51
|
Zhou Q, Tao X, Guo F, Wu Y, Deng D, Lv L, Dong D, Shang D, Xiang H. Tryptophan metabolite norharman secreted by cultivated Lactobacillus attenuates acute pancreatitis as an antagonist of histone deacetylases. BMC Med 2023; 21:329. [PMID: 37635214 PMCID: PMC10463520 DOI: 10.1186/s12916-023-02997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Patients with acute pancreatitis (AP) exhibit specific phenotypes of gut microbiota associated with severity. Gut microbiota and host interact primarily through metabolites; regrettably, little is known about their roles in AP biological networks. This study examines how enterobacterial metabolites modulate the innate immune system in AP aggravation. METHODS In AP, alterations in gut microbiota were detected via microbiomics, and the Lactobacillus metabolites of tryptophan were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By culturing Lactobacillus with tryptophan, differential metabolites were detected by LC-MS/MS. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells and mice with cerulein plus LPS-induced AP were used to evaluate the biological effect of norharman on M1 macrophages activation in AP development. Further, RNA sequencing and lipid metabolomics were used for screening the therapeutic targets and pathways of norharman. Confocal microscopy assay was used to detect the structure of lipid rafts. Molecular docking was applied to predict the interaction between norharman and HDACs. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to explore the direct mechanism of norharman promoting Rftn1 expression. In addition, myeloid-specific Rftn1 knockout mice were used to verify the role of Rftn1 and the reversed effect of norharman. RESULTS AP induced the dysfunction of gut microbiota and their metabolites, resulting in the suppression of Lactobacillus-mediated tryptophan metabolism pathway. The Lactobacillus metabolites of tryptophan, norharman, inhibited the release of inflammatory factor in vitro and in vivo, as a result of its optimal inhibitory action on M1 macrophages. Moreover, norharman blocked multiple inflammatory responses in AP exacerbation due to its ability to maintain the integrity of lipid rafts and restore the dysfunction of lipid metabolism. The mechanism of norharman's activity involved inhibiting the enzyme activity of histone deacetylase (HDACs) to increase histone H3 at lysine 9/14 (H3K9/14) acetylation, which increased the transcription level of Rftn1 (Raftlin 1) to inhibit M1 macrophages' activation. CONCLUSIONS The enterobacterial metabolite norharman can decrease HDACs activity to increase H3K9/14 acetylation of Rftn1, which inhibits M1 macrophage activation and restores the balance of lipid metabolism to relieve multiple inflammatory responses. Therefore, norharman may be a promising prodrug to block AP aggravation.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Yu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dawei Deng
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China.
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
52
|
Pan Z, Van den Bossche JL, Rodriguez-Aznar E, Janssen P, Lara O, Ates G, Massie A, De Paep DL, Houbracken I, Mambretti M, Rooman I. Pancreatic acinar cell fate relies on system x C- to prevent ferroptosis during stress. Cell Death Dis 2023; 14:536. [PMID: 37604805 PMCID: PMC10442358 DOI: 10.1038/s41419-023-06063-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Acinar cell dedifferentiation is one of the most notable features of acute and chronic pancreatitis. It can also be the initial step that facilitates pancreatic cancer development. In the present study, we further decipher the precise mechanisms and regulation using primary human cells and murine experimental models. Our RNAseq analysis indicates that, in both species, early acinar cell dedifferentiation is accompanied by multiple pathways related to cell survival that are highly enriched, and where SLC7A11 (xCT) is transiently upregulated. xCT is the specific subunit of the cystine/glutamate antiporter system xC-. To decipher its role, gene silencing, pharmacological inhibition and a knock-out mouse model were used. Acinar cells with depleted or reduced xCT function show an increase in ferroptosis relating to lipid peroxidation. Lower glutathione levels and more lipid ROS accumulation could be rescued by the antioxidant N-acetylcysteine or the ferroptosis inhibitor ferrostatin-1. In caerulein-induced acute pancreatitis in mice, xCT also prevents lipid peroxidation in acinar cells. In conclusion, during stress, acinar cell fate seems to be poised for avoiding several forms of cell death. xCT specifically prevents acinar cell ferroptosis by fueling the glutathione pool and maintaining ROS balance. The data suggest that xCT offers a druggable tipping point to steer the acinar cell fate in stress conditions.
Collapse
Affiliation(s)
- Zhaolong Pan
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan-Lars Van den Bossche
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Rodriguez-Aznar
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline Janssen
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olaya Lara
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gamze Ates
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diedert Luc De Paep
- Beta Cell Bank, Universitair Ziekenhuis Brussel and Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Houbracken
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marco Mambretti
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Rooman
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
- Visual and Spatial Tissue Analysis (VSTA) Core Facility, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
53
|
Yuan C, Dong X, Xu S, Zhu Q, Xu X, Zhang J, Gong W, Ding Y, Pan J, Lu G, Chen W, Xie T, Li B, Xiao W. AKBA alleviates experimental pancreatitis by inhibiting oxidative stress in Macrophages through the Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 121:110501. [PMID: 37364326 DOI: 10.1016/j.intimp.2023.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory condition of the pancreas characterized by oxidative stress and inflammation in its pathophysiology. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid with antioxidant activity. This article seeks to assess the impact of AKBA on AP and investigate its underlying mechanisms. METHODS AP was induced in wild-type, Lyz2+/cre Nrf2fl/fl mice and Pdx1+/cre Nrf2fl/fl mice by caerulein. Serum amylase and lipase levels, along with histological grading, were utilized to evaluate the severity of AP. Murine bone marrow-derived macrophages (BMDMs) were isolated, cultured, and polarized to the M1 subtype. Flow cytometry and ELISA were utilized to identify the macrophage phenotype. Alterations in oxidative stress damage and intracellular ROS were observed. Nrf2/HO-1 signaling pathways were also evaluated. RESULTS In a caerulein-induced mouse model of AP, treatment with AKBA reduced blood amylase and lipase activity and ameliorated pancreatic tissue histological and pathological features. Furthermore, AKBA significantly mitigated oxidative stress-induced damage and induced the expression of Nrf2 and HO-1 protein. Additionally, by using conditional knockout mice (Lyz2+/cre Nrf2fl/fl and Pdx1+/cre Nrf2fl/fl mice), we verified that Nrf2 primarily functions in macrophages rather than acinar cells. In vitro, AKBA inhibits pro-inflammatory M1-subtype macrophage polarization and reduces ROS generation through Nrf2/HO-1 oxidative stress pathway. Moreover, the protective effects of AKBA against AP were abolished in myeloid-specific Nrf2-deficient mice and BMDMs. Molecular docking results revealed interactions between AKBA and Nrf2. CONCLUSION Our results confirm that AKBA exerts protective effects against AP in mice by inhibiting oxidative stress in macrophages through the Nrf2/HO-1 Pathway.
Collapse
Affiliation(s)
- Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Songxin Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xingmeng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Junxian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Jiajia Pan
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China; Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ting Xie
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Baiqiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China.
| |
Collapse
|
54
|
Hamadani CM, Dasanayake GS, Chism CM, Gorniak ME, Monroe WG, Merrell A, Pride MC, Heintz R, Wong K, Hossain M, Taylor G, Edgecomb SX, Jones D, Dhar J, Banka A, Singh G, Vashisth P, Randall J, Darlington DS, Everett J, Jarrett E, Werfel TA, Eniola-Adefeso O, Tanner EEL. Selective Blood Cell Hitchhiking in Whole Blood with Ionic Liquid-Coated PLGA Nanoparticles to Redirect Biodistribution After Intravenous Injection. RESEARCH SQUARE 2023:rs.3.rs-3146716. [PMID: 37502854 PMCID: PMC10371090 DOI: 10.21203/rs.3.rs-3146716/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Less than 5% of intravenously-injected nanoparticles (NPs) reach destined sites in the body due to opsonization and immune-based clearance in vascular circulation. By hitchhiking in situ onto specific blood components post-injection, NPs can selectively target tissue sites for unprecedentedly high drug delivery rates. Choline carboxylate ionic liquids (ILs) are biocompatible liquid salts <100X composed of bulky asymmetric cations and anions. This class of ILs has been previously shown to significantly extend circulation time and redirect biodistribution in BALB/c mice post-IV injection via hitchhiking on red blood cell (RBC) membranes. Herein, we synthesized & screened 60 choline carboxylic acid-based ILs to coat PLGA NPs and present the impact of structurally engineering the coordinated anion identity to selectively interface and hitchhike lymphocytes, monocytes, granulocytes, platelets, and RBCs in whole mouse blood for in situ targeted drug delivery. Furthermore, we find this nanoparticle platform to be biocompatible (non-cytotoxic), translate to human whole blood by resisting serum uptake and maintaining modest hitchhiking, and also significantly extend circulation retention over 24 hours in BALB/c healthy adult mice after IV injection. Because of their altered circulation profiles, we additionally observe dramatically different organ accumulation profiles compared to bare PLGA NPs. This study establishes an initial breakthrough platform for a modular and transformative targeting technology to hitchhike onto blood components with high efficacy and safety in the bloodstream post-IV administration.
