51
|
Hajeri VA, Little BA, Ladage ML, Padilla PA. NPP-16/Nup50 function and CDK-1 inactivation are associated with anoxia-induced prophase arrest in Caenorhabditis elegans. Mol Biol Cell 2010; 21:712-24. [PMID: 20053678 PMCID: PMC2828959 DOI: 10.1091/mbc.e09-09-0787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular and genetic analysis supports the notion that NPP-16/NUP50 and CDK-1 function to reversibly arrest prophase blastomeres in Caenorhabditis elegans embryos exposed to anoxia. The anoxia-induced shift of cells from an actively dividing state to an arrested state reveals a previously uncharacterized prophase checkpoint in the C. elegans embryo. Oxygen, an essential nutrient, is sensed by a multiple of cellular pathways that facilitate the responses to and survival of oxygen deprivation. The Caenorhabditis elegans embryo exposed to severe oxygen deprivation (anoxia) enters a state of suspended animation in which cell cycle progression reversibly arrests at specific stages. The mechanisms regulating interphase, prophase, or metaphase arrest in response to anoxia are not completely understood. Characteristics of arrested prophase blastomeres and oocytes are the alignment of condensed chromosomes at the nuclear periphery and an arrest of nuclear envelope breakdown. Notably, anoxia-induced prophase arrest is suppressed in mutant embryos lacking nucleoporin NPP-16/NUP50 function, indicating that this nucleoporin plays an important role in prophase arrest in wild-type embryos. Although the inactive form of cyclin-dependent kinase (CDK-1) is detected in wild-type–arrested prophase blastomeres, the inactive state is not detected in the anoxia exposed npp-16 mutant. Furthermore, we found that CDK-1 localizes near chromosomes in anoxia-exposed embryos. These data support the notion that NPP-16 and CDK-1 function to arrest prophase blastomeres in C. elegans embryos. The anoxia-induced shift of cells from an actively dividing state to an arrested state reveals a previously uncharacterized prophase checkpoint in the C. elegans embryo.
Collapse
Affiliation(s)
- Vinita A Hajeri
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | |
Collapse
|
52
|
Cooper WA, Kohonen-Corish MRJ, McCaughan B, Kennedy C, Sutherland RL, Lee CS. Expression and prognostic significance of cyclin B1 and cyclin A in non-small cell lung cancer. Histopathology 2009; 55:28-36. [DOI: 10.1111/j.1365-2559.2009.03331.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
Li R, Tang XL, Miao SY, Zong SD, Wang LF. Regulation of the G2/M phase of the cell cycle by sperm associated antigen 8 (SPAG8) protein. Cell Biochem Funct 2009; 27:264-8. [DOI: 10.1002/cbf.1574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B, Rauch A, Ho AD, Bartek J, Krämer A. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. ACTA ACUST UNITED AC 2009; 185:1149-57. [PMID: 19546241 PMCID: PMC2712957 DOI: 10.1083/jcb.200810159] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary microcephaly, Seckel syndrome, and microcephalic osteodysplastic primordial dwarfism type II (MOPD II) are disorders exhibiting marked microcephaly, with small brain sizes reflecting reduced neuron production during fetal life. Although primary microcephaly can be caused by mutations in microcephalin (MCPH1), cells from patients with Seckel syndrome and MOPD II harbor mutations in ataxia telangiectasia and Rad3 related (ATR) or pericentrin (PCNT), leading to disturbed ATR signaling. In this study, we show that a lack of MCPH1 or PCNT results in a loss of Chk1 from centrosomes with subsequently deregulated activation of centrosomal cyclin B–Cdk1.
Collapse
Affiliation(s)
- Alexandra Tibelius
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kishi K, van Vugt MATM, Okamoto KI, Hayashi Y, Yaffe MB. Functional dynamics of Polo-like kinase 1 at the centrosome. Mol Cell Biol 2009; 29:3134-50. [PMID: 19307309 PMCID: PMC2682011 DOI: 10.1128/mcb.01663-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/20/2008] [Accepted: 03/12/2009] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) functions as a key regulator of mitotic events by phosphorylating substrate proteins on centrosomes, kinetochores, the mitotic spindle, and the midbody. Through mechanisms that are incompletely understood, Plk1 is released from and relocalizes to different mitotic structures as cells proceed through mitosis. We used fluorescence recovery after photobleaching to examine the kinetics of this process in more detail. We observed that Plk1 displayed a range of different recovery rates that differ at each mitotic substructure and depend on both the Polo-box domain and a functional kinase domain. Upon mitotic entry, centrosomal Plk1 becomes more dynamic, a process that is directly enhanced by Plk1 kinase activity. In contrast, Plk1 displays little dynamic exchange at the midbody, a process that again is modulated by the kinase activity of Plk1. Our findings suggest that the intrinsic kinase activity of Plk1 triggers its release from early mitotic structures and its relocalization to late mitotic structures. To assess the importance of Plk1 dynamic relocalization, Plk1 was persistently tethered to the centrosome. This resulted in a G(2) delay, followed by a prominent prometaphase arrest, as a consequence of defective spindle formation and activation of the spindle checkpoint. The dynamic release of Plk1 from early mitotic structures is thus crucial for mid- to late-stage mitotic events and demonstrates the importance of a fully dynamic Plk1 at the centrosome for proper cell cycle progression. This dependence on dynamic Plk1 was further observed during the mitotic reentry of cells after a DNA damage G(2) checkpoint, as this process was significantly delayed upon centrosomal tethering of Plk1. These results indicate that mitotic progression and control of mitotic reentry after DNA damage resides, at least in part, on the dynamic behavior of Plk1.
Collapse
Affiliation(s)
- Kazuhiro Kishi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
56
|
Tang L, Wang TT, Wu YT, Zhou CY, Huang HF. High expression levels of cyclin B1 and Polo-like kinase 1 in ectopic endometrial cells associated with abnormal cell cycle regulation of endometriosis. Fertil Steril 2009; 91:979-87. [PMID: 18353325 DOI: 10.1016/j.fertnstert.2008.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 01/08/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the possible roles of cyclin B1/cyclin-dependent kinase (cdc2) and Polo-like kinase 1 (Plk1) in the pathogenesis of endometriosis. DESIGN A case-control study. SETTING University hospital. PATIENT(S) Patients with or without endometriosis were diagnosed by pathological examination or laparoscopy. The patients with the following criteria within the past 6 months were excluded: endocrine or inflammatory diseases, pregnancy or lactation, hormonal therapy, and neoplasm in the uterine cavity. INTERVENTION(S) Eutopic and ectopic endometria were obtained at the time of surgery. Blood was collected on the same day as surgery. MAIN OUTCOME MEASURE(S) The mRNA/protein expression and localization of cyclin B1, cdc2, and Plk1 in endometrium, and serum levels of E(2) and P. RESULT(S) The expression levels of cyclin B1 and Plk1, but not cdc2, in ectopic endometria were significantly higher than in eutopic endometria. The immunohistochemical staining of cyclin B1 and Plk1 was detected in the nuclei of ectopic and eutopic endometrial cells. Furthermore, ectopic endometrial expression levels of cyclin B1 or Plk1 were positively correlated with serum E(2) levels. CONCLUSION(S) Cyclin B1 and Plk1 may play important roles in the pathogenesis of endometriosis by mediating ectopic endometrial cell proliferation under regulation of ovarian hormones.
Collapse
Affiliation(s)
- Li Tang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | |
Collapse
|
57
|
Lobjois V, Jullien D, Bouché JP, Ducommun B. The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:462-8. [PMID: 19185590 DOI: 10.1016/j.bbamcr.2008.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Activation of cyclin-dependent kinase complexes (CDK) at key cell cycle transitions is dependent on their dephosphorylation by CDC25 dual-specificity phosphatases (CDC25A, B and C in human). The CDC25B phosphatase plays an essential role in controlling the activity of CDK1-cyclin B complexes at the entry into mitosis and together with polo-like kinase 1 (PLK1) in regulating the resumption of cell cycle progression after DNA damage-dependent checkpoint arrest in G2. In this study, we analysed the regulation of CDC25B-dependent mitosis entry by PLK1. We demonstrate that PLK1 activity is essential for the relocation of CDC25B from the cytoplasm to the nucleus. By gain and loss of function analyses, we show that PLK1 stimulates CDC25B-induced mitotic entry in both normal conditions and after DNA-damage induced G2/M arrest. Our results support a model in which the relocalisation of CDC25B to the nucleus at the G2-M transition by PLK1 regulates its mitotic inducing activity.
