51
|
The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29:6964-72. [PMID: 19474323 DOI: 10.1523/jneurosci.0066-09.2009] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Understanding molecular mechanisms mediating epileptogenesis is critical for developing more effective therapies for epilepsy. We recently found that the mammalian target of rapamycin (mTOR) signaling pathway is involved in epileptogenesis, and mTOR inhibitors prevent epilepsy in a mouse model of tuberous sclerosis complex. Here, we investigated the potential role of mTOR in a rat model of temporal lobe epilepsy initiated by status epilepticus. Acute kainate-induced seizures resulted in biphasic activation of the mTOR pathway, as evident by an increase in phospho-S6 (P-S6) expression. An initial rise in P-S6 expression started approximately 1 h after seizure onset, peaked at 3-6 h, and returned to baseline by 24 h in both hippocampus and neocortex, reflecting widespread stimulation of mTOR signaling by acute seizure activity. After resolution of status epilepticus, a second increase in P-S6 was observed in hippocampus only, which started at 3 d, peaked 5-10 d, and persisted for several weeks after kainate injection, correlating with the development of chronic epileptogenesis within hippocampus. The mTOR inhibitor rapamycin, administered before kainate, blocked both the acute and chronic phases of seizure-induced mTOR activation and decreased kainate-induced neuronal cell death, neurogenesis, mossy fiber sprouting, and the development of spontaneous epilepsy. Late rapamycin treatment, after termination of status epilepticus, blocked the chronic phase of mTOR activation and reduced mossy fiber sprouting and epilepsy but not neurogenesis or neuronal death. These findings indicate that mTOR signaling mediates mechanisms of epileptogenesis in the kainate rat model and that mTOR inhibitors have potential antiepileptogenic effects in this model.
Collapse
|
52
|
Beenhakker MP, Huguenard JR. Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 2009; 62:612-32. [PMID: 19524522 PMCID: PMC2748990 DOI: 10.1016/j.neuron.2009.05.015] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 02/02/2023]
Abstract
Brain circuits oscillate during sleep. The same circuits appear to generate pathological oscillations. In this review, we discuss recent advances in our understanding of how epilepsy co-opts normal, sleep-related circuits to generate seizures.
Collapse
Affiliation(s)
- Mark P Beenhakker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
53
|
Henshall DC, Dürmüller N, White HS, Williams R, Moser P, Dunleavy M, Silverstone PH. Electroencephalographic and behavioral convulsant effects of hydrobromide and hydrochloride salts of bupropion in conscious rodents. Neuropsychiatr Dis Treat 2009; 5:189-206. [PMID: 19557114 PMCID: PMC2695230 DOI: 10.2147/ndt.s4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A novel bromide salt of the antidepressant bupropion (bupropion HBr) has recently been developed and approved for use in the United States. Given previous use of bromides to treat seizures, and that the existing chloride salt of bupropion (HCl) can cause seizures, it is important to determine if the HBr salt may be less likely to cause seizures than the HCl salt. In the present animal studies this was evaluated by means of quantified electroencephalogram (EEG), observation, and the rotarod test in mice and rats. Both bupropion salts were tested at increasing equimolar doses administered intraperitoneally. The results in mice showed that bupropion HCl 125 mg/kg induced a significantly higher ten-fold increase in the mean number of cortical EEG seizures compared to bupropion HBr (7.50 +/- 2.56 vs 0.75 +/- 0.96; p = 0.045), but neither drug caused any brain injuries. In rats bupropion HBr 100 mg/kg induced single EEG seizure activity in the cortical and hippocampal (depth) electrodes and in significantly (p < 0.05) fewer rats (44%) compared to bupropion HCl, which induced 1 to 4 convulsions per rat in all rats (100%) dosed. The total duration of cortical seizures in bupropion HCl-treated rats was significantly longer than the corresponding values obtained in bupropion HBr-treated rats (424.6 seconds vs 124.5 seconds respectively, p < 0.05). Bupropion HCl consistently induced more severe convulsions at each dose level compared to bupropion HBr. Both treatments demonstrated a similar dose-dependent impairment of rotarod performance in mice. In conclusion, these findings suggest that bupropion HBr may have a significantly lower potential to induce seizures in mice and rats, particularly at higher doses, compared to bupropion HCl. Determination of this potential clinical advantage will require human studies. If confirmed by such studies, it is likely that this potential beneficial clinical benefit would be due to the presence of the bromide salt given the long history of the use of bromide to treat seizure disorders.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nick Dürmüller
- Porsolt and Partners Pharmacology, Le Genest-Saint-Isle, France
| | | | | | - Paul Moser
- Porsolt and Partners Pharmacology, Le Genest-Saint-Isle, France
| | - Mark Dunleavy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
54
|
Mohammadi S, Pavlik A, Krajci D, Al-Sarraf H. NMDA preconditioning and neuroprotection in vivo: Delayed onset of kainic acid-induced neurodegeneration and c-Fos attenuation in CA3a neurons. Brain Res 2009; 1256:162-72. [DOI: 10.1016/j.brainres.2008.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 01/04/2023]
|
55
|
Abstract
The ketogenic diet (KD) is an alternative treatment for medically refractory epilepsy. Despite numerous mechanistic hypotheses advanced to explain the anticonvulsant action of the KD, few studies to date have addressed the molecular changes in brain following KD treatment. Here, we present recent experimental results based on systemic administration of kainic acid (KA) in rodents. KA typically induces acute limbic seizures and results in cellular and molecular alterations, accompanied by neuronal death mainly in limbic structures, similar to what has been observed in surgically resected temporal lobe tissue in epileptic patients. We have reported that neuronal degeneration induced by KA is ameliorated by KD treatment via diverse protective mechanisms, including inhibition of caspase-3-mediated apoptosis in hippocampal neurons. Neuroprotective strategies such as the KD, if implemented early, might exert an antiepileptogenic effect, and could prevent associated learning and memory deficits.
Collapse
Affiliation(s)
- Hae Sook Noh
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, Gyungnam, South Korea
| | | | | |
Collapse
|
56
|
Friedman LK, Saghyan A, Peinado A, Keesey R. Age- and region-dependent patterns of Ca2+ accumulations following status epilepticus. Int J Dev Neurosci 2008; 26:779-90. [PMID: 18687397 DOI: 10.1016/j.ijdevneu.2008.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 01/16/2023] Open
Abstract
Elevated Ca(2+) concentrations have been implicated in cell death mechanisms following seizures, however, the age and brain region of intracellular Ca(2+) accumulations [Ca(2+)](i), may influence whether or not they are toxic. Therefore, we examined regional accumulations of (45)Ca(2+) by autoradiography from rats of several developmental stages (P14, P21, P30 and P60) at 5, 14, and 24h after status epilepticus. To determine whether the uptake was intracellular, Ca(2+) was also assessed in hippocampal slices with the dye indicator, Fura 2AM at P14. Control animals accumulated low homogeneous levels of (45)Ca(2+); however, highly specific and age-dependent patterns of (45)Ca(2+) uptake were observed at 5h. (45)Ca(2+) accumulations were predominant in dorsal hippocampal regions, CA1/CA2/CA3a, in P14 and P21 rats and in CA3a and CA3c neurons of P30 and P60 rats. Selective midline and amygdala nuclei were marked at P14 but not at P21 and limbic accumulations recurred with maturation that were extensive at P30 and even more so at P60. At 14 h, P14 and P21 rats had no persistent accumulations whereas P30 and P60 rats showed persistent uptake patterns within selective amygdala, thalamic and hypothalamic nuclei, and other limbic cortical regions that continued to differ at these ages. For example, piriform cortex accumulation was highest at P60. Fura 2AM imaging at P14 confirmed that Ca(2+) rises were intracellular and occurred in both vulnerable and invulnerable regions of the hippocampus, such as CA2 pyramidal and dentate granule cells. Silver impregnation showed predominant CA1 injury at P20 and P30 but CA3 injury at P60 whereas little or no injury was found in extrahippocampal structures at P14 and P20 but was modest at P30 and maximal at P60. Thus, at young ages there was an apparent dissociation between high (45)Ca(2+) accumulations and neurotoxicity whereas in adults a closer relationship was observed, particularly in the extrahippocampal structures.
Collapse
Affiliation(s)
- Linda K Friedman
- Department of Neuroscience, New York College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11581, United States.
| | | | | | | |
Collapse
|
57
|
Reid CA, Adams BEL, Myers D, O'Brien TJ, Williams DA. Sub region-specific modulation of synchronous neuronal burst firing after a kainic acid insult in organotypic hippocampal cultures. BMC Neurosci 2008; 9:59. [PMID: 18593482 PMCID: PMC2474631 DOI: 10.1186/1471-2202-9-59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 07/02/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Excitotoxicity occurs in a number of pathogenic states including stroke and epilepsy. The adaptations of neuronal circuits in response to such insults may be expected to play an underlying role in pathogenesis. Synchronous neuronal firing can be induced in isolated hippocampal slices and involves all regions of this structure, thereby providing a measure of circuit activity. The effect of an excitotoxic insult (kainic acid, KA) on Mg2+-free-induced synchronized neuronal firing was tested in organotypic hippocampal culture by measuring extracellular field activity in CA1 and CA3. RESULTS Within 24 hrs of the insult regional specific changes in neuronal firing patterns were evident as: (i) a dramatic reduction in the ability of CA3 to generate firing; and (ii) a contrasting increase in the frequency and duration of synchronized neuronal firing events in CA1. Two distinct processes underlie the increased propensity of CA1 to generate synchronized burst firing; a lack of ability of the CA3 region to 'pace' CA1 resulting in an increased frequency of synchronized events; and a change in the 'intrinsic' properties limited to the CA1 region, which is responsible for increased event duration. Neuronal quantification using NeuN immunoflurescent staining and stereological confocal microscopy revealed no significant cell loss in hippocampal sub regions, suggesting that changes in the properties of neurons within this region were responsible for the KA-mediated excitability changes. CONCLUSION These results provide novel insight into adaptation of hippocampal circuits following excitotoxic injury. KA-mediated disruption of the interplay between CA3 and CA1 clearly increases the propensity to synchronized firing in CA1.