Collapse
|
55
|
An J, Jiang T, Qi L, Xie K. Acinar cells and the development of pancreatic fibrosis. Cytokine Growth Factor Rev 2023; 71-72:40-53. [PMID: 37291030 DOI: 10.1016/j.cytogfr.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.
Collapse
Affiliation(s)
- Jianhong An
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China; Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Qi
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
56
|
Zheng Z, Cao F, Ding YX, Lu JD, Fu YQ, Liu L, Guo YL, Liu S, Sun HC, Cui YQ, Li F. Acinous cell AR42J-derived exosome miR125b-5p promotes acute pancreatitis exacerbation by inhibiting M2 macrophage polarization via PI3K/AKT signaling pathway. World J Gastrointest Surg 2023; 15:600-620. [PMID: 37206078 PMCID: PMC10190724 DOI: 10.4240/wjgs.v15.i4.600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 03/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The incidence rate of acute pancreatitis (AP), which is a pathophysiological process with complex etiology, is increasing globally. miR-125b-5p, a bidirectional regulatory miRNA, is speculated to exhibit anti-tumor activity. However, exosome-derived miR-125b-5p in AP has not been reported.
AIM To elucidate the molecular mechanism of exosome-derived miR-125b-5p promoting AP exacerbation from the perspective of the interaction between immune cells and acinar cells.
METHODS Exosomes derived from AR42J cells were isolated and extracted in active and inactive states by an exosome extraction kit, and were verified via transmission electron microscopy, nanoparticle tracking analysis, and western blotting. RNA sequencing assay technology was used to screen differentially expressed miRNAs in active and inactive AR42J cell lines, and bioinformatics analysis was used to predict downstream target genes of miR-125b-5p. The expression level of miR-125b-5p and insulin-like growth factor 2 (IGF2) in the activated AR42J cell line and AP pancreatic tissue were detected by quantitative real-time polymerase chain reaction and western blots. The changes in the pancreatic inflammatory response in a rat AP model were detected by histopathological methods. Western Blot was used to detect the expression of IGF2, PI3K/AKT signaling pathway proteins, and apoptosis and necrosis related proteins.
RESULTS miR-125b-5p expression was upregulated in the activated AR42J cell line and AP pancreatic tissue, while that of IGF2 was downregulated. In vitro experiments confirmed that miR-125b-5p could promote the death of activated AR42J cells by inducing cell cycle arrest and apoptosis. In addition, miR-125b-5p was found to act on macrophages to promote M1 type polarization and inhibit M2 type polarization, resulting in a massive release of inflammatory factors and reactive oxygen species accumulation. Further research found that miR-125b-5p could inhibit the expression of IGF2 in the PI3K/AKT signaling pathway. Additionally, in vivo experiments revealed that miR-125b-5p can promote the progression of AP in a rat model.
CONCLUSION miR-125b-5p acts on IGF2 in the PI3K/AKT signaling pathway and promotes M1 type polarization and inhibits M2 type polarization of macrophage by inhibiting IGF2 expression, resulting in a large release of pro-inflammatory factors and an inflammatory cascade amplification effect, thus aggravating AP.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi-Xuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiong-Di Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuan-Qiao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou 014040, Inner Mongolia Autonomous Region, China
| | - Yu-Lin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuang Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hai-Chen Sun
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ye-Qing Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
57
|
Thompson DA, Tsaava T, Rishi A, Nadella S, Mishra L, Tuveson DA, Pavlov VA, Brines M, Tracey KJ, Chavan SS. Optogenetic stimulation of the brainstem dorsal motor nucleus ameliorates acute pancreatitis. Front Immunol 2023; 14:1166212. [PMID: 37180135 PMCID: PMC10167283 DOI: 10.3389/fimmu.2023.1166212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Inflammation is an inherently self-amplifying process, resulting in progressive tissue damage when unresolved. A brake on this positive feedback system is provided by the nervous system which has evolved to detect inflammatory signals and respond by activating anti-inflammatory processes, including the cholinergic anti-inflammatory pathway mediated by the vagus nerve. Acute pancreatitis, a common and serious condition without effective therapy, develops when acinar cell injury activates intrapancreatic inflammation. Prior study has shown that electrical stimulation of the carotid sheath, which contains the vagus nerve, boosts the endogenous anti-inflammatory response and ameliorates acute pancreatitis, but it remains unknown whether these anti-inflammatory signals originate in the brain. Methods Here, we used optogenetics to selectively activate efferent vagus nerve fibers originating in the brainstem dorsal motor nucleus of the vagus (DMN) and evaluated the effects on caerulein-induced pancreatitis. Results Stimulation of the cholinergic neurons in the DMN significantly attenuates the severity of pancreatitis as indicated by reduced serum amylase, pancreatic cytokines, tissue damage, and edema. Either vagotomy or silencing cholinergic nicotinic receptor signaling by pre-administration of the antagonist mecamylamine abolishes the beneficial effects. Discussion These results provide the first evidence that efferent vagus cholinergic neurons residing in the brainstem DMN can inhibit pancreatic inflammation and implicate the cholinergic anti-inflammatory pathway as a potential therapeutic target for acute pancreatitis.
Collapse
Affiliation(s)
- Dane A. Thompson
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Northshore University Hospital, Northwell Health, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Tea Tsaava
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sandeep Nadella
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Lopa Mishra
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, United States
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Valentin A. Pavlov
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Michael Brines
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin J. Tracey
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Sangeeta S. Chavan
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
58
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
59
|
Zhang Y, Zhang WQ, Liu XY, Zhang Q, Mao T, Li XY. Immune cells and immune cell-targeted therapy in chronic pancreatitis. Front Oncol 2023; 13:1151103. [PMID: 36969002 PMCID: PMC10034053 DOI: 10.3389/fonc.2023.1151103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, studies have attempted to understand the immune cells and mechanisms underlying the pathogenesis of chronic pancreatitis (CP) by constructing a model of CP. Based on these studies, the innate immune response is a key factor in disease pathogenesis and inflammation severity. Novel mechanisms of crosstalk between immune and non-immune pancreatic cells, such as pancreatic stellate cells (PSC), have also been explored. Immune cells, immune responses, and signaling pathways in CP are important factors in the development and progression of pancreatitis. Based on these mechanisms, targeted therapy may provide a feasible scheme to stop or reverse the progression of the disease in the future and provide a new direction for the treatment of CP. This review summarizes the recent advances in research on immune mechanisms in CP and the new advances in treatment based on these mechanisms.
Collapse
|
60
|
Banu S, Sur D. Role of Macrophage in Type 2 Diabetes Mellitus: Macrophage Polarization a New Paradigm for Treatment of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2023; 23:2-11. [PMID: 35786198 DOI: 10.2174/1871530322666220630093359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Metabolic diseases such as type 2 diabetes mellitus are usually associated with meta-inflammation. β-cell failure is a marked feature observed in the pathogenesis of type 2 diabetes mellitus. Type 2 diabetes mellitus (T2DM) is a heterogeneous situation that is accompanied by not only defective insulin secretion but also peripheral insulin resistance. β-cells are the primary organ for insulin secretion; hence, it is crucial to maintain a significant β-cell mass in response to a variety of changes. Insulin resistance is a chief cause of T2DM, leading to increased free fatty acid (FFA) levels, which in turn elevates β-cell mass and insulin secretion as compensation for insulin insensitivity. It has recently been established that amplified numbers of innate immune cells, cytokines, and chemokines result in detrimental effects on islets in chronic conditions. Macrophage migration inhibitory factor (MIF) is the lymphokine that prevents arbitrary migration of macrophages and assembles macrophages at inflammatory loci. Inflammation is known to trigger monocytes to differentiate into macrophages. Progress of complications associated with type 2 diabetes mellitus, as indicated through recent findings, is also dependent on the buildup of macrophages in tissues vulnerable to diabetic injury. The present article scientifically evaluates the present knowledge concerning the mechanisms of monocyte and macrophage-mediated injury recruitment in complications associated with type 2 diabetes mellitus. It also describes some of the established and experimental therapies that might bring about a reduction in these inflammatory complications. Recent discoveries in the field of drug delivery have facilitated phenotype-specific targeting of macrophages. This review highlights the pathophysiology of type 2 diabetes mellitus, how macrophage induces type 2 diabetes mellitus and potential therapeutics for type 2 diabetes mellitus via macrophage-specific delivery.
