51
|
Numerical Simulation of Enhancement of Superficial Tumor Laser Hyperthermia with Silicon Nanoparticles. PHOTONICS 2021. [DOI: 10.3390/photonics8120580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biodegradable and low-toxic silicon nanoparticles (SiNPs) have potential in different biomedical applications. Previous experimental studies revealed the efficiency of some types of SiNPs in tumor hyperthermia. To analyse the feasibility of employing SiNPs produced by the laser ablation of silicon nanowire arrays in water and ethanol as agents for laser tumor hyperthermia, we numerically simulated effects of heating a millimeter-size nodal basal-cell carcinoma with embedded nanoparticles by continuous-wave laser radiation at 633 nm. Based on scanning electron microscopy data for the synthesized SiNPs size distributions, we used Mie theory to calculate their optical properties and carried out Monte Carlo simulations of light absorption inside the tumor, with and without the embedded nanoparticles, followed by an evaluation of local temperature increase based on the bioheat transfer equation. Given the same mass concentration, SiNPs obtained by the laser ablation of silicon nanowires in ethanol (eSiNPs) are characterized by smaller absorption and scattering coefficients compared to those synthesized in water (wSiNPs). In contrast, wSiNPs embedded in the tumor provide a lower overall temperature increase than eSiNPs due to the effect of shielding the laser irradiation by the highly absorbing wSiNPs-containing region at the top of the tumor. Effective tumor hyperthermia (temperature increase above 42 °C) can be performed with eSiNPs at nanoparticle mass concentrations of 3 mg/mL and higher, provided that the neighboring healthy tissues remain underheated at the applied irradiation power. The use of a laser beam with the diameter fitting the size of the tumor allows to obtain a higher temperature contrast between the tumor and surrounding normal tissues compared to the case when the beam diameter exceeds the tumor size at the comparable power.
Collapse
|
52
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
53
|
Song F, Kong Y, Shao C, Cheng Y, Lu J, Tao Y, Du J, Wang H. Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater 2021; 136:170-183. [PMID: 34610476 DOI: 10.1016/j.actbio.2021.09.056] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Realizing the potential application of chitosan as an effective biomedical hemostatic agent has become an emerging research hotspot. However, fabricating a flexible chitosan-based hemostatic bio-hydrogel with self-adhesion feature in humid conditions and rapid hemostasis capability remains a challenge. Herein, we reported the development of chitosan-based hydrogels (DCS-PEGSH gels) with typical multilevel pore structures, which were cross-linked by 3-(3,4-dihydroxyphenyl) propionic acid-modified chitosan (DCS) and sebacic acid-terminated polyethylene glycol modified by p-hydroxybenzaldehyde (PEGSH). By precisely regulating the proportion of PEGSH, the fabricated bio-hydrogels displayed favorable cytocompatibility, suitable stretchability (∼780%), and blood absorbability (1300% ± 50%). Moreover, the strong adhesion (∼68.5 kPa) of the assembled bio-hydrogel ensured its firm adherence on pigskin and on bleeding wound in both static and dynamic humid environments without shedding, thus providing a long service life. The fabricated hydrogels exhibited shorter blood clotting time (50 s) and lower blood clotting index (BCI, 41) than the commercial chitosan sponge (288 s, BCI 65). Notably, the amount of blood loss from the liver in mice was reduced by almost 90% as compared to that for the control group. This study paves a solid way for developing a chitosan-based hydrogel with self-adhesive, self-healing, stretchability, biocompatibility, and antibacterial and antioxidant properties through molecular design and structural regulation, which will enable the biomedical application of chitosan in emergency hemostasis, particularly in joints and extremities. STATEMENT OF SIGNIFICANCE: The design and preparation of multifunctional integrated green adhesive bio-hydrogels while avoiding the use of organic solvents and toxic chemical reagents has been an emerging challenge. Herein, a flexible chitosan-based hemostatic bio-hydrogel that integrates multifunctional properties was successfully synthesized. The bio-hydrogel displayed suitable stretchability (780%) and blood absorbability (1300% ± 50%). Moreover, the strong adhesion (68.5 kPa) ensured firm adherence of the assembled hydrogel on pigskin and on the bleeding wound site in both static and dynamic humid environments without shedding, thus providing a long service life. In addition, the designed hydrogel showed good compatibility and antibacterial performance. The dynamic Schiff base endowed the bio-hydrogel with excellent self-healing performance without any external stimuli.