Collapse
Affiliation(s)
- Christopher A Reid
- Department of Physiology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
58
|
Järvelä JT, Lopez-Picon FR, Holopainen IE. Age-dependent cyclooxygenase-2 induction and neuronal damage after status epilepticus in the postnatal rat hippocampus. Epilepsia 2008; 49:832-41. [DOI: 10.1111/j.1528-1167.2007.01454.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
59
|
Shin EJ, Jeong JH, Bing G, Park ES, Chae JS, Yen TPH, Kim WK, Wie MB, Jung BD, Kim HJ, Lee SY, Kim HC. Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice. Cell Signal 2007; 20:645-58. [PMID: 18248956 DOI: 10.1016/j.cellsig.2007.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 12/24/2022]
Abstract
We have demonstrated that kainate (KA) induces a reduction in mitochondrial Mn-superoxide dismutase (Mn-SOD) expression in the rat hippocampus and that KA-induced oxidative damage is more prominent in senile-prone (SAM-P8) than senile-resistant (SAM-R1) mice. To extend this, we examined whether KA seizure sensitivity contributed to mitochondrial degeneration in these mouse strains. KA-induced seizure susceptibility in SAM-P8 mice paralleled prominent increases in lipid peroxidation and protein oxidation and was accompanied by significant impairment in glutathione homeostasis in the hippocampus. These findings were more pronounced in the mitochondrial fraction than in the hippocampal homogenate. Consistently, KA-induced decreases in Mn-SOD protein expression, mitochondrial transmembrane potential, and uncoupling protein (UCP)-2 expression were more prominent in SAM-P8 than SAM-R1 mice. Marked release of cytochrome c from mitochondria into the cytosol and a higher level of caspase-3 cleavage were observed in KA-treated SAM-P8 mice. Additionally, electron microscopic evaluation indicated that KA-induced increases in mitochondrial damage and lipofuscin-like substances were more pronounced in SAM-P8 than SAM-R1 animals. These results suggest that KA-mediated mitochondrial oxidative stress contributed to hippocampal degeneration in the senile-prone mouse.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Hamed SA. Neuronal plasticity: implications in epilepsy progression and management. Drug Dev Res 2007; 68:498-511. [DOI: 10.1002/ddr.20217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractEpilepsy is a common neurological disease. A growing number of research studies provide evidence regarding the progressive neuronal damage induced by prolonged seizures or status epilepticus (SE), as well as recurrent brief seizures. Importantly, seizure is only one aspect of epilepsy. However, cognitive and behavioral deficits induced by progressive seizures or antiepileptic treatment can be detrimental to individual function. The neurobiology of epilepsy is poorly understood involving complex cellular and molecular mechanisms. The brain undergoes changes in its basic structure and function, e.g., neural plasticity with an increased susceptibility in neuronal synchronization and network circuit alterations. Some of these changes are transient, while others are permanent with an involvement of both glutamatergic and γ‐aminobutyric acid (GABA)ergic systems. Recent data suggest that impaired neuronal plasticity may underlie the cognitive impairment and behavioral changes associated with epilepsy. Many neurologists recognize that the prevention or suppression of seizures by the use of antiepileptic drugs (AEDs) alone is insufficient without clear predictions of disease outcome. Hence, it is important to understand the molecular mechanisms underlying epileptogenesis because this may allow the development of innovative strategies to prevent or cure this condition. In addition, this realization would have significant impact in reducing the long‐term adverse consequences of the disease, including neurocognitive and behavioral adverse effects. Drug Dev Res 68:498–511, 2007. © 2008 Wiley‐Liss, Inc.
Collapse
|
61
|
Xu S, Pang Q, Liu Y, Shang W, Zhai G, Ge M. Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci 2007; 14:835-40. [PMID: 17660056 DOI: 10.1016/j.jocn.2006.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 08/23/2006] [Accepted: 08/26/2006] [Indexed: 01/06/2023]
Abstract
To further confirm at the molecular level that neuronal apoptosis occurs in mesial temporal sclerosis (MTS), the main substrate of mesial temporal lobe epilepsy (MTLE), 24 resected sclerotic hippocampi from 24 patients with drug-resistant MTLE associated with MTS were studied microscopically, electronmicroscopically and immunohistochemically, with detection of expression of apoptosis-associated genes including bcl-2, p53, bax, fas and caspase-3. Early apoptosis changes were found morphologically in hippocampi from three patients with MTLE using transmission electron microscopy. Positive immunostained neurons for bcl-2, p53, fas and caspase-3 were found in the sclerotic hippocampi of 19/24, 14/24, 22/24 and 20/24 patients respectively, which was statistically different from controls. Correlative analysis showed the expression of p53, fas and caspase-3 were positively correlated with seizure frequency. Apoptosis may contribute to MTS, and seizures may induce apoptosis, and thus contribute to neuronal loss in MTS.
Collapse
Affiliation(s)
- Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital of Shandong University, Jinan, 250021, PR China
| | | | | | | | | | | |
Collapse
|
62
|
Michaluk P, Kaczmarek L. Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction. Cell Death Differ 2007; 14:1255-8. [PMID: 17431423 DOI: 10.1038/sj.cdd.4402141] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- P Michaluk
- Laboratory for Molecular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | | |
Collapse
|
63
|
Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 2007; 361:1477-97. [PMID: 16939970 PMCID: PMC1664671 DOI: 10.1098/rstb.2006.1887] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.
Collapse
|
64
|
Abstract
Status epilepticus (SE) describes an enduring epileptic state during which seizures are unremitting and tend to be self-perpetuating. We describe the clinical phases of generalized convulsive SE, impending SE, established SE, and subtle SE. We discuss the physiological and biochemical cascades which characterize self-sustaining SE (SSSE) in animal models. At the transition from single seizures to SSSE, GABA(A) (gamma-aminobutyric acid) receptors move from the synaptic membrane to the cytoplasm, where they are functionally inactive. This reduces the number of GABA(A) receptors available for binding GABA or GABAergic drugs, and may in part explain the development of time-dependent pharmacoresistance to benzodiazepines and the tendency of seizures to become self-sustaining. At the same time, 'spare' subunits of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic acid) receptors move from subsynaptic sites to the synaptic membrane, causing further hyperexcitability and possibly explaining the preserved sensitivity to NMDA blockers late in the course of SE. Maladaptive changes in neuropeptide expression occur on a slower time course, with depletion of the inhibitory peptides dynorphin, galanin, somatostatin and neuropeptide Y, and with an increased expression of the proconvulsant tachykinins, substance P and neurokinin B. Finally, SE-induced neuronal injury and epileptogenesis are briefly discussed.
Collapse
Affiliation(s)
- J W Y Chen
- Department of Neurology and Brain Research Institute, Geffen School of Medicine at UCLA, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
65
|
Fujikawa DG, Shinmei SS, Zhao S, Aviles ER. Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. Brain Res 2007; 1135:206-18. [PMID: 17204252 DOI: 10.1016/j.brainres.2006.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/20/2022]
Abstract
Activation of the caspase-dependent cell death pathways has been shown in focal seizures, but whether this occurs in prolonged generalized seizures is not known. We investigated whether the initiator caspase in the extrinsic pathway, caspase-8, or the intrinsic pathway, caspase-9, is activated during the first 24 h following lithium-pilocarpine-induced status epilepticus, when neuronal death is maximal and widespread. The thymuses of rats given methamphetamine were used as positive controls for caspase-3-activated cellular apoptosis. Following methamphetamine treatment, caspase-9 but not caspase-8 was activated in thymocytes. However, 6 or 24 h following status epilepticus, none of 26 brain regions studied showed either caspase-8 or -9 activation by immunohistochemistry, western blotting and enzyme activity assays. Our results provide evidence against the activation of the extrinsic and intrinsic caspase pathways in generalized seizures, which produce morphologically necrotic neurons with internucleosomal DNA cleavage (DNA laddering), a programmed process. In contrast, there is increasing evidence that caspase-independent programmed mechanisms play a prominent role in seizure-induced neuronal death.