Collapse
Affiliation(s)
- Sarmin Banu
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata 700114, India
| |
Collapse
|
61
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
62
|
Li BQ, Liu XY, Mao T, Zheng TH, Zhang P, Zhang Q, Zhang Y, Li XY. The research progress of anti-inflammatory and anti-fibrosis treatment of chronic pancreatitis. Front Oncol 2022; 12:1050274. [PMID: 36505827 PMCID: PMC9730810 DOI: 10.3389/fonc.2022.1050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic progressive inflammatory disease of the pancreas, caused by multiple factors and accompanied by irreversible impairment of pancreatic internal and external secretory functions. Pathologically, atrophy of the pancreatic acini, tissue fibrosis or calcification, focal edema, inflammation, and necrosis are observed. Clinical manifestations include recurrent or persistent abdominal pain, diarrhea, emaciation, and diabetes. In addition, CP is prone to develop into pancreatic cancer(PC) due to persistent inflammation and fibrosis. The disease course is prolonged and the clinical prognosis is poor. Currently, clinical treatment of CP is still based on symptomatic treatment and there is a lack of effective etiological treatment. Encouragingly, experiments have shown that a variety of active substances have great potential in the etiological treatment of chronic pancreatitis. In this paper, we will review the pathogenesis of CP, as well as the research progress on anti-inflammatory and anti-fibrotic therapies, which will provide new ideas for the development of subsequent clinical studies and formulation of effective treatment programs, and help prevent CP from developing into pancreatic cancer and reduce the prevalence of PC as much as possible.
Collapse
|
63
|
Yang WJ, Cao RC, Xiao W, Zhang XL, Xu H, Wang M, Zhou ZT, Chen HJ, Xu J, Chen XM, Zeng JL, Li SJ, Luo M, Han YJ, Yang XB, Feng GD, Lu YH, Ni YY, Wu CG, Bai JJ, Yuan ZQ, Jin J, Zhang GW. Acinar ATP8b1/LPC pathway promotes macrophage efferocytosis and clearance of inflammation during chronic pancreatitis development. Cell Death Dis 2022; 13:893. [PMID: 36273194 PMCID: PMC9588032 DOI: 10.1038/s41419-022-05322-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022]
Abstract
Noninflammatory clearance of dying cells by professional phagocytes, termed efferocytosis, is fundamental in both homeostasis and inflammatory fibrosis disease but has not been confirmed to occur in chronic pancreatitis (CP). Here, we investigated whether efferocytosis constitutes a novel regulatory target in CP and its mechanisms. PRSS1 transgenic (PRSS1Tg) mice were treated with caerulein to mimic CP development. Phospholipid metabolite profiling and epigenetic assays were performed with PRSS1Tg CP models. The potential functions of Atp8b1 in CP model were clarified using Atp8b1-overexpressing adeno-associated virus, immunofluorescence, enzyme-linked immunosorbent assay(ELISA), and lipid metabolomic approaches. ATAC-seq combined with RNA-seq was then used to identify transcription factors binding to the Atp8b1 promoter, and ChIP-qPCR and luciferase assays were used to confirm that the identified transcription factor bound to the Atp8b1 promoter, and to identify the specific binding site. Flow cytometry was performed to analyze the proportion of pancreatic macrophages. Decreased efferocytosis with aggravated inflammation was identified in CP. The lysophosphatidylcholine (LPC) pathway was the most obviously dysregulated phospholipid pathway, and LPC and Atp8b1 expression gradually decreased during CP development. H3K27me3 ChIP-seq showed that increased Atp8b1 promoter methylation led to transcriptional inhibition. Atp8b1 complementation substantially increased the LPC concentration and improved CP outcomes. Bhlha15 was identified as a transcription factor that binds to the Atp8b1 promoter and regulates phospholipid metabolism. Our study indicates that the acinar Atp8b1/LPC pathway acts as an important "find-me" signal for macrophages and plays a protective role in CP, with Atp8b1 transcription promoted by the acinar cell-specific transcription factor Bhlha15. Bhlha15, Atp8b1, and LPC could be clinically translated into valuable therapeutic targets to overcome the limitations of current CP therapies.
Collapse
Affiliation(s)
- Wan-jun Yang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-chang Cao
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-lou Zhang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- grid.284723.80000 0000 8877 7471Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-tao Zhou
- grid.284723.80000 0000 8877 7471Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-ji Chen
- grid.284723.80000 0000 8877 7471School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- grid.284723.80000 0000 8877 7471Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-mei Chen
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun-ling Zeng
- grid.284723.80000 0000 8877 7471Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-ji Li
- grid.284723.80000 0000 8877 7471Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- grid.284723.80000 0000 8877 7471Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-jiang Han
- grid.284723.80000 0000 8877 7471Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-bing Yang
- grid.284723.80000 0000 8877 7471Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Institute, Guangzhou, China
| | - Guo-dong Feng
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Yu-heng Lu
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Yuan-yuan Ni
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Chan-gui Wu
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Jun-jie Bai
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Zi-qi Yuan
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Jin Jin
- grid.284723.80000 0000 8877 7471Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-wei Zhang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
64
|
Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. Int J Nanomedicine 2022; 17:4367-4381. [PMID: 36160469 PMCID: PMC9507452 DOI: 10.2147/ijn.s385590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatitis is an inflammatory reaction of pancreatic tissue digestion, edema, bleeding and even necrosis caused by activation of pancreatin due to various causes. In particular, patients with severe acute pancreatitis (SAP) often suffer from secondary infection, peritonitis and shock, and have a high mortality rate. Chronic pancreatitis (CP) can cause permanent damage to the pancreas. Due to the innate characteristics, structure and location of the pancreas, there is no effective treatment, only relief of symptoms. Especially, AP is an unpredictable and potentially fatal disease, and the timely diagnosis and treatment remains a major challenge. With the rapid development of nanomedicine technology, many potential tools can be used to address this problem. In this review, we have introduced the pathophysiological processes of pancreatitis to understanding its etiology and severity. Most importantly, the current progress in the diagnosis and treatment tools of pancreatitis based on nanomedicine is summarized and prospected.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610000, People's Republic of China
| | - Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400712, People's Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| |
Collapse
|
65
|
Claro-Cala CM, Grao-Cruces E, Toscano R, Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Acyclic Diterpene Phytol from Hemp Seed Oil ( Cannabis sativa L.) Exerts Anti-Inflammatory Activity on Primary Human Monocytes-Macrophages. Foods 2022; 11:foods11152366. [PMID: 35954130 PMCID: PMC9367727 DOI: 10.3390/foods11152366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes and human macrophages derived from circulating monocytes were used to evaluate both plasticity and anti-inflammatory effects of phytol from HSO at 10–100 mM using FACS analysis, ELISA, and RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO). Phytol was able to skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++ monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce the production of IL-1β, IL-6, and TNF-α, diminishing the inflammatory competence of mature human macrophages after lipopolysaccharide (LPS) treatment. These findings point out for the first time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages. In addition, our study may help to understand the mechanisms by which phytol from HSO contributes to the constant and progressive plasticity of the human monocyte-macrophage linage.
Collapse
Affiliation(s)
- Carmen M. Claro-Cala
- Department of Pharmacology, Pediatric and Radiology, Faculty of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-954556083
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain
| |
Collapse
|
66
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
67
|
Ning YP, Mou L, Li K. Echinacoside alleviates pancreatic injury via exerting anti-inflammatory and anti-oxidant activities in a rat model of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2022; 30:631-638. [DOI: 10.11569/wcjd.v30.i14.631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Echinacoside (ECH) has anti-inflammatory and antioxidant effects, and can improve multiple organ injuries. However, the effect and potential mechanism of action of ECH on severe acute pancreatitis (SAP) are still unclear.
AIM To investigate the protective effect of ECH on the pancreas of SAP model rats and the potential mechanism involved.
METHODS Rats were randomly divided into sham group (Sham), ECH control group (Sham + ECH), SAP model group (SAP), and ECH treatment group (SAP + ECH), with 10 rats each. Ascites volume and the activities of amylase and lipase in serum were determined. HE staining was used to analyze the histological changes in each group, and TUNEL assay was used to observe the apoptosis of pancreatic acinar cells. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) and the activities of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and myeloperoxidase (MPO) in pancreatic tissues were measured by tissue biochemistry. The expression levels of B cell lymphoma-2 (Bcl-2), Bcl2-associated X protein (Bax), cleaved caspase-3, nuclear factor E2-related factor 2 (NRF-2), Toll-like receptor 4 (TLR-4), and nuclear factor κB (NF-κB) p65 proteins in pancreatic tissue were detected by Western blot.
