51
|
Prasad M K, Mohandas S, Ramkumar KM. Role of ER stress inhibitors in the management of diabetes. Eur J Pharmacol 2022; 922:174893. [DOI: 10.1016/j.ejphar.2022.174893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
|
52
|
Martin S, Sorokin EP, Thomas EL, Sattar N, Cule M, Bell JD, Yaghootkar H. Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Diabetes Care 2022; 45:460-468. [PMID: 34983059 DOI: 10.2337/dc21-1262] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Fat content and volume of liver and pancreas are associated with risk of diabetes in observational studies; whether these associations are causal is unknown. We conducted a Mendelian randomization (MR) study to examine causality of such associations. RESEARCH DESIGN AND METHODS We used genetic variants associated (P < 5 × 10-8) with the exposures (liver and pancreas volume and fat content) using MRI scans of UK Biobank participants (n = 32,859). We obtained summary-level data for risk of type 1 (9,358 cases) and type 2 (55,005 cases) diabetes from the largest available genome-wide association studies. We performed inverse-variance weighted MR as main analysis and several sensitivity analyses to assess pleiotropy and to exclude variants with potential pleiotropic effects. RESULTS Observationally, liver fat and volume were associated with type 2 diabetes (odds ratio per 1 SD higher exposure 2.16 [2.02, 2.31] and 2.11 [1.96, 2.27], respectively). Pancreatic fat was associated with type 2 diabetes (1.42 [1.34, 1.51]) but not type 1 diabetes, and pancreas volume was negatively associated with type 1 diabetes (0.42 [0.36, 0.48]) and type 2 diabetes (0.73 [0.68, 0.78]). MR analysis provided evidence only for a causal role of liver fat and pancreas volume in risk of type 2 diabetes (1.27 [1.08, 1.49] or 27% increased risk and 0.76 [0.62, 0.94] or 24% decreased risk per 1SD, respectively) and no causal associations with type 1 diabetes. CONCLUSIONS Our findings assist in understanding the causal role of ectopic fat in the liver and pancreas and of organ volume in the pathophysiology of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Susan Martin
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K.,Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K.,Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, U.K
| |
Collapse
|
53
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
54
|
Joglekar MV, Sahu S, Wong WKM, Satoor SN, Dong CX, Farr RJ, Williams MD, Pandya P, Jhala G, Yang SNY, Chew YV, Hetherington N, Thiruchevlam D, Mitnala S, Rao GV, Reddy DN, Loudovaris T, Hawthorne WJ, Elefanty AG, Joglekar VM, Stanley EG, Martin D, Thomas HE, Tosh D, Dalgaard LT, Hardikar AA. A Pro-Endocrine Pancreatic Islet Transcriptional Program Established During Development Is Retained in Human Gallbladder Epithelial Cells. Cell Mol Gastroenterol Hepatol 2022; 13:1530-1553.e4. [PMID: 35032693 PMCID: PMC9043310 DOI: 10.1016/j.jcmgh.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Pancreatic islet β-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Subhshri Sahu
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Sarang N Satoor
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Charlotte X Dong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Ryan J Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Michael D Williams
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Prapti Pandya
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - Sundy N Y Yang
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Yi Vee Chew
- The Westmead Institute for Medical Research, Westmead Millenium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicola Hetherington
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Dhan Thiruchevlam
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Sasikala Mitnala
- Surgical Gastroenterology Research, Asian Institute of Gastroenterology, Hyderabad, India
| | - Guduru V Rao
- Surgical Gastroenterology Research, Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Thomas Loudovaris
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - Wayne J Hawthorne
- The Westmead Institute for Medical Research, Westmead Millenium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Edouard G Stanley
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - David Martin
- Upper Gastrointestinal Surgery, Strathfield Hospital, Strathfield, New South Wales, Australia
| | - Helen E Thomas
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - David Tosh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Louise T Dalgaard
- Section of Eukaryotic Cell Biology, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.
| |
Collapse
|
55
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
56
|
Wang Z, Jiao P, Zhong Y, Ji H, Zhang Y, Song H, Du H, Ding X, Wu H. The Endoplasmic Reticulum-Stressed Head and Neck Squamous Cell Carcinoma Cells Induced Exosomal miR-424-5p Inhibits Angiogenesis and Migration of Humanumbilical Vein Endothelial Cells Through LAMC1-Mediated Wnt/β-Catenin Signaling Pathway. Cell Transplant 2022; 31:9636897221083549. [PMID: 35315295 PMCID: PMC8943634 DOI: 10.1177/09636897221083549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Under endoplasmic reticulum (ER) stress, tumor plays multifaceted roles in
endothelial cell dysfunction through secreting exosomal miRNAs. However, for the
head and neck squamous cell carcinoma (HNSCC), it is still unclear about the
impact of ER-stressed HNSCC cell derived exosomes on vascular endothelial cells.
To address this gap, herein, systemic research was conducted including isolation
and characterization of ER-stressed HNSCC cell (HN4 cell line as an in
vitro model) derived exosomes, identification of regulatory
exosomal miRNAs, target exploration and downstream signaling pathway
investigation of exosomal miRNAs in human umbilical vein endothelial cell
(HUVEC). ER-stressed HN4 cell-derived exosomes inhibited angiogenesis and
migration of HUVEC cells in vitro. Furthermore, RNA-seq
analysis demonstrated that miR-424-5p was highly upregulated in ER-stressed HN4
cell-derived exosomes. Through matrigel tube formation and transwell assays of
HUVEC cells, miR-424-5p displayed great capabilities on inhibiting angiogenesis
and migration. Finally, based on western blot and luciferase reporter, it was
demonstrated that LAMC1 is the target of miR-424-5p which could inhibit the
angiogenesis and migration of HUVEC cells by repressing the LAMC1-mediated
Wnt/β-catenin signaling pathway. ER-stressed HNSCC cell-induced exosomal
miR-424-5p inhibits angiogenesis and migration of HUVEC cells through
LAMC1-mediated Wnt/β-catenin signaling pathway. This study offers a new insight
for understanding the complicated mechanism behind ER-stress induced
anti-angiogenesis of HNSCC.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Pengfei Jiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Yi Zhong
- Department of General Dentistry, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Haiyang Song
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China.,Department of General Dentistry, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
57
|
Sahin GS, Lee H, Engin F. An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol Metab 2021; 54:101365. [PMID: 34728341 PMCID: PMC8606542 DOI: 10.1016/j.molmet.2021.101365] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pancreatic β-cells are the insulin factory of an organism with a mission to regulate glucose homeostasis in the body. Due to their high secretory activity, β-cells rely on a functional and intact endoplasmic reticulum (ER). Perturbations to ER homeostasis and unmitigated stress lead to β-cell dysfunction and death. Type 1 diabetes (T1D) is a chronic inflammatory disease caused by the autoimmune-mediated destruction of β-cells. Although autoimmunity is an essential component of T1D pathogenesis, accumulating evidence suggests an important role of β-cell ER stress and aberrant unfolded protein response (UPR) in disease initiation and progression. SCOPE OF REVIEW In this article, we introduce ER stress and the UPR, review β-cell ER stress in various mouse models, evaluate its involvement in inflammation, and discuss the effects of ER stress on β-cell plasticity and demise, and islet autoimmunity in T1D. We also highlight the relationship of ER stress with other stress response pathways and provide insight into ongoing clinical studies targeting ER stress and the UPR for the prevention or treatment of T1D. MAJOR CONCLUSIONS Evidence from ex vivo studies, in vivo mouse models, and tissue samples from patients suggest that β-cell ER stress and a defective UPR contribute to T1D pathogenesis. Thus, restoration of β-cell ER homeostasis at various stages of disease presents a plausible therapeutic strategy for T1D. Identifying the specific functions and regulation of each UPR sensor in β-cells and uncovering the crosstalk between stressed β-cells and immune cells during T1D progression would provide a better understanding of the molecular mechanisms of disease process, and may reveal novel targets for development of effective therapies for T1D.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
58
|