Collapse
Affiliation(s)
- Denson G Fujikawa
- Experimental Neurology Laboratory, VA Greater Los Angeles Healthcare System, North Hills, CA 91343, USA.
| | | | | | | |
Collapse
|
66
|
Tokuhara D, Sakuma S, Hattori H, Matsuoka O, Yamano T. Kainic acid dose affects delayed cell death mechanism after status epilepticus. Brain Dev 2007; 29:2-8. [PMID: 16790331 DOI: 10.1016/j.braindev.2006.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/12/2006] [Accepted: 05/08/2006] [Indexed: 01/05/2023]
Abstract
Kainic acid (KA)-induced status epilepticus (SE) produces hippocampal neuronal death, which varies from necrosis to apoptosis or programmed cell death (PCD). We examined whether the type of neuronal death was dependent on KA dose. Adult rats were induced SE by intraperitoneal injection of KA at 9 mg/kg (K9) or 12 mg/kg (K12). Hippocampal neuronal death was assessed by TUNEL staining, electron microscopy, and Western blotting of caspase-3 on days 1, 3 and 7 after SE induction. K12 rats showed higher a mortality rate and shorter latency to the onset of SE when compared with K9 rats. In both groups, acidophilic and pyknotic neurons were evident in CA1 at 24h after SE and neuronal loss developed from day 3. The degenerated neurons became TUNEL-positive on days 3 and 7 in K9 rats but not in K12 rats. Caspase-3 activation was detected on days 3 and 7 in K9 rats but was undetectable in K12 rats. Ultrastructural study revealed shrunken neurons exhibiting pyknotic nuclei containing small and dispersed chromatin clumps 24h after SE in CA1. No cells exhibited apoptosis. On days 3 and 7, the degenerated neurons were necrotic with high electron density and small chromatin clumps. There were no ultrastructural differences between the K9 and K12 groups. These results revealed that differences in KA dose affected the delayed cell death (3 and 7 days after SE); however, no effect was seen on the early cell death (24h after SE). Moderate-dose KA induced necrosis, while low-dose KA induced PCD.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| | | | | | | | | |
Collapse
|
67
|
Dikkes P, Hawkes C, Kar S, Lopez MF. Effect of kainic acid treatment on insulin-like growth factor-2 receptors in the IGF2-deficient adult mouse brain. Brain Res 2006; 1131:77-87. [PMID: 17184742 DOI: 10.1016/j.brainres.2006.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/25/2006] [Accepted: 11/05/2006] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor-2 (IGF2) is a member of the insulin gene family with known neurotrophic properties. The actions of IGF2 are mediated via the IGF type 1 and type 2 receptors as well as through the insulin receptors, all of which are widely expressed throughout the brain. Since IGF2 is up-regulated in the brain after injury, we wanted to determine whether the absence of IGF2 can lead to any alteration on brain morphology and/or in the response of its receptor binding sites following a neurotoxic insult. No morphological differences were observed between the brains of IGF2 knockout (IGF2(-/-)) and wild-type control (IGF2(+/+)) mice. However, our in vitro receptor autoradiography results indicate that IGF2(-/-) mice had lower endogenous levels of [(125)I]IGF1 and [(125)I]insulin receptor binding sites in the hippocampus and cerebellum as compared to IGF2(+/+) mice, while endogenous [(125)I]IGF2 receptor binding showed a decrease only in the cerebellum. Seven days after kainic acid administration, the [(125)I]insulin receptor binding sites were significantly decreased in all brain regions of the IGF2(+/+) mice, while the levels of [(125)I]IGF1 and [(125)I]IGF2 binding sites were decreased only in select brain areas. The IGF2(-/-) mice, on the other hand, showed increased [(125)I]IGF1 and [(125)I]IGF2 and [(125)I]insulin receptor binding sites in selected regions such as the hippocampus and cerebellum. These results, taken together, suggest that deletion of IGF2 gene does not affect gross morphology of the brain but does selectively alter endogenous [(125)I]IGF1, [(125)I]IGF2 and [(125)I]insulin receptor binding sites and their response to neurotoxicity.
Collapse
MESH Headings
- Age Factors
- Animals
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/drug effects
- Brain/embryology
- Brain/metabolism
- Brain Damage, Chronic/genetics
- Brain Damage, Chronic/metabolism
- Brain Damage, Chronic/physiopathology
- Cerebellum/drug effects
- Cerebellum/embryology
- Cerebellum/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Drug Resistance/genetics
- Hippocampus/drug effects
- Hippocampus/embryology
- Hippocampus/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor II/genetics
- Iodine Radioisotopes
- Kainic Acid/pharmacology
- Male
- Mice
- Mice, Knockout
- Neurotoxins/pharmacology
- Radioligand Assay
- Receptor, IGF Type 2/drug effects
- Receptor, IGF Type 2/metabolism
- Receptor, Insulin/drug effects
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- P Dikkes
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
68
|
Goebel DJ, Winkler BS. Blockade of PARP activity attenuates poly(ADP-ribosyl)ation but offers only partial neuroprotection against NMDA-induced cell death in the rat retina. J Neurochem 2006; 98:1732-45. [PMID: 16903875 PMCID: PMC1766941 DOI: 10.1111/j.1471-4159.2006.04065.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent reports have linked neuronal cell death by necrosis to poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation. It is believed that under stress, the activity of this enzyme is up-regulated, resulting in extensive poly(ADP-ribosyl)ation of nuclear proteins, using NAD(+) as its substrate, which, in turn, leads to the depletion of NAD(+). In efforts to restore the level of NAD(+), depletion of ATP occurs, resulting in the shutdown of ATP-dependent ionic pumps. This results in cell swelling and eventual loss of membrane selectivity, hallmarks of necrosis. Reports from in vitro and in vivo studies in the brain have shown that NMDA receptor activation stimulates PARP activity and that blockade of the enzyme provides substantial neuroprotection. The present study was undertaken to determine whether PARP activity is regulated by NMDA in the rat retina, and whether blockade of PARP activity provides protection against toxic effects of NMDA. Rat retinas exposed to intravitreal injections containing NMDA, with or without the PARP inhibitor N-(6-oxo-5, 6-dihydrophenanthridin-2-yl)-(N,-dimethylamino) acetamide hydrochloride (PJ-34), were assessed for changes in PARP-1 activity as evidenced by poly(ADP-ribosyl)ation (PAR), loss of membrane integrity, morphological indicators of apoptosis and necrosis, and ganglion cell loss. Results showed that: NMDA increased PAR formation in a concentration-dependent manner and caused a decline in retinal ATP levels; PJ-34 blockade attenuated the NMDA-induced formation of PAR and decline in ATP; NMDA induced the loss of membrane selectivity to ethidium bromide (EtBr) in inner retinal neurons, but loss of membrane selectivity was not prevented by blocking PARP activity; cells stained with EtBr, or reacted for TUNEL-labeling, displayed features characteristic of both apoptosis and necrosis. In the presence of PJ-34, greater numbers of cells exhibited apoptotic features; PJ-34 provided partial neuroprotection against NMDA-induced ganglion cell loss. These findings suggest that although blockade of PARP activity fully attenuates NMDA-induced PAR formation and loss of retinal ATP content, and improves the survival of select populations of ganglion cells, this approach does not provide full neuroprotection. In contrast, blockade of PARP activity promotes apoptotic-like cell death in the majority of cells undergoing cell death. Furthermore, these studies show that the loss of membrane selectivity is not dependent upon PAR formation or the resulting decline of ATP, and suggests that an alternative pathway, other than PARP activation, exists to mediate this event.
Collapse
Affiliation(s)
- Dennis J. Goebel
- Department of Anatomy & Cell Biology, Wayne State University, Detroit, Michigan, USA
- Address correspondence and reprint requests to Dennis J. Goebel, Associate Professor, Department of Anatomy & Cell Biology, Wayne State University, School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. E-mail:
| | - Barry S. Winkler
- Department of Anatomy & Cell Biology, Wayne State University, Detroit, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
69
|
Covolan L, Mello LE. Assessment of the progressive nature of cell damage in the pilocarpine model of epilepsy. Braz J Med Biol Res 2006; 39:915-24. [PMID: 16862283 DOI: 10.1590/s0100-879x2006000700010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 04/24/2006] [Indexed: 11/22/2022] Open
Abstract
Pilocarpine-induced (320 mg/kg, i.p.) status epilepticus (SE) in adult (2-3 months) male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6) would generate damage and cell loss similar to that seen after a first SE (N = 9). Counts of silver-stained (indicative of cell damage) cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1) the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2) the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.
Collapse
Affiliation(s)
- L Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
70
|
Liu XM, Pei DS, Guan QH, Sun YF, Wang XT, Zhang QX, Zhang GY. Neuroprotection of Tat-GluR6-9c against neuronal death induced by kainate in rat hippocampus via nuclear and non-nuclear pathways. J Biol Chem 2006; 281:17432-17445. [PMID: 16624817 DOI: 10.1074/jbc.m513490200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have suggested that glutamate receptor 6 (GluR6) subunit- and JNK-deficient mice can resist kainate-induced epileptic seizure and neuronal toxicity (Yang, D. D., Kuan, C.-Y., Whitmarsh, A. J., Rinoćn, M., Zheng, T. S., Davis, R. J., Rakic, P., and Flavell, R. A. (1997) Nature 389, 865-870; Mulle, C., Seiler, A., Perez-Otano, I., Dickinson-Anson, H., Castillo, P. E., Bureau, I., Maron, C., Gage, F. H., Mann, J. R., Bettler, B., and Heinemmann, S. F. (1998) Nature 392, 601-605). In this study, we show that kainate can enhance the assembly of the GluR6-PSD95-MLK3 module and facilitate the phosphorylation of JNK in rat hippocampal CA1 and CA3/dentate gyrus (DG) subfields. More important, a peptide containing the Tat protein transduction sequence (Tat-GluR6-9c) perturbed the assembly of the GluR6-PSD95-MLK3 signaling module and suppressed the activation of MLK3, MKK7, and JNK. As a result, the inhibition of JNK activation by Tat-GluR6-9c diminished the phosphorylation of the transcription factor c-Jun and down-regulated Fas ligand expression in hippocampal CA1 and CA3/DG regions. The inhibition of JNK activation by Tat-Glur6-9c attenuated Bax translocation, the release of cytochrome c, and the activation of caspase-3 in CA1 and CA3/DG subfields. Furthermore, kainate-induced neuronal loss in hippocampal CA1 and CA3 subregions was prevented by intracerebroventricular injection of Tat-Glur6 - 9c. Taken together, our findings strongly suggest that the GluR6-PSD95-MLK3 signaling module mediates activation of the nuclear and non-nuclear pathways of JNK, which is involved in brain injury induced by kainate. Tat-GluR6-9c, the peptide we constructed, gives new insight into seizure therapy.