Collapse
Affiliation(s)
- Valerie Lobjois
- Université de Toulouse, LBCMCP, 118 Route de Narbonne, CNRS, LBCMCP-UMR5088, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
58
|
Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, Campbell DR, Banerjee SK. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther 2009; 8:315-23. [PMID: 19208826 DOI: 10.1158/1535-7163.mct-08-0762] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crocetin, a carotenoid compound derived from saffron, has long been used as a traditional ancient medicine against different human diseases including cancer. The aim of the series of experiments was to systematically determine whether crocetin significantly affects pancreatic cancer growth both in vitro and/or in vivo. For the in vitro studies, first, MIA-PaCa-2 cells were treated with crocetin and in these sets of experiments, a proliferation assay using H(3)-thymidine incorporation and flow cytometric analysis suggested that crocetin inhibited proliferation. Next, cell cycle proteins were investigated. Cdc-2, Cdc-25C, Cyclin-B1, and epidermal growth factor receptor were altered significantly by crocetin. To further confirm the findings of inhibition of proliferation, H(3)-thymidine incorporation in BxPC-3, Capan-1, and ASPC-1 pancreatic cancer cells was also significantly inhibited by crocetin treatment. For the in vivo studies, MIA-PaCa-2 as highly aggressive cells than other pancreatic cancer cells used in this study were injected into the right hind leg of the athymic nude mice and crocetin was given orally after the development of a palpable tumor. The in vivo results showed significant regression in tumor growth with inhibition of proliferation as determined by proliferating cell nuclear antigen and epidermal growth factor receptor expression in the crocetin-treated animals compared with the controls. Both the in vitro pancreatic cancer cells and in vivo athymic nude mice tumor, apoptosis was significantly stimulated as indicated by Bax/Bcl-2 ratio. This study indicates that crocetin has a significant antitumorigenic effect in both in vitro and in vivo on pancreatic cancer.
Collapse
Affiliation(s)
- Animesh Dhar
- Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I. Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases. FEBS Lett 2009; 583:841-7. [PMID: 19192479 DOI: 10.1016/j.febslet.2009.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/18/2009] [Accepted: 01/23/2009] [Indexed: 11/24/2022]
Abstract
Cdc25 phosphatases activate Cdk/Cyclin complexes by dephosphorylation and thus promote cell cycle progression. We observed that the peak activity of Cdc25A precedes the one of Cdc25B in prophase and the maximum of Cyclin/Cdk kinase activity. Furthermore, Cdc25A activates both Cdk1-2/Cyclin A and Cdk1/Cyclin B complexes while Cdc25B seems to be involved only in activation of Cdk1/Cyclin B. Concomitantly, repression of Cdc25A led to a decrease in Cyclin A-associated kinase activity and attenuated Cdk1 activation. Our results indicate that Cdc25A acts before Cdc25B - at least in cancer cells, and has non-redundant functions in late G2/early M-phase as a major regulator of Cyclin A/kinase complexes.
Collapse
Affiliation(s)
- Oleg Timofeev
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
60
|
Taylor WR, Grabovich A. Targeting the Cell Cycle to Kill Cancer Cells. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
61
|
Royou A, McCusker D, Kellogg DR, Sullivan W. Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. ACTA ACUST UNITED AC 2008; 183:63-75. [PMID: 18824564 PMCID: PMC2557043 DOI: 10.1083/jcb.200801153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Anne Royou
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
62
|
Cui C, Zhao H, Zhang Z, Zong Z, Feng C, Zhang Y, Deng X, Xu X, Yu B. CDC25B acts as a potential target of PRKACA in fertilized mouse eggs. Biol Reprod 2008; 79:991-8. [PMID: 18633139 DOI: 10.1095/biolreprod.108.068205] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Protein kinase A (PRKACA) has been documented as a pivotal regulator in meiosis and mitosis arrest. Although our previous work has established that PRKACA regulates cell cycle progression of mouse fertilized eggs by inhibiting M-phase promoting factor (MPF), little is known about the intermediate factor between PRKACA and MPF in the mitotic cell cycle. In this study, we investigated the role of the PRKACA/CDC25B pathway on the early development of mouse fertilized eggs. Overexpression of unphosphorylatable CDC25B mutant (Cdc25b-S321A or Cdc25b-S229A/S321A) rapidly caused G2-phase eggs to enter mitosis. Microinjection of either Cdc25b-WT or Cdc25b-S229A mRNA also promoted G2/M transition, but much less efficiently than Cdc25b-S321A and Cdc25b-S229A/S321A. Moreover, mouse fertilized eggs overrode the G2 arrest by microinjection of either Cdc25b-S321A or Cdc25b-S229A/S321A mRNA, which efficiently resulted in MPF activation by directly dephosphorylating CDC2A-Tyr15, despite culture under conditions that maintained exogenous dibutyryl cAMP. Using a highly specific antibody against phospho-Ser321 of CDC25B in Western blotting, we showed that CDC25B-Ser321 was phosphorylated at the G1 and S phases, whereas Ser321 was dephosphorylated at the G2 and M phases in vivo. Our findings identify CDC25B as a potential target of PRKACA and show that PRKACA regulates G2/M transition by phosphorylating CDC25B-Ser321 but not CDC25B-Ser229 on the first mitotic division of mouse fertilized eggs.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Physiology, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Motomura M, Kwon KM, Suh SJ, Lee YC, Kim YK, Lee IS, Kim MS, Kwon DY, Suzuki I, Kim CH. Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl-2/Bax regulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:61-67. [PMID: 21783889 DOI: 10.1016/j.etap.2008.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 05/31/2023]
Abstract
We investigated mechanism(s) where propolis induces apoptosis in human leukemic U937 cells. Propolis inhibited the proliferation of U937 cells in a dose-dependent manner by inducing apoptosis and blocking cell cycle progression in the G2/M phase. Western blot analysis showed that propolis increases the expression of p21 and p27 proteins, and decreases the levels of cyclin B1, cyclin A, Cdk2 and Cdc2, thereby contributing to cell cycle arrest. DAPI staining assay revealed typical morphology features of apoptotic cells. Propolis-induced apoptosis was also confirmed by assays with annexin V-FITC, PI-labeling and DNA fragmentation assay. The increase in apoptosis level induced by propolis was associated with down-regulation of Bcl-2 and activation of caspase-3, but not with Bax. These results suggests that propolis-induced apoptosis is related to the selective activation of caspase-3 and induction of Bcl-2/Bax regulation.
Collapse
Affiliation(s)
- Muneo Motomura
- Department of Clinical Nutrition, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka City, Mie 510-0293, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The gene encoding the Aurora-A protein kinase is located in the 20q13 breast cancer amplicon and is also overexpressed in colorectal, pancreatic and gastric tumours. Although Aurora-A may not be a bona fide oncoprotein in humans, it is a promising drug target in cancer therapy. Thus, it is surprising that so little is known of its role in normal cells. The primary function of Aurora-A is to promote bipolar spindle assembly, but the molecular details of this process remained obscure until recently. The discovery of several novel Aurora-A-binding proteins and substrates has implicated Aurora-A in centrosome maturation and separation, acentrosomal and centrosomal spindle assembly, kinetochore function, cytokinesis and in cell fate determination. Here we discuss recent advances in determining the early mitotic role of Aurora-A, with a strong emphasis on its function at the mitotic spindle poles.
Collapse
Affiliation(s)
- Alexis R Barr
- Cancer Research UK Cambridge Research Institute, Department of Oncology, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | |
Collapse
|
65
|
De Boer L, Oakes V, Beamish H, Giles N, Stevens F, Somodevilla-Torres M, Desouza C, Gabrielli B. Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene 2008; 27:4261-8. [PMID: 18372919 DOI: 10.1038/onc.2008.74] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin A/cdk2 has a role in progression through S phase, and a large pool is also activated in G2 phase. Here we report that this G2 phase pool regulates the timing of progression into mitosis. Knock down of cyclin A by siRNA or addition of a specific cdk2 small molecule inhibitor delayed entry into mitosis by delaying cells in G2 phase. The G2 phase-delayed cells contained elevated levels of inactive cyclin B/cdk1. However, increased microtubule nucleation at the centrosomes was observed, and the centrosomes stained for markers of cyclin B/cdk1 activity. Both microtubule nucleation at the centrosomes and the phosphoprotein markers were lost with short-term treatment of the cdk1/2 inhibitor roscovitine but not the Mek1/2 inhibitor U0126. Cyclin A/cdk2 localized at the centrosomes in late G2 phase after separation of the centrosomes but before the start of prophase. Thus G2 phase cyclin A/cdk2 controls the timing of entry into mitosis by controlling the subsequent activation of cyclin B/cdk1, but also has an unexpected role in coordinating the activation of cyclin B/cdk1 at the centrosome and in the nucleus.