RESULTS Compared with the SAP group, ascites volume and serum amylase and lipase activities in the SAP + ECH group were decreased (P < 0.05); pancreatic tissue edema, inflammatory cell infiltration, and necrosis scores and total histological score were decreased (P < 0.05); the number of TUNEL positive cells was reduced; the levels of TNF-α, IL-6, MDA, and MPO activity in pancreatic tissue homogenate were decreased (P < 0.05), and the activities of SOD and GSH-Px were increased (P < 0.05); the expression levels of Bax, cleaved caspase-3, TLR-4, and NF-κB p65 were decreased (P < 0.05), and the expression levels of Bcl-2 and NRF-2 were increased (P < 0.05).
CONCLUSION ECH has anti-inflammatory, anti-oxidant, and anti-injury effects in pancreatic tissues of SAP model rats, which may be related to the downregulation of TLR-4, NF-κB p65, and Bax expression and the upregulation of NRF-2 and Bcl-2 expression.
Collapse
Affiliation(s)
- Yi-Ping Ning
- Department of Critical Care Medicine, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Li Mou
- Department of Emergency Surgery, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Ke Li
- Department of Critical Care Medicine, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
68
|
Pérez S, Rius-Pérez S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants (Basel) 2022; 11:antiox11071394. [PMID: 35883885 PMCID: PMC9311967 DOI: 10.3390/antiox11071394] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage polarization refers to the process by which macrophages can produce two distinct functional phenotypes: M1 or M2. The balance between both strongly affects the progression of inflammatory disorders. Here, we review how redox signals regulate macrophage polarization and reprogramming during acute inflammation. In M1, macrophages augment NADPH oxidase isoform 2 (NOX2), inducible nitric oxide synthase (iNOS), synaptotagmin-binding cytoplasmic RNA interacting protein (SYNCRIP), and tumor necrosis factor receptor-associated factor 6 increase oxygen and nitrogen reactive species, which triggers inflammatory response, phagocytosis, and cytotoxicity. In M2, macrophages down-regulate NOX2, iNOS, SYNCRIP, and/or up-regulate arginase and superoxide dismutase type 1, counteract oxidative and nitrosative stress, and favor anti-inflammatory and tissue repair responses. M1 and M2 macrophages exhibit different metabolic profiles, which are tightly regulated by redox mechanisms. Oxidative and nitrosative stress sustain the M1 phenotype by activating glycolysis and lipid biosynthesis, but by inhibiting tricarboxylic acid cycle and oxidative phosphorylation. This metabolic profile is reversed in M2 macrophages because of changes in the redox state. Therefore, new therapies based on redox mechanisms have emerged to treat acute inflammation with positive results, which highlights the relevance of redox signaling as a master regulator of macrophage reprogramming.
Collapse
|
69
|
A novel resveratrol analog upregulates sirtuin 1 and inhibits inflammatory cell infiltration in acute pancreatitis. Acta Pharmacol Sin 2022; 43:1264-1273. [PMID: 34363008 PMCID: PMC9061839 DOI: 10.1038/s41401-021-00744-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Acute pancreatitis (AP), an inflammatory disorder of the pancreas, is a complicated disease without specific drug therapy. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±) -isopaucifloral F. This study aimed to investigate the effect and underlying mechanism of (R)-TML104 on AP. The experimental AP model was induced by caerulein hyperstimulation in BALB/c mice. (R)-TML104 markedly attenuated caerulein-induced AP, as evidenced by decreased pancreatic edema, serum amylase levels, serum lipase levels, and pancreatic myeloperoxidase activity. In addition, (R)-TML104 significantly inhibited the expression of pancreatic chemokines C-C motif chemokine ligand 2 and macrophage inflammatory protein-2 and the infiltration of neutrophils and macrophages. Mechanistically, (R)-TML104 activated AMP-activated protein kinase and induced sirtuin 1 (SIRT1) expression. (R)-TML104 treatment markedly induced the SIRT1-signal transducer and activator of transcription 3 (STAT3) interaction and reduced acetylation of STAT3, thus inhibiting the inflammatory response mediated by the interleukin 6-STAT3 pathway. The effect of (R)-TML104 on SIRT1-STAT3 interaction was reversed by treatment with a SIRT1 inhibitor selisistat (EX527). Together, our findings indicate that (R)-TML104 alleviates experimental pancreatitis by reducing the infiltration of inflammatory cells through modulating SIRT1.
Collapse
|
70
|
Duan F, Wang X, Wang H, Wang Y, Zhang Y, Chen J, Zhu X, Chen B. GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFβR1/SMAD-2 pathway. Int Immunopharmacol 2022; 108:108777. [PMID: 35461108 DOI: 10.1016/j.intimp.2022.108777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Severe acute pancreatitis (SAP), as a typical acute inflammatory injury disease, is one of the acute gastrointestinal diseases with a remarkable mortality rate. Macrophages, typical inflammatory cells involved in SAP, play an important role in the pathogenesis of SAP, which are separated into proinflammation M1 and antiinflammation M2. Growth and differentiation factor 11 (GDF11), as a member of the TGF-β family also called BMP-11, has been discovered to suppress inflammation. However, the mechanism by which GDF11 inhibits inflammation and whether it can ameliorate SAP are still elusive. The present research aimed to investigate the roles of GDF11 in SAP and the potential immunomodulatory effect of macrophage polarization. The mouse and rat SAP model were constructed by caerulein and retrograde injection of sodium taurocholate respectively. The effects of GDF11 on SAP were observed by serology, histopathology and tissue inflammation, and the effects of GDF11 on the polarization of macrophages in vivo were observed. Raw264.7 and THP1 crells were used to study the effect of GDF11 on macrophage polarization in vitro. To further investigate the causal link underneath, our team first completed RNA and proteome sequencing, and utilized specific suppressor to determine the implicated signal paths. Herein, we discovered that GDF11 alleviated the damage of pancreatic tissues in cerulein induced SAP mice and SAP rats induced by retrograde injection of sodium taurocholate, and further found that GDF11 facilitated M2 macrophage polarization and diminished M1 macrophage polarization in vivo and in vitro. Subsequently, we further found that the regulation of GDF11 on macrophage polarization through TGFβR1/smad2 pathway. Our results revealed that GDF11 ameliorated SAP and diminished M1 macrophage polarization and facilitated M2 macrophage polarization. The Role of GDF11 in modulating macrophage polarization might be one of the mechanisms by which GDF11 played a protective role in pancreatic tissues during SAP.
Collapse
Affiliation(s)
- Feixiang Duan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiaowu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| |
Collapse
|
71
|
Sun S, Han Y, Zhang C, Liu H, Wang B, Cao S, Yuan Q, Wei S, Chen Y. Adenosine Kinase Inhibition Prevents Severe Acute Pancreatitis via Suppressing Inflammation and Acinar Cell Necroptosis. Front Cell Dev Biol 2022; 10:827714. [PMID: 35281076 PMCID: PMC8904929 DOI: 10.3389/fcell.2022.827714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Inflammatory disorder and acinar cell death contribute to the initiation and progression of severe acute pancreatitis (SAP). Adenosine kinase (ADK) has potential effects on both inflammation and cell death. However, the role of ADK in SAP remains to be explored. Methods: To establish an experimental SAP model, male C57BL/6 mice were intraperitoneally injected with cerulein (50 μg/kg, seven doses at hourly intervals) and LPS (10 mg/kg, at the last cerulein injection). For ADK inhibition, ABT702 (1.5 mg/kg) was intraperitoneally injected 1 h before cerulein treatment. The pancreas and serum were collected and analyzed to determine the severity of pancreatic injury and explore the potential pathophysiological mechanisms. Pancreatic acinar cells (AR42J) were used to explore the in vitro effects of ADK inhibition on cerulein–induced inflammation and necroptotic cell death. Results: ADK inhibition notably attenuated the severity of SAP, as indicated by the decreased serum amylase (7,416.76 ± 1,457.76 vs. 4,581.89 ± 1,175.04 U/L) and lipase (46.51 ± 11.50 vs. 32.94 ± 11.46 U/L) levels and fewer pancreatic histopathological alterations (histological scores: 6.433 ± 0.60 vs. 3.77 ± 0.70). MOMA-2 and CD11b staining confirmed that ADK inhibition prevented the infiltration of neutrophils and macrophages. The phosphorylation of nuclear factor-κB (NF-κB) was also reduced by ADK inhibition. ADK inhibition markedly limited the necrotic area of the pancreas and prevented the activation of the necroptotic signaling pathway. Endoplasmic reticulum (ER) stress was activated in the pancreas using the SAP model and cerulein–treated AR42J cells whereas ADK inhibition reversed the activation of ER stress both in vivo and in vitro. Moreover, the alleviating effects of ADK inhibition on ER stress, inflammation, and cell necroptosis were eliminated by the adenosine A2A receptor antagonist. Conclusion: ADK inhibition reduced inflammation and necroptotic acinar cell death in SAP via the adenosine A2A receptor/ER stress pathway, suggesting that ADK might be a potential therapeutic target for SAP.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Chuanxin Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Han Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Shujian Wei, ; Yuguo Chen,
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Shujian Wei, ; Yuguo Chen,
| |
Collapse
|
72
|
Yuan C, Xu X, Wang N, Zhu Q, Zhang J, Gong W, Ding Y, Xiao W, Chen W, Lu G, Yao G, Pan J, Wu K. Paeonol protects against acute pancreatitis by inhibiting M1 macrophage polarization via the NLRP3 inflammasomes pathway. Biochem Biophys Res Commun 2022; 600:35-43. [PMID: 35182973 DOI: 10.1016/j.bbrc.2022.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
The excessive inflammatory response mediated by macrophage is one of the key factors for the progress of acute pancreatitis (AP). Paeonol (Pae) was demonstrated to exert multiple anti-inflammatory effects. However, the role of Pae on AP is not clear. In the present study, we aimed to investigate the protective effect and mechanism of Pae on AP in vivo and vitro. In the caerulein-induced mild acute pancreatitis (MAP) model, we found that Pae administration reduced serum levels of amylase, lipase, IL-1β and IL-6 and alleviated the histopathological manifestations of pancreatic tissue in a dose-dependent manner. And Pae decrease the ROS generated, restore mitochondrial membrane potential (ΔΨm), inhibit M1 macrophage polarization and NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) in vitro. In addition, specific NLRP3 inhibitor MCC950 eliminated the protective effect of Pae on AP induced by caerulein in mice. Correspondingly, the inhibitory effect of Pae on ROS generated and M1 polarization was not observed in BMDMs with MCC950 in vitro. Taken together, our datas for the first time confirmed the protective effects of Pae on AP via the NLRP3 inflammasomes Pathway.
