51
|
Cooper MH, Iverson SJ, Heras H. Dynamics of blood chylomicron fatty acids in a marine carnivore: implications for lipid metabolism and quantitative estimation of predator diets. J Comp Physiol B 2005; 175:133-45. [PMID: 15657738 DOI: 10.1007/s00360-004-0469-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 12/09/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Blubber fatty acid(s) (FA) signatures can provide accurate estimates of predator diets using quantitative FA signature analysis, provided that aspects of predator FA metabolism are taken into account. Because the intestinal absorption of dietary FA and their incorporation into chylomicrons (the primary transport lipoproteins for dietary FA in the blood) may influence the relationship between FA composition in the diet and adipose tissue, we investigated the metabolism of individual FA at these early stages of assimilation. We also investigated the capacity of chylomicron signatures to provide quantitative estimates of prey composition of an experimental meal. Six captive juvenile grey seals (Halichoerus grypus) were fed either 2.3 kg (n = 3) or 4.6 kg (n = 3) of Atlantic herring (Clupea harengus). Although chylomicron FA signatures resembled diet signatures at all samplings, absolute differences were smallest at 3-h post-feeding, when chylomicrons were likely largest and had the greatest ratio of triacylglycerol to phospholipid FA. Specific FA that differed significantly between diet and chylomicron signatures reflected either input from endogenous sources or loss through peroxisomal beta-oxidation. When these aspects of metabolism were accounted for, the quantitative predictions of diet composition generated using chylomicron signatures were extremely accurate, even when tested against 28 other prey items.
Collapse
Affiliation(s)
- Margaret H Cooper
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | | | | |
Collapse
|
52
|
Abstract
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.
Collapse
Affiliation(s)
- Mark McDermott
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7090, USA
| | | | | |
Collapse
|
53
|
Rodríguez-González A, Ramirez de Molina A, Fernández F, Lacal JC. Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene 2004; 23:8247-59. [PMID: 15378008 DOI: 10.1038/sj.onc.1208045] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Choline kinase (ChoK, E.C. 2.7.1.32) is involved in the synthesis of phosphatidylcholine (PC), and has been found to be increased in human tumors and tumor-derived cell lines. Furthermore, ChoK inhibitors have been reported to show a potent and selective antitumoral activity both in vitro and in vivo. Here, we provide the basis for a rational understanding of the antitumoral activity of ChoK inhibitors. In normal cells, blockage of de novo phosphorylcholine (PCho) synthesis by inhibition of ChoK promotes the dephosphorylation of pRb, resulting in a reversible cell cycle arrest at G0/G1 phase. In contrast, ChoK inhibition in tumor cells renders cells unable to arrest in G0/G1 as manifested by a lack of pRb dephosphorylation. Furthermore, tumor cells specifically suffer a drastic wobble in the metabolism of main membrane lipids PC and sphingomyelin (SM). This lipid disruption results in the enlargement of the intracellular levels of ceramides. As a consequence, normal cells remain unaffected, but tumor cells are promoted to apoptosis. Thus, we provide in this study the rationale for the potential clinical use of ChoK inhibitors.
Collapse
Affiliation(s)
- Agustín Rodríguez-González
- Translational Oncology Unit, Department of Molecular and Cellular Biology of Cancer, Instituto de Investigaciones Biomédicas, CSIC, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
54
|
Stott WT, Radtke BJ, Linscombe VA, Mar MH, Zeisel SH. Evaluation of the potential of triethanolamine to alter hepatic choline levels in female B6C3F1 mice. Toxicol Sci 2004; 79:242-7. [PMID: 15056812 PMCID: PMC1592523 DOI: 10.1093/toxsci/kfh115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triethanolamine (TEA), a widely used nongenotoxic alcohol-amine, has recently been reported to cause an increased incidence of liver tumors in female B6C3F1 mice, but not in males nor in Fischer 344 rats. Choline deficiency induces liver cancer in rodents, and TEA could compete with choline uptake into tissues. The potential of TEA to cause choline deficiency in the liver of these mice as a mode of tumorigenesis was investigated. Groups of female B6C3F1 mice were administered 0 (vehicle) or a maximum tolerated dosage (MTD) of 1000 mg/kg/day TEA (Trial I) and 0, 10, 100, 300, or 1000 mg/kg/day TEA (Trial II) in acetone vehicle via skin painting 5 days/week for 3 weeks. Female CDF(R) rats were also administered 0 or an MTD dosage of 250 mg/kg/day TEA (Trial II) in a similar manner. No clinical signs of toxicity were noted, and upon sacrifice, levels of hepatic choline, its primary storage form, phosphocholine (PCho), and its primary oxidation product, betaine, were determined. A statistically significant decrease in PCho and betaine, was observed at the high dosage (26-42%) relative to controls and a dose-related, albeit variable, decrease was noted in PCho levels. Choline levels were also decreased 13-35% at the high dose level in mice. No changes in levels of choline or metabolites were noted in treated rats. A subsequent evaluation of the potential of TEA to inhibit the uptake of (3)H-choline by cultured Chinese Hamster Ovary Cells revealed a dose-related effect upon uptake. It was concluded that TEA may cause liver tumors in mice via a choline-depletion mode of action and that this effect is likely caused by the inhibition of choline uptake by cells.
Collapse
Affiliation(s)
- W T Stott
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 84674, USA.
| | | | | | | | | |
Collapse
|
55
|
Mellert W, Kaufmann W, Rossbacher R, van Ravenzwaay B. Investigations on cell proliferation in B6C3F(1) mouse liver by diethanolamine. Food Chem Toxicol 2004; 42:127-34. [PMID: 14630136 DOI: 10.1016/j.fct.2003.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diethanolamine (DEA) has been shown to induce liver tumours in B6C3F(1) mice in a previous 2-year dermal study. To elucidate the mode of action groups of eight male and eight female B6C3F1 mice were dermally exposed to daily DEA doses of 0 or 160 mg/kg body weight/day for 1 week. Reversibility was assessed after a 3-week treatment-free recovery period. Subsequently groups of 10 male B6C3F(1) mice were dermally exposed to daily DEA doses of 0 or 160 mg/kg body weight for 1, 4 or 13 weeks. Finally, groups of 8 male B6C3F(1) mice were dermally exposed to daily DEA doses of 0, 10, 20, 40, 80, and 160 mg/kg body weight for 1 and 13 weeks. Following a 1-week treatment, DEA caused increased cell proliferation (5-bromo-2'-deoxyuridine (BrdU) method) in zone 3 (central vein region) of the liver lobules at 160 mg/kg body weight. Reversibility of liver cell proliferation was demonstrated in the recovery phase. In the subsequent studies increased cell proliferation was observed at 10 mg/kg body weight or higher after 13 weeks of treatment. These results support the hypothesis that sustained liver cell proliferation is a potential non genotoxic mode of action by which DEA promotes liver tumours in B6C3F(1) mice.
Collapse
Affiliation(s)
- W Mellert
- BASF Aktiengesellschaft, Product Safety, Z 470, D-67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|
56
|
Rau GA, Dombrowsky H, Gebert A, Thole HH, von der Hardt H, Freihorst J, Bernhard W. Phosphatidylcholine metabolism of rat trachea in relation to lung parenchyma and surfactant. J Appl Physiol (1985) 2003; 95:1145-52. [PMID: 12909600 DOI: 10.1152/japplphysiol.01194.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant prevents alveolar collapse and contributes to airway patency by reducing surface tension. Although alveolar surfactant, consisting mainly of phospholipids (PL) together with neutral lipids and surfactant-specific proteins, originates from type II pneumocytes, the contribution of airway epithelia to the PL fraction of conductive airway surfactant is still debated. We, therefore, analyzed the composition, synthesis, and release of phosphatidylcholine (PC) molecular species as the main surfactant PL of the rat trachea compared with the lung. Analyses of individual PC molecular species with HPLC and electrospray ionization mass spectrometry revealed that the rat trachea contained and synthesized much more palmitoyloleoyl-PC, palmitoyllinoleoyl-PC, and palmitoylarachidonoyl-PC, together with increased amounts of alkylacyl-PC, and less surfactant-specific species such as dipalmitoyl-PC than the lung. Organ cultures with [methyl-3H]choline as precursor of PC revealed that, in the trachea, synthesized PC was retained in the tissue, rather than secreted. [Methyl-3H]choline-labeled dipalmitoyl-PC was a negligible component in the trachea, and, in contrast to the lungs, palmitoyloleoyl-PC was enriched in tracheal secretions. We conclude that the surfactant fraction in the airways does not originate from the airways but is produced in the alveolar space and transported upward.
Collapse
Affiliation(s)
- Gunnar A Rau
- Department of Pediatric Pulmonology and Neonatology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
57
|
Shimada Y, Morita T, Sugiyama K. Dietary eritadenine and ethanolamine depress fatty acid desaturase activities by increasing liver microsomal phosphatidylethanolamine in rats. J Nutr 2003; 133:758-65. [PMID: 12612149 DOI: 10.1093/jn/133.3.758] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of eritadenine, a constituent of the Lentinus edodes mushroom, and ethanolamine, the base constituent of phosphatidylethanolamine (PE), on fatty acid desaturase activities and lipid profiles were investigated comparatively in rats. Rats were fed a control diet or a diet supplemented with either eritadenine (0.05 g/kg) or ethanolamine (8 g/kg) for 14 d. Eritadenine and ethanolamine had marked hypocholesterolemic effects. The concentration of liver microsomal PE was significantly increased and the ratio of phosphatidylcholine (PC) to PE was significantly decreased by both eritadenine and ethanolamine. These changes in phospholipid profile were also observed in the mitochondria and plasma membranes in the liver. The activities of the Delta5-, Delta6- and Delta9-desaturases in liver microsomes were significantly decreased by eritadenine and ethanolamine; there was a significant correlation between the activity of Delta5- or Delta6-desaturase and the proportion of PE in the total phospholipids or the PC/PE ratio. Reflecting decreased Delta5- and Delta6-desaturase activities, the 20:4(n-6)/18:2(n-6) ratio was significantly decreased by eritadenine and ethanolamine in PC of the liver microsomes, mitochondria and plasma membranes. Although the 20:4(n-6)/18:2(n-6) ratio of liver microsomal PE was also significantly decreased by eritadenine and ethanolamine, the fatty acid composition of phosphatidylinositol and phosphatidylserine was less affected by these compounds. Eritadenine and ethanolamine increased the proportion of 16:0-18:2 and decreased the proportion of 18:0-20:4 in liver PC. The results suggest that dietary eritadenine and ethanolamine might lead to decreases in desaturase activities and changes in fatty acid and molecular species composition of PC through an increase in liver microsomal PE.