Collapse
|
54
|
Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021; 272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, cancer is one of the most prominent issues related to human health since it causes more than one-tenth of death cases throughout the world. On the other hand, routine therapeutic approaches in cancer suppression such as radiation therapy, chemotherapy, surgery, etc. due to their undesirable therapeutic outputs, including low efficiency in cancer inhibition, non-targeted drug delivery, nonselective distribution, and enormous side effects, have been indicated inefficient potency in cancer therapy or at least its growth inhibition. As a result, the development of novel and practical therapeutic methods such as nanoparticle-based drug delivery systems can be outstandingly beneficial in cancer suppression. Among various nanoparticles used in the delivery of bioactive to the tumor site, chitosan (CS) nanoparticles have received high attention. CS, poly [β-(1-4)-linked-2-amino-2-deoxy-d-glucose], is a natural linear amino polysaccharide derived from chitin which is made of irregularly distributed d-glucosamine and N-acetyl-d-glucosamine units. CS nanoparticles owing to their appropriate aspects, including nanometric size, great drug loading efficacy, ease of manipulation, non-toxicity, excellent availability and biocompatibility, good serum stability, long-term circulation time, suitable pharmacokinetic and pharmacodynamics, non-immunogenicity, and enhanced drug solubility in the human body, have been designated as an efficient candidate for drug delivery systems. They can be involved in both passive (based on the enhanced permeability and retention effect cancer targeting) and active (receptor-mediated or stimuli-responsive cancer targeting) drug delivery systems for potential cancer therapy. This review presents the properties, preparation, modification, and numerous pharmaceutical applications of CS-based drug nanodelivery systems in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
55
|
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021; 910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer (CC) kills countless people every year throughout the globe. It persists as one of the highly lethal diseases to be treated because the overall survival rate for CC is meagre. Early diagnosis and efficient treatments are two of the biggest hurdles in the fight against cancer. In the present work, we will review thriving strategies for CC targeted drug delivery and critically explain the most recent progressions on emerging novel nanotechnology-based drug delivery systems. Nanotechnology-based animal and human clinical trial studies targeting CC are discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics and effectiveness of anticancer drugs have facilitated the powerful targeting of specific agents for CC therapy. This review provides insight into current progress and future opportunities for nanomedicines as potential curative targets for CC treatment. This information could be used as a platform for the future expansion of multi-functional nano constructs for CC's advanced detection and functional drug delivery.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hashim Abbas
- Queens Medical Center, Nottingham University Hospitals, NHS, Nottingham, UK
| |
Collapse
|
56
|
Abstract
Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic drugs, patients often experience side effects and drug resistance. Biopolymers could be used to overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan, chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent. Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application in cancer therapy.
Collapse
|
57
|
Xu S, Tan H, Yang Q, Wang R, Tian C, Ji Y, Zhao P, Xia Q, Wang F. Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45175-45190. [PMID: 34525798 DOI: 10.1021/acsami.1c08409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy is one of the main treatments for cancer; however, it usually causes severe atrophy of immune organs and self-immunity damage to patients. Human lactoferrin (hLF) is a multiple biofunctional protein in regulating the immune response and thus holds great promise to alleviate chemotherapy-caused immunosuppression. However, a sufficient hLF resource and efficient delivery of hLF remain a challenge. Here, we provide a useful strategy to simultaneously solve these two problems. A silk sericin hydrogel system delivering recombinant hLF (SSH-rhLF) was fabricated to alleviate the chemotherapeutic drug-caused side effects by rhLF-carrying silk cocoons, which were cost-effectively produced by a transgenic silkworm strain as the resource. SSH-rhLF with a uniform porous microstructural morphology, a dominant β-sheet internal structure, adjustable concentration and sustainable release of the rhLF, and non-cytotoxicity properties was demonstrated. Interestingly, the sericin hydrogel showed effective protection of the rhLF from degradation in the stomach and small intestine, thus prolonging the bioactivity and bioavailability of rhLF. As a result, the oral administration of SSH-rhLF with a low rhLF dose showed significant therapeutic effects on enhancing the immune organs of cyclophosphamide (CTX)-treated mice by protecting the splenic follicles, promoting the expression of immunoregulatory factors, and recovering the intestinal flora family from CTX-induced imbalance, which were similar to those achieved by oral administration of a high dose of free hLF in the solution form. The results suggest that the strategy of producing rhLF silk cocoons via feeding transgenic silkworms overcomes well the shortage of rhLF resources, improves the bioavailability of oral rhLF, and alleviates the side effects of chemotherapeutic drugs on immune organs. The oral SSH-rhLF will be promising for applications in cancer chemotherapy and immunity enhancement of patients.