Collapse
Affiliation(s)
- Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xingmeng Xu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Ningzhi Wang
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Junxian Zhang
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Guanghuai Yao
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China.
| | - Jiajia Pan
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China; Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Keyan Wu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China.
| |
Collapse
|
73
|
Zhang H, Zhang M, Wang X, Zhang M, Wang X, Li Y, Cui Z, Chen X, Han Y, Zhao W. Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice. Drug Deliv 2022; 29:174-185. [PMID: 34978237 PMCID: PMC8725929 DOI: 10.1080/10717544.2021.2021319] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With the worldwide prevalence of diabetes and considering the complicated microenvironment of diabetic wounds, the design and development of innovative multifunctional wound dressing materials are much wanted for the treatment of hard-to-heal wounds in diabetic patients. In the present study, anti-inflammatory ingredients loaded with nanofibrous wound dressing materials were manufactured by a promising blend-electrospinning strategy, and their capability for treating the diabetic wound was also systematically explored. A polymer blend consisting of Chitosan (CS) and polyvinyl alcohol (PVA) was electrospun into CS-PVA nanofibrous mats as control groups. In the meanwhile, a bioactive ingredient of Chinese medicine Pulsatilla, anemoside B4(ANE), with different contents were loaded into the electrospinning solution to construct CS-PVA-ANE nanofibrous mats. The developed CS-PVA-ANE wound dressing materials exhibited multifunctional properties including prominent water absorption, biomimetic elastic mechanical properties, and sustained ANE releasing behavior, as well as outstanding hemostatic properties. The in vitro studies showed that the CS-PVA-ANE nanofiber mats could significantly suppress lipopolysaccharide (LPS)-stimulated differentiation of pro-inflammatory (M1) macrophage subsets, and notably reduce the reactive oxygen species (ROS) generation, as well as obviously decrease inflammatory cytokine release. The in vivo animal studies showed that the CS-PVA-ANE nanofiber mats promoted the healing of diabetic wounds by significantly enhancing wound closure rates, accelerating excellent angiogenesis, promoting re-epithelization and collagen matrix deposition throughout all stages of wound healing. The present study demonstrated that CS-PVA-ANE nanofiber mats could effectively shorten the wound-healing time by inhibiting inflammatory activity, which makes them promising candidates for the treatment of hard-to-heal wounds caused by diabetes.
Collapse
Affiliation(s)
- Hao Zhang
- Qingdao University Medical College, Qingdao, China
| | | | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mi Zhang
- Qingdao University Medical College, Qingdao, China
| | - Xuelian Wang
- Qingdao University Medical College, Qingdao, China
| | - Yiyang Li
- Qingdao University Medical College, Qingdao, China
| | - Zhuoer Cui
- Qingdao University Medical College, Qingdao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yantao Han
- Qingdao University Medical College, Qingdao, China
| | - Wenwen Zhao
- Qingdao University Medical College, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
74
|
Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2022; 170:10-23. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Diseases of the pancreas include acute and chronic pancreatitis, exocrine pancreatic insufficiency, diabetes and pancreatic cancer. These pathologies can be difficult to treat due to the innate properties of the pancreas, its structure and localization. The need for effective targeting of the pancreatic tissue by means of nanoparticles delivering therapeutics is a major focus area covered and discussed in this review. Most common diseases of the pancreas do not have specific and direct medical treatment option, and existing treatment options are generally aimed at relieving symptoms. Diabetes has different treatment options for different subtypes based on insulin having stability problems and requiring injections reducing patient compliance. Pancreatic cancer progresses silently and can only be diagnosed in advanced stages. Therefore, survival rate of patients is very low. Gemcitabine and FOLFIRINOX treatment regimens, the most commonly used clinical standard treatments, are generally insufficient due to the chemoresistance that develops in cancer cells and also various side effects. Therefore new treatment options for pancreatic cancer are also under focus. Overcoming drug resistance and pancreatic targeting can be achieved with active and passive targeting methods, and a more effective and safer treatment regimen can be provided at lower drug doses. This review covers the current literature and clinical trials concerning pancreatic drug delivery systems in the nanoscale focusing on the challenges and opportunities provided by these smart delivery systems.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
75
|
Hrabák P, Kalousová M, Krechler T, Zima T. Pancreatic stellate cells - rising stars in pancreatic pathologies. Physiol Res 2021. [DOI: 10.33549//physiolres.934783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pluripotent pancreatic stellate cells (PSCs) receive growing interest in past decades. Two types of PSCs are recognized –vitamin A accumulating quiescent PSCs and activated PSCs- the main producents of extracellular matrix in pancreatic tissue. PSCs plays important role in pathogenesis of pancreatic fibrosis in pancreatic cancer and chronic pancreatitis. PSCs are intensively studied as potential therapeutical target because of their important role in developing desmoplastic stroma in pancreatic cancer. There also exists evidence that PSC are involved in other pathologies like type-2 diabetes mellitus. This article brings brief characteristics of PSCs and recent advances in research of these cells.
Collapse
Affiliation(s)
| | - M Kalousová
- 2Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | | | | |
Collapse
|
76
|
Lee H, Park C, Kwon DH, Hwangbo H, Kim SY, Kim MY, Ji SY, Kim DH, Jeong JW, Kim GY, Hwang HJ, Choi YH. Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway. Nutr Res Pract 2021; 15:686-702. [PMID: 34858548 PMCID: PMC8601940 DOI: 10.4162/nrp.2021.15.6.686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, Dong-Eui University, Busan 47340, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
77
|
Manohar M, Jones EK, Rubin SJS, Subrahmanyam PB, Swaminathan G, Mikhail D, Bai L, Singh G, Wei Y, Sharma V, Siebert JC, Maecker HT, Husain SZ, Park WG, Pandol SJ, Habtezion A. Novel Circulating and Tissue Monocytes as Well as Macrophages in Pancreatitis and Recovery. Gastroenterology 2021; 161:2014-2029.e14. [PMID: 34450180 PMCID: PMC8796698 DOI: 10.1053/j.gastro.2021.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) is an inflammatory disease with mild to severe course that is associated with local and systemic complications and significant mortality. Uncovering inflammatory pathways that lead to progression and recovery will inform ways to monitor and/or develop effective therapies. METHODS We performed single-cell mass Cytometry by Time Of Flight (CyTOF) analysis to identify pancreatic and systemic inflammatory signals during mild AP (referred to as AP), severe AP (SAP), and recovery using 2 independent experimental models and blood from patients with AP and recurrent AP. Flow cytometric validation of monocytes subsets identified using CyTOF analysis was performed independently. RESULTS Ly6C+ inflammatory monocytes were the most altered cells in the pancreas during experimental AP, recovery, and SAP. Deep profiling uncovered heterogeneity among pancreatic and blood monocytes and identified 7 novel subsets during AP and recovery, and 6 monocyte subsets during SAP. Notably, a dynamic shift in pancreatic CD206+ macrophage population was observed during AP and recovery. Deeper profiling of the CD206+ macrophage identified 7 novel subsets during AP, recovery, and SAP. Differential expression analysis of these novel monocyte and CD206+ macrophage subsets revealed significantly altered surface (CD44, CD54, CD115, CD140a, CD196, podoplanin) and functional markers (interferon-γ, interleukin 4, interleukin 22, latency associated peptide-transforming growth factor-β, tumor necrosis factor-α, T-bet, RoRγt) that were associated with recovery and SAP. Moreover, a targeted functional analysis further revealed distinct expression of pro- and anti-inflammatory cytokines by pancreatic CD206+ macrophage subsets as the disease either progressed or resolved. Similarly, we identified heterogeneity among circulating classical inflammatory monocytes (CD14+CD16-) and novel subsets in patients with AP and recurrent AP. CONCLUSIONS We identified several novel monocyte/macrophage subsets with unique phenotype and functional characteristics that are associated with AP, recovery, and SAP. Our findings highlight differential innate immune responses during AP progression and recovery that can be leveraged for future disease monitoring and targeting.