Collapse
Affiliation(s)
- Yasuhiko Shimada
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | |
Collapse
|
58
|
Vance JE. Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:69-111. [PMID: 14604010 DOI: 10.1016/s0079-6603(03)75003-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the pathways for phosphatidylserine (PS) and phosphatidylethanolamine (PE) biosynthesis, as well as the genes and proteins involved in these pathways, are described in mammalian cells, yeast, and prokaryotes. In mammalian cells, PS is synthesized by a base-exchange reaction in which phosphatidylcholine or PE is substrate for PS synthase-1 or PS synthase-2, respectively. Isolation of Chinese hamster ovary cell mutants led to the cloning of cDNAs and genes encoding these two PS synthases. In yeast and prokaryotes PS is produced by a biosynthetic pathway completely different from that in mammals: from a reaction between CDP-diacylglycerol and serine. The major route for PE synthesis in cultured cells is from the mitochondrial decarboxylation of PS. Alternatively, PE can be synthesized in the endoplasmic reticulum (ER) from the CDP-ethanolamine pathway. Genes and/or cDNAs encoding all the enzymes in these two pathways for PE synthesis have been isolated and characterized. In mammalian cells, PS is synthesized on the ER and/or mitochondria-associated membranes (MAM). PS synthase-1 and -2 are highly enriched in MAM compared to the bulk of ER. Since MAM are a region of the ER that appears to be in close juxtaposition to the mitochondrial outer membrane, it has been proposed that MAM act as a conduit for the transfer of newly synthesized PS into mitochondria. A similar pathway appears to operate in yeast. The use of yeast mutants has led to identification of genes involved in the interorganelle transport of PS and PE in yeast, but so far none of the corresponding genes in mammalian cells has been identified. PS and PE do not act solely as structural components of membranes. Several specific functions have been ascribed to these two aminophospholipids. For example, cell-surface exposure of PS during apoptosis is thought to be the signal by which apoptotic cells are recognized and phagocytosed. Translocation of PS from the inner to outer leaflet of the plasma membrane of platelets initiates the blood-clotting cascade, and PS is an important activator of several enzymes, including protein kinase C. Recently, exposure of PE on the cell surface was identified as a regulator of cytokinesis. In addition, in Escherichia coli, PE appears to be involved in the correct folding of membrane proteins; and in Drosophila, PE regulates lipid homeostasis via the sterol response element-binding protein.
Collapse
Affiliation(s)
- Jean E Vance
- Canadian Institutes for Health Research Group on Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, 332 HMRC, Edmonton, AB, Canada T6G 2S2
| |
Collapse
|
59
|
Nishimaki-Mogami T, Yao Z, Fujimori K. Inhibition of phosphatidylcholine synthesis via the phosphatidylethanolamine methylation pathway impairs incorporation of bulk lipids into VLDL in cultured rat hepatocytes. J Lipid Res 2002; 43:1035-45. [PMID: 12091487 DOI: 10.1194/jlr.m100354-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Inhibition of phosphatidylcholine (PC) synthesis via the phosphatidylethanolamine (PE) methylation pathway was shown to decrease the secretion of VLDL from primary rat hepatocytes (Nishimaki-Mogami et al. 1996. BIOCHIM: Biophys. Acta. 1304: 21-31). To understand further the role of PE methylation, we determined the effect of bezafibrate, an inhibitor of PE methylation, on VLDL assembly within the microsomal lumen. Bezafibrate was shown to decrease VLDL (triacylglycerol) secretion only when cellular PE methylation was active in the presence of methionine. Pulse-chase experiments showed that bezafibrate treatment did not impair the movement of [(35)S]apolipoprotein (apo)B-48 from microsomal membranes into the lumen. However, bezafibrate treatment resulted in reduced VLDL-[(35)S]apoB-48 and increased [(35)S]apoB-48-containing particles in the HDL density range (HDL-[(35)S]apoB-48) within the lumen. Inhibition of PE methylation by bezafibrate or 3-deazaadenosine after the completion of HDL-[(35)S]apoB-48 assembly effectively decreased VLDL-[(35)S]apoB-48 secretion with a concomitant increase in HDL-[(35)S]apoB-48 secretion. These findings suggest that inhibition of PC synthesis via the PE methylation pathway impairs the stage of bulk triacylglycerol incorporation during the assembly of VLDL.
Collapse
|
60
|
Cherlet T, Scott JE. Tetrahydrocannabinol (THC) alters synthesis and release of surfactant-related material in isolated fetal rabbit type II cells. Drug Chem Toxicol 2002; 25:171-90. [PMID: 12024801 DOI: 10.1081/dct-120003258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, there has been a great deal of interest in the biological consequences of marijuana use. While evidence indicates that cannabinoids may have therapeutic uses in alleviating certain disease discomfort, there is little recent information on potential health risks, particularly related to the developing fetus. The present study was undertaken to determine the effects of delta 9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana on fetal lung development specifically related to surfactant production. The rationale for the choice of this model lies in the importance of adequate lung development and surfactant production for the successful transition of the fetus to an air-breathing environment. Lung type II cells, the source of pulmonary surfactant, were isolated from fetal rabbit lungs on the 24th gestational day and incubated concurrently with various concentrations of THC and [3H]choline to label disaturated phosphatidylcholine (DSPC) the major surface-active phospholipid of surfactant. Under these conditions THC significantly reduced radiolabelling of DSPC and at the highest concentration (10(-4) M) induced release of DSPC. Pulse-chase studies were also conducted. Cells were prelabelled with [3H]choline, removed to fresh medium with THC (10(-4) M) and incubated for various time periods. Aqueous- and organic-soluble intermediates of DSPC formation were isolated. THC induced a significant increase in radiolabelling of CDPcholine, the rate-limiting conversion in DSPC synthesis. Radiolabelling of total phosphatidylcholine and DSPC was also significantly increased. Assay of CTP: cholinephosphate cytidylyltransferase which enzymatically converts cholinephosphate to CDPcholine showed that THC and phosphatidylglycerol (PG) both induced activation of the enzyme in fetal lung cytosol but not in the membranes. This effect of THC and PG was not additive. THC activated the enzyme only in fetal and not adult rabbit lung. The ability of THC to induce release of surfactant related material was also examined. In cells prelabelled with [3H]choline, THC induced release of [3H]DSPC in both cultured and freshly isolated fetal type II cells. These results suggest THC reduces formation of surfactant DSPC, probably through alterations in membrane dynamics. However, intracellular THC may actually increase formation of DSPC through an effect on the rate-limiting enzyme. THC also increases release of previously formed surfactant-related material.
Collapse
Affiliation(s)
- T Cherlet
- Departments of Oral Biology and Anatomy, Faculties of Medicine and Dentistry, University of Manitoba, Winnipeg, MB, RZE OW2, Canada
| | | |
Collapse
|
61
|
Ridsdale R, Tseu I, Wang J, Post M. CTP:phosphocholine cytidylyltransferase alpha is a cytosolic protein in pulmonary epithelial cells and tissues. J Biol Chem 2001; 276:49148-55. [PMID: 11583989 DOI: 10.1074/jbc.m103566200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in de novo synthesis of phosphatidylcholine (PC). The lung requires a steady synthesis of PC for lung surfactant of which disaturated PC is the essential active agent. Surfactant synthesis occurs in alveolar type II cells. Studies with non-pulmonary cells have suggested that CCT is both a nuclear and cytoplasmic protein. The unusual requirements of the lung for PC synthesis and, therefore, CCT activity suggest a unique mechanism of regulation and possibly localization of CCT. The localization of CCT alpha in lung epithelial cells and, of greater consequence, lung tissues are yet unknown. Three isoforms of CCT have been identified. Herein we investigated the localization of the ubiquitously expressed CCT alpha isoform. To ascertain CCT alpha localization in lungs and lung-related epithelial cells, we employed a number of localization methods. Immunogold electron microscopy using polyclonal antibodies raised to either the carboxyl terminus, catalytic domain, or amino terminus of CCT alpha localized CCT alpha mostly to the exterior plasma membrane or regions of the endoplasmic reticulum (ER) in both A549 and MLE-15 epithelial lung cell lines and primary cultures of fetal rat lung epithelial cells. In contrast to other studies, little or no nuclear labeling was observed. Indirect immunofluorescence of these cells with anti-CCT alpha antibodies resulted in a similar distribution. Indirect visualization of both hemagglutinin- and FLAG-tagged CCT alpha as well as direct visualization of enhanced green fluorescence protein-CCT alpha fusion protein corroborated a cytoplasmic localization of CCT alpha in pulmonary cells. Moreover, analysis of lung tissue from fetal and adult mouse by either immunogold electron microscopy or indirect immunofluorescence yielded a strong cytoplasmic CCT alpha signal with virtually no nuclear localization in epithelial cells lining the airways. The cytoplasmic localization of CCT alpha in type II cells was further substantiated with transgenic mice overexpressing FLAG-tagged CCT alpha using the lung-specific human surfactant protein C (SP-C) promoter. We conclude that CCT alpha does not localize to the nucleus in pulmonary tissues, and, therefore, nuclear localization of CCT alpha is not a universal event.