Collapse
Affiliation(s)
- Sheng Xu
- Research Centre for Regenerative Medicine, Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Huanhuan Tan
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Qianqian Yang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Riyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Yanting Ji
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
58
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
59
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
60
|
Zhu J, Yang J, Zhao L, Zhao P, Yang J, Zhao J, Miao W. 131I-Labeled Multifunctional Polyethylenimine/Doxorubicin Complexes with pH-Controlled Cellular Uptake Property for Enhanced SPECT Imaging and Chemo/Radiotherapy of Tumors. Int J Nanomedicine 2021; 16:5167-5183. [PMID: 34354350 PMCID: PMC8331118 DOI: 10.2147/ijn.s312238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Smart theranostic nanosystems own a favorable potential to improve internalization within tumor while avoiding nonspecific interaction with normal tissues. However, development of this type of theranostic nanosystems is still a challenge. Methods In this study, we developed the iodine-131 (131I)-labeled multifunctional polyethylenimine (PEI)/doxorubicin (DOX) complexes with pH-controlled cellular uptake property for enhanced single-photon emission computed tomography (SPECT) imaging and chemo/radiotherapy of tumors. Alkoxyphenyl acylsulfonamide (APAS), a typical functional group that could achieve improved cellular uptake of its modified nanoparticles, was utilized to conjugate onto the functional PEI pre-modified with polyethylene glycol (PEG) with terminal groups of monomethyl ether and N-hydroxysuccinimide (mPEG-NHS), PEG with terminal groups of maleimide and succinimidyl valerate (MAL-PEG-SVA) through sulfydryl of APAS and MAL moiety of MAL-PEG-SVA. This was followed by conjugation with 3-(4’-hydroxyphenyl)propionic acid-OSu (HPAO), acetylating leftover amines of PEI, complexing DOX and labeling 131I to generate the theranostic nanosystems. Results The synthesized theranostic nanosystems exhibit favorable water solubility and stability. Every functional PEI can complex approximately 12.4 DOX, which could sustainably release of DOX following a pH-dependent manner. Remarkably, due to the surface modification of APAS, the constructed theranostic nanosystems own the capacity to achieve pH-responsive charge conversion and further lead to improved cellular uptake in cancer cells under slightly acidic condition. Above all, based on the coexistence of DOX and radioactive 131I in the single nanosystem, the synthesized nanohybrid system could afford enhanced SPECT imaging and chemo/radioactive combination therapy of cancer cells in vitro and xenografted tumor model in vivo. Discussion The developed smart nanohybrid system provides a novel strategy to improve the tumor theranostic efficiency and may be applied for different types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Junxing Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Pingping Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
61
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
62
|
Zhang Y, He Z, Yang F, Ye C, Xu X, Wang S, Zhang L, Zou D. Novel PVA-Based Microspheres Co-Loaded with Photothermal Transforming Agent and Chemotherapeutic for Colorectal Cancer Treatment. Pharmaceutics 2021; 13:984. [PMID: 34209684 PMCID: PMC8309159 DOI: 10.3390/pharmaceutics13070984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We previously designed an electrospinning chitosan (CS) nanofiber-based carrier, using polyvinyl alcohol (PVA) as an adjuvant to deliver doxorubicin (DOX) and MoS2 nanosheets for postoperative tumor re-occurrence inhibition. However, owing to that the nanofibrous mat is un-injectable, this composite nanofiber is far from being clinically applicable. MATERIALS AND METHODS Via modulating the electrospray parameters, polyvinyl alcohol (PVA) beads string doped with DOX and MoS2 (PVA/MoS2/DOX microspheres) were prepared, which were further crosslinked with glutaraldehyde to obtain the water-stability. RESULTS Under the 808-nm laser irradiation, MoS2 nanosheets rendered the prepared PVA/MoS2/DOX microspheres an excellent light-to-heat conversion performance with η of 23.2%. Besides, the heat generated by near-infrared laser irradiation can improve the effect of chemotherapy by promoting the release rate of DOX. HT29 cell and tumor-bearing nude mice were used to systematically study the combined tumor treatment efficiency of composite nanospheres. CONCLUSION PVA/MoS2/DOX nanospheres have excellent photothermal effect and chemotherapy effect, which can completely suppress the tumor recurrence. Therefore, the PVA/MoS2/DOX nanospheres are anticipated to find potential applications in the treatment of local colorectal cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai 200025, China;
| | - Zirui He
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai 200025, China;
| | - Fan Yang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China; (F.Y.); (C.Y.); (X.X.); (S.W.)
| | - Changqing Ye
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China; (F.Y.); (C.Y.); (X.X.); (S.W.)
| | - Xia Xu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China; (F.Y.); (C.Y.); (X.X.); (S.W.)
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China; (F.Y.); (C.Y.); (X.X.); (S.W.)
| | - Ling Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai 200025, China;
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai 200025, China;
| |
Collapse
|
63
|
Hani U, Honnavalli YK, Begum MY, Yasmin S, Osmani RAM, Ansari MY. Colorectal cancer: A comprehensive review based on the novel drug delivery systems approach and its management. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Xiong Z, Wang Y, Zhu W, Ouyang Z, Zhu Y, Shen M, Xia J, Shi X. A Dual-Responsive Platform Based on Antifouling Dendrimer-CuS Nanohybrids for Enhanced Tumor Delivery and Combination Therapy. SMALL METHODS 2021; 5:e2100204. [PMID: 34927910 DOI: 10.1002/smtd.202100204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 06/14/2023]
Abstract
Design of stimuli-responsive nanomedicine with enhanced tumor delivery for combination therapy still remains a great challenge. Here, a unique design of an antifouling-dendrimer-based nanoplatform with dual pH- and redox-responsiveness is reported to meet this challenge. First, generation 5 (G5) poly(amidoamine) dendrimers are modified with targeting ligand cyclic arginine-glycine-aspartic acid (RGD) peptide through a polyethylene glycol (PEG) spacer and zwitterion of thiolated N,N-dimethyl-cysteamine-carboxybetaine (CBT) via pH-responsive benzoicimine bond to form G5.NH2 PEGRGDCBT conjugates. Then, doxorubicin (DOX) is linked to the functional G5 dendrimers through a redox-responsive disulfide bond, followed by entrapment of CuS nanoparticles within the dendrimers. The created functional dendrimer-CuS nanohybrids with a CuS core size of 3.6 nm display a good antifouling property and excellent photothermal conversion property in the second near-infrared window. In addition, the neutral surface charge of the nanohybrids is able to be switched to be positive in the tumor region with slightly acidic microenvironment due to the break of benzoicimine bond to promote their intracellular uptake, while the redox-sensitive disulfide bond affords the fast release of the conjugated DOX within tumor cells to exert its therapeutic effect. Taken together with the CuS cores, the created dendrimer-CuS nanohybrids enable enhanced combination chemotherapy and photothermal therapy of tumors.
