51
|
Noninvasive Imaging: Brillouin Confocal Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:351-364. [DOI: 10.1007/978-3-319-95294-9_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
52
|
Wullkopf L, West AKV, Leijnse N, Cox TR, Madsen CD, Oddershede LB, Erler JT. Cancer cells' ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol Biol Cell 2018; 29:2378-2385. [PMID: 30091653 PMCID: PMC6233061 DOI: 10.1091/mbc.e18-05-0319] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Increased tissue stiffness is a classic characteristic of solid tumors. One of the major contributing factors is increased density of collagen fibers in the extracellular matrix (ECM). Here, we investigate how cancer cells biomechanically interact with and respond to the stiffness of the ECM. Probing the adaptability of cancer cells to altered ECM stiffness using optical tweezers-based microrheology and deformability cytometry, we find that only malignant cancer cells have the ability to adjust to collagen matrices of different densities. Employing microrheology on the biologically relevant spheroid invasion assay, we can furthermore demonstrate that, even within a cluster of cells of similar origin, there are differences in the intracellular biomechanical properties dependent on the cells' invasive behavior. We reveal a consistent increase of viscosity in cancer cells leading the invasion into the collagen matrices in comparison with cancer cells following in the stalk or remaining in the center of the spheroid. We hypothesize that this differential viscoelasticity might facilitate spheroid tip invasion through a dense matrix. These findings highlight the importance of the biomechanical interplay between cells and their microenvironment for tumor progression.
Collapse
Affiliation(s)
- Lena Wullkopf
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas R. Cox
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Cancer Division, St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Chris D. Madsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden
| | - Lene B. Oddershede
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
53
|
Kandemir N, Vollmer W, Jakubovics NS, Chen J. Mechanical interactions between bacteria and hydrogels. Sci Rep 2018; 8:10893. [PMID: 30022071 PMCID: PMC6052062 DOI: 10.1038/s41598-018-29269-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 01/30/2023] Open
Abstract
Mechanical interactions between bacterial cells and extracellular polymeric substance are essential in determining biofilm assembly and disassembly as well the mechanical characteristics of biofilms. However, the physics of these mechanical interactions in different cell culture conditions are poorly understood. We created typical artificial biofilm consisting of planktonic bacteria and hydrogel, in the absence of metabolic or regulatory effect. We have demonstrated that the cell culture medium can significantly affect the mechanical interactions between bacterial cells and hydrogels. The stiffness of the bacteria-hydrogel artificial biofilm cannot be simply attributed by the summation of the contribution from the bacteria and hydrogel based on the mathematical models and computational models. We have revealed that the tryptone component of Luria-Bertani broth medium plays an important role in stiffening effect of bacteria-hydrogel construct. Such significant stiffening effect can be explained by the following mechanism: the presence of tryptone in cell culture medium may enable the bacteria itself to crosslink the hydrogel polymer chains. Our findings have also demonstrated the synergy of modelling and innovative experiments which would potentially impact the biofilm control strategies.
Collapse
Affiliation(s)
- Nehir Kandemir
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE17RU, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE24AX, UK
| | - Nicholas S Jakubovics
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, NE24BW, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE17RU, UK.
| |
Collapse
|
54
|
Malandrino A, Mak M, Kamm RD, Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. EXTREME MECHANICS LETTERS 2018; 21:25-34. [PMID: 30135864 PMCID: PMC6097546 DOI: 10.1016/j.eml.2018.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 05/14/2023]
Abstract
The extracellular matrix (ECM) performs many critical functions, one of which is to provide structural and mechanical integrity, and many of the constituent proteins have clear mechanical roles. The composition and structural characteristics of the ECM are widely variable among different tissues, suiting diverse functional needs. In diseased tissues, particularly solid tumors, the ECM is complex and influences disease progression. Cancer and stromal cells can significantly influence the matrix composition and structure and thus the mechanical properties of the tumor microenvironment (TME). In this review, we describe the interactions that give rise to the structural heterogeneity of the ECM and present the techniques that are widely employed to measure ECM properties and remodeling dynamics. Furthermore, we review the tools for measuring the distinct nature of cell-ECM interactions within the TME.
Collapse
Affiliation(s)
- Andrea Malandrino
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- European Molecular Biology Laboratory, Barcelona, Spain
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Roger D. Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emad Moeendarbary
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
55
|
Miller JP, Borde BH, Bordeleau F, Zanotelli MR, LaValley DJ, Parker DJ, Bonassar LJ, Pannullo SC, Reinhart-King CA. Clinical doses of radiation reduce collagen matrix stiffness. APL Bioeng 2018; 2:031901. [PMID: 31069314 PMCID: PMC6324208 DOI: 10.1063/1.5018327] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/14/2018] [Indexed: 11/14/2022] Open
Abstract
Cells receive mechanical cues from their extracellular matrix (ECM), which direct migration, differentiation, apoptosis, and in some cases, the transition to a cancerous phenotype. As a result, there has been significant research to develop methods to tune the mechanical properties of the ECM and understand cell-ECM dynamics more deeply. Here, we show that ionizing radiation can reduce the stiffness of an ex vivo tumor and an in vitro collagen matrix. When non-irradiated cancer cells were seeded in the irradiated matrix, adhesion, spreading, and migration were reduced. These data have ramifications for both in vitro and in vivo systems. In vitro, these data suggest that irradiation may be a method that could be used to create matrices with tailored mechanical properties. In vivo, these suggest that therapeutic doses of radiation may alter tissue mechanics directly.