Collapse
Affiliation(s)
- Murli Manohar
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.
| | - Elaina K Jones
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Priyanka B Subrahmanyam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Gayathri Swaminathan
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - David Mikhail
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lawrence Bai
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Gulshan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yi Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
78
|
Zhou L, Chen J, Mu G, Lu Z, Li W, Deng Y. Heparin-binding protein (HBP) worsens the severity of pancreatic necrosis via up-regulated M1 macrophages activation in acute pancreatitis mouse models. Bioengineered 2021; 12:11978-11986. [PMID: 34895060 PMCID: PMC8810113 DOI: 10.1080/21655979.2021.2011018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most widespread clinical emergencies. Macrophages are the most common immune cells in AP pancreatic tissue and are closely associated with pancreatic necrosis and recovery. The level of heparin-binding protein (HBP) is closely linked to inflammation. In this study, we assessed the effect of HBP on AP tissue necrosis severity and whether HBP is associated with M1 macrophages in pancreatic necrosis. We observed the dynamic changes of HBP levels in the pancreas during acute inflammation in the caerulein-induced AP mice model. We used hematoxylin-eosin staining to evaluate pancreatic edema and necrosis, and to detect infiltration of macrophages by immunohistochemistry. Moreover, expressions of the maker and cytokines of macrophages, including inducible nitric oxide synthase (iNOS), and arginase 1 (Arg-1), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNA, were detected by real-time polymerase-chain reaction (RT-PCR). High levels of HBP in the pancreas were detected at 48 h, and heparin inhibited HBP expression in AP pancreatic tissue. Inhibiting HBP expression by injecting heparin before AP can alleviate pancreatic necrosis and inhibit F4/80 labeled M1 macrophage infiltration and IL-6, TNF-α, and iNOS mRNA expression. Clodronate liposome (CLDL) intraperitoneally treated mice showed no change in pancreatic HBP levels, but pancreatic macrophage-specific antigen F4/80 and TNF-α, IL-1β, and IL-6 mRNA levels decreased after CLDL treatment. HBP is critical for pancreatic necrosis response in acute pancreatitis by increasing the infiltration of M1 macrophages and promoting the secretion of inflammatory factors, such as TNF-α, IL-6, IL-1β, which can be reduced by heparin.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Intensive Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People’s Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Jianjun Chen
- Department of Intensive Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People’s Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Genhua Mu
- Department of Intensive Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People’s Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Zhongqian Lu
- Department of Intensive Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People’s Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Weiqin Li
- Department of Intensive Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People’s Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yijun Deng
- Department of Intensive Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People’s Hospital of Yancheng, Yancheng, Jiangsu Province, China
| |
Collapse
|
79
|
Wang YY, Kang H, Xu T, Hao L, Bao Y, Jia P. CeDR Atlas: a knowledgebase of cellular drug response. Nucleic Acids Res 2021; 50:D1164-D1171. [PMID: 34634794 PMCID: PMC8728137 DOI: 10.1093/nar/gkab897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Drug response to many diseases varies dramatically due to the complex genomics and functional features and contexts. Cellular diversity of human tissues, especially tumors, is one of the major contributing factors to the different drug response in different samples. With the accumulation of single-cell RNA sequencing (scRNA-seq) data, it is now possible to study the drug response to different treatments at the single cell resolution. Here, we present CeDR Atlas (available at https://ngdc.cncb.ac.cn/cedr), a knowledgebase reporting computational inference of cellular drug response for hundreds of cell types from various tissues. We took advantage of the high-throughput profiling of drug-induced gene expression available through the Connectivity Map resource (CMap) as well as hundreds of scRNA-seq data covering cells from a wide variety of organs/tissues, diseases, and conditions. Currently, CeDR maintains the results for more than 582 single cell data objects for human, mouse and cell lines, including about 140 phenotypes and 1250 tissue-cell combination types. All the results can be explored and searched by keywords for drugs, cell types, tissues, diseases, and signature genes. Overall, CeDR fine maps drug response at cellular resolution and sheds lights on the design of combinatorial treatments, drug resistance and even drug side effects.
Collapse
Affiliation(s)
- Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xu
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Bao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
80
|
Liu J, Niu Z, Zhang R, Peng Z, Wang L, Liu Z, Gao Y, Pei H, Pan L. MALAT1 shuttled by extracellular vesicles promotes M1 polarization of macrophages to induce acute pancreatitis via miR-181a-5p/HMGB1 axis. J Cell Mol Med 2021; 25:9241-9254. [PMID: 34448533 PMCID: PMC8500974 DOI: 10.1111/jcmm.16844] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a serious condition carrying a mortality of 25-40%. Extracellular vesicles (EVs) have reported to exert potential functions in cell-to-cell communication in diseases such as pancreatitis. Thus, we aimed at investigating the mechanisms by which EV-encapsulated metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) might mediate the M1 polarization of macrophages in AP. Expression patterns of MALAT1, microRNA-181a-5p (miR-181a-5p) and high-mobility group box 1 protein (HMGB1) in serum of AP patients were determined. EVs were isolated from serum and pancreatic cells. The binding affinity among miR-181a-5p, MALAT1 and HMGB1 was identified. AP cells were co-cultured with EVs from caerulein-treated MPC-83 cells to determine the levels of M1/2 polarization markers and TLR4, NF-κB and IKBa. Finally, AP mouse models were established to study the effects of EV-encapsulated MALAT1 on the M1 polarization of macrophages in AP in vivo. MALAT1 was transferred into MPC-83 cells via EVs, which promoted M1 polarization of macrophages in AP. MALAT1 competitively bound to miR-181a-5p, which targeted HMGB1. Moreover, MALAT1 activated the TLR4 signalling pathway by regulating HMGB1. EV-encapsulated MALAT1 competitively bound to miR-181a-5p to upregulate the levels of IL-6 and TNF-α by regulating HMGB1 via activation of the TLR4 signalling pathway, thereby inducing M1 polarization of macrophages in AP. In vivo experimental results also confirmed that MALAT1 shuttled by EVs promoted M1 polarization of macrophages in AP via the miR-181a-5p/HMGB1/TLR4 axis. Overall, EV-loaded MALAT1 facilitated M1 polarization of macrophages in AP via miR-181a-5p/HMGB1/TLR4, highlighting a potential target for treating AP.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Zequn Niu
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Rui Zhang
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Zhuo Peng
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Liming Wang
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Zhong Liu
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yanxia Gao
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Honghong Pei
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Longfei Pan
- Department of Emergency MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
81
|
Chung SA, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cytokine Expression by Reducing Reactive Oxygen Species in Pancreatic Stellate Cells. J Cancer Prev 2021; 26:195-206. [PMID: 34703822 PMCID: PMC8511577 DOI: 10.15430/jcp.2021.26.3.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are activated by inflammatory stimuli, such as TNF-α or viral infection. Activated PSCs play a crucial role in the development of chronic pancreatitis. Polyinosinic-polycytidylic acid (poly (I:C)) is structurally similar to double-stranded RNA and mimics viral infection. Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity. It inhibited fibrotic mediators and reduced NF-κB activity in the pancreas of mice with chronic pancreatitis. The present study aimed to investigate whether DHA could suppress cytokine expression in PSCs isolated from rats. Cells were pre-treated with DHA or the antioxidant N-acetylcysteine (NAC) and stimulated with TNF-α or poly (I:C). Treatment with TNF-α or poly (I:C) increased the expression of monocyte chemoattractant protein 1 (MCP-1) and chemokine C-X3-C motif ligand 1 (CX3CL1), which are known chemoattractants, and enhanced intracellular and mitochondrial reactive oxygen species (ROS) production and NF-κB activity, but reduced mitochondrial membrane potential (MMP). Increased intracellular and mitochondrial ROS accumulation, cytokine expression, MMP disruption, and NF-κB activation were all prevented by DHA in TNF-α- or poly (I:C)-treated PSCs. NAC suppressed TNF-α- or poly (I:C)-induced expression of MCP-1 and CX3CL1. In conclusion, DHA inhibits poly (I:C)- or TNF-α-induced cytokine expression and NF-κB activation by reducing intracellular and mitochondrial ROS in PSCs. Consumption of DHA-rich foods may be beneficial in preventing chronic pancreatitis by inhibiting cytokine expression in PSCs.