Collapse
Affiliation(s)
- Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, P. R. China
| | - Wei Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
65
|
Yang J, Shen M, Luo Y, Wu T, Chen X, Wang Y, Xie J. Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo-photothermal therapy of breast cancer cells. Int J Pharm 2021; 600:120510. [PMID: 33766636 DOI: 10.1016/j.ijpharm.2021.120510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
Chemo-photothermal therapy (chemo-PTT) mediated by nanomaterials holds a great potential for cancer treatment. However, the tumor uptake of the systemically administered nanomaterials was recently found to be below 1%. To address this limitation, the development of injectable tridimensional polymeric matrices capable of delivering nanomaterials directly into the tumor site appears to be a promising approach. In this work, an injectable in situ forming ionotropically crosslinked chitosan-based hydrogel co-incorporating IR780 loaded nanoparticles (IR/BPN) and Doxorubicin (DOX) loaded nanoparticles (DOX/TPN) was developed for application in breast cancer chemo-PTT. The produced hydrogels (IR/BPN@Gel and IR/BPN+DOX/TPN@Gel) displayed suitable physicochemical properties and produced a temperature increase of about 9.1 °C upon exposure to Near Infrared (NIR) light. As importantly, the NIR-light exposure also increased the release of DOX from the hydrogel by 1.7-times. In the in vitro studies, the combination of IR/BPN@Gel with NIR light (photothermal therapy) led to a reduction in the viability of breast cancer cells to 35%. On the other hand, the non-irradiated IR/BPN+DOX/TPN@Gel (chemotherapy) only diminished cancer cells' viability to 85%. In contrast, the combined action of IR/BPN+DOX/TPN@Gel and NIR light reduced cancer cells' viability to about 9%, demonstrating its potential for breast cancer chemo-PTT.
Collapse
|
67
|
Zhao J, Wu H, Zhao J, Yin Y, Zhang Z, Wang S, Lin K. 2D LDH-MoS 2 clay nanosheets: synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy. J Nanobiotechnology 2021; 19:36. [PMID: 33536031 PMCID: PMC7860036 DOI: 10.1186/s12951-020-00763-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/26/2020] [Indexed: 01/14/2023] Open
Abstract
Owing to the hypoxia status of the tumor, the reactive oxygen species (ROS) production during photodynamic therapy (PDT) of the tumor is less efficient. Herein, a facile method which involves the synthesis of Mg-Mn-Al layered double hydroxides (LDH) clay with MoS2 doping in the surface and anionic layer space of LDH was presented, to integrate the photo-thermal effect of MoS2 and imaging and catalytic functions of Mg-Mn-Al LDH. The designed LDH-MoS2 (LMM) clay composite was further surface-coated with bovine serum albumin (BSA) to maintain the colloidal stability of LMM in physiological environment. A photosensitizer, chlorin e6 (Ce6), was absorbed at the surface and anionic layer space of LMM@BSA. In the LMM formulation, the magnetic resonance imaging of Mg-Mn-Al LDH was enhanced thanks to the reduced and acid microenvironment of the tumor. Notably, the ROS production and PDT efficiency of Ce6 were significantly improved, because LMM@BSA could catalyze the decomposing of the overexpressed H2O2 in tumors to produce oxygen. The biocompatible LMM@BSA that played the synergism with tumor microenvironment is a promising candidate for the effective treatment of cancer.