Collapse
Affiliation(s)
- Joseph P Miller
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Brandon H Borde
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | - Danielle J LaValley
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Dylan J Parker
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
56
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
57
|
Rubiano A, Delitto D, Han S, Gerber M, Galitz C, Trevino J, Thomas RM, Hughes SJ, Simmons CS. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater 2018; 67:331-340. [PMID: 29191507 PMCID: PMC5797706 DOI: 10.1016/j.actbio.2017.11.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDAC) is almost universally fatal, in large part due to a protective fibrotic barrier generated by tumor-associated stromal (TAS) cells. This barrier is thought to promote cancer cell survival and confounds attempts to develop effective therapies. We present a 3D in vitro system that replicates the mechanical properties of the PDAC microenvironment, representing an invaluable tool for understanding the biology of the disease. Mesoscale indentation quantified viscoelastic metrics of resected malignant tumors, inflamed chronic pancreatitis regions, and histologically normal tissue. Both pancreatitis (2.15 ± 0.41 kPa, Mean ± SD) and tumors (5.46 ± 3.18 kPa) exhibit higher Steady-State Modulus (SSM) than normal tissue (1.06 ± 0.25 kPa; p < .005). The average viscosity of pancreatitis samples (63.2 ± 26.7 kPa·s) is significantly lower than that of both normal tissue (252 ± 134 kPa·s) and tumors (349 ± 222 kPa·s; p < .005). To mimic this remodeling behavior, PDAC and TAS cells were isolated from human PDAC tumors. Conditioned medium from PDAC cells was used to culture TAS-embedded collagen hydrogels. After 7 days, TAS-embedded gels in control medium reached SSM (1.45 ± 0.12 kPa) near normal pancreas, while gels maintained with conditioned medium achieved higher SSM (3.38 ± 0.146 kPa) consistent with tumors. Taken together, we have demonstrated an in vitro system that recapitulates in vivo stiffening of PDAC tumors. In addition, our quantification of viscoelastic properties suggests that elastography algorithms incorporating viscosity may be able to more accurately distinguish between pancreatic cancer and pancreatitis. STATEMENT OF SIGNIFICANCE Understanding tumor-stroma crosstalk in pancreatic ductal adenocarcinoma (PDAC) is challenged by a lack of stroma-mimicking model systems. To design appropriate models, pancreatic tissue must be characterized with a method capable of evaluating in vitro models as well. Our indentation-based characterization tool quantified the distinct viscoelastic signatures of inflamed resections from pancreatitis, tumors from PDAC, and otherwise normal tissue to inform development of mechanically appropriate engineered tissues and scaffolds. We also made progress toward a 3D in vitro system that recapitulates mechanical properties of tumors. Our in vitro model of stromal cells in collagen and complementary characterization system can be used to investigate mechanisms of cancer-stroma crosstalk in PDAC and to propose and test innovative therapies.
Collapse
Affiliation(s)
- Andres Rubiano
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States
| | - Daniel Delitto
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Michael Gerber
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Carly Galitz
- Department of Mathematics, College of Liberal Arts and Sciences, University of Florida, United States
| | - Jose Trevino
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Ryan M Thomas
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, United States.
| |
Collapse
|
58
|
Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomater 2017; 57:334-341. [PMID: 28483699 DOI: 10.1016/j.actbio.2017.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
Abstract
The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. STATEMENT OF SIGNIFICANCE When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue.
Collapse
|
59
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|
60
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
61
|
Domura R, Sasaki R, Okamoto M, Hirano M, Kohda K, Napiwocki B, Turng LS. Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates. J Mater Chem B 2017; 5:2588-2600. [DOI: 10.1039/c7tb00207f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aligned fibers substrates caused elongation and alignment of the MDA-MB-231 cells along the fiber directionsviareducing the cell roundness and E-cadherin expression.
Collapse
Affiliation(s)
- Ryota Domura
- Advanced Polymeric Nanostructured Materials Engineering
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | - Rie Sasaki
- Advanced Polymeric Nanostructured Materials Engineering
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | - Masami Okamoto
- Advanced Polymeric Nanostructured Materials Engineering
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | | | | | - Brett Napiwocki
- Department of Engineering Physics
- University of Wisconsin-Madison
- USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery and Polymer Engineering Center
- Department of Mechanical Engineering
- University of Wisconsin-Madison
- USA
| |
Collapse
|
62
|
Nguyen AV, Nyberg KD, Scott MB, Welsh AM, Nguyen AH, Wu N, Hohlbauch SV, Geisse NA, Gibb EA, Robertson AG, Donahue TR, Rowat AC. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb) 2016; 8:1232-1245. [PMID: 27761545 PMCID: PMC5866717 DOI: 10.1039/c6ib00135a] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis is a fundamentally physical process in which cells are required to deform through narrow gaps as they invade surrounding tissues and transit to distant sites. In many cancers, more invasive cells are more deformable than less invasive cells, but the extent to which mechanical phenotype, or mechanotype, can predict disease aggressiveness in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here we investigate the invasive potential and mechanical properties of immortalized PDAC cell lines derived from primary tumors and a secondary metastatic site, as well as noncancerous pancreatic ductal cells. To investigate how invasive behavior is associated with cell mechanotype, we flow cells through micron-scale pores using parallel microfiltration and microfluidic deformability cytometry; these results show that the ability of PDAC cells to passively transit through pores is only weakly correlated with their invasive potential. We also measure the Young's modulus of pancreatic ductal cells using atomic force microscopy, which reveals that there is a strong association between cell stiffness and invasive potential in PDAC cells. To determine the molecular origins of the variability in mechanotype across our PDAC cell lines, we analyze RNAseq data for genes that are known to regulate cell mechanotype. Our results show that vimentin, actin, and lamin A are among the most differentially expressed mechanoregulating genes across our panel of PDAC cell lines, as well as a cohort of 38 additional PDAC cell lines. We confirm levels of these proteins across our cell panel using immunoblotting, and find that levels of lamin A increase with both invasive potential and Young's modulus. Taken together, we find that stiffer PDAC cells are more invasive than more compliant cells, which challenges the paradigm that decreased cell stiffness is a hallmark of metastatic potential.