Collapse
Affiliation(s)
- Xiao-Mei Liu
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Dong-Sheng Pei
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Qiu-Hua Guan
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Ya-Feng Sun
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Xiao-Tian Wang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Qing-Xiu Zhang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Guang-Yi Zhang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
71
|
Szymczak S, Kalita K, Jaworski J, Mioduszewska B, Savonenko A, Markowska A, Merchenthaler I, Kaczmarek L. Increased estrogen receptor beta expression correlates with decreased spine formation in the rat hippocampus. Hippocampus 2006; 16:453-63. [PMID: 16526034 DOI: 10.1002/hipo.20172] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogens play an important role in the brain function acting through two receptor types, ERalpha and ERbeta, both well-recognized as transcription factors. In this study, we investigated the ERbeta mRNA and protein levels in the rat hippocampus by using two in vivo models that are known to affect synapse formation. Natural estrous-proestrous cycle was used as a model in which a marked decrease in the density of hippocampal synapses was previously observed between proestrus and estrus. We have found that ERbeta mRNA and protein were displayed in high levels in the estrus and in low levels in the proestrous phase. By applying kainic acid (KA) to adult rats, we demonstrated that up-regulation of ERbeta mRNA and protein in hippocampal CA regions was vulnerable to KA-induced excitotoxicity. Furthermore, we note a concomitant decrease of ERbeta in the excitotoxicity-resistant denate gyrus that undergoes intense plastic changes, including synaptogenesis. These data suggested that decreases in ERbeta expression correlated with increase in synapse formation. This notion has been tested in vitro in hippocampal cultures, in which overexpression of ERbeta by means of gene transfection resulted in the lowering of the dendritic spine density that was elevated by estrogen. In summary, our results suggest that ERbeta inhibits synapse formation in hippocampal neurons.
Collapse
|
72
|
Mohmmad Abdul H, Sultana R, Keller JN, St Clair DK, Markesbery WR, Butterfield DA. Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1-42), HO and kainic acid: implications for Alzheimer's disease. J Neurochem 2006; 96:1322-35. [PMID: 16478525 DOI: 10.1111/j.1471-4159.2005.03647.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.
Collapse
Affiliation(s)
- Hafiz Mohmmad Abdul
- Department of Chemistry and Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | |
Collapse
|
73
|
Winkelmann ER, Charcansky A, Faccioni-Heuser MC, Netto CA, Achaval M. An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion. ACTA ACUST UNITED AC 2006; 211:423-34. [PMID: 16673115 DOI: 10.1007/s00429-006-0095-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
An ultrastructural study was performed to investigate the type of cellular death that occurs in hippocampal CA1 field pyramidal neurons after 10 and 20 min of transient cerebral ischemia in the male adult Wistar rats, followed by 2, 4 and 10 days of reperfusion. The four-vessel occlusion method was used to induce ischemic insult for either 10 or 20 min, following which the animals were submitted to either 2, 4 or 10 days of reperfusion. The animals were then anaesthetised, and their brains removed, dehydrated, embedded, sectioned and examined under a transmission electron microscope. After ischemic insult, neurons from the CA1 field presented alterations, corresponding to the initial, intermediate and final stages of the degenerative process. The only difference observed between the 10 and 20 min ischemic groups was the degree of damage; the reaction was stronger in 20 min groups than in the 10 min groups. While neurons were found in the different stages of oncotic necrosis in all groups, differences were found between the groups in relation to prevalent stages. In both ischemic groups, after 2 days of reperfusion, the initial stage of oncotic necrosis was prevalent and large numbers of neurons appeared normal. In both groups, after 4 days of reperfusion, most of the neurons showed more advanced alterations, typical of an intermediate stage. In both groups, after 10 days of reperfusion, alterations corresponding to the intermediate and final stages of oncotic necrosis were also predominant. However, few intact neurons were identified and the neuropile appeared more organised, with numerous glial cells. In summary, the pyramidal neurons of the CA1 field displayed selective vulnerability and exhibited a morphological death pattern corresponding exclusively to an oncotic necrotic pathway.
Collapse
Affiliation(s)
- Eliane Roseli Winkelmann
- Laboratório de Histologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
74
|
Hoffman GE, Merchenthaler I, Zup SL. Neuroprotection by ovarian hormones in animal models of neurological disease. Endocrine 2006; 29:217-31. [PMID: 16785598 DOI: 10.1385/endo:29:2:217] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 11/30/1999] [Accepted: 12/23/2005] [Indexed: 11/11/2022]
Abstract
Ovarian hormones can protect against brain injury, neurodegeneration, and cognitive decline. Most attention has focused on estrogens and accumulating data demonstrate that estrogen seems to specifically protect cortical and hippocampal neurons from ischemic injury and from damage due to severe seizures. Although multiple studies demonstrate protection by estrogen, in only a few instances is the issue of how the steroid confers protection known. Here, we first review data evaluating the neuroprotective effects of estrogens, a selective estrogen receptor modulator (SERM), and estrogen receptor alpha- and beta-selective ligands in animal models of focal and global ischemia. Using focal ischemia in ovariectomized ERalphaKO, ERbetaKO, and wild-type mice, we clearly established that the ERalpha subtype is the critical ER mediating neuroprotection in mouse focal ischemia. In rats and mice, the middle cerebral artery occlusion (MCAO) model was used to represent cerebrovascular stroke, while in gerbils the two-vessel occlusion model, representing global ischemia, was used. The gerbil global ischemia model was used to evaluate the neuroprotective effects of estrogen, SERMs, and ERalpha- and ERbeta-selective compounds in the hippocampus. Analysis of neurogranin mRNA, a marker of viability of hippocampal neurons, with in situ hybridization, revealed that estrogen treatment protected the dorsal CA1 regions not only when administered before, but also when given 1 h after occlusion. Estrogen rarely is secreted alone and studies of neuroprotection have been less extensive for a second key ovarian hormone progesterone. In the second half of this review, we present data on neuroprotection by estrogen and progesterone in animal model of epilepsy followed by exploration into ovarian steroid effects on neuronal damage in models of multiple sclerosis and traumatic brain injury.
Collapse
Affiliation(s)
- Gloria E Hoffman
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
75
|
Abstract
As in Clark and Prout's classic work, we identify three phases of generalised convulsive status epilepticus, which we call impending, established, and subtle. We review physiological and subcellular changes that might play a part in the transition from single seizures to status epilepticus and in the development of time-dependent pharmacoresistance. We review the principles underlying the treatment of status epilepticus and suggest that prehospital treatment is beneficial, that therapeutic drugs should be used in rapid sequence according to a defined protocol, and that refractory status epilepticus should be treated with general anaesthesia. We comment on our preference for drugs with a short elimination half-life and discuss some therapeutic choices.
Collapse
Affiliation(s)
- James W Y Chen
- Department of Neurology and Brain Research Institute, Geffen School of Medicine at UCLA, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | |
Collapse
|
76
|
Siddiqui AH, Joseph SA. CA3 axonal sprouting in kainate-induced chronic epilepsy. Brain Res 2006; 1066:129-46. [PMID: 16359649 DOI: 10.1016/j.brainres.2005.10.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/17/2005] [Accepted: 10/20/2005] [Indexed: 11/25/2022]
Abstract
Latency between an early neurological insult and development of spontaneous recurrent seizures suggests aberrant chronological reorganization in patients with mesial temporal sclerosis associated epilepsy. Kainate-induced status similarly results in delayed development of spontaneous recurrent seizures. Mossy fiber sprouting by the dentate granule cells is a well-characterized manifestation of such temporal structural reorganization in both patients and animal models. However, alterations in other components of hippocampal circuitry have not been evaluated. We present results from studies using precise anterograde and retrograde tract tracing methodologies to evaluate the reorganization of outflow of the CA3 pyramidal cells. Although septotemporal relationships of the normal CA3 outflow tract through the Schaffer collaterals are well known, their aberrant reorganization following kainate-induced spontaneous recurrent seizures is not known. We provide the first definitive evidence of widespread CA3 structural reorganization in the form of sprouting of CA3 axons to widespread areas throughout the hippocampus and entorhinal cortex. This includes an apparent increase in the density of projection to areas that normally receive CA3 outflow such as CA1 and subiculum as well as novel projections beyond the confines of the hippocampus to the pre and parasubiculum and medial and lateral entorhinal cortex. We provide the first evidence of novel CA3 Schaffer collateral projection to the entorhinal cortex. The sprouting of CA3 outflow to widespread regions of the hippocampus and the entorhinal cortex may provide insight into how the injured hippocampus propagates unconventional impulse excitation to cortical fields which have a critical role in providing excitatory inputs into the hippocampus possibly setting up reverberating excitatory circuits as well as widespread connections throughout the cortical mantle. Sprouting-related mechanisms may also explain the latency associated with development of spontaneous recurrent seizures, the hallmark of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Adnan H Siddiqui
- Department of Neurosurgery, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | |
Collapse
|
77
|
Qi J, Wang Y, Jiang M, Warren P, Chen G. Cyclothiazide induces robust epileptiform activity in rat hippocampal neurons both in vitro and in vivo. J Physiol 2006; 571:605-18. [PMID: 16423850 PMCID: PMC1805799 DOI: 10.1113/jphysiol.2005.103812] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyclothiazide (CTZ) is a potent blocker of AMPA receptor desensitization. We have recently demonstrated that CTZ also inhibits GABA(A) receptors. Here we report that CTZ induces robust epileptiform activity in hippocampal neurons both in vitro and in vivo. We first found that chronic treatment of hippocampal cultures with CTZ (5 microM, 48 h) results in epileptiform activity in the majority of neurons (80%). The epileptiform activity lasts more than 48 h after washing off CTZ, suggesting a permanent change of the neural network properties after CTZ treatment. We then demonstrated in in vivo recordings that injection of CTZ (5 micromol in 5 microl) into the lateral ventricles of anaesthetized rats also induces spontaneous epileptiform activity in the hippocampal CA1 region. The epileptogenic effect of CTZ is probably due to its enhancing glutamatergic neurotransmission as shown by increasing the frequency and decay time of mEPSCs, and simultaneously inhibiting GABAergic neurotransmission by reducing the frequency of mIPSCs. Comparing to a well-known epileptogenic agent kainic acid (KA), CTZ affects neuronal activity mainly through modulating synaptic transmission without significant change of the intrinsic membrane excitability. Unlike KA, which induces significant cell death in hippocampal cultures, CTZ treatment does not result in any apparent neuronal death. Therefore, the CTZ-induced epilepsy model may provide a novel research tool to elucidate the molecular and cellular mechanisms of epileptogenesis without any complication from drug-induced cell death. The long-lasting epileptiform activity after CTZ washout may also make it a very useful model in screening antiepileptic drugs.