Collapse
Affiliation(s)
- Jiayan Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, People's Republic of China
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Hang Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200433, People's Republic of China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yichen Yin
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Zhilun Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Kun Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
68
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
69
|
Ge YW, Liu XL, Yu DG, Zhu ZA, Ke QF, Mao YQ, Guo YP, Zhang JW. Graphene-modified CePO4 nanorods effectively treat breast cancer-induced bone metastases and regulate macrophage polarization to improve osteo-inductive ability. J Nanobiotechnology 2021; 19:11. [PMID: 33413447 PMCID: PMC7792230 DOI: 10.1186/s12951-020-00753-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer bone metastasis has become one of the most common complications; however, it may cause cancer recurrence and bone nonunion, as well as local bone defects. METHODS Herein, In vitro, we verified the effect of bioscaffold materials on cell proliferation and apoptosis through a CCK8 trial, staining of live/dead cells, and flow cytometry. We used immunofluorescence technology and flow cytometry to verify whether bioscaffold materials regulate macrophage polarization, and we used ALP staining, alizarin red staining and PCR to verify whether bioscaffold material promotes bone regeneration. In vivo, we once again studied the effect of bioscaffold materials on tumors by measuring tumor volume in mice, Tunel staining, and caspase-3 immunofluorescence. We also constructed a mouse skull ultimate defect model to verify the effect on bone regeneration. RESULTS Graphene oxide (GO) nanoparticles, hydrated CePO4 nanorods and bioactive chitosan (CS) are combined to form a bioactive multifunctional CePO4/CS/GO scaffold, with characteristics such as photothermal therapy to kill tumors, macrophage polarization to promote blood vessel formation, and induction of bone formation. CePO4/CS/GO scaffold activates the caspase-3 proteasein local tumor cells, thereby lysing the DNA between nucleosomes and causing apoptosis. On the one hand, the as-released Ce3+ ions promote M2 polarization of macrophages, which secretes vascular endothelial growth factor (VEGF) and Arginase-1 (Arg-1), which promotes angiogenesis. On the other hand, the as-released Ce3+ ions also activated the BMP-2/Smad signaling pathway which facilitated bone tissue regeneration. CONCLUSION The multifunctional CePO4/CS/GO scaffolds may become a promising platform for therapy of breast cancer bone metastases.
Collapse
Affiliation(s)
- Yu-Wei Ge
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xiao-Liang Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - De-Gang Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Yuan-Qing Mao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Jing-Wei Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
70
|
Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021; 50:1111-1137. [DOI: 10.1039/d0cs00664e] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent development of second near-infrared photothermal combinational nanotheranostics for cancer, infectious diseases and regenerative medicine.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
| |
Collapse
|
71
|
Pandit AH, Mazumdar N, Imtiyaz K, Alam Rizvi MM, Ahmad S. Self-Healing and Injectable Hydrogels for Anticancer Drug Delivery: A Study with Multialdehyde Gum Arabic and Succinic Anhydride Chitosan. ACS APPLIED BIO MATERIALS 2020; 3:8460-8470. [PMID: 35019617 DOI: 10.1021/acsabm.0c00835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gum arabic with multialdehyde groups (GAMA) was synthesized and utilized as a naturally derived macromolecular and nontoxic cross-linker to develop biocompatible and smart succinic anhydride-modified chitosan (SCS)-based injectable hydrogels for the first time. Aqueous solutions of GAMA and SCS were mixed at 37 °C to obtain hydrogels through pH-responsive, dynamic, and biodegradable Schiff base linkages. The effect of concentration of GAMA on hydrogel stiffness, swelling, morphology, and drug release behavior was investigated. These hydrogels exhibited outstanding self-healing and mechanical properties. Nanocurcumin as a chemotherapeutic agent was synthesized and loaded into these hydrogels for release studies carried out at pH 7.4 and 5.5. MTT assay revealed that these hydrogels are nontoxic to human embryonic kidney cell line (HEK-293). Loaded hydrogels demonstrated significant cytotoxicity against breast cancer cell line (MCF-7). Thus, the present strategy may find promising application for controlled delivery of anticancer drugs for treating locally accessible cancers.
Collapse
Affiliation(s)
- Ashiq Hussain Pandit
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasreen Mazumdar
- Material (Polymer) Research laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
72
|
Wang H, Yang J, Cao P, Guo N, Li Y, Zhao Y, Zhou S, Ouyang R, Miao Y. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
73
|
Li J, Luo Y, Li B, Xia Y, Wang H, Fu C. Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front Bioeng Biotechnol 2020; 8:612950. [PMID: 33330440 PMCID: PMC7734317 DOI: 10.3389/fbioe.2020.612950] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has become an emerging strategy recently producing durable immune responses in patients with varieties of malignant tumors. However, the main limitation for the broad application of immunotherapies still to reduce side effects by controlling and regulating the immune system. In order to improve both efficacy and safety, biomaterials have been applied to immunotherapies for the specific modulation of immune cells and the immunosuppressive tumor microenvironment. Recently, researchers have constantly developed biomaterials with new structures, properties and functions. This review provides the most recent advances in the delivery strategies of immunotherapies based on localized biomaterials, focusing on the implantable and injectable biomaterial scaffolds. Finally, the challenges and prospects of applying implantable and injectable biomaterial scaffolds in the development of future cancer immunotherapies are discussed.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
74
|