Thomaidou S, Slieker RC, van der Slik AR, Boom J, Mulder F, Munoz-Garcia A, 't Hart LM, Koeleman B, Carlotti F, Hoeben RC, Roep BO, Mei H, Zaldumbide A. Long RNA Sequencing and Ribosome Profiling of Inflamed β-Cells Reveal an Extensive Translatome Landscape. Diabetes 2021; 70:2299-2312. [PMID: 34554924 DOI: 10.2337/db20-1122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of the insulin-producing pancreatic β-cells. Increasing evidence suggest that the β-cells themselves contribute to their own destruction by generating neoantigens through the production of aberrant or modified proteins that escape central tolerance. We recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human β-cells, emphasizing the participation of nonconventional translation events in autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human β-cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from noncanonical start sites and translation initiation within long noncoding RNA. Our data underline the extreme diversity of the β-cell translatome and may reveal new functional biomarkers for β-cell distress, disease prediction and progression, and therapeutic intervention in T1D.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands
| | - Arno R van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Jasper Boom
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Flip Mulder
- Center for Molecular Medicine, Utrecht Medical Center, Utrecht, the Netherlands
| | - Amadeo Munoz-Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bobby Koeleman
- Center for Molecular Medicine, Utrecht Medical Center, Utrecht, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
59
|
Yao M, Domogatskaya A, Ågren N, Watanabe M, Tokodai K, Brines M, Cerami A, Ericzon BG, Kumagai-Braesch M, Lundgren T. Cibinetide Protects Isolated Human Islets in a Stressful Environment and Improves Engraftment in the Perspective of Intra Portal Islet Transplantation. Cell Transplant 2021; 30:9636897211039739. [PMID: 34498509 PMCID: PMC8436319 DOI: 10.1177/09636897211039739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During intra-portal pancreatic islet transplantation (PITx), innate immune reactions such as the instant blood mediated inflammatory reaction (IBMIR) cause an immediate loss of islets. The non-hematopoietic erythropoietin analogue cibinetide has previously shown islet-protective effects in mouse PITx. Herein, we aimed to confirm cibinetide's efficacy on human islets, and to characterize its effect on IBMIR. We cultured human islets with pro-inflammatory cytokines for 18 hours with or without cibinetide. ATP content and caspase 3/7 activity were measured. Dynamic glucose perfusion assay was used to evaluate islet function. To evaluate cibinetides effect on IBMIR, human islets were incubated in heparinized polyvinyl chloride tubing system with ABO compatible blood and rotated for 60 minutes to mimic the portal vein system. Moreover, human islets were transplanted into athymic mice livers via the portal vein with or without perioperative cibinetide treatment. The mice were sacrificed six days following transplantation and the livers were analyzed for human insulin and serum for human C-peptide levels. Histological examination of recipient livers to evaluate islet graft infiltration by CD11b+ cells was performed. Our results show that cibinetide maintained human islet ATP levels and reduced the caspase 3/7 activity during culture with pro-inflammatory cytokines and improved their insulin secreting capacity. In the PVC loop system, administration of cibinetide reduced the IBMIR-induced platelet consumption. In human islet to athymic mice PITx, cibinetide treatment showed an increased amount of human insulin in the livers and higher serum human C-peptide, while histological examination of the livers showed reduced infiltration of pro-inflammatory CD11b+ cells around islets grafts compared to the controls. In summary, Cibinetide protected isolated human islets in a pro-inflammatory milieu and reduced IBMIR related platelet consumption. It improved engraftment of human islets in athymic mice. The study confirms that cibinetide is a promising agent to be used in clinical PITx.
Collapse
Affiliation(s)
- Ming Yao
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Nils Ågren
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Masaaki Watanabe
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Kazuaki Tokodai
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | | | | | - Bo-Göran Ericzon
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, and Department of Transplantation Surgery, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
60
|
Abstract
In this review, Lee and Olefsky discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| | - Jerrold Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
61
|
Eizirik DL, Szymczak F, Alvelos MI, Martin F. From Pancreatic β-Cell Gene Networks to Novel Therapies for Type 1 Diabetes. Diabetes 2021; 70:1915-1925. [PMID: 34417266 PMCID: PMC8576417 DOI: 10.2337/dbi20-0046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Completion of the Human Genome Project enabled a novel systems- and network-level understanding of biology, but this remains to be applied for understanding the pathogenesis of type 1 diabetes (T1D). We propose that defining the key gene regulatory networks that drive β-cell dysfunction and death in T1D might enable the design of therapies that target the core disease mechanism, namely, the progressive loss of pancreatic β-cells. Indeed, many successful drugs do not directly target individual disease genes but, rather, modulate the consequences of defective steps, targeting proteins located one or two steps downstream. If we transpose this to the T1D situation, it makes sense to target the pathways that modulate the β-cell responses to the immune assault-in relation to signals that may stimulate the immune response (e.g., HLA class I and chemokine overexpression and/or neoantigen expression) or inhibit the invading immune cells (e.g., PDL1 and HLA-E expression)-instead of targeting only the immune system, as it is usually proposed. Here we discuss the importance of a focus on β-cells in T1D, lessons learned from other autoimmune diseases, the "alternative splicing connection," data mining, and drug repurposing to protect β-cells in T1D and then some of the initial candidates under testing for β-cell protection.
Collapse
Affiliation(s)
- Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
62
|
Javeed N, Her TK, Brown MR, Vanderboom P, Rakshit K, Egan AM, Vella A, Lanza I, Matveyenko AV. Pro-inflammatory β cell small extracellular vesicles induce β cell failure through activation of the CXCL10/CXCR3 axis in diabetes. Cell Rep 2021; 36:109613. [PMID: 34433033 PMCID: PMC8420815 DOI: 10.1016/j.celrep.2021.109613] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Coordinated communication among pancreatic islet cells is necessary for maintenance of glucose homeostasis. In diabetes, chronic exposure to pro-inflammatory cytokines has been shown to perturb β cell communication and function. Compelling evidence has implicated extracellular vesicles (EVs) in modulating physiological and pathological responses to β cell stress. We report that pro-inflammatory β cell small EVs (cytokine-exposed EVs [cytoEVs]) induce β cell dysfunction, promote a pro-inflammatory islet transcriptome, and enhance recruitment of CD8+ T cells and macrophages. Proteomic analysis of cytoEVs shows enrichment of the chemokine CXCL10, with surface topological analysis depicting CXCL10 as membrane bound on cytoEVs to facilitate direct binding to CXCR3 receptors on the surface of β cells. CXCR3 receptor inhibition reduced CXCL10-cytoEV binding and attenuated β cell dysfunction, inflammatory gene expression, and leukocyte recruitment to islets. This work implies a significant role of pro-inflammatory β cell-derived small EVs in modulating β cell function, global gene expression, and antigen presentation through activation of the CXCL10/CXCR3 axis.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick Vanderboom
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aoife M Egan
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Adrian Vella
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian Lanza
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
63
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
64
|