Collapse
Affiliation(s)
- R Ridsdale
- Canadian Institutes for Health Research Group in Lung Development, Programme in Lung Biology Research, Hospital for Sick Children Research Institute, Institute of Medical Science, University of Toronto, Toronto M5G 1X8, Canada
| | | | | | | |
Collapse
|
62
|
Ramírez de Molina A, Rodríguez-González A, Penalva V, Lucas L, Lacal JC. Inhibition of ChoK is an efficient antitumor strategy for Harvey-, Kirsten-, and N-ras-transformed cells. Biochem Biophys Res Commun 2001; 285:873-9. [PMID: 11467831 DOI: 10.1006/bbrc.2001.5250] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasing amount of evidence suggests that elevated PCho levels are related to the transforming properties of the H-Ras oncoprotein. Based on these observations, we have designed an antitumor strategy using choline kinase, the enzyme responsible of PCho production, as a novel target for drug discovery. However, little relationship between this lipid-related pathway and the other two Ras members, N- and K-ras, has been established. Since N- and K-ras are the most frequently mutated ras genes in human tumors, we have analyzed the PC-PLD/ChoK pathway and the sensitivity to ChoK inhibition of all three ras-transformed cells. Here we demonstrate that transformation by the three Ras oncoproteins results in increased levels of PCho to a similar extent, resulting from a similar constitutive increase of ChoK activity. As well, sensitivity to choline kinase inhibitors as antiproliferative drugs is similar in cell lines transformed by each of the three ras oncogenes, being in all cases higher than parental, nontransformed cells. In addition, H, K and N-ras-induced alterations in PC metabolism is discussed. These results indicate that ChoK can be used as a general target for anticancer drug design against Ras-dependent tumorigenesis.
Collapse
|
63
|
Ikemoto A, Fukuma A, Fujii Y, Okuyama H. Diurnal rhythms of retinal phospholipid synthetic enzymes are retained but their activities are decreased in rats under alpha-linolenic acid deficiency. Arch Biochem Biophys 2000; 383:108-13. [PMID: 11097182 DOI: 10.1006/abbi.2000.2040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats fed a safflower oil (alpha-linolenic acid (ALNA)-deficient) diet over the course of two generations had significantly decreased docosahexaenoic acid (22:6n-3) and increased docosapentaenoic acid (22:5n-6) contents in the major retinal phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) when compared with those fed a perilla oil (ALNA-sufficient) diet, but the compositions of phosphatidylinositol acyl chains were relatively unaffected. The contents of individual phospholipids in the retina were essentially the same for the two dietary groups. The activities of the rate-limiting enzymes in the de novo synthesis of PC and PE, CTP:phosphocholine cytidylyltransferase (CT), and CTP:phosphoethanolamine cytidylyltransferase (ET), respectively, were measured in the retinas excised at 5:00, 9:00, 13:00, and 17:00 h from rats adapted to a 24-h cycle with lights on from 7:00 to 19:00 h. Both enzymes exhibited significant diurnal rhythms with the lowest activities at 5:00 h and gradually increasing activities following exposure of the rats to light; the maximum activities were at 13:00 h for CT and 17:00 h for ET. The diurnal rhythms were not significantly affected by the above-mentioned diets. However, both enzyme activities at each collection time point were significantly lower in the safflower oil group than in the perilla oil group. These results suggest that retinal phospholipid turnover associated with shedding, phagocytosis, and resynthesis of the rod outer segments is limited by ALNA deficiency.
Collapse
Affiliation(s)
- A Ikemoto
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | |
Collapse
|
64
|
Kaplan O, Firon M, Vivi A, Navon G, Tsarfaty I. HGF/SF activates glycolysis and oxidative phosphorylation in DA3 murine mammary cancer cells. Neoplasia 2000; 2:365-77. [PMID: 11005571 PMCID: PMC1550289 DOI: 10.1038/sj.neo.7900103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a paracrine growth factor which increases cellular motility and has also been implicated in tumor development and progression and in angiogenesis. Little is known about the metabolic alteration induced in cells following Met-HGF/SF signal transduction. The hypothesis that HGF/SF alters the energy metabolism of cancer cells was investigated in perfused DA3 murine mammary cancer cells by nuclear magnetic resonance (NMR) spectroscopy, oxygen and glucose consumption assays and confocal laser scanning microscopy (CLSM). 31P NMR demonstrated that HGF/SF induced remarkable alterations in phospholipid metabolites, and enhanced the rate of glucose phosphorylation (P < .05). 13C NMR measurements, using [13C1]-glucose-enriched medium, showed that HGS/SF reduced the steady state levels of glucose and elevated those of lactate (P < .05). In addition, HGF/SF treatment increased oxygen consumption from 0.58+/-0.02 to 0.71+/-0.03 micromol/hour per milligram protein (P < .05). However, it decreased CO2 levels, and attenuated pH decrease. The mechanisms of these unexpected effects were delineated by CLSM, using NAD(P)H fluorescence measurements, which showed that HGF/SF increased the oxidation of the mitochondrial NAD system. We propose that concomitant with induction of ruffling, HGF/SF enhances both the glycolytic and oxidative phosphorylation pathways of energy production.
Collapse
Affiliation(s)
- O Kaplan
- School of Chemistry, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
65
|
Reo NV, Adinehzadeh M. NMR spectroscopic analyses of liver phosphatidylcholine and phosphatidylethanolamine biosynthesis in rats exposed to peroxisome proliferators-A class of nongenotoxic hepatocarcinogens. Toxicol Appl Pharmacol 2000; 164:113-26. [PMID: 10764624 DOI: 10.1006/taap.2000.8901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferators (PPs) are commercial/industrial chemicals that display tumor promoter activity in rodents. The mechanism is not completely understood, and our ability to predict tumorigenicity a priori is even less developed. Wy-14,643, perfluorooctanoic acid (PFOA), and di(2-ethylhexyl)phthalate (DEHP) are strong, moderate, and weak tumor promoters, respectively, while perfluorodecanoic acid (PFDA) lacks promoter activity. This investigation examined the effects of these PPs on the biosyntheses of phosphatidylcholine (PtdC) and phosphatidylethanolamine (PtdE) in rat liver. After exposure to PPs, rats were administered [1-(13)C]choline + [2-(13)C]ethanolamine and liver extracts were analyzed by (31)P and (13)C NMR. The ratio of choline-derived to ethanolamine-derived phospholipids, R(c/e), was significantly affected by all PPs (p < 0. 05). R(c/e) values were in the order Wy-14,643 > PFOA > DEHP > control > PFDA. The amounts of PtdC derived via the CDP-choline pathway versus PtdE-N-methyltransferase (PEMT) activity was 71 vs 29% in controls. This distribution was significantly affected by treatments with Wy-14,643 (95 vs 5%), DEHP (87 vs 13%), and PFDA (39 vs 61%) (p < 0.02). Data suggest that Wy-14,643, PFOA, and DEHP cause a preference for choline and the CDP-choline pathway for biosynthesis of PtdC. Additionally, Wy-14,643 and DEHP inhibited the PEMT pathway. In contrast, PFDA-treated rats showed a preference for ethanolamine, and PtdC was predominately synthesized through the PEMT pathway. These data corroborate studies by Vance and co-workers which suggest that the pathways for PtdC biosynthesis are important for hepatocarcinogenesis. Further studies to evaluate the potential of these measurements as a biomarker for PP-associated tumorigenesis is warranted.
Collapse
Affiliation(s)
- N V Reo
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45429, USA.
| | | |
Collapse
|
66
|
Vivekananda J, Awasthi V, Awasthi S, Smith DB, King RJ. Hepatocyte growth factor is elevated in chronic lung injury and inhibits surfactant metabolism. Am J Physiol Lung Cell Mol Physiol 2000; 278:L382-92. [PMID: 10666123 DOI: 10.1152/ajplung.2000.278.2.l382] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult respiratory distress syndrome may incorporate in its pathogenesis the hyperplastic proliferation of alveolar epithelial type II cells and derangement in synthesis of pulmonary surfactant. Previous studies have demonstrated that hepatocyte growth factor (HGF) in the presence of serum is a potential mitogen for adult type II cells (R. J. Panos, J. S. Rubin, S. A. Aaronson, and R. J. Mason. J. Clin. Invest. 92: 969-977, 1993) and that it is produced by fetal mesenchymal lung cells (J. S. Rubin, A. M.-L. Chan, D. P. Botarro, W. H. Burgess, W. G. Taylor, A. C. Cech, D. W. Hirschfield, J. Wong, T. Miki, P. W. Finch, and S. A. Aaronson. Proc. Natl. Acad. Sci. USA 88: 415-419, 1991). In these studies, we expand on this possible involvement of HGF in chronic lung injury by showing the following. First, normal adult lung fibroblasts transcribe only small amounts of HGF mRNA, but the steady-state levels of this message rise substantially in lung fibroblasts obtained from animals exposed to oxidative stress. Second, inflammatory cytokines produced early in the injury stimulate the transcription of HGF in isolated fibroblasts, providing a plausible mechanism for the increased amounts of HGF seen in vivo. Third, HGF is capable of significantly inhibiting the synthesis and secretion of the phosphatidylcholines of pulmonary surfactant. Fourth, HGF inhibits the rate-limiting enzyme in de novo phosphatidylcholine synthesis, CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15). Our data indicate that fibroblast-derived HGF could be partially responsible for the changes in surfactant dysfunction seen in adult respiratory distress syndrome, including the decreases seen in surfactant phosphatidylcholines.
