51
|
Han SN, Meydani M, Wu D, Bender BS, Smith DE, Viña J, Cao G, Prior RL, Meydani SN. Effect of long-term dietary antioxidant supplementation on influenza virus infection. J Gerontol A Biol Sci Med Sci 2000; 55:B496-503. [PMID: 11034223 DOI: 10.1093/gerona/55.10.b496] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study compared the effect of vitamin E on the course of influenza infection with that of other antioxidants. (In a previous study we showed that short-term vitamin E supplementation significantly decreased pulmonary viral titer in influenza-infected old mice). Eighteen-month-old C57BL/6NCrlBR mice were fed one of the following semisynthetic diets for 6 months: control, vitamin E supplemented, glutathione supplemented, vitamin E and glutathione supplemented, melatonin supplemented, or strawberry extract supplemented. After influenza virus challenge, mice fed vitamin E-supplemented diet had significantly lower pulmonary viral titers compared to those fed the control diet (10(2.6) vs 10(4.0), p < .05) and were able to maintain their body weight after infection (1.8+/-0.9 g weight loss/5 days postinfection in vitamin E group vs 6.8+/-1.4 g weight loss/5 days postinfection in control group, p < .05). Other antioxidants did not have a significant effect on viral titer or weight loss. There was a significant inverse correlation of weight loss with food intake (r = -.96, p < .01), indicating that the observed weight changes were mainly due to decreased food intake. Pulmonary interleukin (IL)-6, IL-1beta, and tumor necrosis factor (TNF)-alpha levels increased significantly postinfection. The vitamin E group had lower lung IL-6 and TNF-alpha levels following infection compared to the control group. In addition, there was a significant positive correlation between weight loss and lung IL-6 (r = .77, p < .01) and TNF-alpha (r = .68, p < .01) levels. Because IL-6 and TNF-alpha have been shown to contribute to the anorexic effect of infectious agents, the prevention of weight loss by vitamin E might be due to its reduced production of IL-6 and TNF-alpha following infection. Thus, among the antioxidants tested, only vitamin E was effective in reducing pulmonary viral titers and preventing an influenza-mediated decrease in food intake and weight loss. Other dietary antioxidant supplementations that reduced one or more measures of oxidative stress (4-hydroxynonenal, malondialdehyde, and hydrogen peroxide) did not have an effect on viral titer, which suggests that, in addition to its antioxidant activity, other mechanisms might be involved in vitamin E's beneficial effect on lowering viral titer and preventing weight loss.
Collapse
Affiliation(s)
- S N Han
- Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 2000; 4:199-220. [PMID: 10731095 DOI: 10.1179/135100099101534927] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.
Collapse
Affiliation(s)
- S R Thomas
- The Biochemistry Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
53
|
Mileva M, Tancheva L, Bakalova R, Galabov A, Savov V, Ribarov S. Effect of vitamin E on lipid peroxidation and liver monooxigenase activity in experimental influenza virus infection. Toxicol Lett 2000; 114:39-45. [PMID: 10713467 DOI: 10.1016/s0378-4274(99)00265-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza virus infection was associated with development of oxidative stress in liver of mice, viz. increase in amount of lipid peroxidation products, decrease in cytochrome P-450 and NADP. H-cytochrome c-reductase activity, and inhibition of liver monooxygenases (aniline hydroxylase, ethylmorphine-N-demethylase, amidopyrine-N-demethylase and analgin-N-demethylase). These effects were most pronounced on the 7th day after virus inoculation as compared to the 5th one. Supplementation of mice with vitamin E before virus inoculation leads to liver protection against oxidative stress and toxicosis. A marked decrease of lipid peroxidation products and an increase of cytochrome P-450 and activities of monooxygenases was established. The stabilizing effect of vitamin E was dose-dependent and was most pronounced on the 5th day after virus inoculation as compared to the 7th one.