Alvelos MI, Szymczak F, Castela Â, Marín-Cañas S, de Souza BM, Gkantounas I, Colli M, Fantuzzi F, Cosentino C, Igoillo-Esteve M, Marselli L, Marchetti P, Cnop M, Eizirik DL. A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets 2021; 13:51-65. [PMID: 34241569 PMCID: PMC8280887 DOI: 10.1080/19382014.2021.1948282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Exposure of human pancreatic beta cells to pro-inflammatory cytokines or metabolic stressors is used to model events related to type 1 and type 2 diabetes, respectively. Quantitative real-time PCR is commonly used to quantify changes in gene expression. The selection of the most adequate reference gene(s) for gene expression normalization is an important pre-requisite to obtain accurate and reliable results. There are no universally applicable reference genes, and the human beta cell expression of commonly used reference genes can be altered by different stressors. Here we aimed to identify the most stably expressed genes in human beta cells to normalize quantitative real-time PCR gene expression.We used comprehensive RNA-sequencing data from the human pancreatic beta cell line EndoC-βH1, human islets exposed to cytokines or the free fatty acid palmitate in order to identify the most stably expressed genes. Genes were filtered based on their level of significance (adjusted P-value >0.05), fold-change (|fold-change| <1.5) and a coefficient of variation <10%. Candidate reference genes were validated by quantitative real-time PCR in independent samples.We identified a total of 264 genes stably expressed in EndoC-βH1 cells and human islets following cytokines - or palmitate-induced stress, displaying a low coefficient of variation. Validation by quantitative real-time PCR of the top five genes ARF1, CWC15, RAB7A, SIAH1 and VAPA corroborated their expression stability under most of the tested conditions. Further validation in independent samples indicated that the geometric mean of ACTB and VAPA expression can be used as a reliable normalizing factor in human beta cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- CONTACT Maria Inês Alvelos ULB Center for Diabetic Research, Medical Faculty, Université Libre De Bruxelles (ULB), Route De Lennik, 808 – CP618, B-1070 – Brussels – Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Bianca Marmontel de Souza
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Ioannis Gkantounas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Maikel Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Welbio, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
65
|
Rodriguez-Calvo T, Christoffersson G, Bender C, von Herrath MG, Mallone R, Kent SC, James EA. Means, Motive, and Opportunity: Do Non-Islet-Reactive Infiltrating T Cells Contribute to Autoimmunity in Type 1 Diabetes? Front Immunol 2021; 12:683091. [PMID: 34220832 PMCID: PMC8242234 DOI: 10.3389/fimmu.2021.683091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
In human type 1 diabetes and animal models of the disease, a diverse assortment of immune cells infiltrates the pancreatic islets. CD8+ T cells are well represented within infiltrates and HLA multimer staining of pancreas sections provides clear evidence that islet epitope reactive T cells are present within autoimmune lesions. These bona fide effectors have been a key research focus because these cells represent an intellectually attractive culprit for β cell destruction. However, T cell receptors are highly diverse in human insulitis. This suggests correspondingly broad antigen specificity, which includes a majority of T cells for which there is no evidence of islet-specific reactivity. The presence of “non-cognate” T cells in insulitis raises suspicion that their role could be beyond that of an innocent bystander. In this perspective, we consider the potential pathogenic contribution of non-islet-reactive T cells. Our intellectual framework will be that of a criminal investigation. Having arraigned islet-specific CD8+ T cells for the murder of pancreatic β cells, we then turn our attention to the non-target immune cells present in human insulitis and consider the possible regulatory, benign, or effector roles that they may play in disease. Considering available evidence, we overview the case that can be made that non-islet-reactive infiltrating T cells should be suspected as co-conspirators or accessories to the crime and suggest some possible routes forward for reaching a better understanding of their role in disease.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gustaf Christoffersson
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christine Bender
- Center for Autoimmunity and Inflammation, Type 1 Diabetes Center at La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Matthias G von Herrath
- Center for Autoimmunity and Inflammation, Type 1 Diabetes Center at La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eddie A James
- Translatonal Research Program, Benaroya Research Institute, Seattle WA, United States
| |
Collapse
|
66
|
Ogawa Y, Kawakami Y, Tsubota K. Cascade of Inflammatory, Fibrotic Processes, and Stress-Induced Senescence in Chronic GVHD-Related Dry Eye Disease. Int J Mol Sci 2021; 22:ijms22116114. [PMID: 34204098 PMCID: PMC8201206 DOI: 10.3390/ijms22116114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/12/2023] Open
Abstract
Ocular graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Ocular GVHD affects recipients' visual function and quality of life. Recent advanced research in this area has gradually attracted attention from a wide range of physicians and ophthalmologists. This review highlights the mechanism of immune processes and the molecular mechanism, including several inflammation cascades, pathogenic fibrosis, and stress-induced senescence related to ocular GVHD, in basic spectrum topics in this area. How the disease develops and what kinds of cells participate in ocular GVHD are discussed. Although the classical immune process is a main pathological pathway in this disease, senescence-associated changes in immune cells and stem cells may also drive this disease. The DNA damage response, p16/p21, and the expression of markers associated with the senescence-associated secretory phenotype (SASP) are seen in ocular tissue in GVHD. Macrophages, T cells, and mesenchymal cells from donors or recipients that increasingly infiltrate the ocular surface serve as the source of increased secretion of IL-6, which is a major SASP driver. Agents capable of reversing the changes, including senolytic reagents or those that can suppress the SASP seen in GVHD, provide new potential targets for the treatment of GVHD. Creating innovative therapies for ocular GVHD is necessary to treat this intractable ocular disease.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-3-3353-1211
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
67
|
Reddy S, Krogvold L, Martin C, Sun KX, Martin O, Al-Ani A, Dahl-Jørgensen K. Expression of immunoreactive inducible nitric oxide synthase in pancreatic islet cells from newly diagnosed and long-term type 1 diabetic donors is heterogeneous and not disease-associated. Cell Tissue Res 2021; 384:655-674. [PMID: 33427953 DOI: 10.1007/s00441-020-03340-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
Exposure of isolated human islets to proinflammatory cytokines leads to up-regulation of inducible nitric oxide synthase (iNOS), raised NO, and beta cell toxicity. These findings have led to increasing interest in the clinical utility of iNOS blockade to mitigate beta cell destruction in human type 1 diabetes (T1D). However, recent studies show that iNOS-derived NO may also confer beta cell protection. To investigate this dichotomy, we compared islet cell distributions and intensity of iNOS immunostaining in pancreatic sections, co-stained for insulin and glucagon, from new-onset T1D donors (group 1), with non-diabetic autoantibody-negative (group 2), non-diabetic autoantibody-positive (group 3) and long-term diabetic donors (group 4). The cellular origins of iNOS, its frequency and graded intensities in islets and number in peri-islet, intra-islet and exocrine regions were determined. All donors showed iNOS positivity, irrespective of disease and presence of beta cells, had variable labelling intensities, without significant differences in the frequency of iNOS-positive islets among study groups. iNOS was co-localised in selective beta, alpha and other endocrine cells, and in beta cell-negative islets of diabetic donors. The number of peri- and intra-islet iNOS cells was low, being significantly higher in the peri-islet area. Exocrine iNOS cells also remained low, but were much lower in group 1. We demonstrate that iNOS expression in islet cells is variable, heterogeneous and independent of co-existing beta cells. Its distribution and staining intensities in islets and extra-islet areas do not correlate with T1D or its duration. Interventions to inactivate the enzyme to alleviate disease are currently not justified.
Collapse
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand.
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Charlton Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Kevin Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Owen Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Aamenah Al-Ani
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Knut Dahl-Jørgensen
- Faculty of Dentistry, University of Oslo, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
68
|
Huang CC, Yang CY, Su CC, Fang KM, Yen CC, Lin CT, Liu JM, Lee KI, Chen YW, Liu SH, Huang CF. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, a Major Active Metabolite of Bisphenol A, Triggers Pancreatic β-Cell Death via a JNK/AMPKα Activation-Regulated Endoplasmic Reticulum Stress-Mediated Apoptotic Pathway. Int J Mol Sci 2021; 22:ijms22094379. [PMID: 33922211 PMCID: PMC8122752 DOI: 10.3390/ijms22094379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.
Collapse
Affiliation(s)
- Cheng-Chin Huang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (C.-C.H.); (J.-M.L.); (K.-IL.)
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Ching-Ting Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jui-Min Liu
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (C.-C.H.); (J.-M.L.); (K.-IL.)
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (C.-C.H.); (J.-M.L.); (K.-IL.)
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (S.-H.L.); (C.-F.H.)