Collapse
Affiliation(s)
- Angelyn V Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. and Department of Bioengineering, University of California, Los Angeles, USA
| | - Michael B Scott
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Alia M Welsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | - Andrew H Nguyen
- Department of General Surgery, University of California, Los Angeles, USA
| | - Nanping Wu
- Department of General Surgery, University of California, Los Angeles, USA
| | - Sophia V Hohlbauch
- Asylum Research, an Oxford Instruments Company, Santa Barbara, California, USA
| | - Nicholas A Geisse
- Asylum Research, an Oxford Instruments Company, Santa Barbara, California, USA
| | - Ewan A Gibb
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Timothy R Donahue
- Department of General Surgery, University of California, Los Angeles, USA and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. and Department of Bioengineering, University of California, Los Angeles, USA and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
63
|
Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow. Sci Rep 2016; 6:38221. [PMID: 27910892 PMCID: PMC5133540 DOI: 10.1038/srep38221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.
Collapse
|
64
|
Mapping intracellular mechanics on micropatterned substrates. Proc Natl Acad Sci U S A 2016; 113:E7159-E7168. [PMID: 27799529 DOI: 10.1073/pnas.1605112113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells.
Collapse
|
65
|
Hsiao HC, Santos A, Howell DW, Patterson JL, Fuchs-Young RS, Bondos SE. Culture of Tumorigenic Cells on Protein Fibers Reveals Metastatic Cell Behaviors. Biomacromolecules 2016; 17:3790-3799. [DOI: 10.1021/acs.biomac.6b01311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department of Biosciences, Rice University, Houston Texas 77251, United States
| | - Andres Santos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department of Biosciences, Rice University, Houston Texas 77251, United States
| | - David W. Howell
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department of Biosciences, Rice University, Houston Texas 77251, United States
| | - Jan L. Patterson
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department of Biosciences, Rice University, Houston Texas 77251, United States
| | - Robin S.L. Fuchs-Young
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department of Biosciences, Rice University, Houston Texas 77251, United States
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department of Biosciences, Rice University, Houston Texas 77251, United States
| |
Collapse
|
66
|
Pearson YE, Lund AW, Lin AWH, Ng CP, Alsuwaidi A, Azzeh S, Gater DL, Teo JCM. Non-invasive single-cell biomechanical analysis using live-imaging datasets. J Cell Sci 2016; 129:3351-64. [PMID: 27422102 DOI: 10.1242/jcs.191205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization.
Collapse
Affiliation(s)
- Yanthe E Pearson
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alex W H Lin
- Endothelix, Inc., 2500 West Loop, South Houston, TX 77027, USA
| | - Chee P Ng
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 Mimetas BV, JH Oortweg 19, Leiden 2333 CH, The Netherlands
| | - Aysha Alsuwaidi
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Sara Azzeh
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Deborah L Gater
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| |
Collapse
|
67
|
Lin HH, Lin HK, Lin IH, Chiou YW, Chen HW, Liu CY, Harn HIC, Chiu WT, Wang YK, Shen MR, Tang MJ. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget 2016; 6:20946-58. [PMID: 26189182 PMCID: PMC4673241 DOI: 10.18632/oncotarget.4173] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/02/2015] [Indexed: 01/06/2023] Open
Abstract
The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.
Collapse
Affiliation(s)
- Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Kuan Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsuan Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Horn-Wei Chen
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Yi Liu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
68
|
Dong C, Hu X, Dinu CZ. Current status and perspectives in atomic force microscopy-based identification of cellular transformation. Int J Nanomedicine 2016; 11:2107-18. [PMID: 27274238 PMCID: PMC4876801 DOI: 10.2147/ijn.s103501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes.
Collapse
Affiliation(s)
- Chenbo Dong
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Xiao Hu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
69
|
Interactions of lauryl gallate with phospholipid components of biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1821-32. [PMID: 27117642 DOI: 10.1016/j.bbamem.2016.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022]
Abstract
The effect of different amounts of lauryl gallate (LG) on properties of the model membranes of phosphatidylcholines (PC), differing in the presence of double bonds in the hydrocarbon chains, and phosphatidylglycerol (PG) was described in terms of phase behaviour of mixtures, interactions between both components, monolayers stability and their organization. The Langmuir monolayer technique was used to monitor the surface thermodynamics (i.e. the excess area and excess Gibbs energy of mixing) on the basis of surface pressure-area per molecule (π-A) isotherms. Simultaneously, morphology of the studied monolayers was visualized by the Brewster angle microscopy (BAM). This allowed evaluating the kind and magnitude of interactions which influence on the phase behaviour and structural properties of the monolayers. The obtained results can be helpful to reveal the mechanism of phospholipid antioxidant protection and important pharmacological (antimicrobial) role of lauryl gallate for production of effective therapeutic substances.
Collapse
|
70
|
Barbieux C, Bacharouche J, Soussen C, Hupont S, Razafitianamaharavo A, Klotz R, Pannequin R, Brie D, Bécuwe P, Francius G, Grandemange S. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells. NANOSCALE 2016; 8:5268-79. [PMID: 26879405 DOI: 10.1039/c5nr09126h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.