Collapse
Affiliation(s)
- L De Boer
- Cancer Biology Program, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Shen KH, Chang JK, Hsu YL, Kuo PL. Chalcone arrests cell cycle progression and induces apoptosis through induction of mitochondrial pathway and inhibition of nuclear factor kappa B signalling in human bladder cancer cells. Basic Clin Pharmacol Toxicol 2008; 101:254-61. [PMID: 17845507 DOI: 10.1111/j.1742-7843.2007.00120.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chalcones (1,3-diphenyl-2-propenone) are cancer preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in two human bladder cancer cell lines: T24 and HT-1376. The results show that chalcone inhibits the proliferation of T24 and HT-1376 cells by inducing apoptosis and blocking cell cycle progression in the G2/M phase. Western blot assay showed that chalcone significantly increases the expression of p21 and p27 proteins, and decreases the levels of cyclin B1, cyclin A and Cdc2, thereby contributing to cell cycle arrest. In addition, chalcone increased the expression of Bax and Bak, but decreased the levels of Bcl-2 and Bcl-X(L) and subsequently triggered mitochondrial apoptotic pathway (release of cytochrome c and activation of caspase-9 and caspase-3). Our study suggests that the induction of mitochondrial pathway and inhibition of the nuclear factor kappa B survival system may play important roles in the antiproliferative activity of chalcone in T24 and HT-1376 cells.
Collapse
Affiliation(s)
- Kun-Hung Shen
- Cell Biology Laboratory, Department of Biotechnology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road Sec. 1, Jen-Te, Tainan 717, Taiwan
| | | | | | | |
Collapse
|
67
|
Xie T, Niu Y, Ge K, Lu S. Regulation of keratinocyte proliferation in rats with deep, partial-thickness scald: modulation of cyclin D1-cyclin-dependent kinase 4 and histone H1 kinase activity of M-phase promoting factor. J Surg Res 2007; 147:9-14. [PMID: 17996899 DOI: 10.1016/j.jss.2007.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 08/14/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Keratinocyte proliferation, which is undergone by its cell cycle transition, is considered a major event during re-epithelialization over the wound size. Cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors interact to regulate the cell cycle. We investigated proliferative events associated with cell-cycle control in keratinocytes during wound healing in rats with deep, partial scald injuries. MATERIALS AND METHODS Male Sprague Dawley rats with starting weights of 200 to 220 g were inflicted with standardized deep partial-thickness burns by scalding 10% of the skin surface. The full thickness skin biopsies were harvested for histological evaluation at following time points: 0 d, post-burn day 3, post-burn day 7, and post-burn day 14. Keratinocytes from wound edge were isolated for cell cycle examination. The cell cycle regulators and their activity were detected. RESULTS Keratinocytes tended to proliferate and had enlarged nuclei and nucleoli from day 3 after injury. Morphological features became evident on day 14, with an increase in keratinocytes. The percentage of S-phase keratinocytes tended to increase on day 14. The percentage G2/M-phase keratinocytes increased from day 3 and significantly increased on days 7 and 14. Cyclin D1 expression markedly increased from day 3, with down-regulation of cyclin-dependent kinase 4, which re-elevated on day 14. Cyclin B1 expression did not dramatically vary. Histone H1 kinase activity of mitosis phase promoting factor markedly increased on day 14. CONCLUSIONS These findings suggested early, active DNA synthesis and mitosis in keratinocytes, with marked proliferation on day 14, that depended on the modulation of cyclin D1-cyclin-dependent kinase 4 and histone H1 kinase activity of mitosis phase promoting factor. During wound healing, patterns of cell-cycle control expression differed from those previously known.
Collapse
Affiliation(s)
- Ting Xie
- Wuhan Burns Institute, Wuhan Third Hospital, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
68
|
Esmenjaud-Mailhat C, Lobjois V, Froment C, Golsteyn RM, Monsarrat B, Ducommun B. Phosphorylation of CDC25C at S263 controls its intracellular localisation. FEBS Lett 2007; 581:3979-85. [PMID: 17662724 DOI: 10.1016/j.febslet.2007.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/06/2007] [Accepted: 07/11/2007] [Indexed: 11/26/2022]
Abstract
CDC25C phosphatase is a key actor in cell cycle progression that controls the activation of CDK1-cyclin B at mitosis. Its activity is known to be highly regulated by a number of signalling pathway-activated kinases resulting in its phosphorylation on multiple residues. In this study, we have purified CDC25C from cells and have used a proteomic approach to identify new regulatory phosphorylations. Here, we report the identification by mass spectrometry of a peptide monophosphorylated on serine 263. We demonstrate by cell imaging that mutation of S263 to alanine leads to a nuclear accumulation of CDC25C that is further reinforced by leptomycin-B. We propose that phosphorylation at S263 is part of the regulatory mechanism that modulates nuclear import of CDC25C, thus preventing cytoplasm to nucleus shuttling.
Collapse
Affiliation(s)
- Charlotte Esmenjaud-Mailhat
- LBCMCP-CNRS, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
70
|
Cha H, Wang X, Li H, Fornace AJ. A functional role for p38 MAPK in modulating mitotic transit in the absence of stress. J Biol Chem 2007; 282:22984-92. [PMID: 17548358 DOI: 10.1074/jbc.m700735200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.
Collapse
Affiliation(s)
- Hyukjin Cha
- Department of Genetics and Complex Diseases, School of Public Health, and John B. Little Center for the Radiation Sciences and Environmental Health, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
71
|
Hachet V, Canard C, Gönczy P. Centrosomes promote timely mitotic entry in C. elegans embryos. Dev Cell 2007; 12:531-41. [PMID: 17419992 DOI: 10.1016/j.devcel.2007.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 02/05/2023]
Abstract
Several mitotic regulators, including Cyclin B1/Cdk1, are present at centrosomes prior to mitosis onset, but it is unclear whether centrosomes promote mitotic entry in vivo. Here we developed a sensitive assay in C. elegans embryos for the temporal analysis of mitotic entry, in which the male and female pronuclei undergo asynchronous entry into mitosis when separated from one another. Using this assay, we found that centrosome integrity is necessary for timing mitotic entry. Centrosomes do not function in this instance through their ability to nucleate microtubules. Instead, centrosomes serve to focus the Aurora A kinase AIR-1, which is essential for timely mitotic entry. Furthermore, analysis of embryos in which centrosomes and pronuclei are detached from one another demonstrates that centrosomes are sufficient to promote mitosis onset. Together, our findings support a model in which centrosomes serve as integrative centers for mitotic regulators and thus trigger mitotic entry in a timely fashion.
Collapse
Affiliation(s)
- Virginie Hachet
- Swiss Institute for Experimental Cancer Research (ISREC), and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1066 Lausanne, Switzerland
| | | | | |
Collapse
|
72
|
Bodvarsdottir SK, Hilmarsdottir H, Birgisdottir V, Steinarsdottir M, Jonasson JG, Eyfjord JE. Aurora-A amplification associated with BRCA2 mutation in breast tumours. Cancer Lett 2007; 248:96-102. [PMID: 16860930 DOI: 10.1016/j.canlet.2006.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/13/2006] [Indexed: 12/30/2022]
Abstract
Potential interaction of Aurora-A amplification and BRCA2 mutation was examined in breast tumours from BRCA2 999del5 mutation carriers (n=20) and non-carriers (n=41). Aurora-A amplification studied by FISH was significantly more common in breast tumours from BRCA2 mutation carriers (p=0.0005). Extensive Aurora-A amplification was also detected on metaphase chromosomes in three breast epithelial cell lines with the same BRCA2 mutation. In addition, significant association was found between Aurora-A amplification and TP53 mutations in non-BRCA2 mutation carrier tumours (p=0.007). These results suggest that breast tumours with mutations in BRCA2 or TP53 could be promising candidates for Aurora-A targeted treatment.