Florian PE, Icriverzi M, Ninciuleanu CM, Alexandrescu E, Trica B, Preda S, Ianchis R, Roseanu A. Salecan-Clay Based Polymer Nanocomposites for Chemotherapeutic Drug Delivery Systems; Characterization and In Vitro Biocompatibility Studies. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5389. [PMID: 33260907 PMCID: PMC7730270 DOI: 10.3390/ma13235389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Salecan is a microbial polysaccharide suitable to obtain hydrogel for biomedical applications due to the excellent hydrophilicity and biocompatibility properties. In this work, Salecan of different concentrations was introduced into polymethacrylic acid (PMAA) in the presence of clay to form novel semi synthetic hydrogel nanocomposites systems and loaded afterwards with doxorubicin (DOX). The physical-chemical characteristics of the nanocomposites systems and their effect on the viability, and morphology of MDBK (Madin-Darby bovine kidney), HT-29 human colorectal adenocarcinoma and Colo 205 human colon adenocarcinoma cell lines were investigated. DOX release from the nanocomposite systems, cell up-take and subsequent effect on cell proliferation was also analyzed. It was found that Salecan concentration determined the swelling behavior, structural parameters and morphological features of the nanocomposite systems. The hydrogen bonds strongly influenced the formation of PMAA-Salecan-clay systems, each component bringing its own contribution, thus demonstrating the achievement of an advanced crosslinked network and a more compacted hydrogel nanocomposite morphology. All the synthesized nanocomposites had negligible toxicity to normal MDBK cells and chemoresistent HT-29 cell line, whereas in the case of Colo 205 cells a decrease by 40% of the cell viability was obtained for the sample containing the highest amount of Salecan. This effect was correlated with the lowest pore size distribution leading to highest available specific surface area and entrapped amount of DOX which was further released from the nanocomposite sample. Corroborating all the data it can be suggested that the synthesized nanocomposites with Salecan and clay could be good candidates as vehicles for chemotherapeutic agents.
Collapse
Affiliation(s)
- Paula Ecaterina Florian
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (P.E.F.); (M.I.)
| | - Madalina Icriverzi
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (P.E.F.); (M.I.)
| | - Claudia Mihaela Ninciuleanu
- National R&D Institute for Chemistry and Petrochemistry ICECHIM—Bucharest, Splaiul Independentei 202, 6th District, P.O. Box 35/174, 0600021 Bucharest, Romania; (C.M.N.); (E.A.); (B.T.)
| | - Elvira Alexandrescu
- National R&D Institute for Chemistry and Petrochemistry ICECHIM—Bucharest, Splaiul Independentei 202, 6th District, P.O. Box 35/174, 0600021 Bucharest, Romania; (C.M.N.); (E.A.); (B.T.)
| | - Bogdan Trica
- National R&D Institute for Chemistry and Petrochemistry ICECHIM—Bucharest, Splaiul Independentei 202, 6th District, P.O. Box 35/174, 0600021 Bucharest, Romania; (C.M.N.); (E.A.); (B.T.)
| | - Silviu Preda
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 6th District, P.O. Box 194, 060021 Bucharest, Romania;
| | - Raluca Ianchis
- National R&D Institute for Chemistry and Petrochemistry ICECHIM—Bucharest, Splaiul Independentei 202, 6th District, P.O. Box 35/174, 0600021 Bucharest, Romania; (C.M.N.); (E.A.); (B.T.)
| | - Anca Roseanu
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (P.E.F.); (M.I.)
| |
Collapse
|
75
|
He H, Xie C, Lu X. Injectable hydrogels for anti‐tumour treatment: a review. BIOSURFACE AND BIOTRIBOLOGY 2020. [DOI: 10.1049/bsbt.2020.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Huan He
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| | - Xiong Lu
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| |
Collapse
|
76
|
Tan B, Huang L, Wu Y, Liao J. Advances and trends of hydrogel therapy platform in localized tumor treatment: A review. J Biomed Mater Res A 2020; 109:404-425. [PMID: 32681742 DOI: 10.1002/jbm.a.37062] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/04/2023]
Abstract
Due to limitations of treatment and the stubbornness of infiltrative tumor cells, the outcome of conventional antitumor treatment is often compromised by a variety of factors, including severe side effects, unexpected recurrence, and massive tissue loss during the treatment. Hydrogel-based therapy is becoming a promising option of cancer treatment, because of its controllability, biocompatibility, high drug loading, prolonged drug release, and specific stimuli-sensitivity. Hydrogel-based therapy has good malleability and can reach some areas that cannot be easily touched by surgeons. Furthermore, hydrogel can be used not only as a carrier for tumor treatment agents, but also as a scaffold for tissue repair. In this review, we presented the latest researches in hydrogel applications of localized tumor therapy and highlighted the recent progress of hydrogel-based therapy in preventing postoperative tumor recurrence and improving tissue repair, thus proposing a new trend of hydrogel-based technology in localized tumor therapy. And this review aims to provide a novel reference and inspire thoughts for a more accurate and individualized cancer treatment.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Ahsan A, Farooq MA, Parveen A. Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS OMEGA 2020; 5:20450-20460. [PMID: 32832798 PMCID: PMC7439394 DOI: 10.1021/acsomega.0c02548] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 05/31/2023]
Abstract
A thermosensitive, physically cross-linked injectable hydrogel was formulated for the effective and sustained delivery of disulfiram (DSF) to the cancer cells as there is no hydrogel formulation available until now for the delivery of DSF. As we know, hydrogels have an advantage over other drug delivery systems because of their unique properties, so we proposed to formulate an injectable hydrogel system for the sustained delivery of an anticancer drug (DSF) to cancer cells. To investigate the surface morphology, a scanning electron microscope study was carried out, and for thermal stability of hydrogels, TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry) were performed. The rheological behavior of hydrogels was evaluated with the increasing temperature and time. These developed hydrogels possessing excellent biocompatibility could be injected at room temperature following rapid gel formation at body temperature. The swelling index and in vitro drug release studies were performed at different pH (6.8 and 7.4) and temperatures (25 and 37 °C). The cell viability of the blank hydrogel, free DSF solution, and Ch/DSF (chitosan/DSF)-loaded hydrogel was studied by MTT assay on SMMC-7721 cells for 24 and 48 h, which exhibited higher cytotoxicity in a dose-dependent manner in contrast to the free DSF solution. Moreover, the cellular uptake of DSF-loaded hydrogels was observed stronger as compared with free DSF. Hence, chitosan-based hydrogels loaded with DSF possessing exceptional properties can be used as a novel injectable anticancer drug for the sustained delivery of DSF for long-term cancer therapy.