Collapse
Affiliation(s)
- Jinshun Qi
- Department of Biology, 201 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
78
|
Smith SL, Heal DJ, Martin KF. KTX 0101: a potential metabolic approach to cytoprotection in major surgery and neurological disorders. CNS DRUG REVIEWS 2005; 11:113-40. [PMID: 16007235 PMCID: PMC6741747 DOI: 10.1111/j.1527-3458.2005.tb00265.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
KTX 0101 is the sodium salt of the physiological ketone, D-beta-hydroxybutyrate (betaOHB). This neuroprotectant, which has recently successfully completed clinical Phase IA evaluation, is being developed as an intravenous infusion fluid to prevent the cognitive deficits caused by ischemic foci in the brain during cardiopulmonary bypass (CPB) surgery. KTX 0101 maintains cellular viability under conditions of physiological stress by acting as a "superfuel" for efficient ATP production in the brain and peripheral tissues. Unlike glucose, this ketone does not require phosphorylation before entering the TCA cycle, thereby sparing vital ATP stores. Although no reliable models of CPB-induced ischemia exist, KTX 0101 is powerfully cytoprotectant under the more severe ischemic conditions of global and focal cerebral ischemia, cardiac ischemia and lung hemorrhage. Neuroprotection has been demonstrated by reductions in infarct volume, edema, markers of apoptosis and functional impairment. One significant difference between KTX 0101 and other potential neuroprotectants in development is that betaOHB is a component of human metabolic physiology which exploits the body's own neuroprotective mechanisms. KTX 0101 also protects hippocampal organotypic cultures against early and delayed cell death in an in vitro model of status epilepticus, indicating that acute KTX 0101 intervention in this condition could help prevent the development of epileptiform foci, a key mechanism in the etiology of intractable epilepsy. In models of chronic neurodegenerative disorders, KTX 0101 protects neurons against damage caused by dopaminergic neurotoxins and by the fragment of beta-amyloid, Abeta(1-42), implying possible therapeutic applications for ketogenic strategies in treating Parkinson's and Alzheimer's diseases. Major obstacles to the use of KTX 0101 for long term therapy in chronic disorders, e.g., Parkinson's and Alzheimer's diseases, are the sodium loading problem and the need to administer it in relatively large amounts because of its rapid mitochondrial metabolism. These issues are being addressed by designing and synthesizing orally bioavailable multimers of betaOHB with improved pharmacokinetics.
Collapse
Affiliation(s)
- Sharon L Smith
- RenaSci Consultancy Ltd, BioCity, Nottingham, NG1 1GF, UK.
| | | | | |
Collapse
|
79
|
Abstract
Epilepsy is a common, chronic neurologic disorder characterized by recurrent unprovoked seizures. Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Such brain injury may contribute to epileptogenesis, impairments in cognitive function or the epilepsy phenotype. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Here, the authors review the clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity. We summarize work showing intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathway function after seizures, activation of the caspase and Bcl-2 families of cell death modulators and the acute and chronic neuropathologic impact of intervening in these molecular cascades. Finally, we describe evolving data on nonlethal roles for these proteins in neuronal restructuring and cell excitability that have implications for shaping the epilepsy phenotype. This review highlights the work to date on apoptosis pathway signaling during seizure-induced neuronal death and epileptogenesis, and speculates on how emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | |
Collapse
|
80
|
Sokka AL, Mudo G, Aaltonen J, Belluardo N, Lindholm D, Korhonen L. Bruce/apollon promotes hippocampal neuron survival and is downregulated by kainic acid. Biochem Biophys Res Commun 2005; 338:729-35. [PMID: 16236253 DOI: 10.1016/j.bbrc.2005.09.197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Prolonged or excess stimulation of excitatory amino acid receptors leads to seizures and the induction of excitotoxic nerve cell injury. Kainic acid acting on glutamate receptors produces degeneration of vulnerable neurons in parts of the hippocampus and amygdala, but the exact mechanisms are not fully understood. We have here investigated whether the anti-apoptotic protein Bruce is involved in kainic acid-induced neurodegeneration. In the rat hippocampus and cortex, Bruce was exclusively expressed by neurons. The levels of Bruce were rapidly downregulated by kainic acid in hippocampal neurons as shown both in vivo and in cell culture. Caspase-3 was activated in neurons exhibiting low levels of Bruce causing cell death. Likewise, downregulation of Bruce using antisense oligonucleotides decreased viability and enhanced the effect of kainic acid in the hippocampal neurons. The results show that Bruce is involved in neurodegeneration caused by kainic acid and the downregulation of the protein promotes neuronal death.
Collapse
Affiliation(s)
- Anna-Leena Sokka
- Medical Research Institute Minerva, Biomedicum Helsinki, Haartmaninkatu 8, FIN-00140 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
81
|
Liu H, Friedman LK, Kaur J. Perinatal seizures preferentially protect CA1 neurons from seizure-induced damage in prepubescent rats. Seizure 2005; 15:1-16. [PMID: 16309925 DOI: 10.1016/j.seizure.2005.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/08/2005] [Accepted: 09/28/2005] [Indexed: 01/15/2023] Open
Abstract
Neonatal seizures may increase neuronal vulnerability later in life. Therefore, status epilepticus was induced with kainate (KA) during the first and second postnatal (P) weeks to determine whether early seizures shift the window of neuronal vulnerability to a younger age. KA was injected (i.p.) once (1x KA) on P13, P20 or P30 or three times (3 x KA), once on P6 and P9, and then either on P13, P20 or P30. After 1x KA, onset to behavioral seizures increased with age. Electroencephalography (EEG) showed interictal events appeared with maturation. After 3 x KA, spike number, frequency, spike amplitude, and high-frequency synchronous events and duration were increased at P13 when compared to age-matched controls. In contrast, P20 and P30 rats had decreases in EEG parameters relative to P20 and P30 rats with 1x KA despite that these animals had the same history of perinatal seizures on P6 and P9. In P13 rats with 1x KA, silver impregnation, hematoxylin/eosin and TUNEL methods showed no significant hippocampal injury and damage was minimal with 3 x KA. In contrast, P20 and P30 rats with 1x KA had robust eosinophilic or TUNEL positive labeling and preferential accumulation of silver ions within inner layer CA1 neurons. After 3 x KA, the CA1 but not CA3 of P20 and P30 rats was preferentially protected following 3 or 6 days. Although paradoxical changes occur in the EEG with maturation, the results indicate that early perinatal seizures do not significantly shift the window of hippocampal vulnerability to an earlier age but induce a tolerance that leads to long-term neuroprotection that differentially affects endogenous properties of CA1 versus CA3 neurons.
Collapse
Affiliation(s)
- H Liu
- NJ Neuroscience Institute, Seton Hall University, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
82
|
Le Duigou C, Wittner L, Danglot L, Miles R. Effects of focal injection of kainic acid into the mouse hippocampus in vitro and ex vivo. J Physiol 2005; 569:833-47. [PMID: 16239280 PMCID: PMC1464260 DOI: 10.1113/jphysiol.2005.094599] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intra-hippocampal kainate injection induces an epileptiform activity termed status epilepticus. We examined the emergence of this activity with extracellular and intracellular records of responses (1) to focal kainate (KA) application in slices of mouse hippocampus and (2) of slices from mice injected with KA. The effects varied with distance from the injection site of KA. At distances less than approximately 800 microm, KA injection induced a strong increase in extracellular firing which ceased after 2-4 min. Pyramidal cells in this zone fired and depolarized to a potential at which action potentials were no longer evoked. No further activity was detected near the injection site for 3-5 h. In longitudinal slices of the CA3 region, firing induced by KA injection spread at a velocity close to 1 x 10(-)(4) mm ms(-)(1). The velocity increased to approximately 1 x 10(-)(1) mm ms(-)(1) when synaptic inhibition was blocked, suggesting that inhibitory processes normally restrict the spread of firing. At distances of 1.5-2.5 mm, KA injection induced a short-term increase in firing which was maintained, and often increased and rhythmic at gamma frequencies at 2-5 h after injection. We also examined slices prepared from animals injected with KA, at a delay of 2-5 h corresponding to the expression of status epilepticus. Near the injection site, Gallyas silver staining revealed cellular degeneration, and no activity was recorded. Interictal-like activity was generated by ipsilateral slices distant from KA injection. Contralateral slices also generated an interictal-like activity, but no cell death was detected. Hippocampal oscillations generated at distant sites may be associated with status epilepticus.