Collapse
Affiliation(s)
- M Mileva
- Department of Medical Physics and Biophysics, Medical University, 2 Zdrave Str., Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
54
|
Morcillo EJ, Estrela J, Cortijo J. Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res 1999; 40:393-404. [PMID: 10527653 DOI: 10.1006/phrs.1999.0549] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen and nitrogen species are generated by several inflammatory and structural cells of the airways. These oxidant species may have important effects on different lung cells as regulators of signal transduction, activators of key transcription factors, and modulators of gene expression and apoptosis. Thus, an increased oxidative stress accompanied by reduced endogenous antioxidant defences may have a role in the pathogenesis of a number of inflammatory pulmonary diseases including asthma. Although antioxidant drugs could play a useful role in the therapy of inflammatory lung diseases, their clinical impact is relatively modest at present. Rigorous clinical investigation with the existing antioxidants and development of new drugs with improved lung bioavailability are necessary in the future.pc 1999 Academic Press@p$hr
Collapse
Affiliation(s)
- E J Morcillo
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | | | | |
Collapse
|
55
|
Vijaya Lakshmi AN, Ramana MV, Vijayashree B, Ahuja YR, Sharma G. Detection of influenza virus induced DNA damage by comet assay. Mutat Res 1999; 442:53-8. [PMID: 10366773 DOI: 10.1016/s1383-5718(99)00058-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Influenza virus A2/HK/68 is known to be a biological mutagen and teratogen. Reports are available implicating influenza virus as a causative agent of chromosomal aberrations in cells in culture and also in circulating leukocytes of humans. Also, an increased incidence of abortions, prenatal mortality and congenital abnormalities during the periods of epidemics has also been reported. In view of these reports, it would be worthwhile to screen persons especially pregnant women exposed to influenza virus for possible DNA damage. The present study reports the use of Comet assay to measure influenza virus induced DNA damage. We have carried out in vitro infection experiments using human leukocytes. Our results clearly indicate that influenza virus A2/HK/68 induces DNA damage in leukocytes right from 2-h post-infection. Maximum damage was observed at 24-h post-infection. However, at 48-h post-infection, a slight decrease was observed which can be attributed to the DNA repair occurring in the cells. Thereafter, irreparable damage was noticed. Cell viability results have shown lack of cytotoxicity till 72-h post-infection. However, significant cytotoxicity was observed only at 96-h post-infection. The occurrence of DNA damage without cell death may result in chromosomal aberrations or mutations. Therefore, it is most advisable to get screened for the possible DNA damage especially persons frequently infected with influenza and pregnant women.
Collapse
Affiliation(s)
- A N Vijaya Lakshmi
- Department of Microbiology, Osmania University, Hyderabad 500007, India.
| | | | | | | | | |
Collapse
|
56
|
Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem 1999; 72:2334-44. [PMID: 10349842 DOI: 10.1046/j.1471-4159.1999.0722334.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined the effects of oxidative stress on rat cultured mesencephalic neurons and glial cells. Glial cells were more resistant to 6-hydroxydopamine (6-OHDA) and H2O2 toxicity than neurons. In glial cells, incubation with 6-OHDA and H2O2 induced a significant increase in the expression of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione synthesis) mRNA, which correlated well with increased TPA-response element (TRE)-binding activity. Furthermore, a subsequent elevation in cellular total glutathione content was also observed. In neurons, both agents decreased TRE-binding activity, and these cells failed to up-regulate the glutathione synthesis. We also examined the mechanisms of the neuroprotective effects of glial cells using a glia conditioned medium. Neurons maintained in glia conditioned medium up-regulated the level of TRE-binding activity, gamma-glutamylcysteine synthetase mRNA expression, and total glutathione content in response to 6-OHDA or H2O2, and became more resistant to both agents than cells maintained in a normal medium. Neurons maintained in normal medium failed to up-regulate the glutathione synthesis. Our results suggest that transcriptional up-regulation of glutathione synthesis in glial cell appears to mediate brain glial cell resistance against oxidative stress, and that glial cells protect neurons via transcriptional up-regulation of the antioxidant system.