Collapse
Affiliation(s)
- Anam Ahsan
- College
of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Muhammad Asim Farooq
- Department
of Pharmaceutics, School of Pharmacy, China
Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Amna Parveen
- College
of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic
of Korea
| |
Collapse
|
78
|
|
79
|
Hwang J, Jin JO. Attachable Hydrogel Containing Indocyanine Green for Selective Photothermal Therapy against Melanoma. Biomolecules 2020; 10:biom10081124. [PMID: 32751399 PMCID: PMC7465476 DOI: 10.3390/biom10081124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer because it spreads easily to other tissues, thereby decreasing the efficiency of its treatment via chemo-, radio-, and surgical therapies. We suggest the application of an attachable hydrogel for the treatment of melanoma whereby the size and amount of incorporated indocyanine green (ICG) for photothermal therapy (PTT) can be controlled. An attachable hydrogel (poly(acrylamide-co-diallyldimethylammonium chloride); PAD) that incorporates ICG as a near-infrared (NIR) absorber was fabricated using a biocompatible polymer. The temperature of PAD-ICG increases under 808 nm laser irradiation. The hydrogel protects the ICG against decomposition; consequently, PAD-ICG can be reused for PTT. The attachment of PAD-ICG to an area with melanoma in mice, with irradiation using a NIR laser, successfully eliminated melanoma. Thus, the data suggest that PAD-ICG is a smart material that could be used for selective target therapy against melanoma in humans.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China;
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China;
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-3033
| |
Collapse
|
80
|
Zhan J, Wu Y, Wang H, Liu J, Ma Q, Xiao K, Li Z, Li J, Luo F, Tan H. An injectable hydrogel with pH-sensitive and self-healing properties based on 4armPEGDA and N-carboxyethyl chitosan for local treatment of hepatocellular carcinoma. Int J Biol Macromol 2020; 163:1208-1222. [PMID: 32645496 DOI: 10.1016/j.ijbiomac.2020.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels with pH-sensitive and self-healing properties have great application potential in the field of anti-cancer drug carriers. In this work, an injectable hydrogel is prepared using 4armPEG-benzaldehyde (4armPEGDA) and N-carboxyethyl chitosan (CEC) as a new drug carrier. The gelation time, equilibrium swelling rate, degradation time, and dynamic modulus of the injectable hydrogels can be adjusted by merely changing the concentration of 4armPEGDA. The volume of the hydrogel shrinks at pH 5.6 and expands at pH 7.4, which helps to control the release of anti-cancer drug. At pH 5.6, the hydrogels show a fast and substantial Dox release effect, which is five times higher than that at pH 7.4. In vitro cumulative drug release of all the hydrogels reached equilibrium on about the fourth day, and the hydrogel is completely degraded within five days, which contributes to the Dox-loaded hydrogel to further release the remaining Dox. Moreover, the Dox-loaded hydrogel shows a strong inhibitory effect on the growth of human hepatocellular carcinoma cells (HepG2). Finally, the anti-tumor model experiment in vivo demonstrated that the Dox-loaded hydrogel can significantly inhibit tumor growth within five days. Therefore, such injectable hydrogels are excellent carriers for the potential treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jianghao Zhan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Haihuan Wang
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kecen Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
81
|
Pang X, Liang S, Wang T, Yu S, Yang R, Hou T, Liu Y, He C, Zhang N. Engineering Thermo-pH Dual Responsive Hydrogel for Enhanced Tumor Accumulation, Penetration, and Chemo-Protein Combination Therapy. Int J Nanomedicine 2020; 15:4739-4752. [PMID: 32753862 PMCID: PMC7342477 DOI: 10.2147/ijn.s253990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/01/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose Combined chemotherapeutic drug and protein drug has been a widely employed strategy for tumor treatment. To realize both tumor accumulation and deep tumor penetration for drugs with different pharmacokinetics, we propose a structure-transformable, thermo-pH dual responsive co-delivery system to co-load granzyme B/docetaxel (GrB/DTX). Methods Thermo-sensitive hydrogels based on diblock copolymers (mPEG-b-PELG) were synthesized through ring opening polymerization. GrB/DTX mini micelles (GDM) was developed by co-loading these two drugs in pH-sensitive mini micelles, and the GDM-incorporated thermo-sensitive hydrogel (GDMH) was constructed. The thermo-induced gelation behavior of diblock copolymers and the physiochemical properties of GDMH were characterized. GDMH degradation