Collapse
Affiliation(s)
- J Vivekananda
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7756, USA
| | | | | | | | | |
Collapse
|
67
|
Huang JS, Mukherjee JJ, Chung T, Crilly KS, Kiss Z. Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin and insulin-like growth factor I in fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:943-51. [PMID: 10583389 DOI: 10.1046/j.1432-1327.1999.00932.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In serum-starved mouse NIH 3T3 fibroblasts cultured in 1.8 mM Ca2+-containing medium, addition of 0.75-2 mM extra Ca2+ stimulated DNA synthesis in synergism with zinc (15-60 microM), insulin and insulin-like growth factor I. Extra Ca2+ stimulated phosphorylation/activation of p42/p44 mitogen-activated protein kinases by an initially (10 min) zinc-independent mechanism; however, insulin, and particularly zinc, significantly prolonged Ca2+-induced mitogen-activated protein kinase phosphorylation. In addition, extra Ca2+ activated p70 S6 kinase by a zinc-dependent mechanism and enhanced the stimulatory effect of zinc on choline kinase activity. Insulin and insulin-like growth factor I also commonly increased both p70 S6 kinase and choline kinase activities. In support of the role of the choline kinase product phosphocholine in the mediation of mitogenic Ca2+ effects, cotreatments with the choline kinase substrate choline (250 microM) and the choline kinase inhibitor hemicholinium-3 (2 mM) enhanced and inhibited, respectively, the combined stimulatory effect of extra Ca2+ (3.8 mM total) and zinc on DNA synthesis. In various human skin fibroblast lines, 1-2 mM extra Ca2+ also stimulated DNA synthesis in synergism with zinc and insulin. The results show that in various fibroblast cultures, high concentrations of extracellular Ca2+ can collaborate with zinc and certain growth factors to stimulate DNA synthesis. Considering the high concentration of extracellular Ca2+ in the dermal layer, Ca2+ may promote fibroblast growth during wound healing in concert with zinc, insulin growth factor-I insulin, and perhaps other growth factors.
Collapse
Affiliation(s)
- J S Huang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | | | | | | |
Collapse
|
68
|
Hirai H, Yoshioka K, Yamada K. Regulation of phosphatidylcholine biosynthesis by mGluR1alpha expressed in human embryonic kidney 293 cells--A 31P-NMR study. Mol Cell Neurosci 1999; 14:444-54. [PMID: 10656252 DOI: 10.1006/mcne.1999.0797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A recent report has demonstrated that inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release plays a crucial role in neurite growth. Here, using 31P-NMR, we examine whether activation of the metabotropic glutamate receptor 1 (mGluR1), which induces the production of IP3, could modulate phospholipid metabolism in human embryonic kidney 293 cells. mGluR1alpha- but not ionotropic glutamate receptor 1-expressing cells stimulated with glutamate exhibited a drastic reduction in the phosphorylcholine level, with corresponding increases in the level of phosphatidylcholine, a major phospholipid component. Quantitative analysis of cell growth revealed that mGluR1alpha-expressing cells cultured with 100microM glutamate were statistically significantly longer than the nontransfected cells. The effect was no longer observed following coincubation with a metabotropic glutamate receptor antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine. These results suggest that mGluR1alpha activation triggers phosphatidylcholine biosynthesis and may contribute to neurite extension.
Collapse
Affiliation(s)
- H Hirai
- Laboratory for Memory & Learning, RIKEN Brain Science Institute, Saitama, Japan
| | | | | |
Collapse
|
69
|
Lehman-McKeeman LD, Gamsky EA. Diethanolamine inhibits choline uptake and phosphatidylcholine synthesis in Chinese hamster ovary cells. Biochem Biophys Res Commun 1999; 262:600-4. [PMID: 10471370 DOI: 10.1006/bbrc.1999.1253] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diethanolamine (DEA), an alkanolamine used widely in industry, is hepatocarcinogenic in mice. The goal of this work was to determine whether DEA altered choline homeostasis in cultured cells, so as to ascertain whether the liver tumor response may be related to choline deficiency. CHO cells were cultured in Ham's F-12 medium containing DEA (0-1000 microgram/ml) and [(33)P]-phosphorus was used to label phospholipid pools. After 48 hours incubation, lipids were extracted and [(33)P]-labeled phospholipids were quantified by autoradiography after thin layer chromatographic separation. In control cells, phosphatidylcholine (PC) accounted for 51 +/- 0.7% of the total lipid (33)P incorporation. DEA had no effect on cell number or total phospholipid biosynthesis, but it significantly decreased the incorporation of (33)P into PC at concentrations >/=50 microgram/ml. DEA (>/=20 microgram/ml) also inhibited the uptake of [(3)H]-choline into CHO cells, with 95% inhibition observed at 250 microgram/ml. To determine whether supplemental choline prevented PC synthesis inhibition by DEA, CHO cells were cultured with or without excess choline (30 mM) and DEA (500 microgram/ml). DEA reduced PC synthesis to 27 +/- 3% of total phospholipids, but had no effect on PC synthesis in choline-supplemented cells. When [(14)C]-DEA was incubated with CHO cells, it was also incorporated into the phospholipid fraction. Collectively, these results indicate that DEA reversibly inhibits PC synthesis by blocking choline uptake and competing for utilization in the CDP-choline pathway in CHO cells.
Collapse
Affiliation(s)
- L D Lehman-McKeeman
- Human and Environmental Safety Division, Procter and Gamble Co., Cincinnati, Ohio, 45253, USA.
| | | |
Collapse
|
70
|
Luchoomun J, Hussain MM. Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem 1999; 274:19565-72. [PMID: 10391890 DOI: 10.1074/jbc.274.28.19565] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.
Collapse
Affiliation(s)
- J Luchoomun
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
71
|
Anthony ML, Zhao M, Brindle KM. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J Biol Chem 1999; 274:19686-92. [PMID: 10391908 DOI: 10.1074/jbc.274.28.19686] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of apoptosis in HL-60 cells, using a variety of cytotoxic drugs, resulted, in all cases, in inhibition of CDP-choline:1, 2-diacylglycerol choline phosphotransferase, leading to an accumulation of its substrate, CDP-choline, and inhibition of phosphatidylcholine biosynthesis. Incubation of the cells with phosphatidylcholine reduced the number displaying an apoptotic morphology following drug treatment, and this was inversely related to the degree to which the drugs inhibited phosphatidylcholine biosynthesis. Inhibition of choline phosphotransferase by two of the drugs, farnesol and chelerythrine, was shown to be due to direct inhibition of the enzyme, while inhibition by the other drugs, etoposide and camptothecin, could be explained by the intracellular acidification that followed induction of apoptosis.
Collapse
Affiliation(s)
- M L Anthony
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrookes Site, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
72
|
Abstract
Many recent observations implicate choline and ethanolamine kinases as well as phosphatidylcholine-specific phospholipase C in the regulation of mitogenesis and carcinogenesis. For example, human cancers generally contain high concentrations of phosphoethanolamine and phosphocholine, and in different cell lines various growth factors, cytokines, oncogenes and chemical carcinogens were all shown to stimulate the formation of phosphocholine and phosphoethanolamine. In addition, other reports have appeared showing that both extracellular and intracellular phosphocholine as well as ethanolamine and its derivatives can regulate cell growth. This area of research has clearly arrived at a stage when it becomes important to examine critically the feasibility of water-soluble phospholipid intermediates serving as potential regulators of cell growth in vivo. Accordingly, the goal of this review is to summarise available information relating to the formation and mitogenic actions of intracellular and extracellular phosphocholine as well as ethanolamine and its derivatives.
Collapse
Affiliation(s)
- Z Kiss
- The Hormel Institute, University of Minnesota, Austin 55912, USA.
| |
Collapse
|
73
|
Parkin ET, Rolph CE. Modulation of phosphatidylcholine biosynthesis in celery by exogenous fatty acids. PHYTOCHEMISTRY 1999; 50:47-51. [PMID: 9891932 DOI: 10.1016/s0031-9422(98)00488-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of C16 and C18 fatty acids on the synthesis of phosphatidylcholine were studied in Apium graveolens cell suspension cultures and postmitochondrial supernatants. When cells were exposed to exogenous oleic acid, the rate of phosphatidylcholine biosynthesis increased 1.4-fold within 5 min of the addition of the fatty acid to the culture medium. The sensitivity of microsomal CTP:cholinephosphate cytidylyltransferase (EC 2.7.7.15) to saturated and unsaturated fatty acids was monitored through the addition of unesterified fatty acids to postmitochondrial supernatants. The saturated fatty acids, palmitic and stearic, appeared to have little effect on CTP:cholinephosphate cytidylyltransferase activity, whereas exposure to oleic, linoleic and cis-vaccenic acids resulted in significant increases in enzyme activity. Optimal microsomal CTP:cholinephosphate cytidylyltransferase activities were achieved by the incubation of postmitochondrial supernatants with 500 microM oleate. The exogenous fatty acids were found to be incorporated into microsomal membranes in their unesterified form. Removal of unesterified fatty acids by incubation of microsomal membranes with defatted bovine serum albumin resulted in the reduction of microsomal CTP:cholinephosphate cytidylyltransferase activity; demonstrating that the enzyme requires unesterified unsaturated fatty acids.
Collapse
Affiliation(s)
- E T Parkin
- Department of Applied Biology, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
74
|
Exton JH. Phospholipid‐Derived Second Messengers. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
75
|
Williams SN, Anthony ML, Brindle KM. Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1,6-bisphosphate and CDP-choline as determined by 31P MRS. Magn Reson Med 1998; 40:411-20. [PMID: 9727944 DOI: 10.1002/mrm.1910400311] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Programmed cell death or apoptosis was induced in human promyelocytic leukemia (HL-60) and Chinese hamster ovary (CHO-K1) cells using several cytotoxic drugs that have different modes of action, including camptothecin, ceramide, chelerythrine, etoposide, farnesol, geranyl geraniol, and hexadecylphosphocholine. The consequent changes in cellular metabolism were monitored using 31P MRS measurements on intact cells and cell extracts. Cells undergoing programmed cell death exhibited characteristic changes in the levels of glycolytic and phospholipid metabolites. The most significant changes were increases in the concentration of the glycolytic intermediate, fructose-1,6-bisphosphate and in the concentration of CDP-choline, which is an intermediate in phosphatidylcholine biosynthesis. In HL-60 cells, the increase in fructose-1,6-bisphosphate levels could be explained by depletion of cellular NAD(H) levels. All of the agents used to induce apoptosis caused the accumulation of CDP-choline. Since the resonances of this compound occur in a relatively well resolved region of tissue spectra, it could provide a marker for apoptosis that would allow the noninvasive detection of the process in vivo using 31P MRS measurements.