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-H.L.); (C.-F.H.)
| |
Collapse
|
69
|
Veluthakal R, Oh E, Ahn M, Chatterjee Bhowmick D, Thurmond DC. Syntaxin 4 Mediates NF-κB Signaling and Chemokine Ligand Expression via Specific Interaction With IκBβ. Diabetes 2021; 70:889-902. [PMID: 33526588 PMCID: PMC7980198 DOI: 10.2337/db20-0868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBβ but not IκBα. Inhibition of IKKβ prevented IκBβ degradation, suggesting that IKKβ phosphorylates IκBβ. Moreover, the IKKβ inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKβ in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBβ from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBβ and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in β-cells via associating with and preventing IκBβ degradation, suppressing chemokine expression, and protecting islet β-cells from cytokine-mediated dysfunction and demise.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| |
Collapse
|
70
|
Coomans de Brachène A, Castela A, Musuaya AE, Marselli L, Marchetti P, Eizirik DL. Endogenous mitochondrial double-stranded RNA is not an activator of the type I interferon response in human pancreatic beta cells. AUTOIMMUNITY HIGHLIGHTS 2021; 12:6. [PMID: 33773604 PMCID: PMC8005246 DOI: 10.1186/s13317-021-00148-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of pancreatic beta cells. Interferon-α (IFNα), an antiviral cytokine, is expressed in the pancreatic islets in early T1D, which may be secondary to viral infections. However, not all patients harboring a type I IFN signature present signals of viral infection, suggesting that this response might be initiated by other “danger signals”. Accumulation of mitochondrial double-stranded RNA (mtdsRNA; a danger signal), secondary to silencing of members of the mitochondrial degradosome, PNPT1 and SUV3, has been described to activate the innate immune response. Methods To evaluate whether mtdsRNA represents a “danger signal” for pancreatic beta cells in the context of T1D, we silenced PNPT1 and/or SUV3 in slowly proliferating human insulin-secreting EndoC-βH1 cells and in non-proliferating primary human beta cells and evaluated dsRNA accumulation by immunofluorescence and the type I IFN response by western blotting and RT-qPCR. Results Only the simultaneous silencing of PNPT1/SUV3 induced dsRNA accumulation in EndoC-βH1 cells but not in dispersed human islets, and there was no induction of a type I IFN response. By contrast, silencing of these two genes individually was enough to induce dsRNA accumulation in fibroblasts present in the human islet preparations. Conclusions These data suggest that accumulation of endogenous mtdsRNA following degradosome knockdown depends on the proliferative capacity of the cells and is not a mediator of the type I IFN response in human pancreatic beta cells.
Collapse
Affiliation(s)
- Alexandra Coomans de Brachène
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Anyïshai E Musuaya
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
71
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
72
|
Alvelos MI, Brüggemann M, Sutandy FXR, Juan-Mateu J, Colli ML, Busch A, Lopes M, Castela Â, Aartsma-Rus A, König J, Zarnack K, Eizirik DL. The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Sci Alliance 2021; 4:e202000825. [PMID: 33376132 PMCID: PMC7772782 DOI: 10.26508/lsa.202000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In pancreatic β-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes β-cell demise through splicing dysregulation of central genes for β-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic β-cell line EndoC-βH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in β-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic β-cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mirko Brüggemann
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anke Busch
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Julian König
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Kathi Zarnack
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
73
|
Pluquet O, Abbadie C. Cellular senescence and tumor promotion: Role of the Unfolded Protein Response. Adv Cancer Res 2021; 150:285-334. [PMID: 33858599 DOI: 10.1016/bs.acr.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
Collapse
Affiliation(s)
- Olivier Pluquet
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
| | - Corinne Abbadie
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
74
|
Nogo-A Is Critical for Pro-Inflammatory Gene Regulation in Myocytes and Macrophages. Cells 2021; 10:cells10020282. [PMID: 33572505 PMCID: PMC7912613 DOI: 10.3390/cells10020282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nogo-A (Rtn 4A), a member of the reticulon 4 (Rtn4) protein family, is a neurite outgrowth inhibitor protein that is primarily expressed in the central nervous system (CNS). However, previous studies revealed that Nogo-A was upregulated in skeletal muscles of Amyotrophic lateral sclerosis (ALS) patients. Additionally, experiments showed that endoplasmic reticulum (ER) stress marker, C/EBP homologous protein (CHOP), was upregulated in gastrocnemius muscle of a murine model of ALS. We therefore hypothesized that Nogo-A might relate to skeletal muscle diseases. According to our knocking down and overexpression results in muscle cell line (C2C12), we have found that upregulation of Nogo-A resulted in upregulation of CHOP, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while downregulation of Nogo-A led to downregulation of CHOP, IL-6 and TNF-α. Immunofluorescence results showed that Nogo-A and CHOP were expressed by myofibers as well as tissue macrophages. Since resident macrophages share similar functions as bone marrow-derived macrophages (BMDM), we therefore, isolated macrophages from bone marrow to study the role of Nogo-A in activation of these cells. Lipopolysaccharide (LPS)-stimulated BMDM in Nogo-KO mice showed low mRNA expression of CHOP, IL-6 and TNF-α compared to BMDM in wild type (WT) mice. Interestingly, Nogo knockout (KO) BMDM exhibited lower migratory activity and phagocytic ability compared with WT BMDM after LPS treatment. In addition, mice experiments data revealed that upregulation of Nogo-A in notexin- and tunicamycin-treated muscles was associated with upregulation of CHOP, IL-6 and TNF-α in WT group, while in Nogo-KO group resulted in low expression level of CHOP, IL-6 and TNF-α. Furthermore, upregulation of Nogo-A in dystrophin-deficient (mdx) murine model, myopathy and Duchenne muscle dystrophy (DMD) clinical biopsies was associated with upregulation of CHOP, IL-6 and TNF-α. To the best of our knowledge, this is the first study to demonstrate Nogo-A as a regulator of inflammation in diseased muscle and bone marrow macrophages and that deletion of Nogo-A alleviates muscle inflammation and it can be utilized as a therapeutic target for improving muscle diseases.
Collapse
|
75
|
Fu X, Cui J, Meng X, Jiang P, Zheng Q, Zhao W, Chen X. Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol Rep 2021; 45:801-808. [PMID: 33469681 PMCID: PMC7859917 DOI: 10.3892/or.2021.7933] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
External and internal stimuli are often involved in the pathogenesis of tumors, and the deterioration of endoplasmic reticulum (ER) function within cells is also an important etiological factor of tumorigenesis resulting in the impairment of the endoplasmic reticulum, which is termed ER stress. The ER is an organelle that serves a crucial role in the process of protein synthesis and maturation, and also acts as a reservoir of calcium to maintain intracellular Ca2+ homeostasis. ER stress has been revealed to serve a critical role in tumorigenesis. In the present review, the association between ER stress‑related pathways and tumor cell apoptosis is examined. Primarily, the role of ER stress in tumor cell apoptosis is discussed, and it is stipulated that ER stress, induced by drugs both directly and indirectly, promotes tumor cell apoptosis.
Collapse
Affiliation(s)
- Xiaojing Fu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Juanjuan Cui
- Qingdao Municipal Hospital, Qingdao (Group), Qingdao, Shandong 266071, P.R. China
| | - Xiangjun Meng
- Qingdao Mental Health Center, Qingdao, Shandong 266071, P.R. China
| | - Piyu Jiang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qiuling Zheng
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
76
|
Bilekova S, Sachs S, Lickert H. Pharmacological Targeting of Endoplasmic Reticulum Stress in Pancreatic Beta Cells. Trends Pharmacol Sci 2020; 42:85-95. [PMID: 33353789 DOI: 10.1016/j.tips.2020.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease with pandemic dimensions and no pharmacological treatment prevents disease progression. Dedifferentiation has been proposed to be a driver of beta-cell dysfunction in both type 1 and type 2 diabetes. Regenerative therapies aim to re-establish function in dysfunctional or dedifferentiated beta cells and restore the defective insulin secretion. Unsustainable levels of insulin production, with increased demand at disease onset, strain the beta-cell secretory machinery, leading to endoplasmic reticulum (ER) stress. Unresolved chronic ER stress is a major contributor to beta-cell loss of function and identity. Restoring ER homeostasis, enhancing ER-associated degradation of misfolded protein, and boosting chaperoning activity, are emerging therapeutic approaches for diabetes treatment.