Collapse
Affiliation(s)
- Sun Ah Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyong Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
82
|
Diabetic Bone Marrow Cell Injection Accelerated Acute Pancreatitis Progression. J Immunol Res 2021; 2021:5123823. [PMID: 34485535 PMCID: PMC8410441 DOI: 10.1155/2021/5123823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Acute pancreatitis (AP) is one of the leading causes of hospital admission, 20% of which could progress to the severe type with extensive acinar cell necrosis. Clinical studies have reported that diabetes is an independent risk factor of the incidence of AP and is associated with higher severity than nondiabetic subjects. However, how diabetes participates in AP progression is not well defined. To investigate this question, wild-type (wt) and diabetic db/db mice at the age of 16 weeks were used in the study. AP was induced in wt recipients by 10 injections of 50 μg/kg caerulein with a 1 h interval. One hour after the last caerulein injection, bone marrow cells (BMC) isolated from wt and db/db mice were injected intraperitoneally into the recipients (1 × 107cells/recipient). The recipients with no BMC injection served as controls. Thirteen hours after BMC injection, serum lipase activity was 1.8- and 1.3-folds higher in mice that received db/db BMC, compared with those with no injection and wt BMC injection, respectively (p ≤ 0.02 for both). By H&E staining, the overall severity score was 14.7 for no cell injection and 16.6 for wt BMC injection and increased to 22.6 for db/db BMC injection (p ≤ 0.002 for both). In particular, mice with db/db BMC injection developed more acinar cell necrosis and vacuolization than the other groups (p ≤ 0.03 for both). When sections were stained with an antibody against myeloperoxidase (MPO), the density of MPO+ cells in pancreatitis was 1.9- and 1.6-folds higher than wt BMC and no BMC injection groups, separately (p ≤ 0.02 for both). Quantified by ELISA, db/db BMC produced more IL-6, GM-CSF, and IL-10 compared with wt BMC (p ≤ 0.04 for all). In conclusion, BMC of db/db mice produced more inflammatory cytokines. In response to acinar cell injury, diabetic BMC aggravated the inflammation cascade and acinar cell injury, leading to the progression of acute pancreatitis.
Collapse
|
83
|
Hung J, Awasthi R, Klibanov AL, Kelly KA. Identification of Novel Ligands for Targeted Antifibrotic Therapy of Chronic Pancreatitis. Int J Nanomedicine 2021; 16:5495-5512. [PMID: 34429596 PMCID: PMC8374843 DOI: 10.2147/ijn.s318331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Chronic pancreatitis (CP) is an inflammatory disorder of the pancreas that leads to impaired pancreatic function. The limited therapeutic options and the lack of molecular targeting ligands or non-serum-based biomarkers hinder the development of target-specific drugs. Thus, there is a need for an unbiased, comprehensive discovery and evaluation of pancreatitis-specific ligands. METHODS This study utilized a computational-guided in vivo phage display approach to select peptide ligands selective for cellular components in the caerulein-induced mouse model of CP. The identified peptides were conjugated to pegylated DOPC liposomes via the reverse-phase evaporation method, and the in vivo specificity and pharmacokinetics were determined. As proof of concept, CP-targeted liposomes were used to deliver an antifibrotic small molecular drug, apigenin. Antifibrotic effects determined by pancreatic histology, fibronectin expression, and collagen deposition were evaluated. RESULTS We have identified five peptides specific for chronic pancreatitis and demonstrated selectivity to activated pancreatic stellate cells, acinar cells, macrophages, and extracellular matrix, respectively. MDLSLKP-conjugated liposomes demonstrated an increased particle accumulation by 1.3-fold in the inflamed pancreas compared to the control liposomes. We also observed that targeted delivery of apigenin resulted in improved acini preservation, a 37.2% and 33.1% respective reduction in collagen and fibronectin expression compared to mice receiving the free drug, and reduced oxidative stress in the liver. CONCLUSION In summary, we have developed a systematic approach to profile peptide ligands selective for cellular components of complex disease models and demonstrated the biomedical applications of the identified peptides to improve tissue remodeling in the inflamed pancreas.
Collapse
Affiliation(s)
- Jessica Hung
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Rohni Awasthi
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, USA
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, 22908, USA
- Department of Radiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, USA
| |
Collapse
|
84
|
Ge QC, Dietrich CF, Bhutani MS, Zhang BZ, Zhang Y, Wang YD, Zhang JJ, Wu YF, Sun SY, Guo JT. Comprehensive review of diagnostic modalities for early chronic pancreatitis. World J Gastroenterol 2021; 27:4342-4357. [PMID: 34366608 PMCID: PMC8316907 DOI: 10.3748/wjg.v27.i27.4342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive condition caused by several factors and characterised by pancreatic fibrosis and dysfunction. However, CP is difficult to diagnose at an early stage. Various advanced methods including endoscopic ultrasound based elastography and confocal laser endomicroscopy have been used to diagnose early CP, although no unified diagnostic standards have been established. In the past, the diagnosis was mainly based on imaging, and no comprehensive evaluations were performed. This review describes and compares the advantages and limitations of the traditional and latest diagnostic modalities and suggests guidelines for the standardisation of the methods used to diagnose early CP.
Collapse
Affiliation(s)
- Qi-Chao Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Salem und Permanence, Bern CH-3000, Switzerland
| | - Manoop S Bhutani
- Department of Gastrointestinal, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Bao-Zhen Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yue Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yi-Dan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jing-Jing Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu-Fan Wu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jin-Tao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
85
|
Park C, Lee H, Kwon CY, Kim GY, Jeong JW, Kim SO, Choi SH, Jeong SJ, Noh JS, Choi YH. Loganin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Response through the Activation of the Nrf2/HO-1 Signaling Pathway in RAW264.7 Macrophages. Biol Pharm Bull 2021; 44:875-883. [PMID: 34078820 DOI: 10.1248/bpb.b21-00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation caused by the excessive secretion of inflammatory mediators in abnormally activated macrophages promotes many diseases along with oxidative stress. Loganin, a major iridoid glycoside isolated from Cornus officinalis, has recently been reported to exhibit anti-inflammatory and antioxidant effects, whereas the underlying mechanism has not yet been fully clarified. Therefore, the aim of the present study is to investigate the effect of loganin on inflammation and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results indicated that loganin treatment markedly attenuated the LPS-mediated phagocytic activity and release of nitric oxide (NO) and prostaglandin E2, which was associated with decreased the expression of inducible NO synthase and cyclooxygenase-2. In addition, loganin suppressed the expression and their extracellular secretion of LPS-induced pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-1β. Furthermore, loganin abolished reactive oxygen species (ROS) generation, and promoted the activation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated macrophages. However, zinc protoporphyrin, a selective HO-1 inhibitor, reversed the loganin-mediated suppression of pro-inflammatory cytokines in LPS-treated macrophages. In conclusion, our findings suggest that the upregulation of the Nrf2/HO-1 signaling pathway is concerned at least in the protective effect of loganin against LPS-mediated inflammatory and oxidative stress, and that loganin can be a potential functional agent to prevent inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University.,Department of Biochemistry, Dong-eui University College of Korean Medicine
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-eui University College of Korean Medicine
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources
| | - Sung Ok Kim
- Department of Food Science & Biotechnology, College of Engineering, Kyungsung University
| | | | - Soon-Jeong Jeong
- Department of Dental Hygiene, College of Health Science, Youngsan University
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University.,Department of Biochemistry, Dong-eui University College of Korean Medicine
| |
Collapse
|
86
|
Kwon DH, Kim GY, Cha HJ, Kim S, Kim HS, Hwang HJ, Choi YH. Nargenicin A1 attenuates lipopolysaccharide-induced inflammatory and oxidative response by blocking the NF-κB signaling pathway. EXCLI JOURNAL 2021; 20:968-982. [PMID: 34267609 PMCID: PMC8278209 DOI: 10.17179/excli2021-3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022]
Abstract
Inflammation caused by the excessive production of pro-inflammatory mediators and cytokines in abnormally activated macrophages promotes the initiation and progression of many diseases along with oxidative stress. Previous studies have suggested that nargenicin A1, an antibacterial macrolide isolated from Nocardia sp. may be a potential treatment for inflammatory responses and oxidative stress, but the detailed mechanisms are still not well studied. In this study, we investigated the inhibitory effect of nargenicin A1 on inflammatory and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish (Danio rerio) models. Our results indicated that nargenicin A1 treatment significantly inhibited LPS-induced release of pro-inflammatory mediators including nitric oxide (NO) and prostaglandin E2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. In addition, nargenicin A1 attenuated the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1, reducing their extracellular secretion. Nargenicin A1 also suppressed LPS-induced generation of reactive oxygen species. Moreover, nargenicin A1 abolished the LPS-mediated nuclear translocation of nuclear factor-kappa B (NF-κB) and the degradation of inhibitor IκB-α, indicating that nargenicin A1 exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. Furthermore, nargenicin A1 showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. In conclusion, our findings suggest that nargenicin A1 ameliorates LPS-induced anti-inflammatory and antioxidant effects by downregulating the NF-κB signaling pathway, and that nargenicin A1 can be a potential functional agent to prevent inflammatory- and oxidative-mediated damage.