Collapse
Affiliation(s)
- Caroline Le Duigou
- INSERM U739, CHU Pitié-Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | |
Collapse
|
83
|
Zarubenko II, Yakovlev AA, Stepanichev MY, Gulyaeva NV. Electroconvulsive Shock Induces Neuron Death in the Mouse Hippocampus: Correlation of Neurodegeneration with Convulsive Activity. ACTA ACUST UNITED AC 2005; 35:715-21. [PMID: 16433067 DOI: 10.1007/s11055-005-0115-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The relationship between convulsive activity evoked by repeated electric shocks and structural changes in the hippocampus of Balb/C mice was studied. Brains were fixed two and seven days after the completion of electric shocks, and sections were stained by the Nissl method and immunohistochemically for apoptotic nuclei (the TUNEL method). In addition, the activity of caspase-3, the key enzyme of apoptosis, was measured in brain areas immediately after completion of electric shocks. The number of neurons decreased significantly in field CA1 and the dentate fascia, but not in hippocampal field CA3. The numbers of cells in CA1 and CA3 were inversely correlated with the intensity of convulsions. Signs of apoptotic neuron death were not seen, while caspase-3 activity was significantly decreased in the hippocampus after electric shocks. These data support the notion that functional changes affect neurons after electric shock and deepen our understanding of this view, providing direct evidence that there are moderate (up to 10%) but significant levels of neuron death in defined areas of the hippocampus. Inverse correlations of the numbers of cells with the extent of convulsive activity suggest that the main cause of neuron death is convulsions evoked by electric shocks.
Collapse
Affiliation(s)
- I I Zarubenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, 117485 Moscow, Russia
| | | | | | | |
Collapse
|
84
|
Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C. Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience 2005; 132:581-9. [PMID: 15837120 DOI: 10.1016/j.neuroscience.2004.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2004] [Indexed: 01/26/2023]
Abstract
Estrogen exerts many of its receptor-mediated neuroprotective functions through the activation of various intracellular signal transduction pathways including the mitogen activating protein kinase (MAPK), phospho inositol-3 kinase and protein kinase C pathways. Here we have used a hippocampal slice culture model of kainic acid-induced neurotoxic cell death to show that estrogen can protect against oxidative cell death. We have previously shown that MAPK and glycogen synthase kinase-3beta (GSK-3beta) are involved in the cell death/cell survival induced by kainic acid. In this model and other cellular and in vivo models we have shown that estrogen can also cause the phosphorylation and hence inactivation of GSK-3beta, a known mediator of neuronal cell death. The effect of estrogen on GSK-3beta activity is estrogen receptor mediated. Further, this estrogen/GSK-3beta interaction may have functional consequences in cellular models of some key pathogenic pathways associated with Alzheimer's disease. More specifically, estrogen affects the basal levels of tau phosphorylation at a site known to be phosphorylated by GSK-3beta. Taken together, these data indicate a novel molecular and functional link between estrogen and GSK-3beta and may have implications for estrogen receptor modulation as a target for the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- S Goodenough
- Institute for Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg University, Medical School, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
85
|
Emsley JG, Mitchell BD, Magavi SSP, Arlotta P, Macklis JD. The repair of complex neuronal circuitry by transplanted and endogenous precursors. NeuroRx 2005; 1:452-71. [PMID: 15717047 PMCID: PMC534952 DOI: 10.1602/neurorx.1.4.452] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the past three decades, research exploring potential neuronal replacement therapies has focused on replacing lost neurons by transplanting cells or grafting tissue into diseased regions of the brain. However, in the last decade, the development of novel approaches has resulted in an explosion of new research showing that neurogenesis, the birth of new neurons, normally occurs in two limited and specific regions of the adult mammalian brain, and that there are significant numbers of multipotent neural precursors in many parts of the adult mammalian brain. Recent advances in our understanding of related events of neural development and plasticity, including the role of radial glia in developmental neurogenesis, and the ability of endogenous precursors present in the adult brain to be induced to produce neurons and partially repopulate brain regions affected by neurodegenerative processes, have led to fundamental changes in the views about how the brain develops, as well as to approaches by which transplanted or endogenous precursors might be used to repair the adult brain. For example, recruitment of new neurons can be induced in a region-specific, layer-specific, and neuronal type-specific manner, and, in some cases, newly recruited neurons can form long-distance connections to appropriate targets. Elucidation of the relevant molecular controls may both allow control over transplanted precursor cells and potentially allow for the development of neuronal replacement therapies for neurodegenerative disease and other CNS injuries that might not require transplantation of exogenous cells.
Collapse
Affiliation(s)
- Jason G Emsley
- Massachusetts General Hospital/Harvard Medical School Center for Nervous System Repair, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
86
|
Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 2005; 75:321-41. [PMID: 15913880 DOI: 10.1016/j.pneurobio.2005.04.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 03/15/2005] [Accepted: 04/11/2005] [Indexed: 12/18/2022]
Abstract
Recent work in neuroscience has shown that the adult central nervous system contains neural progenitors, precursors, and stem cells that are capable of generating new neurons, astrocytes, and oligodendrocytes. While challenging previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them future possibilities for the development of novel neural repair strategies. The purpose of this review is to present current knowledge about constitutively occurring adult mammalian neurogenesis, to highlight the critical differences between "neurogenic" and "non-neurogenic" regions in the adult brain, and to describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system, and the dentate gyrus of the hippocampus. We also provide an overview of currently used models for studying neural precursors in vitro, mention some precursor transplantation models, and emphasize that, in this rapidly growing field of neuroscience, one must take caution with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims toward molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what the function might be of newly generated neurons in the adult brain and provide a summary of current thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.
Collapse
Affiliation(s)
- Jason G Emsley
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, Harvard Stem Cell Institute, Harvard Medical School, Massachusetts General Hospital, Edwards 410 (EDR 410), 50 Blossom Street, Boston MA 02114, USA
| | | | | | | |
Collapse
|
87
|
Abstract
We examined the mechanism of neuronal necrosis induced by hypoxia in dentate gyrus cultures or by status epilepticus (SE) in adult mice. Our observations showed that hypoxic necrosis can be an active process starting with early mitochondrial swelling and loss of the mitochondrial membrane potential, followed by cytochrome c release and caspase-9-dependent activation of caspase-3. This sequence of events (or program) was independent of protein synthesis and may be induced by energy failure and/or calcium overloading of mitochondria. We called this form of necrosis "programmed necrosis." After SE in adult mice, CA1 and CA3 pyramidal neurons displayed a necrotic morphology, associated with caspase-3 immunoreactivity and with double-stranded DNA breaks, suggesting that "programmed necrosis" may be involved in SE-induced neuronal loss.
Collapse
Affiliation(s)
- Jerome Niquet
- Epilepsy Research Laboratory, VA Greater Los Angeles Healthcare System, West Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
88
|
Mitchell BD, Emsley JG, Magavi SSP, Arlotta P, Macklis JD. Constitutive and induced neurogenesis in the adult mammalian brain: manipulation of endogenous precursors toward CNS repair. Dev Neurosci 2005; 26:101-17. [PMID: 15711054 DOI: 10.1159/000082131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Accepted: 03/07/2004] [Indexed: 12/31/2022] Open
Abstract
Over most of the past century of modern neuroscience, it was thought that the adult brain was completely incapable of generating new neurons. During the past 3 decades, research exploring potential neuronal replacement therapies has focused on replacing lost neurons by transplanting cells or grafting tissue into diseased regions of the brain. However, in the last decade, the development of new techniques has resulted in an explosion of new research showing that neurogenesis, the birth of new neurons, normally occurs in two limited and specific regions of the adult mammalian brain and that there are significant numbers of multipotent neural precursors in many parts of the adult mammalian brain. Recent advances in our understanding of related events of neural development and plasticity, including the role of radial glia in developmental neurogenesis and the ability of endogenous precursors present in the adult brain to be induced to produce neurons and partially repopulate brain regions affected by neurodegenerative processes, have led to fundamental changes in the views about how the brain develops as well as to approaches by which endogenous precursors might be recruited to repair the adult brain. Recruitment of new neurons can be induced in a region-specific, layer-specific and neuronal-type-specific manner, and, in some cases, newly recruited neurons can form long-distance connections to appropriate targets. Elucidation of the relevant molecular controls may both allow control over transplanted precursor cells and potentially allow the development of neuronal replacement therapies for neurodegenerative disease and other CNS injuries that do not require transplantation of exogenous cells.