Collapse
Affiliation(s)
- Claire Barbieux
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Jalal Bacharouche
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France. and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Charles Soussen
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Sébastien Hupont
- CNRS, FR3209 Biologie Moléculaire Cellulaire et Thérapeutique (BMCT), Plateforme d'Imagerie Cellulaire et Tissulaire PTIBC-IBISA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Vandœuvre-lès-Nancy, F-54506, France
| | - Angélina Razafitianamaharavo
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC, UMR 7360, Vandœuvre-lès-Nancy, F-54500, France and CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC, UMR 7360, Vandœuvre-lès-Nancy, F-54500, France
| | - Rémi Klotz
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Rémi Pannequin
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - David Brie
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Philippe Bécuwe
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France. and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Stéphanie Grandemange
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
71
|
Abstract
Currently, biomechanics of living cells is in the focus of interest due to noticeable capability of such techniques like atomic force microscopy (AFM) to probe cellular properties at the single cell level directly on living cells. The research carried out, so far, delivered data showing, on the one hand, the use of cellular mechanics as a biomarker of various pathological changes, which, on the other hand, reveal relative nature of biomechanics. In the AFM, the elastic properties of living cells are delivered from indentation experiments and described quantitatively by Young's modulus defined here as a measure of cellular deformability. Here, the AFM studies directly comparing the mechanical properties of normal and cancerous cells are summarized and presented together with a few important issues related to the relativeness of Young's modulus.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Institute of Nuclear Physics, PAS, Radzikowskiego 152, 31-342 Kraków, Poland
| |
Collapse
|
72
|
Staunton JR, Doss BL, Lindsay S, Ros R. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci Rep 2016; 6:19686. [PMID: 26813872 PMCID: PMC4728602 DOI: 10.1038/srep19686] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 12/16/2015] [Indexed: 01/21/2023] Open
Abstract
Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.
Collapse
Affiliation(s)
- Jack R. Staunton
- Department of Physics, Arizona State University, Tempe, AZ 85287
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287
| | - Bryant L. Doss
- Department of Physics, Arizona State University, Tempe, AZ 85287
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287
| | - Stuart Lindsay
- Department of Physics, Arizona State University, Tempe, AZ 85287
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
| | - Robert Ros
- Department of Physics, Arizona State University, Tempe, AZ 85287
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
73
|
Zhao X, Zhong Y, Ye T, Wang D, Mao B. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy. NANOSCALE RESEARCH LETTERS 2015; 10:482. [PMID: 26666911 PMCID: PMC4678138 DOI: 10.1186/s11671-015-1174-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/25/2015] [Indexed: 05/29/2023]
Abstract
The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.
Collapse
Affiliation(s)
- Xueqin Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Yunxin Zhong
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Dajing Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
74
|
Kurup A, Ravindranath S, Tran T, Keating M, Gascard P, Valdevit L, Tlsty TD, Botvinick EL. Novel insights from 3D models: the pivotal role of physical symmetry in epithelial organization. Sci Rep 2015; 5:15153. [PMID: 26472542 PMCID: PMC4608012 DOI: 10.1038/srep15153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/15/2015] [Indexed: 12/19/2022] Open
Abstract
3D tissue culture models are utilized to study breast cancer and other pathologies because they better capture the complexity of in vivo tissue architecture compared to 2D models. However, to mimic the in vivo environment, the mechanics and geometry of the ECM must also be considered. Here, we studied the mechanical environment created in two 3D models, the overlay protocol (OP) and embedded protocol (EP). Mammary epithelial acini features were compared using OP or EP under conditions known to alter acinus organization, i.e. collagen crosslinking and/or ErbB2 receptor activation. Finite element analysis and active microrheology demonstrated that OP creates a physically asymmetric environment with non-uniform mechanical stresses in radial and circumferential directions. Further contrasting with EP, acini in OP displayed cooperation between ErbB2 signalling and matrix crosslinking. These differences in acini phenotype observed between OP and EP highlight the functional impact of physical symmetry in 3D tissue culture models.
Collapse
Affiliation(s)
- Abhishek Kurup
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Shreyas Ravindranath
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Tim Tran
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Mark Keating
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Philippe Gascard
- University of California San Francisco, Department of Pathology, San Francisco, USA
| | - Lorenzo Valdevit
- University of California Irvine, Department of Mechanical and Aerospace Engineering, Irvine, USA
| | - Thea D Tlsty
- University of California San Francisco, Department of Pathology, San Francisco, USA
| | - Elliot L Botvinick
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA.,University of California Irvine, Department of Surgery, Irvine, USA
| |
Collapse
|
75
|
A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: comparison of fibroblasts and diverse cancer cell lines. Histochem Cell Biol 2015; 144:533-42. [PMID: 26357955 DOI: 10.1007/s00418-015-1363-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Differing stimuli affect cell stiffness while cancer metastasis is associated with reduced cell stiffness. Cell stiffness determined by atomic force microscopy has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. Ninety μm square fields were recorded from ten separate sites of cultured human dermal fibroblasts (HDF) and three sites each for melanoma (MM39, WM175, and MeIRMu), osteosarcoma (SAOS-2 and U2OS), and ovarian carcinoma (COLO316 and PEO4) cell lines, each site providing 1024 measurements as 32 × 32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analysed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p < 0.0001) and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high-height levels. We suggest that our stiffness-fingerprint analytical method provides a more nuanced description than previously reported and will facilitate study of the stiffness response to cell stimulation.