Collapse
Affiliation(s)
- E Iwata-Ichikawa
- Department of Neuroscience, Institute of Molecular and Cellular Medicine, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
57
|
Kuo S, Chesrown SE, Mellott JK, Rogers RJ, Hsu JL, Nick HS. In vivo architecture of the manganese superoxide dismutase promoter. J Biol Chem 1999; 274:3345-54. [PMID: 9920876 DOI: 10.1074/jbc.274.6.3345] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial manganese superoxide dismutase (Mn-SOD) is the primary cellular defense against damaging superoxide radicals generated by aerobic metabolism and as a consequence of inflammatory disease. Elevated expression of Mn-SOD therefore provides a potent cytoprotective advantage during acute inflammation. Mn-SOD contains a GC-rich and TATA/CAAT-less promoter characteristic of a housekeeping gene. In contrast, however, Mn-SOD expression is dramatically regulated in a variety of cells by numerous proinflammatory mediators, including lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-1. To understand the underlying regulatory mechanisms controlling Mn-SOD expression, we utilized DNase I-hypersensitive (HS) site analysis, which revealed seven hypersensitive sites throughout the gene. Following high resolution DNase I HS site analysis, the promoter was found to contain five HS subsites, including a subsite that only appears following stimulus treatment. Dimethyl sulfate in vivo footprinting identified 10 putative constitutive protein-DNA binding sites in the proximal Mn-SOD promoter as well as two stimulus-specific enhanced guanine residues possibly due to alterations in chromatin structure. In vitro footprinting data implied that five of the binding sites may be occupied by a combination of Sp1 and gut-enriched Kr uppel-like factor. These studies have revealed the complex promoter architecture of a highly regulated cytoprotective gene.
Collapse
Affiliation(s)
- S Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Oxidative stress is implicated in the pathogenesis of several viral infections, including hepatitis, influenza, and AIDS. Dietary oxidative stress due to either selenium or vitamin E deficiency increases cardiac damage in mice infected with a myocarditic strain of coxsackievirus B3. Such dietary oxidative stress also allows a normally benign (i.e., amyocarditic) coxsackievirus B3 to convert to virulence and cause heart damage. This conversion to virulence is due to a nucleotide sequence change in the genome of the benign virus, which then resembles more closely the nucleotide sequence of virulent strains. Although it has been known for many years that poor nutrition can affect host response to infection, this is the first report of host nutrition affecting the genetic sequence of a pathogen. Further research is needed to determine whether poor host nutrition plays any role in the emergence of new viral diseases via alterations in he genotype of an infectious agent.
Collapse
Affiliation(s)
- M A Beck
- Frank Porter Graham Child Development Center, University of North Carolina, Chapel Hill 27599-8180, USA.
| | | |
Collapse
|
59
|
Knobil K, Choi AM, Weigand GW, Jacoby DB. Role of oxidants in influenza virus-induced gene expression. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L134-42. [PMID: 9458811 DOI: 10.1152/ajplung.1998.274.1.l134] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza virus-induced epithelial damage may be mediated, in part, by reactive oxygen intermediates (ROIs). In this study, we investigated the role of ROIs in the influenza virus-induced gene expression of antioxidant enzymes and in the activation of nuclear factor-kappa B (NF-kappa B), an oxidant-sensitive transcriptional factor. Influenza virus infection increased production of intracellular ROIs in A549 pulmonary epithelial cells. Induction of manganese superoxide dismutase (MnSOD) mRNA correlated with increased MnSOD protein and enzyme activity. Influenza virus infection also activated NF-kappa B binding as determined by an electrophoretic mobility shift assay. Pretreatment of A549 cells with N-acetyl-L-cysteine attenuated virus-induced NF-kappa B activation and interleukin (IL)-8 mRNA induction but did not block induction of MnSOD mRNA. In contrast, pyrrolidine dithiocarbamate blocked activation of NF-kappa B and induction of MnSOD and IL-8 mRNAs. Treatment with pyrrolidine dithiocarbamate also markedly decreased virus-induced cell death. Thus oxidants are involved in influenza virus-induced activation of NF-kappa B, in the expression of IL-8 and MnSOD, and in virus-induced cell death.
Collapse
Affiliation(s)
- K Knobil
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
60
|
Iwata E, Asanuma M, Nishibayashi S, Kondo Y, Ogawa N. Different effects of oxidative stress on activation of transcription factors in primary cultured rat neuronal and glial cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:213-20. [PMID: 9406937 DOI: 10.1016/s0169-328x(97)00190-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We compared the cytotoxic effects of oxidative stress on neuronal and glial cells in vitro by examining the cell viability and changes in DNA-binding activities of transcription factors, AP-1 and CREB, using Trypan blue exclusion and electrophoretic mobility shift assay (EMSA), respectively. Neurotoxin 6-hydroxydopamine (6-OHDA) and H2O2 reduced the viability of both types of cells in time- and concentration-dependent manner. Both neurotoxins dose-dependently decreased DNA-binding activities in neuronal cells. The results of cell viability assay suggested that these changes may reflect the reduction in neuronal cell viability. In contrast, both reagents increased DNA-binding activities in glial cells, although they decreased cell numbers. These results suggest that the effects of oxidative stress on transcription factors is different in neuronal and glial cells. We also examined the effect of brain-derived neurotrophic factor (BDNF) on 6-OHDA- or H2O2-induced changes in DNA-binding activities. In neuronal cells, pre-treatment with BDNF prevented the decrease in DNA-binding activities induced by 6-OHDA or H2O2. In glial cells, the effect of BDNF on oxidative stress-induced changes in DNA-binding activities in the 6-OHDA-treated group were opposite to those in H2O2-treated group. Our results suggest that 6-OHDA and H2O2 may exert their cytotoxic mechanisms through different signal transduction systems.