Collapse
Affiliation(s)
- Sigridur K Bodvarsdottir
- Icelandic Cancer Society, Skogarhlid 8, 105 Reykjavik, Iceland; University of Iceland, Department of Medicine, Vatnsmyrarvegi 16, 101 Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Checkpoint adaptation was originally described in Saccharomyces cerevisiae as the ability to divide following a sustained checkpoint arrest in the presence of unrepairable DNA breaks. A process of checkpoint adaptation was also reported in Xenopus in response to the replication inhibitor aphidicolin. Recently, we showed that checkpoint adaptation also occurs in human cells. Although cells undergoing checkpoint adaptation will frequently die in subsequent cell cycles owing to excessive DNA damage, some of the cells may be able to survive and proliferate with damaged DNA. Thus, checkpoint adaptation in human cells may potentially promote genomic instability and lead to cancer. Here, I discuss the current evidence for checkpoint adaptation in human cells and possible mechanisms and implications of this phenomenon.
Collapse
Affiliation(s)
- R G Syljuåsen
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark.
| |
Collapse
|
74
|
Schmidt A, Durgan J, Magalhaes A, Hall A. Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 2007; 26:1624-36. [PMID: 17332740 PMCID: PMC1829391 DOI: 10.1038/sj.emboj.7601637] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 02/05/2007] [Indexed: 01/20/2023] Open
Abstract
Rho GTPases regulate multiple signal transduction pathways that influence many aspects of cell behaviour, including migration, morphology, polarity and cell cycle. Through their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho and Cdc42 make several key contributions during the mitotic phase of the cell cycle, including spindle assembly, spindle positioning, cleavage furrow contraction and abscission. We now report that PRK2/PKN2, a Ser/Thr kinase and Rho/Rac effector protein, is an essential regulator of both entry into mitosis and exit from cytokinesis in HeLa S3 cells. PRK2 is required for abscission of the midbody at the end of the cell division cycle and for phosphorylation and activation of Cdc25B, the phosphatase required for activation of mitotic cyclin/Cdk1 complexes at the G2/M transition. This reveals an additional step in the mammalian cell cycle controlled by Rho GTPases.
Collapse
Affiliation(s)
- Anja Schmidt
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London, UK
| | - Joanne Durgan
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London, UK
- Present address: Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 572, New York, NY 10021, USA
| | - Ana Magalhaes
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London, UK
- Present address: Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 572, New York, NY 10021, USA
| | - Alan Hall
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London, UK
- Present address: Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 572, New York, NY 10021, USA
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 572, New York, NY 10021, USA. Tel./Fax: +1 212 639 2387; E-mail:
| |
Collapse
|
75
|
Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 2006; 5:3209-21. [PMID: 17172425 DOI: 10.1158/1535-7163.mct-06-0478] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study is the first to investigate the anticancer effect of plumbagin in human breast cancer cells. Plumbagin exhibited cell proliferation inhibition by inducing cells to undergo G2-M arrest and autophagic cell death. Blockade of the cell cycle was associated with increased p21/WAF1 expression and Chk2 activation, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the levels of inactivated phospho-Cdc2 and phospho-Cdc25C by Chk2 activation. Plumbagin triggered autophagic cell death but not predominantly apoptosis. Pretreatment of cells with autophagy inhibitor bafilomycin suppressed plumbagin-mediated cell death. We also found that plumbagin inhibited survival signaling through the phosphatidylinositol 3-kinase/AKT signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin, forkhead transcription factors, and glycogen synthase kinase 3beta. Phosphorylation of both of mammalian target of rapamycin downstream targets, p70 ribosomal protein S6 kinase and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased plumbagin-mediated autophagic cell death, whereas reduction of AKT expression by small interfering RNA potentiated the effect of plumbagin, supporting the inhibition of AKT being beneficial to autophagy. Furthermore, suppression of AKT by plumbagin enhanced the activation of Chk2, resulting in increased inactive phosphorylation of Cdc25C and Cdc2. Further investigation revealed that plumbagin inhibition of cell growth was also evident in a nude mouse model. Taken together, these results imply a critical role for AKT inhibition in plumbagin-induced G2-M arrest and autophagy of human breast cancer cells.
Collapse
Affiliation(s)
- Po-Lin Kuo
- Cell Biology Laboratory, Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | | | | |
Collapse
|
76
|
Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 2006; 119:4269-75. [PMID: 17003105 DOI: 10.1242/jcs.03200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CDC25B is one of the three human phosphatases that activate the CDK-cyclin complexes, thereby triggering cell-cycle progression and division. Commitment to early mitotic events depends on the activation of a centrosomal pool of CDK1-cyclin-B1, and CDC25B is thought to be involved in initiating this centrosomal CDK1-cyclin-B1 activity. Centrosome-associated checkpoint kinase 1 (CHK1) has been proposed to contribute to the proper timing of a normal cell division cycle by inhibiting the activation of the centrosomal pool of CDK1. Here, we show that CDC25B is phosphorylated by CHK1 in vitro on multiple residues, including S230 and S563. We demonstrate these phosphorylations occur in vivo and that they are dependent on CHK1 activity. S230 CHK1-mediated phosphorylation is detected in cell extracts during S phase and G2 phase in the absence of DNA damage. We show that the S230-phosphorylated form of CDC25B is located at the centrosome from early S phase until mitosis. Furthermore, mutation of S230 to alanine increases the mitotic-inducing activity of CDC25B. Our results support a model in which, under normal cell cycle conditions and in the absence of DNA damage, CHK1 constitutively phosphorylates CDC25B during interphase and thus prevents the premature initiation of mitosis by negatively regulating the activity of CDC25B at the centrosome.
Collapse
Affiliation(s)
- Estelle Schmitt
- LBCMCP-CNRS UMR5088, IFR109, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
77
|
Löffler H, Lukas J, Bartek J, Krämer A. Structure meets function—Centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 2006; 312:2633-40. [PMID: 16854412 DOI: 10.1016/j.yexcr.2006.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/14/2006] [Indexed: 01/21/2023]
Abstract
Centrosomes are cytoplasmic organelles playing a fundamental role in organizing both the interphase cytoskeleton and the bipolar mitotic spindle. In addition, the centrosome has recently come into focus as part of the network that integrates cell cycle arrest and repair signals in response to genotoxic stress--the DNA damage response. One important mediator of this response, the checkpoint kinase Chk1, has been shown to negatively regulate the G(2)/M transition via its centrosomal localization. Moreover, there is growing evidence that a centrosome inactivation checkpoint exists, which utilizes DNA damage-induced centrosome fragmentation or amplification to provoke a "mitotic catastrophe" and eliminate damaged cells. Candidate regulators of this centrosomal checkpoint include the checkpoint kinase Chk2 and its upstream regulators ATM and ATR. In addition, a growing number of other proteins have been implicated in centrosomal regulation of the DNA damage response, e.g. the tumor suppressor p53, the breast cancer susceptibility gene product BRCA1 and mitotic regulators such as Aurora A, Nek2 and the Polo-like kinases Plk1 and Plk3. However, many missing links and discrepancies between different model systems remain.
Collapse
Affiliation(s)
- Harald Löffler
- Clinical Cooperation Unit for Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
78
|
Paulsen MT, Starks AM, Derheimer FA, Hanasoge S, Li L, Dixon JE, Ljungman M. The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers. Mol Cancer 2006; 5:25. [PMID: 16784539 PMCID: PMC1524803 DOI: 10.1186/1476-4598-5-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022] Open
Abstract
Background The evolutionary conserved cyclin-dependent kinase phosphatase hCdc14A has been shown to play potential roles in the regulation of mitotic exit and in the centrosome duplication cycle. We have recently shown that hCdc14A also can interact with the tumor suppressor p53 both in vitro and in vivo and specifically dephosphorylates the ser315 site of p53 in vitro. In this study we developed antibodies against hCdc14A to investigate the expression and regulation of hCdc14A in human tissues and cancer cells. Results We show that hCdc14A is differentially expressed in human tissues and in 75 cancer cell lines examined. Treatments with the histone deacetylase inhibitor TSA, the demethylating agent 5-aza-2'-deoxycytodine or the proteasome inhibitor MG132 significantly induced expression of hCdc14A in cell lines expressing low or undetectable levels of hCdc14A. There was a strong bias for low expression of hCdc14A in cancer cell lines harboring wild-type p53, suggesting that high Cdc14A expression is not compatible with wild-type p53 expression. We present evidence for a role for hCdc14A in the dephosphorylation of the ser315 site of p53 in vivo and that hCdc14A forms a complex with Cdk1/cyclin B during interphase but not during mitosis. Conclusion Our results that hCdc14A is differentially expressed in human cancer cells and that hCdc14A can interact with both p53 and the Cdk1/cyclin B complex may implicate that dysregulation of hCdc14A expression may play a role in carcinogenesis.