Collapse
|
76
|
Schuster BS, Ensign LM, Allan DB, Suk JS, Hanes J. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods. Adv Drug Deliv Rev 2015; 91:70-91. [PMID: 25858664 DOI: 10.1016/j.addr.2015.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/17/2023]
Abstract
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel B Allan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218 USA
| | - Jung Soo Suk
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
77
|
Jabbari E, Sarvestani SK, Daneshian L, Moeinzadeh S. Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells. PLoS One 2015; 10:e0132377. [PMID: 26168187 PMCID: PMC4500566 DOI: 10.1371/journal.pone.0132377] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/13/2015] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The growth and expression of cancer stem cells (CSCs) depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells' tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA) hydrogel without the interference of other factors in the microenvironment. METHODS Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers. RESULTS The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 μm. CONCLUSION The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells' tissue origin.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| | - Samaneh K. Sarvestani
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| | - Leily Daneshian
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States of America
| |
Collapse
|
78
|
Hung MS, Tsai MF. Investigating the Influence of Anti-Cancer Drugs on the Mechanics of Cells Using AFM. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0174-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
79
|
Sapudom J, Rubner S, Martin S, Kurth T, Riedel S, Mierke CT, Pompe T. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials 2015; 52:367-75. [DOI: 10.1016/j.biomaterials.2015.02.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 01/27/2023]
|
80
|
Cellura D, Pickard K, Quaratino S, Parker H, Strefford JC, Thomas GJ, Mitter R, Mirnezami AH, Peake NJ. miR-19-Mediated Inhibition of Transglutaminase-2 Leads to Enhanced Invasion and Metastasis in Colorectal Cancer. Mol Cancer Res 2015; 13:1095-1105. [PMID: 25934693 DOI: 10.1158/1541-7786.mcr-14-0466] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Transglutaminase-2 (TG2) is a critical cross-linking enzyme in the extracellular matrix (ECM) and tumor microenvironment (TME). Although its expression has been linked to colorectal cancer, its functional role in the processes that drive disease appears to be context dependent. There is now considerable evidence of a role for microRNAs (miRNA) in the development and progression of cancer, including metastasis. A cell model of metastatic colon adenocarcinoma was used to investigate the contribution of miRNAs to the differential expression of TG2, and functional effects on inflammatory and invasive behavior. The impact of TG2 in colorectal cancer was analyzed in human colorectal tumor specimens and by manipulations in SW480 and SW620 cells. Effects on invasive behavior were measured using Transwell invasion assays, and cytokine production was assessed by ELISA. TG2 was identified as a target for miR-19 by in silico analysis, which was confirmed experimentally. Functional effects were evaluated by overexpression of pre-miR-19a in SW480 cells. Expression of TG2 correlated inversely with invasive behavior, with knockdown in SW480 cells leading to enhanced invasion, and overexpression in SW620 cells the opposite. TG2 expression was observed in colorectal cancer primary tumors but lost in liver metastases. Finally, miR-19 overexpression and subsequent decreased TG2 expression was linked to chromosome-13 amplification events, leading to altered invasive behavior in colorectal cancer cells. IMPLICATIONS Chromosome-13 amplification in advanced colorectal cancer contributes to invasion and metastasis by upregulating miR-19, which targets TG2.
Collapse
Affiliation(s)
- D Cellura
- Molecular mechanisms research unit, Cancer Research UK Centre, University of Southampton Cancer Sciences Division, Somers Cancer Research Building, Southampton University Hospital NHS Trust, Tremona road, Southampton, SO16 6YD
| | - K Pickard
- Molecular mechanisms research unit, Cancer Research UK Centre, University of Southampton Cancer Sciences Division, Somers Cancer Research Building, Southampton University Hospital NHS Trust, Tremona road, Southampton, SO16 6YD
| | - S Quaratino
- Molecular mechanisms research unit, Cancer Research UK Centre, University of Southampton Cancer Sciences Division, Somers Cancer Research Building, Southampton University Hospital NHS Trust, Tremona road, Southampton, SO16 6YD
| | - H Parker
- Cancer Genomics, Cancer Sciences, University of Southampton, Southampton, SO16 6YD
| | - J C Strefford
- Cancer Genomics, Cancer Sciences, University of Southampton, Southampton, SO16 6YD
| | - G J Thomas
- Molecular mechanisms research unit, Cancer Research UK Centre, University of Southampton Cancer Sciences Division, Somers Cancer Research Building, Southampton University Hospital NHS Trust, Tremona road, Southampton, SO16 6YD
| | - R Mitter
- Bioinformatics Unit, London Research Institute, Cancer Research UK, Lincoln's Inn Fields, London, WC2A 3TL
| | - A H Mirnezami
- Molecular mechanisms research unit, Cancer Research UK Centre, University of Southampton Cancer Sciences Division, Somers Cancer Research Building, Southampton University Hospital NHS Trust, Tremona road, Southampton, SO16 6YD.,Department of Colorectal Surgery, Southampton University Hospital NHS Trust, Tremona road, Southampton, UK
| | - N J Peake
- Molecular mechanisms research unit, Cancer Research UK Centre, University of Southampton Cancer Sciences Division, Somers Cancer Research Building, Southampton University Hospital NHS Trust, Tremona road, Southampton, SO16 6YD
| |
Collapse
|
81
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
82
|
Subia B, Dey T, Sharma S, Kundu SC. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2269-2279. [PMID: 25557227 DOI: 10.1021/am506094c] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To avoid the indiscriminating action of anticancer drugs, the cancer cell specific targeting of drug molecule becomes a preferred choice for the treatment. The successful screening of the drug molecules in 2D culture system requires further validation. The failure of target specific drug in animal model raises the issue of creating a platform in between the in vitro (2D) and in vivo animal testing. The metastatic breast cancer cells migrate and settle at different sites such as bone tissue. This work evaluates the in vitro 3D model of the breast cancer and bone cells to understand the cellular interactions in the presence of a targeted anticancer drug delivery system. The silk fibroin based cytocompatible 3D scaffold is used as in vitro 3D distribution model. Human breast adenocarcinoma and osteoblast like cells are cocultured to evaluate the efficiency of doxorubicin loaded folic acid conjugated silk fibroin nanoparticle as drug delivery system. Decreasing population of the cancer cells, which lower the levels of vascular endothelial growth factors, glucose consumption, and lactate production are observed in the drug treated coculture constructs. The drug treated constructs do not show any major impact on bone mineralization. The diminished expression of osteogenic markers such as osteocalcein and alkaline phosphatase are recorded. The result indicates that this type of silk based 3D in vitro coculture model may be utilized as a bridge between the traditional 2D and animal model system to evaluate the new drug molecule (s) or to reassay the known drug molecules or to develop target specific drug in cancer research.