Collapse
Affiliation(s)
- S N Williams
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
76
|
Katz-Brull R, Margalit R, Bendel P, Degani H. Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors. MAGMA (NEW YORK, N.Y.) 1998; 6:44-52. [PMID: 9794289 DOI: 10.1007/bf02662511] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Choline metabolism in breast cancer cells and tumors has been investigated by multinuclear NMR in order to provide the biochemical basis for the presence of high phosphocholine in breast carcinoma relative to benign breast tumors and normal breast tissue. Choline was found to be transported into MCF7 human breast cancer cells and rapidly phosphorylated to phosphocholine which was then accumulated in the cells to high concentrations. The increased level of phosphocholine did not affect the rate of synthesis of phosphatidylcholine, indicating tight regulation of this pathway. The incorporation of [1,2-13C]choline (100 microM) into phosphocholine and phosphatidylcholine after 24 h was 69.5 and 36% of the total respective pools. Incorporation of 2H9-choline to tumors implanted in nude mice was achieved by infusing the deuterated choline to the blood circulation. The metabolism of deuterated choline was then monitored by 2H localized MRS. The blood level of choline before the infusion was 58.6 +/- 10.3 microM (measured by 1H-NMR of plasma samples) and increased approximately 5-fold during the infusion (measured by 2H-NMR). This increase in the blood level resulted in a gradual increase of a signal at 3.2 ppm due to deuterated choline metabolites. It appears that the increased availability of choline in the blood circulation leads to accumulation of phosphocholine in the tumors by the same mechanism as in the cells.
Collapse
Affiliation(s)
- R Katz-Brull
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
77
|
Min DS, Exton JH. Phospholipase D is associated in a phorbol ester-dependent manner with protein kinase C-alpha and with a 220-kDa protein which is phosphorylated on serine and threonine. Biochem Biophys Res Commun 1998; 248:533-7. [PMID: 9703960 DOI: 10.1006/bbrc.1998.8990] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies have shown that phospholipase D (PLD) is activated by protein kinase C (PKC) in vivo and in vitro. In this study, a PLD isoform (rPLD1) was shown to bind to PKC-alpha in Rat1 fibroblasts treated with phorbol ester. The PKC-alpha binding domain of rPLD1 was localized to its N-terminus. The phospholipase was shown to become associated also with a 220-kDa protein (p220) in the fibroblasts and in Sf9 cells infected with recombinant baculovirus coding rPLD1. This interaction was increased by phorbol myristate acetate (PMA) treatment. p220 was phosphorylated on serine/threonine in PMA-stimulated Rat1 cells, and rPLD1 expressed in Sf9 cells was also serine/threonine phosphorylated in response to PMA treatment. These data suggest the PMA induces the formation of a RPLD1/PKC alpha/P220 complex in cells, some components of which undergo serine/threonine phosphorylation.
Collapse
Affiliation(s)
- D S Min
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
78
|
Logan HE, Byers DM, Ridgway ND, Cook HW. Phospholipase D activity is altered in X-linked adrenoleukodystrophy heterozygous carriers, but not in hemizygous patients. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:7-20. [PMID: 9639664 DOI: 10.1016/s0925-4439(98)00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abnormalities in levels of choline and its metabolites have been reported in the lesions of brains of X-linked adrenoleukodystrophy (X-ALD) patients. We have examined the turnover of the major choline-containing phospholipid, phosphatidylcholine (PtdCho), in fibroblasts from hemizygous X-ALD, heterozygous X-ALD, Zellweger syndrome (ZW), and male and female control individuals to assess possible alterations in PtdCho metabolism mediated by activation of protein kinase C (PKC). Hydrolysis of PtdCho by phospholipase D (PLD) and resynthesis of PtdCho from labeled choline were stimulated 2- to 4-fold by PKC activation with the phorbol ester, 4beta-12-O-tetradecanoylphorbol-13-acetate (beta-TPA), in all cells except those from heterozygous X-ALD individuals. No differences in quantity or intracellular distribution of PKC activity, PKC isoforms by Western blot analysis, or of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), were apparent in any of the cells. Thus, altered PtdCho metabolism was not directly linked to either of these inherited defects that result in abnormal peroxisomal functions. Further, altered responsiveness of PLD in X-ALD heterozygotes was independent of changes in PKC and MARCKS.
Collapse
Affiliation(s)
- H E Logan
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4H7, Canada
| | | | | | | |
Collapse
|
79
|
Bogin L, Papa MZ, Polak-Charcon S, Degani H. TNF-induced modulations of phospholipid metabolism in human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:217-32. [PMID: 9630635 DOI: 10.1016/s0005-2760(98)00035-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor alpha (TNF) is a cytokine that is cytocidal for certain tumor cells and induces necrotic and apoptotic forms of cell death. Flow cytometry and transmission electron microscopy analysis demonstrated that in human breast cancer cells (MCF7) TNF induces cell cycle arrest in G0+G1/S, accompanied by apoptosis. 31P and 13C NMR spectroscopy was applied to study cellular metabolism of MCF7 cells during TNF-induced signal to apoptosis. Deuterated choline and 2H NMR spectroscopy were utilized to monitor the kinetics of the rate limiting reactions in phosphocholine metabolism. The NMR measurements revealed that immediately after administration of TNF, choline transport was inhibited by 52+/-6%. Later (approximately 15 h), the activity of phosphocholine:cytidine triphosphate cytidylyltransferase, a key enzyme in the biosynthesis of phosphatidylcholine, was enhanced two-fold. These two opposing changes led to a decrease in the level of phosphocholine. Throughout these changes the energetic state of the cells, determined by the level of nucleoside triphosphates and the rate of glucose metabolism via glycolysis, remained constant. The results indicate that TNF specifically modulates the kinetics of membrane-bound enzymes of the rate determining steps in phosphatidylcholine biosynthesis, possibly as part of early events involved in apoptosis.
Collapse
Affiliation(s)
- L Bogin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
80
|
Kiss Z, Crilly KS, Anderson WH. Phorbol ester stimulation of phosphatidylcholine synthesis requires expression of both protein kinase C-alpha and phospholipase D. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:109-18. [PMID: 9593849 DOI: 10.1016/s0005-2760(98)00030-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) stimulates both the synthesis and phospholipase D (PLD)-mediated hydrolysis of phosphatidylcholine (PtdCho). Here, attached and suspended NIH 3T3 fibroblasts as well as variants of the MCF-7 human breast carcinoma cell line expressing PKC-alpha and a PtdCho-specific PLD activity at widely different levels were used to determine the possible role of PKC-alpha, PtdCho hydrolysis, and choline uptake in the mediation of PMA effect on PtdCho synthesis. In wild-type MCF-7 cells, which express both PKC-alpha and PLD activities at very low levels, PMA had little effects on the uptake or incorporation [14C]choline into PtdCho. In multidrug resistant MCF-7/MDR1 cells, which highly express PKC-alpha but lack the PtdCho-specific PLD activity, 100-nM PMA had relatively small stimulatory effects on the uptake of [14C]choline (approximately 1.5-fold) and [14C]PtdCho synthesis (1.5- to 2-fold). In NIH 3T3 fibroblasts and MCF-7/PKC-alpha cells, both expressing PKC-alpha and PLD activities at high levels, 10-100-nM PMA enhanced [14C]choline uptake only slightly (1.7- to 2.2-fold), while it had much greater (approximately 4-9-fold) stimulatory effects on PtdCho synthesis. PMA significantly enhanced the formation of phosphatidic acid (PtdOH) in MCF-7/PKC-alpha cells (2.8-fold increase), but not in MCF-7/MDR1 cells (1.4-fold increase), while in both cell lines it had only small (1.3-1.5-fold) stimulatory effects on 1,2-diacylglycerol (1, 2-DAG) formation. In suspended NIH 3T3 cells, 200-300-mM ethanol blocked the stimulatory effect of PMA on PtdOH formation without affecting PtdCho synthesis indicating that neither PtdOH nor 1,2-DAG derived from it is a mediator of PMA effect on PtdCho synthesis. In attached NIH 3T3 cells, dimethylbenz[a]anthracene enhanced phosphocholine formation and, thus, choline uptake without increasing PtdCho synthesis or modifying the effect of PMA. While the results indicate that the stimulatory effect of PMA on PtdCho synthesis requires the expression of both PKC-alpha and a PtdCho-specific PLD, they do not support a role for 1,2-DAG, PtdOH or choline in the mediation of PMA effect.
Collapse
Affiliation(s)
- Z Kiss
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | | | | |
Collapse
|
81
|
Sugiyama K, Kumazawa A, Zhou H, Saeki S. Dietary methionine level affects linoleic acid metabolism through phosphatidylethanolamine N-methylation in rats. Lipids 1998; 33:235-42. [PMID: 9560797 DOI: 10.1007/s11745-998-0201-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of dietary methionine level on the profiles of fatty acids and phospholipids and on the plasma cholesterol concentration were investigated to confirm whether the methionine content of dietary proteins is one of the major factors that cause differential effects on lipid metabolism. The effect of dietary supplementation with eritadenine, which is shown to be a potent inhibitor of phosphatidylethanolamine (PE) N-methylation, was also investigated. Rats were fed six diets containing casein (100 g/kg) and amino acid mixture (86.4 g/kg) differing in methionine content (2.5, 4.5, and 7.5 g/kg) and without or with eritadenine supplementation (30 mg/kg) for 14 d. The ratio of arachidonic to linoleic acid of liver microsomal and plasma phosphatidylcholine (PC) was significantly increased as the methionine level of diet was elevated, indicating that dietary methionine stimulates the metabolism of linoleic acid. The PC/PE ratio of liver microsomes and the plasma cholesterol concentration were also increased by dietary methionine. These effects of methionine were completely abolished by eritadenine supplementation The S-adenosylmethionine concentration in the liver reflected the methionine level of diet. These results support the idea that the differential effects of dietary proteins on lipid metabolism might be ascribed, at least in part, to their different methionine contents, and that methionine might exert its effects through alteration of PE N-methylation.