Collapse
Affiliation(s)
- Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technical University of Munich, Medical Faculty, Munich, Germany
| | - Stephan Sachs
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technical University of Munich, Medical Faculty, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technical University of Munich, Medical Faculty, Munich, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
77
|
Marselli L, Piron A, Suleiman M, Colli ML, Yi X, Khamis A, Carrat GR, Rutter GA, Bugliani M, Giusti L, Ronci M, Ibberson M, Turatsinze JV, Boggi U, De Simone P, De Tata V, Lopes M, Nasteska D, De Luca C, Tesi M, Bosi E, Singh P, Campani D, Schulte AM, Solimena M, Hecht P, Rady B, Bakaj I, Pocai A, Norquay L, Thorens B, Canouil M, Froguel P, Eizirik DL, Cnop M, Marchetti P. Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Rep 2020; 33:108466. [PMID: 33264613 DOI: 10.1016/j.celrep.2020.108466] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Amna Khamis
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Gaelle R Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy; School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Centre for Advanced Studies and Technologies (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mark Ibberson
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | | | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of General and Transplant Surgery, Cisanello University Hospital, Pisa 56124, Italy
| | - Paolo De Simone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of Liver Surgery and Transplantation, Cisanello University Hospital, Pisa 56124, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Nasteska
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Pratibha Singh
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and the Critical Areas, University of Pisa, Pisa 56126, Italy
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden 01307, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
| | - Peter Hecht
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | | | | | | | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium; Indiana Biosciences Research Institute, Indianapolis, IN, USA; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| |
Collapse
|
78
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
79
|
Oxidative Stress in Cytokine-Induced Dysfunction of the Pancreatic Beta Cell: Known Knowns and Known Unknowns. Metabolites 2020; 10:metabo10120480. [PMID: 33255484 PMCID: PMC7759861 DOI: 10.3390/metabo10120480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence from earlier studies suggests that the pancreatic beta cell is inherently weak in its antioxidant defense mechanisms to face the burden of protecting itself against the increased intracellular oxidative stress following exposure to proinflammatory cytokines. Recent evidence implicates novel roles for nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) as contributors to the excessive intracellular oxidative stress and damage under metabolic stress conditions. This review highlights the existing evidence on the regulatory roles of at least three forms of Noxs, namely Nox1, Nox2, and Nox4, in the cascade of events leading to islet beta cell dysfunction, specifically under the duress of chronic exposure to cytokines. Potential crosstalk between key signaling pathways (e.g., inducible nitric oxide synthase [iNOS] and Noxs) in the generation and propagation of reactive molecules and metabolites leading to mitochondrial damage and cell apoptosis is discussed. Available data accrued in investigations involving small-molecule inhibitors and antioxidant protein expression methods as tools toward the prevention of cytokine-induced oxidative damage are reviewed. Lastly, current knowledge gaps in this field, and possible avenues for future research are highlighted.
Collapse
|
80
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
81
|
Williamson G, Sheedy K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020; 12:E3135. [PMID: 33066504 PMCID: PMC7602234 DOI: 10.3390/nu12103135] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR) is apparent when tissues responsible for clearing glucose from the blood, such as adipose and muscle, do not respond properly to appropriate signals. IR is estimated based on fasting blood glucose and insulin, but some measures also incorporate an oral glucose challenge. Certain (poly)phenols, as supplements or in foods, can improve insulin resistance by several mechanisms including lowering postprandial glucose, modulating glucose transport, affecting insulin signalling pathways, and by protecting against damage to insulin-secreting pancreatic β-cells. As shown by intervention studies on volunteers, the most promising candidates for improving insulin resistance are (-)-epicatechin, (-)-epicatechin-containing foods and anthocyanins. It is possible that quercetin and phenolic acids may also be active, but data from intervention studies are mixed. Longer term and especially dose-response studies on mildly insulin resistant participants are required to establish the extent to which (poly)phenols and (poly)phenol-rich foods may improve insulin resistance in compromised groups.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | |
Collapse
|
82
|
Coomans de Brachène A, Castela A, Op de Beeck A, Mirmira RG, Marselli L, Marchetti P, Masse C, Miao W, Leit S, Evans-Molina C, Eizirik DL. Preclinical evaluation of tyrosine kinase 2 inhibitors for human beta-cell protection in type 1 diabetes. Diabetes Obes Metab 2020; 22:1827-1836. [PMID: 32476252 PMCID: PMC8080968 DOI: 10.1111/dom.14104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
AIM Type 1 diabetes (T1D) is a chronic autoimmune disease leading to progressive loss of pancreatic beta cells. Interferon (IFN)-α plays a critical role in the crosstalk between pancreatic beta cells and the immune system in early insulitis. In human beta cells IFNα signals through JAK1 and TYK2, leading to endoplasmic reticulum stress, inflammation and HLA class I overexpression. IFNα, acting synergistically with IL-1β, induces apoptosis. Polymorphisms in TYK2 that decrease its activity are associated with protection against T1D, and we hypothesized that pharmacological inhibitors that specifically target TYK2 could protect human beta cells against the deleterious effects of IFNα. MATERIALS AND METHODS Two TYK2 inhibitors provided by Nimbus Lakshmi were tested in human insulin-producing EndoC-βH1 cells and human islets to evaluate their effect on IFNα signalling, beta-cell function and susceptibility to viral infection using RT-qPCR, western blot, immunofluorescence, ELISA and nuclear dyes. RESULTS The two TYK2 inhibitors tested prevented IFNα-induced human beta-cell gene expression in a dose-dependent manner. They also protected human islets against IFNα + IL-1β-induced apoptosis. Importantly, these inhibitors did not modify beta-cell function or their survival following infection with the potential diabetogenic coxsackieviruses CVB1 and CVB5. CONCLUSIONS The two TYK2 inhibitors tested inhibit the IFNα signalling pathway in human beta cells, decreasing its pro-inflammatory and pro-apoptotic effects without sensitizing the cells to viral infection. The preclinical findings could pave the way for future clinical trials with TYK2 inhibitors for the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Craig Masse
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Wenyan Miao
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Silvana Leit
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, Indiana, USA
| |
Collapse
|
83
|
Akhbari P, Richardson SJ, Morgan NG. Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms 2020; 8:microorganisms8091419. [PMID: 32942706 PMCID: PMC7565444 DOI: 10.3390/microorganisms8091419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) have long been implicated in the pathogenesis of type 1 diabetes (T1D), and accumulating evidence has associated virus-induced autoimmunity with the loss of pancreatic beta cells in T1D. Inflammatory cytokines including interferons (IFN) form a primary line of defence against viral infections, and their chronic elevation is a hallmark feature of many autoimmune diseases. IFNs play a key role in activating and regulating innate and adaptive immune responses, and to do so they modulate the expression of networks of genes and transcription factors known generically as IFN stimulated genes (ISGs). ISGs in turn modulate critical cellular processes ranging from cellular metabolism and growth regulation to endoplasmic reticulum (ER) stress and apoptosis. More recent studies have revealed that IFNs also modulate gene expression at an epigenetic as well as post-transcriptional and post-translational levels. As such, IFNs form a key link connecting the various genetic, environmental and immunological factors involved in the initiation and progression of T1D. Therefore, gaining an improved understanding of the mechanisms by which IFNs modulate beta cell function and survival is crucial in explaining the pathogenesis of virally-induced T1D. This should provide the means to prevent, decelerate or even reverse beta cell impairment.
Collapse
|
84
|
Uhlemeyer C, Müller N, Grieß K, Wessel C, Schlegel C, Kuboth J, Belgardt BF. ATM and P53 differentially regulate pancreatic beta cell survival in Ins1E cells. PLoS One 2020; 15:e0237669. [PMID: 32810137 PMCID: PMC7437460 DOI: 10.1371/journal.pone.0237669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Pancreatic beta cell death is a hallmark of type 1 and 2 diabetes (T1D/T2D), but the underlying molecular mechanisms are incompletely understood. Key proteins of the DNA damage response (DDR), including tumor protein P53 (P53, also known as TP53 or TRP53 in rodents) and Ataxia Telangiectasia Mutated (ATM), a kinase known to act upstream of P53, have been associated with T2D. Here we test and compare the effect of ATM and P53 ablation on beta cell survival in the rat beta cell line Ins1E. We demonstrate that ATM and P53 differentially regulate beta cell apoptosis induced upon fundamentally different types of diabetogenic beta cell stress, including DNA damage, inflammation, lipotoxicity and endoplasmic reticulum (ER) stress. DNA damage induced apoptosis by treatment with the commonly used diabetogenic agent streptozotocin (STZ) is regulated by both ATM and P53. We show that ATM is a key STZ induced activator of P53 and that amelioration of STZ induced cell death by inhibition of ATM mainly depends on P53. While both P53 and ATM control lipotoxic beta cell apoptosis, ATM but not P53 fails to alter inflammatory beta cell death. In contrast, tunicamycin induced (ER stress associated) apoptosis is further increased by ATM knockdown or inhibition, but not by P53 knockdown. Our results reveal differential roles for P53 and ATM in beta cell survival in vitro in the context of four key pathophysiological types of diabetogenic beta cell stress, and indicate that ATM can use P53 independent signaling pathways to modify beta cell survival, dependent on the cellular insult.