Collapse
Affiliation(s)
- Bano Subia
- Department of Biotechnology, Indian Institute of Technology Kharagpur , Kharagpur, West Bengal 721302, India
| | | | | | | |
Collapse
|
83
|
Abstract
A variety of cell types exhibit phenotype changes in response to the mechanical stiffness of the substrate. Many cells excluding neurons display an increase in the spread area, actin stress fiber formation and larger focal adhesion complexes as substrate stiffness increases in a sparsely populated culture. Cell proliferation is also known to directly correlate with these phenotype changes/changes in substrate stiffness. Augmented spreading and proliferation on stiffer substrates require nuclear transcriptional regulator YAP (Yes associated protein) localization in the cell nucleus and is tightly coupled to larger traction force generation. In this study, we show that different types of fibroblasts can exhibit spread morphology, well defined actin stress fibers, and larger focal adhesions even on very soft collagen gels (modulus in hundreds of Pascals) as if they are on hard glass substrates (modulus in GPa, several orders of magnitude higher). Strikingly, we show, for the first time, that augmented spreading and other hard substrate cytoskeleton architectures on soft collagen gels are not correlated with the cell proliferation pattern and do not require YAP localization in the cell nucleus. Finally, we examine the response of human colon carcinoma (HCT-8) cells on soft collagen gels. Recent studies show that human colon carcinoma (HCT-8) cells form multicellular clusters by 2-3 days when cultured on soft polyacrylamide (PA) gels with a wide range of stiffness (0.5-50 kPa) and coated with an extracellular matrix, ECM (collagen monomer/fibronectin). These clusters show limited spreading/wetting on PA gels, form 3D structures at the edges, and eventually display a remarkable, dissociative metastasis like phenotype (MLP), i.e., epithelial to rounded morphological transition after a week of culture on PA gels only, but not on collagen monomer coated stiff polystyrene/glass where they exhibit enhanced wetting and form confluent monolayers. Here, we show that HCT-8 cell clusters also show augmented spreading/wetting on soft collagen gels and eventually form confluent monolayers as on rigid glass substrates and MLP is completely inhibited on soft collagen gels. Overall, these results suggest that cell-material interactions (soft collagen gels in this case) can induce cellular phenotype and cytoskeleton organization in a remarkably distinct manner compared to a classical synthetic polyacrylamide (PA) hydrogel cell culture model and may contribute in designing new functional biomaterials.
Collapse
Affiliation(s)
- M Yakut Ali
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA61801.
| | | | | |
Collapse
|
84
|
Mak M, Kamm RD, Zaman MH. Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments. PLoS Comput Biol 2014; 10:e1003959. [PMID: 25412385 PMCID: PMC4238946 DOI: 10.1371/journal.pcbi.1003959] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023] Open
Abstract
Dimensionality is a fundamental component that can have profound implications on the characteristics of physical systems. In cell biology, however, the majority of studies on cell physical properties, from rheology to force generation to migration, have been performed on 2D substrates, and it is not clear how a more realistic 3D environment influences cell properties. Here, we develop an integrated approach and demonstrate the combination of mitochondria-tracking microrheology, microfluidics, and Brownian dynamics simulations to explore the impact of dimensionality on intracellular mechanics and on the effects of intracellular disruption. Additionally, we consider both passive thermal and active motor-driven processes within the cell and demonstrate through modeling how active internal fluctuations are modulated via dimensionality. Our results demonstrate that metastatic breast cancer cells (MDA-MB-231) exhibit more solid-like internal motions in 3D compared to 2D, and actin network disruption via Cytochalasin D has a more pronounced effect on internal cell fluctuations in 2D. Our computational results and modeling show that motor-induced active stress fluctuations are enhanced in 2D, leading to increased local intracellular particle fluctuations and apparent fluid-like behavior. Biomechanical properties at the cellular and subcellular levels are important in providing proper biological functions, from cell migratory capabilities to intracellular transport. Deregulation in these properties can lead to disease states such as cancer metastasis. We develop and demonstrate an integrated experimental and computational approach to study intracellular mechanics. We demonstrate that a key environmental factor, dimensionality, plays a significant role in modulating intracellular mechanical behavior. This is important as typical cell biology and mechanics experiments are performed on 2D substrates, which do not capture the physiological features of 3D matrices and may not induce physiologically accurate cell properties. We further develop an effective temperature model to describe how dimensionality changes intracellular particle motion by altering the activity of molecular motors.
