD-CHO. Further in vitro cleavage experiments with recombinant p42 and either irradiated cell extracts or recombinant caspases concluded that the cleavage of p42 into p41 was catalyzed by caspase(s) mainly by caspase-7. One of newly raised antibodies, AM-4, specific to p41 or specific to cleavage site of p42, was found useful enabling simple detection of p41 by 1-D PAGE instead of laborious 2-D PAGE. p41 may serve as a marker of apoptotic cell death.
Collapse
Affiliation(s)
- A Morita
- Department of Radiation Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
Brennan CM, Gallouzi IE, Steitz JA. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 2000; 151:1-14. [PMID: 11018049 PMCID: PMC2189805 DOI: 10.1083/jcb.151.1.1] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Accepted: 08/15/2000] [Indexed: 02/08/2023] Open
Abstract
AU-rich elements (AREs) present in the 3' untranslated regions of many protooncogene, cytokine, and lymphokine messages target them for rapid degradation. HuR, a ubiquitously expressed member of the ELAV (embryonic lethal abnormal vision) family of RNA binding proteins, selectively binds AREs and stabilizes ARE-containing mRNAs in transiently transfected cells. Here, we identify four mammalian proteins that bind regions of HuR known to be essential for its ability to shuttle between the nucleus and the cytoplasm and to stabilize mRNA: SETalpha, SETbeta, pp32, and acidic protein rich in leucine (APRIL). Three have been reported to be protein phosphatase 2A inhibitors. All four ligands contain long, acidic COOH-terminal tails, while pp32 and APRIL share a second motif: rev-like leucine-rich repeats in their NH(2)-terminal regions. We show that pp32 and APRIL are nucleocytoplasmic shuttling proteins that interact with the nuclear export factor CRM1 (chromosomal region maintenance protein 1). The inhibition of CRM1 by leptomycin B leads to the nuclear retention of pp32 and APRIL, their increased association with HuR, and an increase in HuR's association with nuclear poly(A)+ RNA. Furthermore, transcripts from the ARE-containing c-fos gene are selectively retained in the nucleus, while the cytoplasmic distribution of total poly(A)+ RNA is not altered. These data provide evidence that interaction of its ligands with HuR modulate HuR's ability to bind its target mRNAs in vivo and suggest that CRM1 is instrumental in the export of at least some cellular mRNAs under certain conditions. We discuss the possible role of these ligands upstream of HuR in pathways that govern the stability of ARE-containing mRNAs.
Collapse
Affiliation(s)
- C M Brennan
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|
94
|
Matsumoto K, Nagata K, Okuwaki M, Tsujimoto M. Histone- and chromatin-binding activity of template activating factor-I. FEBS Lett 1999; 463:285-8. [PMID: 10606739 DOI: 10.1016/s0014-5793(99)01632-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Template activating factor-I (TAF-I) is a histone-binding chromatin remodeling factor. We recently found that TAF-I is capable of mediating decondensation of Xenopus sperm chromatin by releasing sperm-specific basic proteins. Here we present evidence that TAF-I preferentially binds to histone H3 among four core histones. Immunofluorescent staining revealed that TAF-I binds to the decondensed sperm chromatin, of which protein components predominantly consist of histones H3 and H4.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Cellular Biochemistry, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama, Japan.