Collapse
Affiliation(s)
- Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kerstin Grieß
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Corinna Wessel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
85
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Emerging data have suggested that β-cell dysfunction may exacerbate the development and progression of type 1 diabetes (T1D). In this review, we highlight clinical and preclinical studies suggesting a role for β-cell dysfunction during the evolution of T1D and suggest agents that may promote β-cell health in T1D. RECENT FINDINGS Metabolic abnormalities exist years before development of hyperglycemia and exhibit a reproducible pattern reflecting progressive deterioration of β-cell function and increases in β-cell stress and death. Preclinical studies indicate that T1D may be prevented by modification of pathways impacting intrinsic β-cell stress and antigen presentation. Recent findings suggest that differences in metabolic phenotypes and β-cell stress may reflect differing endotypes of T1D. Multiple pathways representing potential drug targets have been identified, but most remain to be tested in human populations with preclinical disease. SUMMARY This cumulative body of work shows clear evidence that β-cell stress, dysfunction, and death are harbingers of impending T1D and likely contribute to progression of disease and insulin deficiency. Treatment with agents targeting β-cell health could augment interventions with immunomodulatory therapies but will need to be tested in intervention studies with endpoints carefully designed to capture changes in β-cell function and health.
Collapse
Affiliation(s)
- Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
87
|
Loss of Caveolin-1 Is Associated with a Decrease in Beta Cell Death in Mice on a High Fat Diet. Int J Mol Sci 2020; 21:ijms21155225. [PMID: 32718046 PMCID: PMC7432291 DOI: 10.3390/ijms21155225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Elevated free fatty acids (FFAs) impair beta cell function and reduce beta cell mass as a consequence of the lipotoxicity that occurs in type 2 diabetes (T2D). We previously reported that the membrane protein caveolin-1 (CAV1) sensitizes to palmitate-induced apoptosis in the beta pancreatic cell line MIN6. Thus, our hypothesis was that CAV1 knock-out (CAV1 KO) mice subjected to a high fat diet (HFD) should suffer less damage to beta cells than wild type (WT) mice. Here, we evaluated the in vivo response of beta cells in the pancreatic islets of 8-week-old C57Bl/6J CAV1 KO mice subjected to a control diet (CD, 14% kcal fat) or a HFD (60% kcal fat) for 12 weeks. We observed that CAV1 KO mice were resistant to weight gain when on HFD, although they had high serum cholesterol and FFA levels, impaired glucose tolerance and were insulin resistant. Some of these alterations were also observed in mice on CD. Interestingly, KO mice fed with HFD showed an adaptive response of the pancreatic beta cells and exhibited a significant decrease in beta cell apoptosis in their islets compared to WT mice. These in vivo results suggest that although the CAV1 KO mice are metabolically unhealthy, they adapt better to a HFD than WT mice. To shed light on the possible signaling pathway(s) involved, MIN6 murine beta cells expressing (MIN6 CAV) or not expressing (MIN6 Mock) CAV1 were incubated with the saturated fatty acid palmitate in the presence of mitogen-activated protein kinase inhibitors. Western blot analysis revealed that CAV1 enhanced palmitate-induced JNK, p38 and ERK phosphorylation in MIN6 CAV1 cells. Moreover, all the MAPK inhibitors partially restored MIN6 viability, but the effect was most notable with the ERK inhibitor. In conclusion, our results suggest that CAV1 KO mice adapted better to a HFD despite their altered metabolic state and that this may at least in part be due to reduced beta cell damage. Moreover, they indicate that the ability of CAV1 to increase sensitivity to FFAs may be mediated by MAPK and particularly ERK activation.
Collapse
|
88
|
Shrestha N, Reinert RB, Qi L. Endoplasmic Reticulum Protein Quality Control in β Cells. Semin Cell Dev Biol 2020; 103:59-67. [PMID: 32402517 PMCID: PMC7321887 DOI: 10.1016/j.semcdb.2020.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Type 1 and type 2 diabetes are associated with loss of β cell function. Optimal β cell function is linked to protein homeostasis in the endoplasmic reticulum (ER). Here, we review the roles of ER protein quality-control mechanisms, including the unfolded protein response (UPR), autophagy (specifically ER-phagy) and ER-associated degradation (ERAD), in β cells. We propose that different quality control mechanisms may control different aspects of β cell biology (i.e. function, survival, and identity), thereby contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Neha Shrestha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rachel B Reinert
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
89
|
Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol 2020; 16:349-362. [PMID: 32398822 DOI: 10.1038/s41574-020-0355-7] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Loss of functional β-cell mass is the key mechanism leading to the two main forms of diabetes mellitus - type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Understanding the mechanisms behind β-cell failure is critical to prevent or revert disease. Basic pathogenic differences exist in the two forms of diabetes mellitus; T1DM is immune mediated and T2DM is mediated by metabolic mechanisms. These mechanisms differentially affect early β-cell dysfunction and eventual fate. Over the past decade, major advances have been made in the field, mostly delivered by studies on β-cells in human disease. These advances include studies of islet morphology and human β-cell gene expression in T1DM and T2DM, the identification and characterization of the role of T1DM and T2DM candidate genes at the β-cell level and the endoplasmic reticulum stress signalling that contributes to β-cell failure in T1DM (mostly IRE1 driven) and T2DM (mostly PERK-eIF2α dependent). Here, we review these new findings, focusing on studies performed on human β-cells or on samples obtained from patients with diabetes mellitus.
Collapse
Affiliation(s)
- Décio L Eizirik
- ULB Center for Diabetes Research, Welbio Investigator, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
- Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, Barcelona, Spain.
- Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain.
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
90
|
An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nat Commun 2020; 11:2584. [PMID: 32444635 PMCID: PMC7244579 DOI: 10.1038/s41467-020-16327-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells. The cytokine IFNα is expressed in the islets of individuals with type 1 diabetes and contributes to local inflammation and destruction of beta cells. Here, the authors provide a global multiomics view of IFNα-induced changes in human beta cells at the level of chromatin, mRNA and protein expression.