Collapse
Affiliation(s)
- Michelle T Paulsen
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adrienne M Starks
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick A Derheimer
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheela Hanasoge
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liwu Li
- Department of Biology, Virginia Tech, Blacksburg, VA 24061-0406, USA
| | - Jack E Dixon
- Departments of Pharmacology, Cellular & Molecular Medicine and Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
79
|
Abstract
The kinase Aurora-A (Aur-A), which is enriched at centrosomes, is required for centrosome maturation and accurate chromosome segregation, and recent work implicates centrosomes as sites where the earliest activation of cyclin B1-cdc2 occurs. Here, we have used Xenopus egg extracts to investigate Aur-A's contribution to cell cycle progression and spindle morphology in the presence or absence of centrosomes. We find that addition of active Aur-A accelerates cdc2 activation and mitotic entry. Depletion of endogenous Aur-A or addition of inactive Aur-A, which lead to monopolar spindles, delays but does not block mitotic entry. These effects on timing and spindle structure do not require the presence of centrosomes or chromosomes. The catalytic domain alone of Aur-A is sufficient to restore spindle bipolarity; additional N-terminal sequences function in mitotic timing.
Collapse
Affiliation(s)
- Quentin Liu
- *Department of Cell Biology, Harvard Medical School, Boston, MA 02115; and
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
- To whom correspondence may be addressed. E-mail:
or
| | - Joan V. Ruderman
- *Department of Cell Biology, Harvard Medical School, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
80
|
Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18:185-91. [PMID: 16488126 DOI: 10.1016/j.ceb.2006.02.003] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/06/2006] [Indexed: 02/08/2023]
Abstract
The CDC25 phosphatases are key regulators of normal cell division and the cell's response to DNA damage. Earlier studies suggested non-overlapping roles for each isoform during a specific cell cycle phase. However, recent data suggest that multiple CDC25 isoforms cooperate to regulate each cell cycle transition. For instance, although CDC25A was initially thought to exclusively regulate the G(1)-S transition, recent data demonstrate a significant role for CDC25A in the G(2)-M transition. Further evidence demonstrates that in addition to the ATM/ATR-CHK pathway, a p38-MAPKAP pathway is also involved in controlling CDC25 activity during G(2)/M checkpoint activation. Together with the fact that CDC25 overexpression is reported in many cancers, these data highlight the significance of developing specific CDC25 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
81
|
Lindqvist A, Källström H, Lundgren A, Barsoum E, Rosenthal CK. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. ACTA ACUST UNITED AC 2005; 171:35-45. [PMID: 16216921 PMCID: PMC2171226 DOI: 10.1083/jcb.200503066] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cdc25 phosphatases are essential for the activation of mitotic cyclin–Cdks, but the precise roles of the three mammalian isoforms (A, B, and C) are unclear. Using RNA interference to reduce the expression of each Cdc25 isoform in HeLa and HEK293 cells, we observed that Cdc25A and -B are both needed for mitotic entry, whereas Cdc25C alone cannot induce mitosis. We found that the G2 delay caused by small interfering RNA to Cdc25A or -B was accompanied by reduced activities of both cyclin B1–Cdk1 and cyclin A–Cdk2 complexes and a delayed accumulation of cyclin B1 protein. Further, three-dimensional time-lapse microscopy and quantification of Cdk1 phosphorylation versus cyclin B1 levels in individual cells revealed that Cdc25A and -B exert specific functions in the initiation of mitosis: Cdc25A may play a role in chromatin condensation, whereas Cdc25B specifically activates cyclin B1–Cdk1 on centrosomes.
Collapse
Affiliation(s)
- Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
82
|
Galamb O, Sipos F, Fischer K, Tulassay Z, Molnar B. The results of the expression array studies correlate and enhance the known genetic basis of gastric and colorectal cancer. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2005; 68:1-17. [PMID: 16208682 DOI: 10.1002/cyto.b.20069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gastric and colorectal cancers belong to the most frequent cancer types in the world today. This fact emphasizes the importance of identification of useful diagnostic and prognostic markers, in the earliest stage of the disease. The examination of gene expression profile in gastric and colorectal cancer may develop the bases of early diagnosis and of individual therapeutic strategies. In the microarray examinations done so far for these types of cancers, the expression of hundreds and thousands of genes were studied, however, both the sample collection and the results showed wide variations. The diversity of expression array methods and data analysis makes the comparison of microarray results difficult. Beside the exposition of the practical aspects of the chip technology, our aims are the systematization of data that are currently available in the international scientific literature and the description of the results in a comprehensive way. Microarray results show that the gene expression pattern, detected in gastric and colon cancers, highly depends on the histological type and heterogeneity of the sample, array type, and softwares, used for data analysis. Recent experiments point out not just the changes of the alterations of tumor suppression, apoptosis, cell-cycle regulation, and signal transduction, but tumor cell metabolism and cell-microenvironment interactions also. Results show connection to and make more complete the already known molecular background of gastric and colorectal cancers. Based on the accumulation of recent and further data, such kind of multifunctional diagnostic microarrays that can be suited for completing the conventional histological diagnostics and subtypization will certainly become available in the near future.
Collapse
Affiliation(s)
- Orsolya Galamb
- II Department of Medicine, Semmelweis University, Faculty of Medicine Budapest, Hungary.
| | | | | | | | | |
Collapse
|
83
|
Fabbro M, Zhou BB, Takahashi M, Sarcevic B, Lal P, Graham ME, Gabrielli BG, Robinson PJ, Nigg EA, Ono Y, Khanna KK. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 2005; 9:477-88. [PMID: 16198290 DOI: 10.1016/j.devcel.2005.09.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/15/2005] [Accepted: 09/01/2005] [Indexed: 11/30/2022]
Abstract
Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.
Collapse
Affiliation(s)
- Megan Fabbro
- Queensland Institute of Medical Research, P.O. Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Park SS, Eom YW, Choi KS. Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe but not in high dose doxorubicin-induced apoptosis. Biochem Biophys Res Commun 2005; 334:1014-21. [PMID: 16036217 DOI: 10.1016/j.bbrc.2005.06.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
In Huh-7 hepatoma cells, low dose (LD) doxorubicin treatment induces cell death through mitotic catastrophe accompanying the formation of large cells with multiple micronuclei, whereas high dose (HD) doxorubicin induces apoptosis. In this study, we investigated the role of Cdc2 and Cdk2 kinase in the regulation of the two modes of cell death induced by doxorubicin. During HD doxorubicin-induced apoptosis, the histone H1-associated activities of Cdc2 and Cdk2 both progressively declined in parallel with reductions in cyclin A and cyclin B protein levels. In contrast, during LD doxorubicin-induced cell death through mitotic catastrophe, the Cdc2 and Cdk2 kinases were transiently activated 1 day post-treatment, with similar changes seen in the protein levels of cyclin A, cyclin B, and Cdc2. Treatment with roscovitine, a specific inhibitor of Cdc2 and Cdk2, significantly blocked LD doxorubicin-induced mitotic catastrophe and cell death, but did not affect HD doxorubicin-induced apoptosis in Huh-7, SNU-398, and SNU-449 hepatoma cell lines. Our results demonstrate that differential regulation of Cdc2 and Cdk2 activity by different doses of doxorubicin may contribute to the induction of two distinct modes of cell death in hepatoma cells, either apoptosis or cell death through mitotic catastrophe.