Collapse
Affiliation(s)
- E Iwata
- Department of Neuroscience, Institute of Molecular and Cellular Medicine, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
61
|
Vossen RC, Persoons MC, Slobbe-van Drunen ME, Bruggeman CA, van Dam-Mieras MC. Intracellular thiol redox status affects rat cytomegalovirus infection of vascular cells. Virus Res 1997; 48:173-83. [PMID: 9175256 DOI: 10.1016/s0168-1702(96)01439-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is increasing evidence for cytomegalovirus (CMV) induced vascular pathology during acute infection in the immunocompromised host. Inflammation is involved in such processes, which is frequently associated with increased levels of oxidative mediators and reduced anti-oxidant protection. A relation between viral infection and oxidative stress has been recognized for human immunodeficiency virus and herpes simplex virus-1 infections, but little is known in this respect for CMV infections. We investigated if there is a relation between CMV infection of vascular cells and the intracellular redox status using an in vitro rat model. We measured intracellular glutathione levels and rat CMV (RCMV) permissiveness of rat heart endothelial cell lines (RHEC), rat smooth muscle cells (RSMC), and compared these with fully CMV-permissive rat fibroblasts (REF and Rat 2). In addition, the effects of the anti-oxidant N-acetylcysteine (NAC) and the glutathione synthesis inhibitor buthionine sulfoximide (BSO) on CMV permissiveness and replication were investigated in these cell lines. Finally, we investigated infection of vascular cells under inflammatory conditions in an in vivo rat model for acute CMV infection. The results show a very high endogenous glutathione level in RHEC compared to REF, Rat 2 cells and RSMC. This is associated with a low CMV permissiveness in RHEC as opposed to full permissiveness in REF, Rat 2 cells and RSMC in vitro. In addition, modulation of the intracellular thiol redox status affected CMV infection and replication only in RHEC, but not in RSMC and Rat 2 cells. During acute infection in vivo under immunosuppressed conditions rat endothelial cells first become activated and subsequently infected leading to vascular damage and pathology. This study suggests that a high endogenous thiol redox status may contribute to the apparent barrier function of endothelial cells with respect of CMV infection and that oxidative stress may facilitate CMV infection of the vascular wall.
Collapse
Affiliation(s)
- R C Vossen
- Department of Medical Microbiology, University of Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
62
|
Affiliation(s)
- A M Campbell
- INSERM U454, Hôpital Arnaud de Villeneuve, Montpellier, France
| |
Collapse
|
63
|
Mills PC, Higgins AJ. Oxidant injury, nitric oxide and pulmonary vascular function: implications for the exercising horse. Vet J 1997; 153:125-48. [PMID: 12463399 DOI: 10.1016/s1090-0233(97)80034-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The athletic ability of the horse is facilitated by vital physiological adaptations to high-intensity exercise, including a thin (but strong) pulmonary blood-gas barrier, a large pulmonary functional reserve capacity and a consequent maximum oxygen uptake (VO2max) far higher than in other species. A high pulmonary artery pressure also serves to enhance pulmonary function, although stress failure of lung capillaries at high pulmonary transmural pressures, and the contribution of other factors which act in the exercising horse to increase pulmonary vascular tone, may lead to pathological or pathophysiological sequelae, such as exercise-induced pulmonary haemorrhage (EIPH). Reactive oxygen species (ROS) are an important component of the mammalian inflammatory response. They are released during tissue injury and form a necessary component of cellular defences against pathogens and disease processes. The effects of ROS are normally limited or neutralized by a multifactorial system of antioxidant defences, although excessive production and/or deficient antioxidant defences may expose healthy tissue to oxidant damage. In the lung, ROS can damage pulmonary structures both directly and by initiating the release of other inflammatory mediators, including proteases and eicosanoids. Vascular endothelial cells are particularly susceptible to ROS-induced oxidant injury in the lung, and both the destruction of the pulmonary blood-gas barrier and the action of vasoactive substances will increase pulmonary vascular resistance. Moreover, ROS can degrade endothelium-derived nitric oxide (NO), a major pulmonary vasodilator, thereby, with exercise, synergistically increasing the likelihood of stress failure of pulmonary capillaries, a contributing factor to EIPH. This review considers the implications for the exercising horse of oxidant injury, pulmonary vascular function and NO and the contribution of these factors to the pathogenesis of equine respiratory diseases.