Collapse
Affiliation(s)
- K Sugiyama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan.
| | | | | | | |
Collapse
|
82
|
Burdge GC, Postle AD. Pregnancy-associated adaptations to hepatic phosphatidylcholine biosynthesis in the guinea-pig. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:265-72. [PMID: 9629659 DOI: 10.1016/s0305-0491(97)00324-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pregnancy is associated with increased phosphatidylcholine (PC) 16:0/22:6 and PC16:0/20:4 concentrations in rat liver and plasma, guinea-pig liver, and in plasma in women. These changes may be related to supply of polyunsaturated fatty acids (PUFA) to the fetus. For the rat, these adaptations to hepatic PC composition are regulated by modifications to synthesis de novo from choline. However, it is not known whether these adaptations are applicable to other species. Consequently, we have determined biochemical mechanisms for regulation of hepatic PC synthesis in the pregnant guinea pig. The PUFA content of guinea-pig liver PC synthesised de novo did not change significantly during pregnancy. [Methyl-14C]methionine incorporation into PC in vivo, however, showed increased PC16:0/22:6 and PC16:0/20:4 contents. [Methyl-14C]methionine incorporation into PC over 6 hr in vivo increased during early pregnancy, while PC synthesis de novo did not change. In contrast to the rat, modulation of PE N-methylation is a primary mechanism for regulating the PUFA content of hepatic PC in the pregnant guinea-pig. The use of distinct metabolic strategies to achieve comparable pregnancy-associated adaptations to hepatic PC composition between these animal species suggests both evolutionary convergence and a fundamental the role for PC16:0/22:6 and PC16:0/20:4 in PUFA metabolism during gestation.
Collapse
Affiliation(s)
- G C Burdge
- Child Health, University of Southampton, U.K.
| | | |
Collapse
|
83
|
Kiss Z. Expression of protein kinase C-beta promotes the stimulatory effect of phorbol ester on phosphatidylethanolamine synthesis. Arch Biochem Biophys 1997; 347:37-44. [PMID: 9344462 DOI: 10.1006/abbi.1997.0308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimulation of phosphatidylethanolamine (PtdEtn) synthesis by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) has reportedly been found only in hepatocytes expressing the alpha-, betaII-, epsilon-, and zeta-PKC isozymes. In contrast, stimulation of phosphatidylcholine synthesis by PKC activators, known to be mediated by PKC-alpha, is widespread in mammalian cells. In this work, various cell lines exhibiting characteristic differences in their PKC systems were used to determine the role of specific PKC isozymes in the mediation of PMA effect on PtdEtn synthesis. In NIH 3T3 fibroblasts, which express high levels of PKC-alpha but none of the beta (betaI or betaII) isoforms, PMA did not stimulate PtEtn synthesis. In contrast, in Rat-6 fibroblasts overexpressing PKC-betaI, 10-100 nM PMA considerably (1.7- to 2.6-fold) enhanced PtdEtn synthesis. In wild-type or multidrug resistant MCF-7 human breast carcinoma cells, which express PKC-alpha and PKC-betaII (to varying extents) but not PKC-betaI, PMA had only small or no effects on PtdEtn synthesis. In contrast, in MCF-7 cells overexpressing PKC-alpha, and as a consequence also expressing the betaI- and betaII-PKC isoforms, PMA effectively stimulated the synthesis of PtdEtn. Finally, in HL60 human leukemia cells, which contains PKC-betaII as the major PKC isoform, PMA again stimulated PtdEtn synthesis. The results establish that while stimulation of PtdEtn synthesis by PMA occurs only in selected cell lines, this phenomenon is not restricted to hepatocytes. Furthermore, the data indicate that expression of either PKC-betaI or PKC-betaII, but not PKC-alpha, correlates with the effect of PMA on PtdEtn synthesis. Overall, these observations strongly suggest that regulation of PtdEtn and PtdCho synthesis by PMA involves separate PKC isozymes, i.e., PKC-beta and PKC-alpha, respectively.
Collapse
Affiliation(s)
- Z Kiss
- The Hormel Institute, University of Minnesota, 801 16th Avenue N.E., Austin, Minnesota 55912, USA.
| |
Collapse
|
84
|
Kim KS, Park EJ, Lee CW, Joo HT, Yeo YK. Dietary alpha-linolenic acid increases the biosynthesis of the choline glycerophospholipids from [14C]CDPcholine in rat liver and kidney but not in brain. Neurochem Res 1997; 22:1291-7. [PMID: 9342734 DOI: 10.1023/a:1021945316218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of feeding rats for 30 days with diets containing high levels of linoleic acid (sunflower oil, SO) or alpha-linolenic acid (perilla oil, PO) was studied in the liver, kidney and brain. The PO group showed a higher labeling of choline glycerophospholipids (CGP) in liver and kidney but no difference with the SO group in ethanolamine glycerophospholipids (EGP) labeling. The brain displayed the lowest incorporation of both precursors and no difference between the two diets. Analyses of brain CGP and EGP fatty acid composition showed that in the PO group the ratio n-6/n-3 was lower than in the SO group, mainly as a consequence of lower levels of n-6 fatty acids. The mole % of docosahexaenoate (DHA) in these lipids was the same for both groups and only triacylglycerols (TAG) displayed a higher DHA. Therefore, at least in the brain, the magnitude of fatty acid changes observed in CGP and EGP for the PO group does not affect the uptake/incorporation of the precursors into phospholipids.
Collapse
Affiliation(s)
- K S Kim
- Lipid Chemistry Laboratory, Kyungpook National University, Taegu, Korea
| | | | | | | | | |
Collapse
|
85
|
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the synthesis of CDP-choline and is regulatory for phosphatidylcholine biosynthesis. This review focuses on recent developments in understanding the catalytic and regulatory mechanisms of this enzyme. Evidence for the nuclear localization of the enzyme is discussed, as well as evidence suggesting cytoplasmic localization. A comparison of the catalytic domains of CCTs from a wide variety of organisms is presented, highlighting a large number of completely conserved residues. Work implying a role for the conserved HXGH sequence in catalysis is described. The membrane-binding domain in rat CCT has been defined, and the role of lipids in activating the enzyme is discussed. The identification of the phosphorylation domain is described, as well as approaches to understand the role of phosphorylation in enzyme activity. Other possible control mechanisms such as enzyme degradation and gene expression are presented.
Collapse
Affiliation(s)
- C Kent
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48109-0606, USA.
| |
Collapse
|
86
|
Affiliation(s)
- P C Choy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
87
|
Vazquez JM, Roldan ER. Diacylglycerol species as messengers and substrates for phosphatidylcholine re-synthesis during Ca2+-dependent exocytosis in boar spermatozoa. Mol Reprod Dev 1997; 48:95-105. [PMID: 9266766 DOI: 10.1002/(sici)1098-2795(199709)48:1<95::aid-mrd12>3.0.co;2-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated pathways of lipid metabolism in spermatozoa and generation of various metabolites with potential messenger functions during exocytosis stimulated with A23187/Ca2+. Stimulation of boar spermatozoa resulted in a considerable rapid increase in saturated/unsaturated 1,2-diacylglycerol (1,2-SU-DAG) and, concomitantly, a substantial reduction in disaturated 1,2-diacylglycerol (1,2-DS-DAG), and in phosphatidylcholine (PC). These changes preceded the onset of exocytosis. Phosphatidic acid was sometimes generated in parallel, but usually rose later, suggesting that 1,2-SU-DAG may be formed directly by phospholipase C action. Lipid changes observed in stimulated spermatozoa that have been prelabelled with several lipid precursors ([14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid) suggested the existence of a unique process involving the utilization of the high basal levels of 1,2-DS-DAG to form 1,2-SU-DAG, with the latter being subsequently employed to replenish the PC pool. An ensuing generation of lysoPC and arachidonic acid, which paralleled the occurrence of exocytosis, revealed that the newly synthesized PC was hydrolyzed by phospholipase A2. The highest levels of 1,2-SU-DAG, minimum levels of 1,2-DS-DAG, and the regeneration of the PC pool were tightly coupled to the beginning of visible exocytosis. These results suggest that changes in these lipid metabolites may be fundamental processes during acrosomal exocytosis occurring in response to physiological agonists.
Collapse
Affiliation(s)
- J M Vazquez
- Department of Development and Signalling, The Babraham Institute, Cambridge, U.K
| | | |
Collapse
|
88
|
Viti V, Ragona R, Guidoni L, Barone P, Furman E, Degani H. Hormonally induced modulation in the phosphate metabolites of breast cancer: analysis of in vivo 31P MRS signals with a modified prony method. Magn Reson Med 1997; 38:285-95. [PMID: 9256110 DOI: 10.1002/mrm.1910380219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A modified Prony method (MPM) was applied to analyze the main signals present in spatially resolved 31P NMR spectra of MCF7 breast tumors implanted in nude mice. First, the method was tested on synthetic data to establish its limits of reliability. Its performance with respect to peak identification and quantification of signal intensities was then exploited on data from three implanted tumors during hormonal manipulation with estrogen and the antiestrogenic drug tamoxifen. The phosphomonoester peak was resolved into phosphocholine (PC) and phosphoethanolamine (PE). Treatment with tamoxifen led to a significant reduction in the PE to PE+PC peak amplitude ratio in the tumors under consideration. MPM analysis also revealed the presence of two different inorganic phosphate pools: a larger acidic pool and a smaller alkaline pool during estrogen-induced growth and the reverse during tumor regression.