Collapse
Affiliation(s)
- Seok Soon Park
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 442-749, Republic of Korea
| | | | | |
Collapse
|
85
|
Kuo PL, Hsu YL, Kuo YC, Chang CH, Lin CC. The anti-proliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anticancer Drugs 2005; 16:789-95. [PMID: 16027529 DOI: 10.1097/01.cad.0000171768.36317.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ellipticine, a cytotoxic plant alkaloid, is known to inhibit topoisomerase II. Here we report the mechanism of apoptosis induction and cell cycle arrest by ellipticine in human breast MDA-MB-231 cancer cells. Ellipticine treatment arrested MDA-MB-231 cells at the G2/M phase after 6 h of treatment. This effect was strongly associated with a concomitant decrease in the level of cyclin B1, Cdc25 and Cdc2, and increase in phospho-Cdc2 (Tyr15). In addition, ellipticine also induced apoptosis in MDA-MB-231 cells, as determined by using both DNA fragmentation and Annexin-V staining assay. Ellipticine increased the expression of Bax, but decreased the level of Bcl-2, Bcl-XL and X-linked inhibitor of apoptosis protein (XIAP), and subsequently triggered the mitochondrial apoptotic pathway (release of cytochrome c, and activation of caspase-9 and -3). In addition, pre-treatment of cells with caspase-9 inhibitor inhibited ellipticine-induced cell proliferation and apoptosis, indicating that caspase-9 activation was involved in MDA-MB-231 cell apoptosis induced by ellipticine. Taken together, our study suggests that the inhibition of cell cycle progression signaling and initiation of the mitochondrial apoptotic system may participate in the anti-proliferative activity of ellipticine in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Po-Lin Kuo
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
86
|
Lindqvist A, Källström H, Karlsson Rosenthal C. Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci 2005; 117:4979-90. [PMID: 15456846 DOI: 10.1242/jcs.01395] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cdc25 phosphatases are essential regulators of the cell cycle. In mammalian cells, the Cdc25B isoform activates cyclin A- and cyclin B1-containing complexes and is necessary for entry into mitosis. In this report, we characterise the subcellular localisation of Cdc25B by immunofluorescence in combination with RNA interference to identify specific antibody staining. We find that endogenous Cdc25B is mainly nuclear, but a fraction resides in the cytoplasm during the G2 phase of the cell cycle. Cdc25B starts to appear in S-phase cells and accumulates until prophase, after which the protein disappears. We characterise a nuclear export sequence in the N-terminus of Cdc25B (amino acids 54-67) that, when mutated, greatly reduces the ability of Cdc25B to shuttle in a fluorescence loss in photobleaching assay. Mutation of the nuclear export sequence makes Cdc25B less efficient in inducing mitosis, suggesting that an important mitotic function of Cdc25B occurs in the cytoplasm. Furthermore, we find that when cells are exposed to cycloheximide or ultraviolet irradiation, Cdc25B partially translocates to the cytoplasm. The dependence of this translocation event on a functional nuclear export sequence, an intact serine 323 residue (a 14-3-3 binding site) and p38 mitogen-activated protein kinase activity indicates that the p38 pathway regulates Cdc25B localisation in different situations of cellular stress.
Collapse
Affiliation(s)
- Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
87
|
Hsu YL, Kuo PL, Lin LT, Lin CC. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J Pharmacol Exp Ther 2005; 313:333-44. [PMID: 15626723 DOI: 10.1124/jpet.104.078808] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study first investigates the anticancer effect of asiatic acid in two human breast cancer cell lines, MCF-7 and MDA-MB-231. Asiatic acid exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased p21/WAF1 levels and reduced amounts of cyclinB1, cyclinA, Cdc2, and Cdc25C in a p53-independent manner. Asiatic acid also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the level of inactivated phospho-Cdc2 and phospho-Cdc25C. Asiatic acid treatment triggered the mitochondrial apoptotic pathway indicated by changing Bax/Bcl-2 ratios, cytochrome c release, and caspase-9 activation, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8. We also found that mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2), and p38, but not c-Jun NH2-terminal kinase (JNK), are critical mediators in asiatic acid-induced cell growth inhibition. U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole], specific inhibitors of mitogen-activated protein kinase kinase and p38 kinase activities, significantly decreased or delayed apoptosis. Asiatic acid was likely to confine the breast cancer cells in the S-G2/M phase mainly through the p38 pathway, because both SB203580 and p38 small interfering RNA (siRNA) inhibition significantly attenuated the accumulation of inactive phospho-Cdc2 and phospho-Cdc25C proteins and the cell numbers of S-G2/M phase. Moreover, U0126 and ERK siRNA inhibition completely suppressed asiatic acid-induced Bcl-2 phosphorylation and Bax up-regulation, and caspase-9 activation. Together, these results imply a critical role for ERK1/2 and p38 but not JNK, p53, and Fas/Fas ligand in asiatic acid-induced S-G2/M arrest and apoptosis of human breast cancer cells.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 807, Taiwan, Republic of China
| | | | | | | |
Collapse
|
88
|
Langley B, Ratan RR. Oxidative stress-induced death in the nervous system: cell cycle dependent or independent? J Neurosci Res 2004; 77:621-9. [PMID: 15352208 DOI: 10.1002/jnr.20210] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuronal death, attributable to perturbed redox homeostasis, is the underlying factor in many acute and chronic neurological disorders. The mechanisms employed by oxidatively stressed neurons to commit to cell death pathways are beginning to be characterized, but this is hampered by a lack of good models that extrapolate readily to redox-dependent neuronal death paradigms. In this Mini-Review, we discuss mechanisms by which oxidative stress can result in neurodegeneration. We examine evidence on which terminally differentiated neurons might commit to death under conditions of oxidative stress. In some cases, death may be linked to an aberrant and uncoordinated reentry into the cell cycle and mitotic catastrophe. Other evidence suggests that cell cycle reentry is not mandatory for death execution. Rather, the reexpression of cell cycle proteins may induce apoptotic pathways in a cell cycle-independent manner. In contrast to these models, there is also evidence that oxidative neuronal death is independent of cell cycle proteins. We conclude that oxidative stress-induced neuronal death may be promoted via several pathways, which may be cycle protein dependent or independent. The determining factor for which or how many pathways are induced appears to be context dependent and determined by the level and duration of oxidative stress.
Collapse
Affiliation(s)
- Brett Langley
- Department of Neurology, Harvard Medical School and the Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
89
|
Krämer A, Mailand N, Lukas C, Syljuåsen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 2004; 6:884-91. [PMID: 15311285 DOI: 10.1038/ncb1165] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 07/01/2004] [Indexed: 11/09/2022]
Abstract
Entry into mitosis occurs after activation of Cdk1, resulting in chromosome condensation in the nucleus and centrosome separation, as well as increased microtubule nucleation activity in the cytoplasm. The active cyclin-B1-Cdk1 complex first appears at the centrosome, suggesting that the centrosome may facilitate the activation of mitotic regulators required for the commitment of cells to mitosis. However, the signalling pathways involved in controlling the initial activation of Cdk1 at the centrosome remain largely unknown. Here, we show that human Chk1 kinase localizes to interphase, but not mitotic, centrosomes. Chemical inhibition of Chk1 resulted in premature centrosome separation and activation of centrosome-associated Cdk1. Forced immobilization of kinase-inactive Chk1 to centrosomes also resulted in premature Cdk1 activation. Conversely, under such conditions wild-type Chk1 impaired activation of centrosome-associated Cdk1, thereby resulting in DNA endoreplication and centrosome amplification. Activation of centrosomal Cdk1 in late prophase seemed to be mediated by cytoplasmic Cdc25B, whose activity is controlled by centrosome-associated Chk1. These results suggest that centrosome-associated Chk1 shields centrosomal Cdk1 from unscheduled activation by cytoplasmic Cdc25B, thereby contributing to proper timing of the initial steps of cell division, including mitotic spindle formation.