Collapse
Affiliation(s)
- Michael Mak
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Roger D. Kamm
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RDK); (MHZ)
| | - Muhammad H. Zaman
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (RDK); (MHZ)
| |
Collapse
|
85
|
Chen YQ, Su PT, Chen YH, Wei MT, Huang CH, Osterday K, del Álamo JC, Syu WJ, Chiou A. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells. PLoS One 2014; 9:e112137. [PMID: 25369259 PMCID: PMC4219835 DOI: 10.1371/journal.pone.0112137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Pin-Tzu Su
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yu-Hsuan Chen
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ming-Tzo Wei
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America
| | - Chien-Hsiu Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Kathryn Osterday
- Department of Mechanical and Aerospace Engineering, San Diego, California, United States of America
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, San Diego, California, United States of America
- Institute of Engineering in Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail: (JCA); (WJS); (AC)
| | - Wan-Jr Syu
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (JCA); (WJS); (AC)
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (JCA); (WJS); (AC)
| |
Collapse
|
86
|
Robinson DN. 14-3-3, an integrator of cell mechanics and cytokinesis. Small GTPases 2014; 1:165-169. [PMID: 21686271 DOI: 10.4161/sgtp.1.3.14432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022] Open
Abstract
One of the goals of understanding cytokinesis is to uncover the molecular regulation of the cellular mechanical properties that drive cell shape change. Such regulatory pathways are likely to be used at multiple stages of a cell's life, but are highly featured during cell division. Recently, we demonstrated that 14-3-3 (encoded by a single gene in the social amoeba Dictyostelium discoideum) serves to integrate key cytoskeletal components-microtubules, Rac and myosin II-to control cell mechanics and cytokinesis. As 14-3-3 proteins are frequently altered in a variety of human tumors, we extend these observations to suggest possible additional roles for how 14-3-3 proteins may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Douglas N Robinson
- Departments of Cell Biology; Pharmacology and Molecular Sciences; Johns Hopkins University School of Medicine; Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|
87
|
Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 2014; 12:113-29. [DOI: 10.1586/17434440.2014.953058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
88
|
Tumor bioengineering using a transglutaminase crosslinked hydrogel. PLoS One 2014; 9:e105616. [PMID: 25133673 PMCID: PMC4136878 DOI: 10.1371/journal.pone.0105616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Development of a physiologically relevant 3D model system for cancer research and drug development is a current challenge. We have adopted a 3D culture system based on a transglutaminase-crosslinked gelatin gel (Col-Tgel) to mimic the tumor 3D microenvironment. The system has several unique advantages over other alternatives including presenting cell-matrix interaction sites from collagen-derived peptides, geometry-initiated multicellular tumor spheroids, and metabolic gradients in the tumor microenvironment. Also it provides a controllable wide spectrum of gel stiffness for mechanical signals, and technical compatibility with imaging based screening due to its transparent properties. In addition, the Col-Tgel provides a cure-in-situ delivery vehicle for tumor xenograft formation in animals enhancing tumor cell uptake rate. Overall, this distinctive 3D system could offer a platform to more accurately mimic in vivo situations to study tumor formation and progression both in vitro and in vivo.
Collapse
|
89
|
Yallapu MM, Katti KS, Katti DR, Mishra SR, Khan S, Jaggi M, Chauhan SC. The roles of cellular nanomechanics in cancer. Med Res Rev 2014; 35:198-223. [PMID: 25137233 DOI: 10.1002/med.21329] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biomechanical properties of cells and tissues may be instrumental in increasing our understanding of cellular behavior and cellular manifestations of diseases such as cancer. Nanomechanical properties can offer clinical translation of therapies beyond what are currently employed. Nanomechanical properties, often measured by nanoindentation methods using atomic force microscopy, may identify morphological variations, cellular binding forces, and surface adhesion behaviors that efficiently differentiate normal cells and cancer cells. The aim of this review is to examine current research involving the general use of atomic force microscopy/nanoindentation in measuring cellular nanomechanics; various factors and instrumental conditions that influence the nanomechanical properties of cells; and implementation of nanoindentation methods to distinguish cancer cells from normal cells or tissues. Applying these fundamental nanomechanical properties to current discoveries in clinical treatment may result in greater efficiency in diagnosis, treatment, and prevention of cancer, which ultimately can change the lives of patients.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | | | | | | | | | | | |
Collapse
|
90
|
Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR, Goldman RD, Lippincott-Schwartz J, Mackintosh FC, Weitz DA. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 2014; 158:822-832. [PMID: 25126787 PMCID: PMC4183065 DOI: 10.1016/j.cell.2014.06.051] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/28/2014] [Accepted: 06/29/2014] [Indexed: 01/17/2023]
Abstract
Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.
Collapse
Affiliation(s)
- Ming Guo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Allen J Ehrlicher
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Mikkel H Jensen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physiology and Biophysics, Boston University, Boston, MA 02118, USA
| | - Malte Renz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, MA 02118, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer Lippincott-Schwartz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
91
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
92
|
Ali MY, Saif MTA. Substrate Stiffness Mediated Metastasis Like Phenotype of Colon Cancer Cells is Independent of Cell to Gel Adhesion. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0345-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
93
|
Hansen TD, Koepsel JT, Le NN, Nguyen EH, Zorn S, Parlato M, Loveland SG, Schwartz MP, Murphy WL. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types. Biomater Sci 2014; 2:745-756. [PMID: 25386339 PMCID: PMC4224020 DOI: 10.1039/c3bm60278h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.