Collapse
Affiliation(s)
- V Viti
- Laboratorio di Fisica e INFN Sez. Sanita, Istituto Superiore di Sanitá, Roma, Italy
| | | | | | | | | | | |
Collapse
|
89
|
Tóth M. Stimulation of phosphatidylcholine turnover by beta-phorbol ester and diacylglycerol in the primordial human placenta: the suggested role of phospholipase D activation. Placenta 1997; 18:411-9. [PMID: 9250703 DOI: 10.1016/s0143-4004(97)80041-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of 4beta-phorbol-12-myristate-13-acetate (PMA) and 1,2-(sn)-dioctanoylglycerol (DOCG) on the phosphatidylcholine (PC) turnover (defined as degradation to diacylglycerol followed by PC resynthesis) and on the activity of PC-specific phospholipase D were investigated in placental mince incubated with various radiolabelled precursors in vitro. Experiments with [32P]phosphate indicated that 1 microM PMA and 125-250 microM DOCG were the lowest concentrations that led to maximal and selective stimulation of PC labelling. Moreover, PMA and DOCG acted along different time courses: PMA enhanced labelling after 60 min incubation, with a lag period of at least 30 min, whereas DOCG stimulated PC labelling after only 30 min with no further increase in the next 30 min. The following findings suggest that increased labelling of PC with [32P]phosphate in PMA-treated tissue reflects an increased rate of PC turnover: (1) the effects of PMA and DOCG were additive and PMA did not have any effect on the labelling of PC(DOCG) indicating that it stimulated PC labelling even if it did not activate CTP:choline cytidylyl transferase, the regulatory enzyme of PC synthesis de novo; (2) PMA did not increase the labelling of PC from [3H]glycerol or [3H]glucose ruling out a PMA-promoted availability of glycolytic and/or lipolytic intermediates for PC formation; and (3) the PMA effect was attended by an increased labelling of phosphatidic acid whereas there was no change in the labelling of lyso-PC, indicating the activation of phospholipase D. Experiments in which the transphosphatidylation reaction between [3H]myristic acid-labelled PC and ethanol was used to estimate phospholipase D activity showed 2.4-fold and 1.4-1.8-fold activations by PMA and DOCG, respectively, with no additivity noted. These results suggest that PMA stimulates PC turnover in the early human placenta via the activation of phospholipase D. Rapid metabolic conversion decreases the capacity of DOCG to accelerate PC-turnover and to activate phospholipase D. The early DOCG-induced stimulation of PC labelling with [32P]phosphate is attributed mainly to its known activating effect on CTP: choline cytidylyl transferase.
Collapse
Affiliation(s)
- M Tóth
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University of Medicine, Budapest, Hungary
| |
Collapse
|
90
|
Vazquez JM, Roldan ER. Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine. Mol Reprod Dev 1997; 47:105-12. [PMID: 9110321 DOI: 10.1002/(sici)1098-2795(199705)47:1<105::aid-mrd14>3.0.co;2-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated pathways of lipid metabolism in boar spermatozoa sperm cells incubated for up to 3 days with [14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid or incorporated these precursors into diglycerides and/or phospholipids. When spermatozoa were incubated with [14C]palmitic acid or [14C]glycerol, there was first an incorporation into phosphatidic acid, followed by labelling of 1,2-diacylglycerol (DAG) and then phosphatidylcholine (PC). This indicates that the de novo pathway of phospholipid synthesis is active in these cells. However, not all DAG was converted to PC. A pool of di-saturated DAG, which represented a considerable proportion of the high basal levels of DAG, accumulated the majority of label. Another DAG pool, containing saturated fatty acids in position 1 and unsaturated fatty acids in position 2 and representing the remaining basal DAG, was in equilibrium with PC. When spermatozoa were incubated with [14C]arachidonic acid, there was a considerable incorporation of label into PC, which indicates the presence of an active deacylation/ reacylation cycle. The behaviour of certain lipid pools varied depending on the temperature at which spermatozoa were incubated. For example, in the presence of [14C]palmitic acid or [14C]arachidonic acid, there was more incorporation of label into PC when spermatozoa were incubated at 25 degrees C than when incubated at 17 degrees C. Taken together, these results indicate that spermatozoa have an active lipid synthetic capacity. It may therefore be possible to design methods to evaluate the metabolic activity of boar spermatozoa based on the incorporation of lipid precursors under standardized conditions.
Collapse
Affiliation(s)
- J M Vazquez
- Department of Development and Signalling, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
91
|
The CDP-ethanolamine pathway in mammalian cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1874-5245(97)80013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
92
|
Chinn RJ, Wilkinson ID, Hall-Craggs MA, Paley MN, Shortall E, Carter S, Kendall BE, Isenberg DA, Newman SP, Harrison MJ. Magnetic resonance imaging of the brain and cerebral proton spectroscopy in patients with systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 1997; 40:36-46. [PMID: 9008598 DOI: 10.1002/art.1780400107] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the prevalence and extent of cerebral changes in patients with systemic lupus erythematosus (SLE) by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). METHODS SLE patients (47 women) and controls (25 women) underwent 1.5T MRI. A semiautomated segmentation technique calculated cerebrospinal fluid (CSF) and brain volumes. Proton MRS of the frontal and parieto-occipital white matter yielded metabolite ratios of N-acetyl groups (NA), choline, and creatine. RESULTS Compared with the control group, the SLE patients more often had cerebral atrophy on MRI (32% versus 0%), confirmed by an increase in the CSF to intracranial volume ratio. The patients also had old infarcts and hemorrhages (8.5% versus 0%) and more small white matter lesions (23% versus 8% had > 5 such lesions). MRS showed relative reduction of NA peaks. Although no patient was studied when acutely ill, prior neurologic involvement was related to abnormal findings. CONCLUSION MRI and MRS are helpful in the investigation of cerebral complications of SLE. There are chronic changes which may be ischemic in nature. Their precise cause, consequences, and prevention are current challenges.
Collapse
Affiliation(s)
- R J Chinn
- University College London (UCL) Medical School, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Nishimaki-Mogami T, Suzuki K, Okochi E, Takahashi A. Bezafibrate and clofibric acid are novel inhibitors of phosphatidylcholine synthesis via the methylation of phosphatidylethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1304:11-20. [PMID: 8944746 DOI: 10.1016/s0005-2760(96)00101-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of bezafibrate and clofibric acid, fibrate hypolipidemic agents, on phosphatidylcholine (PC) synthesis via the phosphatidylethanolamine (PE) methylation pathway were studied. In cultured rat hepatocytes, bezafibrate and clofibric acid added to the medium rapidly and markedly reduced the conversion of ethanolamine-labeled PE to PC (IC50 30 and 150 microM, respectively). Furthermore, the methylation of PE derived from serine was also blocked by bezafibrate, as was the secretion of PC derived from either serine or ethanolamine. The microsomal activity of PE N-methyltransferase was inhibited by these agents. Perfluorooctanoic acid but not DCQVA, though both are potent peroxisome proliferators comparable to fibrates, produced this inhibition. The inhibitory effects produced by these agents were diminished by dithiothreitol (DTT) added to the assay or alkaline pH assay condition. Inhibition by oleic acid was also attenuated under these conditions, suggesting a common mechanism of inhibition. However, unlike fatty acids, fibrates did not have rapid stimulatory effects on the CDP-choline pathway in hepatocytes. These results suggest that fibrates may mimic fatty acids in regulating PC synthesis from the PE methylation pathway but not the CDP-choline pathway.
Collapse
|
94
|
Veale MF, Dingley AJ, King GF, King NJ. 1H-NMR visible neutral lipids in activated T lymphocytes: relationship to phosphatidylcholine cycling. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:215-21. [PMID: 8908156 DOI: 10.1016/0005-2760(96)00104-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two-dimensional 1H-NMR spectroscopy was used to compare changes in the concentration of isotropically-tumbling neutral lipid during the activation of splenic and thymic T lymphocytes. The concentration of mobile neutral lipid (MNL) was similar in splenic and thymic T cells after 72 h of activation with phorbol myristate acetate and ionomycin. However, after 120 h of activation, MNL concentrations in splenic T cells were more than 3-fold higher than in thymic T cells. An increase in choline (Cho), phosphocholine (PCho) and glycerophosphocholine (GPC) was also observed in both thymic and splenic T cells after 24 h of activation. However, after 72 h of stimulation, Cho and PCho levels had decreased and continued to decline at 96-120 h, while GPC continued to be maintained at elevated levels. The simultaneous increase in MNL and GPC and the decline in Cho and PCho leads us to propose that the synthesis of NMR-visible MNL in activated lymphocytes is linked to the phosphatidylcholine cycle.
Collapse
Affiliation(s)
- M F Veale
- Department of Pathology, University of Sydney, N.S.W., Australia
| | | | | | | |
Collapse
|
95
|
Babb SM, Appelmans KE, Renshaw PF, Wurtman RJ, Cohen BM. Differential effect of CDP-choline on brain cytosolic choline levels in younger and older subjects as measured by proton magnetic resonance spectroscopy. Psychopharmacology (Berl) 1996; 127:88-94. [PMID: 8888372 DOI: 10.1007/bf02805979] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphatidylcholine (PtdCho), which is essential for membrane integrity and repair, is reduced in brain cell membranes with age. Evidence from both animal and in vitro studies indicates that cytidine 5' diphosphate choline (CDP-choline) can increase the synthesis of PtdCho; however, the effect of CDP-choline on brain choline metabolism has not previously been studied in human subjects. In this study, in vivo proton magnetic resonance spectroscopy (1H-MRS) was used to measure brain levels of cytosolic, choline-containing compounds before and after single oral doses of CDP-choline. Three hours after dosing, plasma choline increased similarly in younger (mean age 25 years) and older subjects (mean age 59 years). However, while the choline resonance in brain increased by 18% on average in younger subjects, it decreased by almost 6% in older subjects (P = 0.028). These results may be explained by a previously observed decrease in brain choline uptake, but not cytidine uptake, in older subjects. Additional intracellular cytidine following the administration of CDP-choline should lead to the increased incorporation of choline already present in brain into membrane PtdCho, which is not MRS-visible, consequently lowering the brain choline resonance below that of pre-treatment values. These results suggest that the cytidine moiety of CDP-choline stimulates phosphatidylcholine synthesis in human brain cell membranes in older subjects.