Collapse
Affiliation(s)
- Alwin Krämer
- Danish Cancer Society, Institute of Cancer Biology, Department of Cell Cycle and Cancer, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Charrier-Savournin FB, Château MT, Gire V, Sedivy J, Piette J, Dulic V. p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 2004; 15:3965-76. [PMID: 15181148 PMCID: PMC515331 DOI: 10.1091/mbc.e03-12-0871] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G2 arrest of cells suffering DNA damage in S phase is crucial to avoid their entry into mitosis, with the concomitant risks of oncogenic transformation. According to the current model, signals elicited by DNA damage prevent mitosis by inhibiting both activation and nuclear import of cyclin B1-Cdk1, a master mitotic regulator. We now show that normal human fibroblasts use additional mechanisms to block activation of cyclin B1-Cdk1. In these cells, exposure to nonrepairable DNA damage leads to nuclear accumulation of inactive cyclin B1-Cdk1 complexes. This nuclear retention, which strictly depends on association with endogenous p21, prevents activation of cyclin B1-Cdk1 by Cdc25 and Cdk-activating kinase as well as its recruitment to the centrosome. In p21-deficient normal human fibroblasts and immortal cell lines, cyclin B1 fails to accumulate in the nucleus and could be readily detected at the centrosome in response to DNA damage. Therefore, in normal cells, p21 exerts a dual role in mediating DNA damage-induced cell cycle arrest and exit before mitosis. In addition to blocking pRb phosphorylation, p21 directly prevents mitosis by inactivating and maintaining the inactive state of mitotic cyclin-Cdk complexes. This, with subsequent degradation of mitotic cyclins, further contributes to the establishment of a permanent G2 arrest.
Collapse
|
91
|
Hasskarl J, Duensing S, Manuel E, Münger K. The helix-loop-helix protein ID1 localizes to centrosomes and rapidly induces abnormal centrosome numbers. Oncogene 2004; 23:1930-8. [PMID: 14755252 DOI: 10.1038/sj.onc.1207310] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ID1 is a member of the inhibitor of DNA binding/differentiation (ID) family of dominant negative helix-loop-helix transcription factors. ID-proteins have been implicated in the control of differentiation and transcriptional modulation of various cell cycle regulators and high levels of ID1 expression are frequently detected in various cancer types. However, it is unclear whether ID1 is a marker of highly proliferative cancer cells or whether it directly contributes to the tumor phenotype. A detailed analysis of ID1-expressing human cells revealed that a fraction of ID1 localizes to centrosomes. Ectopic expression of ID1 in primary cells and tumor cell lines resulted in accumulation of cells with abnormal centrosome numbers. There was no evidence for centrosomal localization or induction of centrosome abnormalities by the other ID family members. Hence, ID1 may contribute to oncogenesis not only by inhibiting transcriptional activity of basic helix-loop-helix transcription factors and abrogate differentiation but also by subverting centrosome duplication.
Collapse
Affiliation(s)
- Jens Hasskarl
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
92
|
Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouché JP, Theis-Febvre N, Schmitt E, Monsarrat B, Prigent C, Ducommun B. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci 2004; 117:2523-31. [PMID: 15128871 DOI: 10.1242/jcs.01108] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aurora-A protein kinase, which is the product of an oncogene, is required for the assembly of a functional mitotic apparatus and the regulation of cell ploidy. Overexpression of Aurora-A in tumour cells has been correlated with cancer susceptibility and poor prognosis. Aurora-A activity is required for the recruitment of CDK1-cyclin B1 to the centrosome prior to its activation and the commitment of the cell to mitosis. In this report, we demonstrate that the CDC25B phosphatase, an activator of cyclin dependent kinases at mitosis, is phosphorylated both in vitro and in vivo by Aurora-A on serine 353 and that this phosphorylated form of CDC25B is located at the centrosome during mitosis. Knockdown experiments by RNAi confirm that the centrosome phosphorylation of CDC25B on S353 depends on Aurora-A kinase. Microinjection of antibodies against phosphorylated S353 results in a mitotic delay whilst overexpression of a S353 phosphomimetic mutant enhances the mitotic inducing effect of CDC25B. Our results demonstrate that Aurora-A phosphorylates CDC25B in vivo at the centrosome during mitosis. This phosphorylation might locally participate in the control of the onset of mitosis. These findings re-emphasise the role of the centrosome as a functional integrator of the pathways contributing to the triggering of mitosis.
Collapse
Affiliation(s)
- Stéphanie Dutertre
- Groupe Cycle Cellulaire - CNRS UMR6061 - IFR97, Génomique Fonctionnelle et Santé, Université de Rennes I, 35043 Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Sanchez V, McElroy AK, Spector DH. Mechanisms governing maintenance of Cdk1/cyclin B1 kinase activity in cells infected with human cytomegalovirus. J Virol 2004; 77:13214-24. [PMID: 14645578 PMCID: PMC296097 DOI: 10.1128/jvi.77.24.13214-13224.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has demonstrated dysregulation of key cell cycle components in human cytomegalovirus (HCMV)-infected human fibroblasts, resulting in cell cycle arrest (F. M. Jault, J.-M. Jault, F. Ruchti, E. A. Fortunato, C. L. Clark, J. Corbeil, D. D. Richman, and D. H. Spector, J. Virol. 69:6697-6704, 1995). The activation of the mitotic kinase Cdk1/cyclin B, which was detected as early as 8 h postinfection (p.i.) and maintained throughout the time course, was particularly interesting. To understand the mechanisms underlying the induction of this kinase activity, we have examined the pathways that regulate the activation of Cdk1/cyclin B1 complexes. The accumulation of the cyclin B1 subunit in HCMV-infected cells is the result of increased synthesis and reduced degradation of the protein. In addition, the catalytic subunit, Cdk1, accumulates in its active form in virus-infected cells. The decreased level of the Tyr15-phosphorylated form of Cdk1 in virus-infected fibroblasts is due in part to the down-regulation of the expression and activity of the Cdk1 inhibitory kinases Myt1 and Wee1. Increased degradation of Wee1 via the proteasome also accounts for its absence at 24 h p.i. At late times, we observed accumulation of the Cdc25 phosphatases that remove the inhibitory phosphates from Cdk1. Interestingly, biochemical fractionation studies revealed that the active form of Cdk1, a fraction of total cyclin B1, and the Cdc25 phosphatases reside predominantly in the cytoplasm of infected cells. Collectively, these data suggest that the maintenance of Cdk1/cyclin B1 activity observed in HCMV-infected cells can be explained by three mechanisms: the accumulation of cyclin B1, the inactivation of negative regulatory pathways for Cdk1, and the accumulation of positive factors that promote Cdk1 activity.
Collapse
Affiliation(s)
- Veronica Sanchez
- Molecular Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | |
Collapse
|
94
|
Giles N, Forrest A, Gabrielli B. 14-3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity. J Biol Chem 2003; 278:28580-7. [PMID: 12764136 DOI: 10.1074/jbc.m304027200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major regulators of mitosis in somatic cells is cdc25B. cdc25B is tightly regulated at multiple levels. The final activation step involves the regulated binding of 14-3-3 proteins. Previous studies have demonstrated that Ser-323 is a primary 14-3-3 binding site in cdc25B, which influences its activity and cellular localization. 14-3-3 binding to this site appeared to interact with the N-terminal domain of cdc25B to regulate its activity. The presence of consensus 14-3-3 binding sites in the N-terminal domain suggested that the interaction is through direct binding of the 14-3-3 dimer to sites in the N-terminal domain. We have identified Ser-151 and Ser-230 in the N-terminal domain as functional 14-3-3 binding sites utilized by cdc25B in vivo. These low affinity sites cooperate to bind the 14-3-3 dimer bound to the high affinity Ser-323 site, thus forming an intramolecular bridge that constrains cdc25B structure to prevent access of the catalytic site. Loss of 14-3-3 binding to either N-terminal site relaxes cdc25B structure sufficiently to permit access to the catalytic site, and the nuclear export sequence located in the N-terminal domain. Mutation of the Ser-323 site was functionally equivalent to the mutation of all three sites, resulting in the complete loss of 14-3-3 binding, increased access of the catalytic site, and access to nuclear localization sequence.
Collapse
Affiliation(s)
- Nichole Giles
- Cancer Biology Program, Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | | | | |
Collapse
|
95
|
Beckhelling C, Chang P, Chevalier S, Ford C, Houliston E. Pre-M phase-promoting factor associates with annulate lamellae in Xenopus oocytes and egg extracts. Mol Biol Cell 2003; 14:1125-37. [PMID: 12631728 PMCID: PMC151584 DOI: 10.1091/mbc.e02-08-0511] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Revised: 10/21/2002] [Accepted: 11/18/2002] [Indexed: 11/11/2022] Open
Abstract
We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates.