Collapse
Affiliation(s)
- Da Hye Kwon
- Anti‐Aging Research Center, Dong‐eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong‐eui University College of Korean Medicine, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Anti‐Aging Research Center, Dong‐eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong‐eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|
87
|
Park C, Cha HJ, Lee H, Kim GY, Choi YH. The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Arch Biochem Biophys 2021; 706:108926. [PMID: 34029560 DOI: 10.1016/j.abb.2021.108926] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Morroniside, a major iridoid glycoside isolated from Cornus officinalis, has a variety of beneficial pharmacological properties. Although morroniside has recently been reported to exhibit anti-inflammatory and antioxidant effects, the detailed mechanism has not yet been fully elucidated. In this study, we investigated the inhibitory effect of morroniside on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our results indicated that morroniside pretreatment significantly inhibited the LPS-induced phagocytic activity and release of pro-inflammatory factors, which was associated with blocking the expression of their regulatory genes. Morroniside also markedly suppressed the expression of myeloid differentiation factor 88 as well as Toll-like receptor 4 (TLR4), and attenuated the translocation of nuclear factor-κB (NF-κB) to the nucleus in LPS-treated RAW 264.7 macrophages. Furthermore, morroniside prevented the binding of LPS to the TLR4 on the cell surface. In addition, morroniside abolished reactive oxygen species (ROS) generation, and enhanced the expression of heme oxygenase-1 (HO-1) following activation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the morroniside-mediated inhibition of inflammatory response in LPS-treated RAW 264.7 macrophages. In conclusion, our findings suggest that morroniside exerts LPS-induced anti-inflammatory and antioxidant effects by targeting the TLR4/NF-κB and Nrf2/HO-1 signaling pathways in RAW 264.7 macrophages. Taken together, our findings suggest that morroniside interacted structurally and electrochemically with TLR4/MD2 complex, consequently can be a potential functional agent to prevent inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan, 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 49104, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea.
| |
Collapse
|
88
|
Huang C, Iovanna J, Santofimia-Castaño P. Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer. Int J Mol Sci 2021; 22:4970. [PMID: 34067040 PMCID: PMC8124541 DOI: 10.3390/ijms22094970] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic fibrosis is caused by the excessive deposits of extracellular matrix (ECM) and collagen fibers during repeated necrosis to repair damaged pancreatic tissue. Pancreatic fibrosis is frequently present in chronic pancreatitis (CP) and pancreatic cancer (PC). Clinically, pancreatic fibrosis is a pathological feature of pancreatitis and pancreatic cancer. However, many new studies have found that pancreatic fibrosis is involved in the transformation from pancreatitis to pancreatic cancer. Thus, the role of fibrosis in the crosstalk between pancreatitis and pancreatic cancer is critical and still elusive; therefore, it deserves more attention. Here, we review the development of pancreatic fibrosis in inflammation and cancer, and we discuss the therapeutic strategies for alleviating pancreatic fibrosis. We further propose that cellular stress response might be a key driver that links fibrosis to cancer initiation and progression. Therefore, targeting stress proteins, such as nuclear protein 1 (NUPR1), could be an interesting strategy for pancreatic fibrosis and PC treatment.
Collapse
Affiliation(s)
| | | | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France; (C.H.); (J.I.)
| |
Collapse
|
89
|
Ji SY, Cha HJ, Molagoda IMN, Kim MY, Kim SY, Hwangbo H, Lee H, Kim GY, Kim DH, Hyun JW, Kim HS, Kim S, Jin CY, Choi YH. Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae. Biomol Ther (Seoul) 2021; 29:685-696. [PMID: 33820881 PMCID: PMC8551728 DOI: 10.4062/biomolther.2021.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/05/2022] Open
Abstract
In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea
| | | | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Zhengzhou University, Henan 450001, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
90
|
The Proresolving Lipid Mediator Maresin1 Alleviates Experimental Pancreatitis via Switching Macrophage Polarization. Mediators Inflamm 2021; 2021:6680456. [PMID: 33776575 PMCID: PMC7969117 DOI: 10.1155/2021/6680456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Method Repeated caerulein injection was used to induce AP and chronic pancreatitis (CP) models in mice. The histopathological and serological changes were examined for evaluating the severity of the AP model, and flow cytometry was used for detecting macrophage phagocytosis and phenotype. Meanwhile, clodronate liposomes were used for macrophage depletion in mice. Finally, the CP model was adopted to further observe the protective effect of MaR1. Result MaR1 administration manifested the improved histopathological changes and the lower serum levels of amylase and lipase. However, MaR1 played no protective role in the pancreatic acinar cell line in vitro. It obviously reduced the macrophage infiltration in the injured pancreas, especially M1-type macrophages. After macrophage clearance, MaR1 showed no further protection in vivo. This study also demonstrated that MaR1 could alleviate fibrosis to limit AP progression in the CP model. Conclusion Our data suggests that MaR1 was a therapeutic and preventive target for AP in mice, likely operating through its effects on decreased macrophage infiltration and phenotype switch.
Collapse
|
91
|
Choi Y, Kwon D, Park C, Lee H, Hong S, Kim GY, Cha HJ, Kim S, Kim HS, Hwang HJ. Ethanol extract of Chondracanthus tenellus (Harvey) Hommersand attenuates lipopolysaccharide-induced inflammatory and oxidative response by blocking the NF-κB, MAPKs, and PI3K/Akt signaling pathways. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.326099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
92
|
Park C, Lee H, Hong S, Molagoda IMN, Jeong JW, Jin CY, Kim GY, Choi SH, Hong SH, Choi YH. Inhibition of Lipopolysaccharide-Induced Inflammatory and Oxidative Responses by Trans-cinnamaldehyde in C2C12 Myoblasts. Int J Med Sci 2021; 18:2480-2492. [PMID: 34104079 PMCID: PMC8176176 DOI: 10.7150/ijms.59169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Trans-cinnamaldehyde (tCA), a bioactive component found in Cinnamomum cassia, has been reported to exhibit anti-inflammatory and antioxidant effects, but its efficacy in muscle cells has yet to be found. In this study, we investigated the inhibitory effect of tCA on inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in C2C12 mouse skeletal myoblasts. Methods: To investigate the anti-inflammatory and antioxidant effects of tCA in LPS-treated C2C12 cells, we measured the levels of pro-inflammatory mediator, cytokines, and reactive oxygen species (ROS). To elucidate the mechanism underlying the effect of tCA, the expression of genes involved in the expression of inflammatory and oxidative regulators was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of tCA against LPS in the zebrafish model. Results: tCA significantly inhibited the LPS-induced release of pro-inflammatory mediators and cytokines, which was associated with decreased expression of their regulatory genes. tCA also suppressed the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor, and attenuated the nuclear translocation of nuclear factor-kappa B (NF-κB) and the binding of LPS to TLR4 on the cell surface in LPS-treated C2C12 cells. Furthermore, tCA abolished LPS-induced generation of ROS and expression levels of ROS producing enzymes, NADPH oxidase 1 (NOX1) and NOX2. However, tCA enhanced the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated C2C12 myoblasts. In addition, tCA showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. Conclusions: Our findings suggest that tCA exerts its inhibitory ability against LPS-induced inflammatory and antioxidant stress in C2C12 myoblasts by targeting the TLR4/NF-κB, which might be mediated by the NOXs and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Suhyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Ilandarage Menu Neelaka Molagoda
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Zhengzhou University, Henan 450001, China
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang 50141, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|