Collapse
Affiliation(s)
- S M Babb
- Brain Imaging Center, McLean Hospital, Belmont, MA 02178, USA
| | | | | | | | | |
Collapse
|
96
|
Cook HW, Morash SC, Rosé SD, Ridgway ND, Byers DM. Protein kinase C isoforms and growth, differentiation and phosphatidylcholine turnover in human neuroblastoma cells. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:203-8. [PMID: 8906563 DOI: 10.1016/0929-7855(96)00526-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuroblastoma and glioma cells differentially express isoforms of protein kinase C (PKC) and myristoylated PKC substrates (e.g. MARCKS). Correlation with metabolism of membrane phospholipids suggests that PKC-alpha and MARCKS may be required to mediate phosphatidylcholine turnover stimulated by phorbol ester (beta-TPA). To evaluate relationships to neural cell differentiation, SK-N-SH human neuroblastoma cells were treated with 20 nM beta-TPA. In beta-TPA-treated cells, growth arrest and differentiation occurred (neurite extension; 40-60% decrease in cell number, total protein and RNA). By day 4, mRNA for PKC-alpha and MARCKS increased and, after an initial decrease, PKC-alpha protein also increased. At day 4, phosphatidylcholine synthesis was 3-5 fold greater than in control cells. In contrast, C6 glioma cells treated with beta-TPA showed no growth arrest, decreased PKC-alpha protein (< 20%) and lower phosphatidylcholine synthesis. Thus, induced differentiation of human neuroblastoma cells involved increased expression of PKC-alpha and MARCKS and synthesis of phosphatidylcholine, consistent with involvement of PKC-alpha and MARCKS in regulation of phosphatidylcholine turnover during neurite growth.
Collapse
Affiliation(s)
- H W Cook
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|
97
|
Bhujwalla ZM, Shungu DC, Glickson JD. Effects of blood flow modifiers on tumor metabolism observed in vivo by proton magnetic resonance spectroscopic imaging. Magn Reson Med 1996; 36:204-11. [PMID: 8843373 DOI: 10.1002/mrm.1910360206] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Perfusion plays a key role in tumor proliferation and therapeutic response. Tumor heterogeneity necessitates use of the highest spatial resolution to monitor metabolic correlates of blood flow changes. This is best achieved with 1H NMR spectroscopy, which permits noninvasive acquisition of high resolution spectroscopic images (SI) of subcutaneous tumors in a relatively short scan time (e.g., 12-25 microliters voxels with signal-to-noise ratio 7:1 in 30 min at 4.7 T). This study seeks to identify 1H spectroscopic indices of tumor blood flow. Proton SI of subcutaneous murine RIF-1 tumors were recorded (a) before and after administration of nicotinamide (1 g/kg) to increase blood flow, and (b) before and after hydralazine (10 mg/kg) to decrease flow. Nicotinamide produced a significant decrease in the total choline peak amplitudes, which subsequent high resolution NMR spectroscopy of tumor extracts revealed to be due to decreases in phosphocholine and glycerophosphocholine. The deamidation of nicotinamide to nicotinic acid, which is known to have hypolipidemic effects and to stimulate the formation of prostaglandins, may have sufficiently altered lipid metabolism to affect the in vivo concentration of the NMR-visible choline-containing compounds. The main effect of hydralazine was a significant increase of lactate, which is consistent with a reduction of tumor blood flow.
Collapse
Affiliation(s)
- Z M Bhujwalla
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
98
|
Mandla SG, Byers DM, Ridgway ND, Cook HW. Differential alterations of ethanolamine and choline phosphoglyceride metabolism by clofibrate and retinoic acid in human fibroblasts are not mediated by phorbol ester-sensitive protein kinase C. Lipids 1996; 31:747-55. [PMID: 8827698 DOI: 10.1007/bf02522891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxisomal proliferators and retinoids have been reported to interact to regulate lipid metabolism, particularly beta-oxidation of fatty acids. Based on postulated interactions of these agents at the levels of receptors and response elements, we examined whether interactions exist between the peroxisomal proliferator, clofibrate (CLF), and retinoic acid (RA) in modulation of phospholipid turnover in cultured human skin fibroblasts. Treatment of cultured cells with either 25 microM CLF or 1 microM RA alone decreased [14C]ethanolamine incorporation into ethanolamine phosphoglycerides (EPG) by 20-30%, and simultaneous exposure to both agents resulted in additive inhibition. By contrast, [3H]choline incorporation into phospholipid was stimulated 5-30% by incubation with either agent; when CLF and RA were administered together, the stimulatory effects were additive. Different types of pulse-chase studies examining effects on uptake, biosynthesis, and degradation of labelled phospholipids indicated stimulation of EPG degradation and inhibition of phosphatidylcholine degradation by CLF; no effect on catabolism of either phospholipid was observed with RA. Combinations of modifiers of protein kinase activity [4 beta-12-O-tetradecanoylphorbol-13-acetate (beta-TPA), 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, N-(2'-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride, bis-indolylmaleimide, staurosporine indicated that beta-TPA-responsive protein kinases were not involved. Accordingly, CLF and RA regulate biosynthesis and degradation of ethanolamine and choline phosphoglycerides in cultured skin fibroblasts by different mechanisms that do not involve classical protein kinase C (PKC) isoforms, even though turnover of phospholipids generating lipid activators of PKC occurs.
Collapse
Affiliation(s)
- S G Mandla
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
99
|
Magret V, Elkhalil L, Nazih-Sanderson F, Martin F, Bourre JM, Fruchart JC, Delbart C. Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved. Biochem J 1996; 316 ( Pt 3):805-11. [PMID: 8670155 PMCID: PMC1217421 DOI: 10.1042/bj3160805] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The conversion of phosphatidylethanolamine (PE) into phosphatidylcholine (PC) by a sequence of three transmethylation reactions is shown to be stimulated by the apolipoprotein E-free subclass of high-density lipoprotein (HDL3) in isolated bovine brain capillary (BBC) membranes, HDL3-induced stimulation of BBC membranes pulsed with [methyl-14C]methionine causes a transient increase in each methylated phospholipid, i.e. phosphatidyl-N-monomethylethanolamine (PMME), phosphatidyl-NN-dimethylethanolamine (PDME) and PC. PC substrate arising from the activation of PE N-methyltransferase (PEMT) is hydrolysed by a phospholipase A2 (PLA2), as demonstrated by the accumulation of lysophosphatidylcholine (lyso-PC). When PE containing [14C]arachidonic acid in the sn-2 position ([14C]PAPE) is incorporated into BBC membranes, HDL3 stimulation induces the formation of PMME, PDME, PC and lyso-PC and the release of [14C]arachidonic acid, which correlates with the previous production of lyso-PC, suggesting that HDL3 stimulates a PLA2 that can release polyunsaturated fatty acids (PUFA). Both PEMT and PLA2 activities depend on a HDL3 concentration in the range 0-50 micrograms/ml and are strictly dependent on HDL3 binding, because HDL3 modified by tetranitromethane is no longer able to bind to specific receptors and to trigger PEMT and PLA2 activation. Moreover, HDL3 prelabelled with [14C]PAPE can stimulate PDME and lyso-PC synthesis in BBC membranes in the presence of S-adenosylmethionine, suggesting that HDL3 can supply BBC membranes in polyunsaturated PE and can activate enzymes involved in PE N-methylation and PUFA release. The results support the hypothesis of a close relationship between HDL3 binding, PE methylation and PUFA release, and suggest that the PC pool arising from PE could be used as a pathway for the supply of PUFA to the brain.
Collapse
Affiliation(s)
- V Magret
- INSERM U 325, Institut Pasteur, Lille, France
| | | | | | | | | | | | | |
Collapse
|
100
|
Farber SA, Savci V, Wei A, Slack BE, Wurtman RJ. Choline's phosphorylation in rat striatal slices is regulated by the activity of cholinergic neurons. Brain Res 1996; 723:90-9. [PMID: 8813385 DOI: 10.1016/0006-8993(96)00221-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism by which populations of brain cells regulate the flux of choline (Ch) into membrane or neurotransmitter biosynthesis was investigated using electrically stimulated superfused slices of rat corpus striatum. [Me-14C]Ch placed in the superfusion medium for 30 min during a 1-h stimulation period was incorporated into tissue [14C] phosphorylcholine (PCh) and [14C]phosphatidylcholine (PtdCh). Stimulation also caused a profound inhibition of PCh synthesis and a 10-fold increase in [14C]ACh release into the medium; it failed to affect tissue [14C]ACh levels. This effect was not explained by changes in ATP levels nor in the kinetic properties of Ch kinase (E.C. 2.7.1.32) or Ch acetyltransferase (ChAT) (E.C.2.3.1.7). To investigate the mechanism of these effects, Ch uptake studies were performed with and without hemicholinium-3 (HC3), a selective inhibitor of high affinity Ch uptake. A two-compartment model accurately fit the observed data and yielded a K(m) for Ch uptake of 5 microM into cholinergic structures and 72 microM into all other cells. Using this model it was estimated that cholinergic neurons account for 60% of observed uptake of Ch at physiologic Ch concentrations, even though they represent fewer than 1% of the total cells in the slice. The model also predicts that an increase in Ch uptake within cholinergic neurons, reported to be associated with depolarization [4,27,32], would significantly inhibit Ch uptake into all other cells, and would account for the observed decrease in PCh synthesis.
Collapse
Affiliation(s)
- S A Farber
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|