Collapse
Affiliation(s)
- P C Mills
- Equine Centre, Animal Health Trust, PO Box 5, Newmarket, Suffolk, CB8 7DW, UK
| | | |
Collapse
|
64
|
Smith LJ, Shamsuddin M, Sporn PH, Denenberg M, Anderson J. Reduced superoxide dismutase in lung cells of patients with asthma. Free Radic Biol Med 1997; 22:1301-7. [PMID: 9098106 DOI: 10.1016/s0891-5849(96)00550-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lung cells recovered from symptomatic patients with asthma generate increased amounts of reactive oxygen species (ROS). Animal and in vitro studies indicate that ROS can reproduce many of the features of asthma. The ability of ROS to produce the clinical features of asthma may depend on an individual's lung antioxidant defenses. Patients with asthma are reported to have reduced antioxidant defenses in peripheral blood, but little is known about the antioxidant defenses of their lung cells. To define lung cell antioxidant defenses in asthma, the glutathione concentration and the glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase (SOD) activities were measured in cells recovered by bronchoalveolar lavage (BAL cells) and by bronchial brushing (bronchial epithelial cells, HBEC) from normal subjects and patients with asthma. Superoxide dismutase activity was reduced 25% in BAL cells (p < .05) and nearly 50% in HBEC (p < .02) from patients with asthma. Alterations in the other antioxidants were not identified. A direct relationship was found between airway reactivity to methacholine, measured as PC(20)FEV(1), and HBEC SOD activity (r2 = 89; p < .005), but not between airway reactivity and the other antioxidants. The finding of reduced SOD activity in lung cells of patients with asthma suggests that diminished SOD activity serves as a marker of the inflammation characterizing asthma. Alternatively, it may play a role in the development or severity of the disease.
Collapse
Affiliation(s)
- L J Smith
- Pulmonary Division, Northwestern University Medical School and VA Lakeside Medical Center, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- D B Jacoby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| |
Collapse
|
66
|
MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 1996; 93:11853-8. [PMID: 8876227 PMCID: PMC38148 DOI: 10.1073/pnas.93.21.11853] [Citation(s) in RCA: 595] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.
Collapse
Affiliation(s)
- L A MacMillan-Crow
- Department of Surgery, School of Medicine, University of Alabama, Birmingham 35223, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
The purpose of this review is to analyze the role of reactive oxygen species (ROS) in the pathogenesis of viral infections, an area of research that has recently gained momentum given the accumulation of evidence regarding the role of ROS in the pathogenesis of infection with the human immunodeficiency virus (HIV). Attention will be focussed on three classes of viruses: (1) RNA viruses, (2) DNA viruses, and (3) retroviruses, with particular attention to influenza viruses, hepatitis B virus, and HIV as representative examples of these three classes, respectively. For each type of virus, evidence for the following will be analyzed: (1) the effect of the virus on activation of phagocytic cells to release ROS and pro-oxidant cytokines such as tumor necrosis factor; (2) the effect of the virus on the pro-/antioxidant balance in host cells, including virally induced inhibition of antioxidant enzymes such as superoxide dismutase and virally induced increases in pro-oxidants such as nitric oxide; (3) effects of the redox state of the cell on the genetic composition of the virus as well as ROS-mediated release of host cell nuclear transcription factor-kappa-B, resulting in increased viral replication; and (4) efficacy of antioxidants as therapeutic agents in viral diseases of both animal models and patients.
Collapse
Affiliation(s)
- K B Schwarz
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|