| | | | | | | |
Collapse
|
95
|
Matsumoto K, Nagata K, Miyaji-Yamaguchi M, Kikuchi A, Tsujimoto M. Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins. Mol Cell Biol 1999; 19:6940-52. [PMID: 10490631 PMCID: PMC84689 DOI: 10.1128/mcb.19.10.6940] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/1999] [Accepted: 07/25/1999] [Indexed: 11/20/2022] Open
Abstract
Template activating factor I (TAF-I) was originally identified as a host factor required for DNA replication and transcription of adenovirus genome complexed with viral basic proteins. Purified TAF-I was shown to bind to core histones and stimulate transcription from nucleosomal templates. Human TAF-I consists of two acidic proteins, TAF-Ialpha and TAF-Ibeta, which differ from each other only in their amino-terminal regions. Here, we report that TAF-I decondenses demembraned Xenopus sperm chromatin. Human TAF-Ibeta has a chromatin decondensation activity comparable to that of NAP-I, another histone binding protein, whereas TAF-Ialpha has only a weak activity. Analysis of molecular mechanisms underlying the chromatin decondensation by TAF-I revealed that TAF-I interacts directly with sperm basic proteins. Deletion of the TAF-I carboxyl-terminal acidic region abolishes the decondensation activity. Interestingly, the acidic region itself is not sufficient for decondensation, since an amino acid substitution mutant in the dimerization domain of TAF-I which has the intact acidic region does not support chromatin decondensation. We detected the beta form of TAF-I in Xenopus oocytes and eggs by immunoblotting, and the cloning of its cDNA led us to conclude that Xenopus TAF-Ibeta also decondenses sperm chromatin. These results suggest that TAF-I plays a role in remodeling higher-order chromatin structure as well as nucleosomal structure through direct interaction with chromatin basic proteins.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Cellular Biochemistry, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
96
|
Miyaji-Yamaguchi M, Okuwaki M, Nagata K. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity. J Mol Biol 1999; 290:547-57. [PMID: 10390352 DOI: 10.1006/jmbi.1999.2898] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template activating factor-I (TAF-I)alpha and TAF-Ibeta have been identified as the host factors that activate DNA replication of the adenovirus genome complexed with viral basic core proteins (Ad core). TAF-I causes a structural change of the Ad core, thereby stimulating not only replication but also transcription from the Ad core DNA in vitro. TAF-I also activates transcription from the reconstituted chromatin consisting of DNA fragments and purified histones through chromatin remodeling. Although the carboxyl-terminal region, which is highly rich in acidic amino acids, is essential for the TAF-I activity, it remains unclear how other parts are involved in its activity. The native TAF-I isolated from HeLa cells exists as either hetero- or homo-oligomer. Here, we have demonstrated by cross-linking assays that most of TAF-I exists as a dimer. Analyses using deletion mutant TAF-I proteins revealed that the amino-terminal region of TAF-I common to both alpha and beta is essential for dimerization. This region is predicted to form a coiled-coil structure. Indeed, mutations disrupting this putative structure abolished the dimerization capability and reduced the TAF-I activity in the Ad core DNA replication assay. Furthermore, we found that TAF-I mutants lacking the acidic tail act in a dominant-negative manner in this assay. These observations strongly suggest that the dimerization of TAF-I is important for its activity.
Collapse
Affiliation(s)
- M Miyaji-Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|
97
|
Saito S, Miyaji-Yamaguchi M, Shimoyama T, Nagata K. Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor. Biochem Biophys Res Commun 1999; 259:471-5. [PMID: 10362532 DOI: 10.1006/bbrc.1999.0790] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template-Activating Factor-I (TAF-I) alpha and beta, chromatin remodeling factors, were identified as the stimulatory factor for replication of the adenovirus DNA complexed with viral basic core proteins. Recently, two cellular inhibitors for protein phosphatase 2A (PP2A) have been isolated. One of these inhibitors, designated IPP2A2, is a truncated version of TAF-Ibeta. Here, it is shown using recombinant TAF-I proteins that both TAF-Ialpha and beta have the PP2A inhibitor activity. The N-terminal region but not the C-terminal acidic region, the latter of which is essential for the chromatin remodeling activity, is shown to be required for the PP2A inhibitor activity. Roles of TAF-Ialpha- and beta-specific regions, the C-terminal acidic region, and other regions of TAF-I for the PP2A inhibitor activity are also discussed.
Collapse
Affiliation(s)
- S Saito
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | | | | |
Collapse
|
98
|
Okuwaki M, Nagata K. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template. J Biol Chem 1998; 273:34511-8. [PMID: 9852120 DOI: 10.1074/jbc.273.51.34511] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the mechanisms of replication and transcription on chromatin, we have been using the adenovirus DNA complexed with viral basic core proteins, called Ad core. We have identified template activating factor (TAF)-I from uninfected HeLa cells as the factor that stimulates replication and transcription from the Ad core. The nuclease sensitivity assays have revealed that TAF-I remodels the Ad core, thereby making transcription and replication apparatus accessible to the template DNA. To examine whether TAF-I remodels the chromatin consisting of histones, the chromatin structure was reconstituted on the DNA fragment with core histones by the salt dialysis method. The transcription from the reconstituted chromatin was completely repressed, while TAF-I remodeled the chromatin and stimulated the transcription. TAF-I was found to interact with histones. Furthermore, it was shown that TAF-I is capable not only of disrupting the chromatin structure but also of preventing the formation of DNA-histone aggregation and transferring histones to naked DNA. The possible function of TAF-I in conjunction with a histone chaperone activity is discussed.
Collapse
Affiliation(s)
- M Okuwaki
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|