Collapse
|
91
|
Tian R, Zou H, Wang LF, Song MJ, Liu L, Zhang H. Identification of microRNA-mRNA regulatory networks and pathways related to retinoblastoma across human and mouse. Int J Ophthalmol 2020; 13:535-544. [PMID: 32399402 PMCID: PMC7137714 DOI: 10.18240/ijo.2020.04.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the mRNA and pathways related to retinoblastoma (RB) genesis and development. METHODS Microarray datasets GSE29683 (human) and GSE29685 (mouse) were downloaded from NCBI GEO database. Homologous genes between the two species were identified using WGCNA, followed by protein-protein interaction (PPI) network construction and gene enrichment analysis. Disease-related miRNAs and pathways were retrieved from miR2Disease database and Comparative Toxicogenomics Database (CTD), respectively. RESULTS A total of 352 homologous genes were identified. Two pathways including "cell cycle" and "pathway in cancer" in CTD and enrichment analysis were identified and seven miRNAs (including hsa-miR-373, hsa-miR-34a, hsa-miR-129, hsa-miR-494, hsa-miR-503, hsa-let-7 and hsa-miR-518c) were associated with RB. miRNAs modulate "cell cycle" and "pathway in cancer" pathways via regulating 13 genes (including CCND1, CDC25C, E2F2, CDKN2D and TGFB2). CONCLUSION These results suggest that these miRNAs play crucial roles in RB genesis through "cell cycle" and "pathway in cancer" pathways by regulating their targets including CCND1, CDC25C, E2F2 and CDKN2D.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - He Zou
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu-Fei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Mei-Jiao Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu Liu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Hui Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
92
|
Shi K, Zhu J, Chen D, Ren C, Guo M, Wang J, Wu X, Feng Y. Lipidomics Analysis of Timosaponin BII in INS-1 Cells Induced by Glycolipid Toxicity and Its Relationship with Inflammation. Chem Biodivers 2020; 17:e1900684. [PMID: 32064755 DOI: 10.1002/cbdv.201900684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
Anemarrhena asphodeloides Bunge is a traditional Chinese medicine. The timosaponin BII is one of the most abundant and widely studied active ingredients in Anemarrhena asphodeloides Bunge. Related studies have shown that timosaponin BII has potential value for development and further utilization. The protective effect of timosaponin BII on islet β cells under type 2 diabetes was investigated in the glycolipid toxic INS-1 cell model and possible biomarkers were explored by lipidomics analysis. Timosaponin BII was isolated from Anemarrhena asphodeloides Bunge by polyamide resin and Sephadex LH-20. Then, the glycolipid toxicity INS-1 cell model was established to investigate the protective effect of timosaponin BII. The results showed that timosaponin BII could significantly influence the levels of malondialdehyde (MDA) and glutathione (GSH), thereby restoring the insulin secretion ability and cell viability of model cells. Lipidomics analysis was combined with multivariate statistical analysis for marker selection. The four most common pathological and pharmacological lipid markers were phosphatidylserine (PS), suggesting that timosaponin BII had protective effects on model cells related to the reduction oxidative stress and macrophage inflammation. RAW264.7 macrophages were stimulated by LPS to establish a model of inflammation and study the effect of timosaponin BII on the nodes of NOD-like receptor P3 (NLRP3) inflammasome pathway in the model cells. In conclusion, timosaponin BII may have the effect of protecting INS-1 pancreatic β cells through reducing IL-1β (interleukin-1β) production by inhibiting the NLRP3 inflammasome in macrophage and restoring the insulin secretion ability and cell viability by reducing oxidative stress.
Collapse
Affiliation(s)
- Kexin Shi
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Jiancheng Zhu
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Deqi Chen
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Cui Ren
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Mingxin Guo
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Juanxia Wang
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Xia Wu
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yifan Feng
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| |
Collapse
|
93
|
Tong Y, Yang L, Shao F, Yan X, Li X, Huang G, Xiao Y, Zhou Z. Distinct secretion pattern of serum proinsulin in different types of diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:452. [PMID: 32395496 PMCID: PMC7210169 DOI: 10.21037/atm.2020.03.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Latent autoimmune diabetes in adults (LADA) is characterized by autoimmunity, late-onset and intermediate beta-cell deprivation rate between type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Herein, we investigated proinsulin (PI) secretion patterns and the endoplasmic reticulum (ER) dysfunction biomarker, PI-to-C-peptide (PI:CP) ratio, to elucidate beta-cell intrinsic pathogenesis mechanisms in different types of diabetes. Methods Total serum fasting PI (FPI) were measured in adult-onset and newly-diagnosed diabetes patients, including 60 T1DM, 60 LADA and 60 T2DM. Thirty of each type underwent mixed meal tolerance tests (MMTTs), and hence 120 min postprandial PI (PPI) were detected. PI:CP ratio = PI (pmol/L) ÷ CP (pmol/L) × 100%. PI-related measurements among types of diabetes were compared. Correlation between PI-related measurements and beta-cell autoimmunity were analyzed. The possibility of discriminating LADA from T1DM and T2DM with PI-related measurements were tested. Results FPI and PPI were significantly higher in LADA than T1DM (P<0.001 for both comparisons), but lower than those in T2DM (P<0.001 and P=0.026, respectively). Fasting PI:CP ratio was significantly higher in T1DM than both LADA and T2DM (median 3.25% vs. 2.13% and 2.32%, P=0.011 and P=0.017, respectively). In LADA, positive autoantibody numbers increased by both fasting and postprandial PI:CP ratio (P=0.007 and P=0.034, respectively). Areas under receiver operation characteristic curves (AUCROC) of FPI and PPI for discriminating LADA from adult-onset T1DM were 0.751 (P<0.001) and 0.838 (P<0.001), respectively. Between LADA and T2DM, AUCROC of FPI and PPI were 0.685 (P<0.001) and 0.741 (P=0.001), respectively. Conclusions In the development of autoimmune diabetes, interplays between ER stress and beta-cell autoimmunity are potentially responsible for severer beta-cell destruction. PI-related measurements could help in differentiating LADA from adult-onset T1DM and T2DM.
Collapse
Affiliation(s)
- Yue Tong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Feng Shao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xiang Yan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| |
Collapse
|
94
|
Demine S, Garcia Ribeiro R, Thevenet J, Marselli L, Marchetti P, Pattou F, Kerr-Conte J, Devoogdt N, Eizirik DL. A nanobody-based nuclear imaging tracer targeting dipeptidyl peptidase 6 to determine the mass of human beta cell grafts in mice. Diabetologia 2020; 63:825-836. [PMID: 31873789 DOI: 10.1007/s00125-019-05068-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is characterised by a progressive decline in beta cell mass. This is also observed following implantation of pancreatic islet allografts, but there is no reliable information regarding the time course of beta cell loss. This is due to the limited availability of non-invasive pancreatic islet imaging techniques. We have previously described that dipeptidyl peptidase 6 (DPP6) is an alpha and beta cell-specific biomarker, and developed a camelid antibody (nanobody '4hD29') against it. We demonstrated the possibility to detect DPP6-expressing cells by single-photon emission computed tomography (SPECT)/ computed tomography (CT), but the correlation between the number of cells grafted and the SPECT signal was not assessed. Here, we investigate whether the 4hD29 nanobody allows us to detect different amounts of human pancreatic islets implanted into immune-deficient mice. In addition, we also describe the adaptation of the probe for use with positron emission tomography (PET). METHODS DPP6 expression was assessed in human samples using tissue arrays and immunohistochemistry. The effect of the 4hD29 nanobody on cell death and glucose-stimulated insulin secretion was measured in EndoC-βH1 cells and in human islets using Hoechst/propidium iodide staining and an anti-insulin ELISA, respectively. We performed in vivo SPECT imaging on severe combined immunodeficient (SCID) mice transplanted with different amounts of EndoC-βH1 cells (2 × 106, 5 × 106 and 10 × 106 cells), human islets (1000 and 3000) or pancreatic exocrine tissue using 99mTc-labelled 4hD29 nanobody. This DPP6 nanobody was also conjugated to N-chlorosuccinimide (NCS)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), radiolabelled with either 67Ga (SPECT) or 68Ga (PET) and used in a proof-of-principle experiment to detect DPP6-expressing cells (Kelly neuroblastoma) grafted in SCID mice. RESULTS The DPP6 protein is mainly expressed in pancreatic islets. Importantly, the anti-DPP6 nanobody 4hD29 allows non-invasive detection of high amounts of EndoC-βH1 cells or human islets grafted in immunodeficient mice. This suggests that the probe must be further improved to detect lower numbers of islet cells. The 4hD29 nanobody neither affected beta cell viability nor altered insulin secretion in EndoC-βH1 cells and human islets. The conversion of 4hD29 nanobody into a PET probe was successful and did not alter its specificity. CONCLUSIONS/INTERPRETATION These findings suggest that the anti-DPP6 4hD29 nanobody may become a useful tool for the quantification of human islet grafts in mice and, pending future development, islet mass in individuals with diabetes.