Collapse
Affiliation(s)
- Bartley D Mitchell
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
89
|
Todtenkopf MS, Vincent SL, Benes FM. A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 2005; 73:79-89. [PMID: 15567080 DOI: 10.1016/j.schres.2004.08.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 08/20/2004] [Accepted: 08/25/2004] [Indexed: 11/23/2022]
Abstract
Using a two-dimensional cell counting approach, a 1991 study in the anterior cingulate cortex (ACCx) detected a reduction in the density of nonpyramidal neurons in layers II-VI of schizophrenic subjects. Schizophrenics without superimposed mood disturbances showed a 16% decrease in layer II, while schizoaffectives showed a 30% decrease, suggesting that a decreased density of nonpyramidal neurons in layer II of ACCx might vary more strongly with affective disorder than with schizophrenia. Two follow-up studies from this laboratory, one a replication of that reported in 1991 and the other an analysis of tyrosine hydroxylase immunoreactive fibers, were undertaken in ACCx of normal controls and schizophrenics. These three data sets have been combined and a meta-analysis of the density of pyramidal, nonpyramidal and glial cells was performed to explore whether changes in the density of interneurons in ACCx may be a reliable finding in the major psychoses. Not all groups have reported this finding, but several had employed a different cell counting technique (i.e. three dimensional optical dissector), which could help to explain the discrepant findings in schizophrenia and affective disorder. The data from each of three different studies (now designated as studies A, B and C, respectively) have been internally normalized, combined into a single dataset and analyzed using nonparametric statistics. Tissue blocks from a subset of cases in study B (six controls, six schizophrenics and six bipolars) were embedded in celloidin and counted using an "unbiased" three dimensional counting method (study D). The data from studies A and B indicate that the density of nonpyramidal neurons in layer II of ACCx in the schizoaffective and bipolar samples was significantly decreased. In the schizophrenics, the nonpyramidal neurons were also decreased, but only by 15%. All three groups also showed a decrease of pyramidal neurons in layers IV, V and VI, but this difference was significant only in layer IV of the schizophrenics. When data from study C were added, the differences in pyramidal and nonpyramidal neurons were less striking. For study D, the pattern of findings are strikingly similar to those obtained in studies A, B and C, indicating that both 2D and 3D cell counting methodologies are capable of detecting the same differences. Taken together, these results indicate that the earlier finding of a decreased density of nonpyramidal neurons in ACCx of schizophrenics is consistent across non-overlapping subjects and/or methods in four separate studies, and is more pronounced in schizoaffective and bipolar subjects than in schizophrenics without superimposed mood disturbance.
Collapse
Affiliation(s)
- Mark S Todtenkopf
- Laboratory for Structural Neuroscience, McLean Hospital, 115 Mill Street, 333 MRC, Belmont, MA 02478, USA
| | | | | |
Collapse
|
90
|
Revuelta M, Castaño A, Machado A, Cano J, Venero JL. Kainate-induced zinc translocation from presynaptic terminals causes neuronal and astroglial cell death and mRNA loss of BDNF receptors in the hippocampal formation and amygdala. J Neurosci Res 2005; 82:184-95. [PMID: 16175575 DOI: 10.1002/jnr.20632] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To evaluate the potential role of endogenous zinc in the pathophysiology of epilepsy, we injected kainic acid into the medial septum, which evokes seizure activity and delayed hippocampal degeneration. Different approaches were used. In the hippocampus, we found a movement of zinc from the synaptic compartment to CA1 pyramidal neurons and astrocytes after kainate. The same was true in the amygdala. We found that in those areas showing intense zinc bleaching there was also a loss of reactive astrocytes, which supports the view that release of synaptic zinc induces astrocytic cell death. We have also tested whether the kainate-induced zinc movement from the synaptic compartment to neuronal or glial cells alters the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, trkB. There was a prominent loss of expression of trkB mRNA in areas that coincided precisely with those displaying astrocyte loss and zinc bleaching. In the amygdala, these events were accompanied by a high upregulation of BDNF mRNA. To demonstrate further a role of synaptic zinc in hippocampal pathology, we used two different approaches. We first injected different doses of zinc chloride in the CA1 area. At lower doses (0.1-10 nmol), zinc chloride selectively induced apoptosis in CA1 pyramidal neurons and dentate granular neurons. In a second approach, we found that hippocampal zinc chelation was effective in protecting CA1 pyramidal neurons against kainate-induced cell death.
Collapse
Affiliation(s)
- Mati Revuelta
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | |
Collapse
|
91
|
Patel M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 2004; 37:1951-62. [PMID: 15544915 DOI: 10.1016/j.freeradbiomed.2004.08.021] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/27/2022]
Abstract
Mitochondrial dysfunction has been implicated as a contributing factor in diverse acute and chronic neurological disorders. However, its role in the epilepsies has only recently emerged. Animal studies show that epileptic seizures result in free radical production and oxidative damage to cellular proteins, lipids, and DNA. Mitochondria contribute to the majority of seizure-induced free radical production. Seizure-induced mitochondrial superoxide production, consequent inactivation of susceptible iron-sulfur enzymes, e.g., aconitase, and resultant iron-mediated toxicity may mediate seizure-induced neuronal death. Epileptic seizures are a common feature of mitochondrial dysfunction associated with mitochondrial encephalopathies. Recent work suggests that chronic mitochondrial oxidative stress and resultant dysfunction can render the brain more susceptible to epileptic seizures. This review focuses on the emerging role of oxidative stress and mitochondrial dysfunction both as a consequence and as a cause of epileptic seizures.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| |
Collapse
|
92
|
Valente T, Domínguez MI, Bellmann A, Journot L, Ferrer I, Auladell C. Zac1 is up-regulated in neural cells of the limbic system of mouse brain following seizures that provoke strong cell activation. Neuroscience 2004; 128:323-36. [PMID: 15350644 DOI: 10.1016/j.neuroscience.2004.06.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2004] [Indexed: 11/23/2022]
Abstract
Zac1, a new zinc-finger protein that regulates both apoptosis and cell cycle arrest, is abundantly expressed in many proliferative/differentiation areas during brain development. In the present work, we studied Zac1 gene expression and protein in experimental seizure models following i.p. injection of pentylenetetrazole (PTZ) or kainic acid (KA). Following KA treatment, an early and intense up-regulation of Zac1 is detected in the limbic areas, such as the hippocampus, cortex and amygdaloid and hypothalamic nuclei. Pre-treatment with MK-801, an antagonist of the NMDA receptors, fully blocks the effect of KA in the hippocampus, whereas it only attenuates KA-induced Zac1 up-regulation in the other areas of the limbic system. A reduced induction is obtained with PTZ-treated animals, specifically in the entorhinal and piriform cortices as well as in amygdaloid and hypothalamic nuclei. Thus, Zac1 is highly induced in the seizure models that generate strong neuronal stimulation and/or extensive cell damage (cell death), reinforcing its putative role in the control of the cell cycle and/or apoptosis. Moreover, strong induction is observed in the granular cells of the dentate gyrus (which are resistant to neurodegeneration) and in some glial cells of the dentate gyrus and subventricular zone, suggesting that Zac1 may be implicated in the mechanisms of neural plasticity following injury.
Collapse
Affiliation(s)
- T Valente
- Departament de Biologia Cellular, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 1a Planta, E-08028, Spain.
| | | | | | | | | | | |
Collapse
|
93
|
Goodenough S, Conrad S, Skutella T, Behl C. Inactivation of glycogen synthase kinase-3β protects against kainic acid-induced neurotoxicity in vivo. Brain Res 2004; 1026:116-25. [PMID: 15476703 DOI: 10.1016/j.brainres.2004.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 11/19/2022]
Abstract
Many neurodegenerative diseases involve oxidative stress and excitotoxic cell death. In an attempt to further elucidate the signal transduction pathways involved in the cell death/cell survival associated with excitotoxicity, we have used an in vivo model of excitotoxicity employing kainic acid (KA)-induced neurotoxicity. Here, we show that extracellular signal-related kinase (ERK) 2, but not ERK 1, is phosphorylated and thereby activated in the hippocampus and cerebellum of kainic acid-treated mice. Phosphorylation and hence inactivation of glycogen synthase kinase 3beta (GSK-3beta), a general survival factor, is often a downstream consequence of mitogen-activated protein kinase pathway activation. Indeed, GSK-3beta phosphorylation occurred in response to kainic acid exclusively in the affected hippocampus, but not as a consequence of ERK activation. This may represent a compensatory attempt at self-protection by the cells in this particular brain region. A role for GSK-3beta inhibition in cell survival was further supported by the fact that pharmacological inhibition of GSK-3beta using lithium chloride was protective against kainic acid-induced excitotoxicity in hippocampal slice cultures. This work supports a role for GSK-3beta in cell death in response to excitotoxins in vivo and further confirms that GSK-3beta plays a role in cell death/cell survival pathways.
Collapse
Affiliation(s)
- Sharon Goodenough
- Department of Pathobiochemistry, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
94
|
Chandrasekaran A, Ponnambalam G, Kaur C. Domoic acid-induced neurotoxicity in the hippocampus of adult rats. Neurotox Res 2004; 6:105-17. [PMID: 15325963 DOI: 10.1007/bf03033213] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Domoic acid (DA), an agonist of non-N-methyl-D-aspartate (non-NMDA) receptor subtype including kainate receptor, was identified as a potent neurotoxin showing involvement in neuropathological processes like neuronal degeneration and atrophy. In the past decade evidence indicating a role for excitatory amino acids in association with neurological disorders has been accumulating. Although the mechanisms underlying the neuronal damage induced by DA are not yet fully understood, many intracellular processes are thought to contribute towards DA-induced excitotoxic injury, acting in combination leading to cell death. In this review article, we report the leading hypotheses in the understanding of DA-induced neurotoxicity, which focus on the role of DA in neuropathological manifestations, the formation of the retrograde messenger molecule nitric oxide (NO) for the production of free radicals in the development of neuronal damage, the activation of glial cells (microglia and astrocytes) in response to DA-induced neuronal damage and the neuroprotective role of melatonin as a free radical scavenger or antioxidant in DA-induced neurotoxicity. The possible implications of molecular mechanism underlying the neurotoxicity in association with necrosis, apoptosis, nitric oxide synthases (nNos and iNOS) and glutamate receptors (NMDAR1 and GluR2) related genes and their expression in DA-induced neuronal damage in the hippocampus have been discussed.