Collapse
Affiliation(s)
- Tyler D. Hansen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Ngoc Nhi Le
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Stefan Zorn
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew Parlato
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, WI, USA
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
94
|
Jerrell RJ, Parekh A. Cellular traction stresses mediate extracellular matrix degradation by invadopodia. Acta Biomater 2014; 10:1886-96. [PMID: 24412623 DOI: 10.1016/j.actbio.2013.12.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 12/30/2013] [Indexed: 12/20/2022]
Abstract
During tumorigenesis, matrix rigidity can drive oncogenic transformation via altered cellular proliferation and migration. Cells sense extracellular matrix (ECM) mechanical properties with intracellular tensile forces generated by actomyosin contractility. These contractile forces are transmitted to the matrix surface as traction stresses, which mediate mechanical interactions with the ECM. Matrix rigidity has been shown to increase proteolytic ECM degradation by cytoskeletal structures known as invadopodia that are critical for cancer progression, suggesting that cellular contractility promotes invasive behavior. However, both increases and decreases in traction stresses have been associated with metastatic behavior. Therefore, the role of cellular contractility in invasive migration leading to metastasis is unclear. To determine the relationship between cellular traction stresses and invadopodia activity, we characterized the invasive and contractile properties of an aggressive carcinoma cell line utilizing polyacrylamide gels of different rigidities. We found that ECM degradation and traction stresses were linear functions of matrix rigidity. Using calyculin A to augment myosin contractility, we also found that traction stresses were strongly predictive of ECM degradation. Overall, our data suggest that cellular force generation may play an important part in invasion and metastasis by mediating invadopodia activity in response to the mechanical properties of the tumor microenvironment.
Collapse
|
95
|
Pathak A, Kumar S. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr Biol (Camb) 2014; 5:1067-75. [PMID: 23832051 DOI: 10.1039/c3ib40017d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is now well established that tumor cell invasion through tissue is strongly regulated by the microstructural and mechanical properties of the extracellular matrix (ECM). However, it remains unclear how these physical microenvironmental inputs are jointly processed with oncogenic lesions to drive invasion. In this study, we address this open question by combining a microfabricated polyacrylamide channel (μPAC) platform that enables independent control of ECM stiffness and confinement with an isogenically-matched breast tumor progression series in which the oncogenes ErbB2 and 14-3-3ζ are overexpressed independently or in tandem. We find that increasing channel confinement and overexpressing ErbB2 both promote cell migration to a similar degree when other parameters are kept constant. In contrast, 14-3-3ζ overexpression slows migration speed, and does so in a fashion that dwarfs effects of ECM confinement and stiffness. We also find that ECM stiffness dramatically enhances cell motility when combined with ErbB2 overexpression, demonstrating that biophysical cues and cell-intrinsic parameters promote cell invasion in an integrative manner. Morphometric analysis of cells inside the μPAC platform reveals that the rapid cell migration induced by narrow channels and ErbB2 overexpression are both accompanied by increased cell polarization. Disruption of this polarization occurs by pharmacological inhibition of Rac GTPase phenocopies 14-3-3ζ overexpression by reducing cell polarization and slowing migration. By systematically measuring migration speed as a function of matrix stiffness and confinement, we also quantify for the first time the sensitivity of migration speed to microchannel properties and transforming potential. These results demonstrate that oncogenic lesions and ECM biophysical properties can synergistically interact to drive invasive migration, and that both inputs may act through common molecular mechanisms to enhance migration speed.
Collapse
Affiliation(s)
- Amit Pathak
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA
| | | |
Collapse
|
96
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
97
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
98
|
Coughlin MF, Fredberg JJ. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines. Phys Biol 2013; 10:065001. [PMID: 24304722 DOI: 10.1088/1478-3975/10/6/065001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.
Collapse
|
99
|
Abstract
In the past decade, novel materials, probes and tools have enabled fundamental and applied cancer researchers to take a fresh look at the complex problem of tumour invasion and metastasis. These new tools, which include imaging modalities, controlled but complex in vitro culture conditions, and the ability to model and predict complex processes in vivo, represent an integration of traditional with novel engineering approaches; and their potential effect on quantitatively understanding tumour progression and invasion looks promising.
Collapse
Affiliation(s)
- Muhammad H Zaman
- The Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston MA 02215, USA.
| |
Collapse
|
100
|
Xu W, Hu X, Pan W. Tissue engineering concept in the research of the tumor biology. Technol Cancer Res Treat 2013; 13:149-59. [PMID: 23862747 DOI: 10.7785/tcrt.2012.500363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor is a heterogeneous complex, which lives in a three-dimensional environment flush with biopathophysiological and biomechanical signals. This signaling abundant extracellular milieu co-evolving from cell-cell and cell-host interaction guides the development and the generation of the tumor. There has been a recent surge of interest in studying the tumor biology that more closely mirror what happens in living organisms, especially in cancer research. Incorporating cancer cells in the 3D mimicking environment instead of monolayers is reasonable for maintaining in vivo cancer behaviors in spatial and temporal context. However, 3D culture for cancer still presents a challenge for researchers in this field. Tissue engineering, originally aiming at designing the artificial organs, provided a feasible approach to recreate such complex mechanical and biochemical interplay. Aside from reproducing bionic environment, tissue engineering has been routinely introduced into cancer study to build three dimensional structures not only to develop molecular therapeutics, but also to screen for toxic effects of drugs or radiotherapy sensitivity. In this article, we focused on the recent advances of the well-defined tissue-engineering biomaterials in the application in tumor biology. We also discussed the fabrications of the scaffolds from different materials, which might contribute to future cancer research.
Collapse
Affiliation(s)
- Wen Xu
- Gastroenterology Department, The Second Affiliated Hospital of Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, Zhejiang, 310009 China.
| | | | | |
Collapse
|