Collapse
Affiliation(s)
- Clare Beckhelling
- Unité Mixte Recherche 7009, Centre National de la Recherche Scientifique/Université Paris VI, Observatoire Oceanologique de Villefranche sur Mer, 06234, Villefranche sur Mer, France
| | | | | | | | | |
Collapse
|
96
|
Jazaeri AA, Lu K, Schmandt R, Harris CP, Rao PH, Sotiriou C, Chandramouli GVR, Gershenson DM, Liu ET. Molecular determinants of tumor differentiation in papillary serous ovarian carcinoma. Mol Carcinog 2003; 36:53-9. [PMID: 12557260 DOI: 10.1002/mc.10098] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In epithelial ovarian cancer, tumor grade is an independent prognosticator whose molecular determinants remain unknown. We investigated patterns of gene expression in well- and poorly differentiated serous papillary ovarian and peritoneal carcinomas with cDNA microarrays. A 6500-feature cDNA microarray was used for comparison of the molecular profiles of eight grade III and four grade I stage III serous papillary adenocarcinomas. With a modified F-test in conjunction with random permutations, 99 genes whose expression was significantly different between grade I and grade III tumors were identified (P < 0.01). A disproportionate number of these differentially expressed genes were located on the chromosomal regions 20q13 and all exhibited higher expression in grade III tumors. Interphase fluorescent in situ hybridization demonstrated 20q13 amplification in two of the four grade III and none of the three grade I tumors available for evaluation. Several centrosome-related genes also showed higher expression in grade III tumors. We propose a model in which tumor differentiation is inversely correlated with the overexpression of several oncogenes located on 20q13, a common amplicon in ovarian and numerous other cancers. Dysregulation of centrosome function is one potential mechanistic link between genetic/epigenetic changes and the poorly differentiated phenotype in ovarian cancer.
Collapse
Affiliation(s)
- Amir A Jazaeri
- Center for Cancer Research of the National Cancer Institute, Gaithersburg, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Vantieghem A, Xu Y, Assefa Z, Piette J, Vandenheede JR, Merlevede W, De Witte PAM, Agostinis P. Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem 2002; 277:37718-31. [PMID: 12101183 DOI: 10.1074/jbc.m204348200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of Bcl-2 in photodynamic therapy (PDT) is controversial, and some photosensitizers have been shown to induce Bcl-2 degradation with loss of its protective function. Hypericin is a naturally occurring photosensitizer with promising properties for the PDT of cancer. Here we show that, in HeLa cells, photoactivated hypericin does not cause Bcl-2 degradation but induces Bcl-2 phosphorylation in a dose- and time-dependent manner. Bcl-2 phosphorylation is induced by sublethal PDT doses; increasing the photodynamic stress promptly leads to apoptosis, during which Bcl-2 is neither phosphorylated nor degraded. Bcl-2 phosphorylation involves mitochondrial Bcl-2 and correlates with the kinetics of a G(2)/M cell cycle arrest, preceding apoptosis. The co-localization of hypericin with alpha-tubulin and the aberrant mitotic spindles observed following sublethal PDT doses suggest that photodamage to the microtubule network provokes the G(2)/M phase arrest. PDT-induced Bcl-2 phosphorylation is not altered by either the overexpression or inhibition of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH(2)-terminal protein kinase 1 (JNK1) nor by inhibiting the extracellular signal-regulated kinases (ERKs) or protein kinase C. By contrast, Bcl-2 phosphorylation is selectively suppressed by the cyclin-dependent protein kinase (CDK)-inhibitor roscovitine, completely blocked by the protein synthesis inhibitor cycloheximide and enhanced by the overexpression of CDK1, suggesting a role for this pathway. However, in an in vitro kinase assay, active CDK1/cyclin B1 complex failed to phosphorylate immunoprecipitated Bcl-2, suggesting that this protein kinase may not directly modify Bcl-2. Mutation of serine-70 to alanine in Bcl-2 abolishes PDT-induced phosphorylation and restores the caspase-3 activation to the same levels of the vector-transfected cells, indicating that Bcl-2 phosphorylation may be a signal to delay apoptosis in G(2)/M phase-arrested cells.
Collapse
Affiliation(s)
- Annelies Vantieghem
- Division of Biochemistry, Faculty of Medicine, Catholic University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin L. Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 2001; 105:639-50. [PMID: 11516829 DOI: 10.1016/s0306-4522(01)00219-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Cdc2/cyclin B kinase is a critical regulator of mitosis that is normally absent from terminally differentiated neurons of adult brain. However, unscheduled expression and activation of Cdc2/cyclin B has been seen in neurons undergoing degeneration in Alzheimer's disease. The presence of this mitotic kinase correlates with accumulation of mitotic phosphoepitopes in protein components of the hallmark neurofibrillary tangles. Of importance to the pathogenic mechanism of Alzheimer's disease is the striking appearance of Cdc2/cyclin B and mitotic phosphoepitopes prior to neurofibrillary tangle formation, which has suggested that a misappropriate mitotic cascade initiates and mediates the neurodegenerative process. To explain the atypical activation of Cdc2/cyclin B in degenerating neurons we have investigated the enzyme responsible for Cdc2/cyclin B activation in mitotic cells, i.e. the Cdc25B tyrosine phosphatase, in Alzheimer's disease brain. Although the enzyme appeared abundant in affected neurons, it was also evident in unaffected neurons of Alzheimer's disease and control brain. Thus, we have found, surprisingly, that Cdc25B is a normal constituent of adult brain neurons, with detectable basal levels of activity. In Alzheimer's disease the levels and activity of the enzyme are elevated, and the active enzyme predominates in the cytoplasmic compartment of neurons. Consistent with these M phase-type changes, Cdc25B displays increased immunoreactivity towards the MPM-2 mitotic phosphoepitope antibody. We propose that aberrant expression of Cdc2/cyclin B in Alzheimer's disease leads to potentiation of mitotic activation mediated by constitutive neuronal Cdc25B activity. As a result, various downstream indices of mitotic events are generated, eventually culminating in neurodegeneration. Our data also suggest that Cdc25B is functional in normal post-mitotic neurons lacking the mitotic Cdc2/cyclin B, but it does not appear to influence the activity of Cdk5, a Cdc2-like kinase that is particularly enriched in brain.
Collapse
Affiliation(s)
- I Vincent
- Department of Pathology, University of Washington, K056 HSB, P.O. Box 357705, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Forrest A, Gabrielli B. Cdc25B activity is regulated by 14-3-3. Oncogene 2001; 20:4393-401. [PMID: 11466620 DOI: 10.1038/sj.onc.1204574] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2001] [Revised: 04/12/2001] [Accepted: 04/30/2001] [Indexed: 11/08/2022]
Abstract
In the G2 phase cell cycle checkpoint arrest, the cdc25-dependent activation of cyclin B/cdc2, a critical step in regulating entry into mitosis, is blocked. Studies in yeast have demonstrated that the inhibition of cdc25 function involves 14-3-3 binding to cdc25. In humans, two cdc25 isoforms have roles in G2/M progression, cdc25B and cdc25C, both bind 14-3-3. Abrogating 14-3-3 binding to cdc25C attenuates the G2 checkpoint arrest, but the contribution of 14-3-3 binding to the regulation of cdc25B function is unknown. Here we demonstrate that high level over-expression of cdc25B in G2 checkpoint arrested cells can activate cyclin B/cdc2 and overcome the checkpoint arrest. Mutation of the major 14-3-3 binding site, S323, or removal of the N-terminal regulatory domain are strong activating mutations, increasing the efficiency with which the mutant forms of cdc25B not only overcome the arrest, but also initiate aberrant mitosis. We also demonstrate that 14-3-3 binding to the S323 site on cdc25B blocks access of the substrate cyclin/cdks to the catalytic site of the enzyme, thereby directly inhibiting the activity of cdc25B. This provides direct mechanistic evidence that 14-3-3 binding to cdc25B can regulate its activity, thereby controlling progression into mitosis.
Collapse
Affiliation(s)
- A Forrest
- Joint Oncology Program, Department of Pathology, University of Queensland School of Medicine, Herston Road, Brisbane, Queensland 4006, Australia
| | | |
Collapse
|
100
|
Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG. The highly reduced genome of an enslaved algal nucleus. Nature 2001; 410:1091-6. [PMID: 11323671 DOI: 10.1038/35074092] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.
Collapse
Affiliation(s)
- S Douglas
- National Research Council of Canada Institute for Marine Biosciences and Program in Evolutionary Biology, Canadian Institute of Advanced Research, 1411 Oxford Street, Halifax, Nova Scotia B3H 3ZI, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|