Collapse
Affiliation(s)
- Ananth Chandrasekaran
- Department of Anatomy, Faculty of Medicine, National University of Singapore, MD 10, 4 Medical Drive, Singapore-117597
| | | | | |
Collapse
|
95
|
Tominaga K, Matsuda J, Kido M, Naito E, Yokota I, Toida K, Ishimura K, Suzuki K, Kuroda Y. Genetic background markedly influences vulnerability of the hippocampal neuronal organization in the "twitcher" mouse model of globoid cell leukodystrophy. J Neurosci Res 2004; 77:507-16. [PMID: 15264220 DOI: 10.1002/jnr.20190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The twitcher mouse is well known as a naturally occurring authentic mouse model of human globoid cell leukodystrophy (GLD; Krabbe disease) due to genetic deficiency of lysosomal galactosylceramidase. The twitcher mice used most commonly are on the C57BL/6J background. We generated twitcher mice that were on the mixed background of C57BL/6J and 129SvEv, the standard strain for production of targeted mutations. Twitcher mice on the mixed background were smaller and had a shorter lifespan than were those on the C57BL/6J background. Many twitcher mice on the mixed background developed generalized seizures around 30 days that were never seen in twitcher mice on the C57BL/6J background. Neuropathologically, although the degree of the typical demyelination with infiltration of macrophages was similar in the central and peripheral nervous systems, in both strains, marked neuronal cell death was observed only in twitcher mice on the mixed background. In the hippocampus, the neuronal cell death occurred prominently in the CA3 region in contrast to the relatively well-preserved CA1 and CA2 areas. This neuropathology has never been seen in twitcher mice on the C57BL/6J background. Biochemically, the brain of twitcher mice on the mixed background showed much greater accumulation of lactosylceramide. Genetic background must be carefully taken into consideration when phenotype of mutant mice is evaluated, particularly because most targeted mutants are initially on a mixed genetic background and gradually moved to a pure background. These findings also suggest an intriguing possibility of important function of some sphingolipids in the hippocampal neuronal organization and maintenance.
Collapse
Affiliation(s)
- Kumiko Tominaga
- Department of Pediatrics, University of Tokushima School of Medicine, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Emsley JG, Mitchell BD, Magavi SSP, Arlotta P, Macklis JD. The repair of complex neuronal circuitry by transplanted and endogenous precursors. Neurotherapeutics 2004. [DOI: 10.1007/bf03206630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
97
|
Slézia A, Kékesi AK, Szikra T, Papp AM, Nagy K, Szente M, Maglóczky Z, Freund TF, Juhász G. Uridine release during aminopyridine-induced epilepsy. Neurobiol Dis 2004; 16:490-9. [PMID: 15262260 DOI: 10.1016/j.nbd.2004.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 01/23/2004] [Accepted: 02/25/2004] [Indexed: 12/01/2022] Open
Abstract
Uridine, like adenosine, is released under sustained depolarization and it can inhibit hippocampal neuronal activity, suggesting that uridine may be released during seizures and can be involved in epileptic mechanisms. In an in vivo microdialysis study, we measured the extracellular changes of nucleoside and amino acid levels and recorded cortical EEG during 3-aminopyridine-induced epilepsy. Applying silver impregnation and immunohistochemistry, we examined the degree of hippocampal cell loss. We found that extracellular concentration of uridine, adenosine, inosine, and glutamate increased significantly, while glutamine level decreased during seizures. The release of uridine correlated with seizure activity. Systemic and local uridine application was ineffective. The number of parvalbumin- and calretinin-containing interneurons of dorsal hippocampi decreased. We conclude that uridine is released during epileptic activity, and suggest that as a neuromodulator, uridine may contribute to epilepsy-related neuronal activity changes, but uridine analogues having slower turnover would be needed for further investigation of physiological role of uridine.
Collapse
Affiliation(s)
- A Slézia
- Research Group of Neurobiology of the Hungarian Academy of Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Alva-Sánchez C, Ortiz-Butrón R, Pacheco-Rosado J. Kainic acid does not affect CA3 hippocampal region pyramidal cells in hypothyroid rats. Brain Res Bull 2004; 63:167-71. [PMID: 15130707 DOI: 10.1016/j.brainresbull.2004.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 01/21/2004] [Accepted: 02/06/2004] [Indexed: 12/28/2022]
Abstract
Thyroid hormones exert a crucial role on trophic events of the central nervous system during development, adulthood, and ageing. The deficiency of thyroid hormones could also produce a deficiency in neurotransmission in the hippocampal region. Kainic acid (KA) has become an important tool for studying functions related to excitatory amino acid transmission in mammals. Its neurotoxic effects on the pyramidal neurons of the CA3 hippocampal region are well known. We have examined the neurotoxicity of KA on these cells in hypothyroid rats. The hypothyroid state was induced by administration of methimazole. After 4 weeks of treatment, KA was administered once intraperitoneally at doses of 0, 1, 2.5, and 5mg/kg to the hypothyroid group, and 0 and 5mg/kg to the euthyroid group. In the euthyroid group, KA reduced the neuronal density in the CA3 hippocampal region, and in the hypothyroid rats with no administration of KA, the neuronal density of the CA3 hippocampal region is reduced also. Administering KA in hypothyroid rats did not reduce the number of CA3 pyramidal cells.
Collapse
Affiliation(s)
- Claudia Alva-Sánchez
- Departamento de Fisiología Mauricio Russek, Escuela Nacional de Ciencias Biológicas, I.P.N., Carpio y Plan de Ayala, México, D.F. 11340, Mexico
| | | | | |
Collapse
|
99
|
Mikati MA, Holmes GL, Werner S, Bakkar N, Carmant L, Liu Z, Stafstrom CE. Effects of nimodipine on the behavioral sequalae of experimental status epilepticus in prepubescent rats. Epilepsy Behav 2004; 5:168-74. [PMID: 15123017 DOI: 10.1016/j.yebeh.2003.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the potential protective effects of nimodipine (ND), a calcium channel blocker, on the acute manifestations and long-term behavioral sequalae of experimental status epilepticus (SE). METHODS Three groups of Postnatal Day (P) 35 rats undergoing kainic acid (KA)-induced SE were injected with phenobarbital (PB) and/or ND, and were subsequently compared with rats injected with KA alone and normal control rats. Behavioral parameters were assessed by the Morris water maze, open field, and handling tests at P125-P135. Acute seizures and spontaneous recurrent seizures (SRS) were assessed by videotape techniques. RESULTS PB reduced the severity of SE acutely, and protected completely against subsequent long-term SRS, memory impairment, and hyperactivity, and partially against aggressivity. ND alone had no effect on acute seizure activity, but did protect against subsequent SRS and memory impairment, and partially against aggressivity. When administered together, PB and ND had effects similar to those seen with PB alone. However, in addition, and unlike the PB- and ND-alone groups, the PB-ND group was completely protected against KA-induced increased aggressivity. CONCLUSIONS Activation of L-type calcium channels contributes to the long-term behavioral sequalae of KA-induced SE, but is not essential for the development and maintenance of SE. ND has protective effects in SE when given alone or in conjunction with a traditional antiepileptic drug. Calcium channel blockers should be further investigated as add-on protective agents in models of SE and possibly in clinical trials.
Collapse
Affiliation(s)
- Mohamad A Mikati
- Department of Pediatrics, and Adult and Pediatric Epilepsy Program, Faculty of Medicine, American University of Beirut, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
100
|
Kelly KM, Ikonomovic MD, Abrahamson EE, Kharlamov EA, Hentosz TM, Armstrong DM. Alterations in hippocampal voltage-gated calcium channel alpha 1 subunit expression patterns after kainate-induced status epilepticus in aging rats. Epilepsy Res 2004; 57:15-32. [PMID: 14706730 DOI: 10.1016/j.eplepsyres.2003.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Young adult and aged male Fisher 344 rats underwent kainate-induced convulsive status epilepticus (SE) for 4 h prior to sacrifice to determine potential aging-related differences in the effect of prolonged SE on the expression of hippocampal voltage-gated calcium channels (VGCCs). Immunohistochemistry was performed on hippocampal sections using antibodies directed against the alpha1 subunit of class A-D VGCCs. Compared to age-matched controls, SE animals showed a marked loss of alpha1A immunoreactivity (IR) in CA3 and the hilus, which was more prominent in aged animals. Alpha1B-IR was decreased selectively in the stratum lucidum of CA3. Alpha1C-IR was increased on neuronal somata in the pyramidal and granule cell layers of both age groups. In contrast, there was a marked decrease of alpha1C-IR in the neuropil of CA3 stratum pyramidale and portions of CA1, which was more pronounced in aged animals. Alpha1D-IR was decreased in CA3 and the hilus, which was more prominent in aged animals. Nissl staining demonstrated mild somal dysmorphia in the pyramidal cell layer of CA3, which was more apparent in aged animals. Fluoro-Jade B staining was prominent in the stratum pyramidale of CA3 and in the hilus of aged SE animals. These results demonstrated that expression patterns of hippocampal high-threshold VGCC alpha1 subunits were altered variably during prolonged convulsive SE and were associated with prominent early degenerative changes in aged neurons in CA3 and the hilus.
Collapse
Affiliation(s)
- Kevin M Kelly
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, 940 South Tower, 320 E North Avenue, Pittsburgh, PA 15212-4772, USA.
| | | | | | | | | | | |
Collapse
|