Collapse
Affiliation(s)
- Stéphane Demine
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium.
| | - Rita Garcia Ribeiro
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julien Thevenet
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - François Pattou
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Julie Kerr-Conte
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium
| |
Collapse
|
95
|
Tong X, Dai C, Walker JT, Nair GG, Kennedy A, Carr RM, Hebrok M, Powers AC, Stein R. Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health. Diabetes 2020; 69:342-354. [PMID: 31836690 PMCID: PMC7034188 DOI: 10.2337/db19-0281] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Human but not mouse islets transplanted into immunodeficient NSG mice effectively accumulate lipid droplets (LDs). Because chronic lipid exposure is associated with islet β-cell dysfunction, we investigated LD accumulation in the intact human and mouse pancreas over a range of ages and states of diabetes. Very few LDs were found in normal human juvenile pancreatic acinar and islet cells, with numbers subsequently increasing throughout adulthood. While accumulation appeared evenly distributed in postjuvenile acinar and islet cells in donors without diabetes, LDs were enriched in islet α- and β-cells from donors with type 2 diabetes (T2D). LDs were also found in the islet β-like cells produced from human embryonic cell-derived β-cell clusters. In contrast, LD accumulation was nearly undetectable in the adult rodent pancreas, even in hyperglycemic and hyperlipidemic models or 1.5-year-old mice. Taken together, there appear to be significant differences in pancreas islet cell lipid handling between species, and the human juvenile and adult cell populations. Moreover, our results suggest that LD enrichment could be impactful to T2D islet cell function.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN
| | - John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
96
|
Neo CWY, Ciaramicoli LM, Soetedjo AAP, Teo AKK, Kang NY. A new perspective of probe development for imaging pancreatic beta cell in vivo. Semin Cell Dev Biol 2020; 103:3-13. [PMID: 32057664 DOI: 10.1016/j.semcdb.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Beta cells assume a fundamental role in maintaining blood glucose homeostasis through the secretion of insulin, which is contingent on both beta cell mass and function, in response to elevated blood glucose levels or secretagogues. For this reason, evaluating beta cell mass and function, as well as scrutinizing how they change over time in a diabetic state, are essential prerequisites in elucidating diabetes pathophysiology. Current clinical methods to measure human beta cell mass and/or function are largely lacking, indirect and sub-optimal, highlighting the continued need for noninvasive in vivo beta cell imaging technologies such as optical imaging techniques. While numerous probes have been developed and evaluated for their specificity to beta cells, most of them are more suited to visualize beta cell mass rather than function. In this review, we highlight the distinction between beta cell mass and function, and the importance of developing more probes to measure beta cell function. Additionally, we also explore various existing probes that can be employed to measure beta cell mass and function in vivo, as well as the caveats in probe development for in vivo beta cell imaging.
Collapse
Affiliation(s)
- Claire Wen Ying Neo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Larissa Miasiro Ciaramicoli
- Department of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Andreas Alvin Purnomo Soetedjo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
| | - Nam-Young Kang
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, C5 Building, Room 203, Pohang, Kyungbuk, 37673, Republic of Korea.
| |
Collapse
|
97
|
Igoillo-Esteve M, Oliveira AF, Cosentino C, Fantuzzi F, Demarez C, Toivonen S, Hu A, Chintawar S, Lopes M, Pachera N, Cai Y, Abdulkarim B, Rai M, Marselli L, Marchetti P, Tariq M, Jonas JC, Boscolo M, Pandolfo M, Eizirik DL, Cnop M. Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia. JCI Insight 2020; 5:134221. [PMID: 31877117 PMCID: PMC7098728 DOI: 10.1172/jci.insight.134221] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective, and frataxin-inducing effects of glucagon-like peptide-1 (GLP-1) analogs in in vivo and in vitro models and in patients with Friedreich ataxia. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic β cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in β cells and brain and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress, and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived β cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.
Collapse
Affiliation(s)
| | | | | | - Federica Fantuzzi
- ULB Center for Diabetes Research and
- Endocrinology and Metabolism, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Amélie Hu
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Satyan Chintawar
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Ying Cai
- ULB Center for Diabetes Research and
| | | | - Myriam Rai
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mohammad Tariq
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Marina Boscolo
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and
- Indiana Biosciences Research Institute, Indianapolis, Indiana, USA
| | - Miriam Cnop
- ULB Center for Diabetes Research and
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
98
|
Cao ZH, Wu Z, Hu C, Zhang M, Wang WZ, Hu XB. Endoplasmic reticulum stress and destruction of pancreatic β cells in type 1 diabetes. Chin Med J (Engl) 2020; 133:68-73. [PMID: 31923106 PMCID: PMC7028193 DOI: 10.1097/cm9.0000000000000583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) results from dysfunction of pancreatic islets β cells. Recent studies supported that endoplasmic reticulum (ER) stress takes an important role in pancreatic β cell excessive loss, resulting in T1D. Here, we aimed to review the relationship between ER stress and T1D. Additionally, we also reviewed the potential mechanisms underlying ER stress mediated T1D. Studies have shown that severe ER stress is directly involved in the pancreatic β cells destruction and pathogenesis of T1D. ER stress plays a key part in pancreatic β cells and T1D, which will help in developing new effective therapeutics for T1D.
Collapse
Affiliation(s)
- Zhao-Hui Cao
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | | | | | | | | | | |
Collapse
|
99
|
Demine S, Schiavo AA, Marín-Cañas S, Marchetti P, Cnop M, Eizirik DL. Pro-inflammatory cytokines induce cell death, inflammatory responses, and endoplasmic reticulum stress in human iPSC-derived beta cells. Stem Cell Res Ther 2020; 11:7. [PMID: 31900242 PMCID: PMC6942385 DOI: 10.1186/s13287-019-1523-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 02/25/2023] Open
Abstract
Background Adult human pancreatic beta cells are the “gold standard” for studies on diabetes pathogenesis, but their use is limited by insufficient availability and variable quality. An important effort has recently taken place to differentiate beta cells from human induced pluripotent stem cells (iPSCs) and validate their use for diabetes research. We presently used a 7-stage protocol to generate beta cells from human iPSC and evaluated whether these cells are responsive to the pro-inflammatory cytokines (IFNγ, IL-1β, or IFNα) that play a role in type 1 diabetes. Methods The iPSC-derived islet-like cell clusters contained 40–50% beta and 10–15% alpha cells and expressed the receptors for IFNγ, IL-1β, or IFNα. Cells were exposed to either IFNγ (1000 U/mL) + IL-1β (50 U/mL) or IFNα alone (2000 U/mL) for 24/48 h. Apoptosis was quantified using Hoechst/propidium iodide staining or the RealTime Glo Apoptosis Kit (Promega). After treatment, CXCL10 secretion was quantified by ELISA. The expression of multiples genes (Ins, Gcg, Nkx2.2, Nkx6.1, Pdx1, Mafa, BiP, Chop, Atf3, CXCL10, CXCL9, CCL5, and HLA-ABC) was quantified by RT-qPCR. Phosphorylation state and total expression of STAT1/STAT2, as well as expression of PDL1 and of the ER chaperone BiP, were quantified by Western blotting. The co-localization of HLA-ABC or cleaved caspase-3 and Ins/Gcg expression was assessed by immunohistochemistry. The presence of HLA-ABC at the plasma membrane was measured by flow cytometry. Results IFNγ + IL-1β and IFNα induced apoptosis of the cells after 48 h of exposure. Cleaved caspase-3 co-localized mostly but not exclusively with Ins+ cells. Exposure to IFNγ + IL-1β induced a pro-inflammatory phenotype, including increased CXCL10, CXCL9, and CCL5 expression; CXCL10 secretion; and HLA-ABC expression. HLA overexpression was confirmed at the protein level by Western blotting and flow cytometry. Exposure to IFNγ + IL-1β (but not IFNα) also induced beta cell dedifferentiation and endoplasmic reticulum stress (increase in BiP, Chop, and Atf3 mRNA expression). Phosphorylation of STAT1 was stimulated already after 1 h by IFNγ + IL-1β and IFNα, while phosphorylation of STAT2 was only activated by IFNα at 1–4 h. PDL1 expression was increased by both IFNγ + IL-1β and IFNα. Conclusions Our data show that human iPSC-derived beta cells respond to pro-inflammatory cytokines IL-1β + IFNγ and IFNα, by activating the same pathogenic processes as adult human primary beta cells. These cells thus represent a valuable tool for future research on the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Stéphane Demine
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium. .,Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808-CP618, 1070, Brussels, Belgium.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
100
|
Piganelli JD, Mamula MJ, James EA. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:624590. [PMID: 33679609 PMCID: PMC7930070 DOI: 10.3389/fendo.2020.624590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Due to their secretory function, β cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in β cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous β cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of β cell proteins. This article summarizes emerging knowledge about stress-induced changes in β cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and β cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.
Collapse
Affiliation(s)
- Jon D. Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark J. Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
- *Correspondence: Eddie A. James,
| |
Collapse
|