and deep tumor penetration of released mini micelles were confirmed. The pH-sensitive disassembly and lysosomal escape abilities of released mini micelles were evaluated. In vitro cytotoxicity was studied using MTT assays and the in vivo antitumor efficacy study was evaluated in B16-bearing C57BL/6 mice. Results GDMH was gelatinized at body temperature and can be degraded by proteinase to release mini micelles. The mini micelles incorporated in GDMH can achieve deep tumor penetration and escape from lysosomes to release GrB and DTX. MTT results showed that maximum synergistic antitumor efficacy of GrB and DTX was observed at mass ratio of 1:100. Our in vivo antitumor efficacy study showed that GDMH inhibited tumor growth in the subcutaneous tumor model and in the post-surgical recurrence model. Conclusion The smart-designed transformable GDMH can facilitate tumor accumulation, deep tumor penetration, and rapid drug release to achieve synergistic chemo-protein therapy.
Collapse
Affiliation(s)
- Xiuping Pang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Rui Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Teng Hou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| |
Collapse
|
82
|
Guo B, Zhao J, Zhang Z, An X, Huang M, Wang S. Intelligent nanoenzyme for T1-weighted MRI guided theranostic applications. CHEMICAL ENGINEERING JOURNAL 2020; 391:123609. [DOI: 10.1016/j.cej.2019.123609] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
83
|
Ji D, Wang Q, Zhao Q, Tong H, Yu M, Wang M, Lu T, Jiang C. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J Nanobiotechnology 2020; 18:86. [PMID: 32513194 PMCID: PMC7281922 DOI: 10.1186/s12951-020-00645-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) were activated and secreted excessive amounts of extracellular matrix (ECM) proteins during pathogenetic progress of liver fibrosis. Germacrone (GMO) and miR-29b can play an important role in inhibiting growth of HSCs and production of type I collagen. GMO and miR-29b were co-encapsulated into nanoparticles (NPs) based on poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA). Then, NPs were modified with cyclic RGD peptides (cRGDfK). cRGDfK is an effective ligand to bind integrin αvβ3 and increase the targeting ability for fibrotic liver. GMO- and miR-29b-loaded NPs exhibited great cytotoxicity to activated HSCs and significantly inhibited production of type I collagen. Liver fibrosis model of mice was induced by administration of carbon tetrachloride. Great targeting ability was achieved in liver fibrotic mice treated with cRGD-modified NPs. Significant ant-fibrotic effects have been presented based on hematoxylin and eosin (H&E), Masson and Sirius Red staining results of liver tissues collected from mice treated with drug-loaded NPs. All these results indicate GMO- and miR-29b-loaded cRGD-modified NPs have the potential for clinical use to treat liver fibrosis.
Collapse
Affiliation(s)
- De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiaohan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.,Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, 325035, China
| | - Huangjin Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Mengting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chengxi Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China. .,Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, 325035, China.
| |
Collapse
|
84
|
Luo K, Zhao J, Jia C, Chen Y, Zhang Z, Zhang J, Huang M, Wang S. Integration of Fe 3O 4 with Bi 2S 3 for Multi-Modality Tumor Theranostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22650-22660. [PMID: 32330380 DOI: 10.1021/acsami.0c05088] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The combination of reactive oxygen species (ROS)-induced chemodynamic therapy (CDT) and photothermal therapy (PTT) holds a promising application prospect for their superb anticancer efficiency. Herein, we created a novel Fe3O4@polydopamine (PDA)@bovine serum albumin (BSA)-Bi2S3 composite as a theranostic agent, by chemically linking the Fe3O4@PDA with BSA-Bi2S3 via the amidation between the carboxyl groups of BSA and the amino groups of PDA. In this formulation, the Fe3O4 NPs could not only work as a mimetic peroxidase to trigger Fenton reactions of the innate H2O2 in the tumor and generate highly cytotoxic hydroxyl radicals (•OH) to induce tumor apoptosis but also serve as the magnetic resonance imaging (MRI) contrast agent to afford the precise cancer diagnosis. Meanwhile, the PDA could prevent the oxidization of Fe3O4, thus supporting the long-term Fenton reactions and the tumor apoptosis in the tumor. The Bi2S3 component exhibits excellent photothermal transducing performance and computed tomography (CT) imaging capacity. In addition, the PDA and Bi2S3 endow the Fe3O4@PDA@BSA-Bi2S3 composite with an excellent photothermal transforming ability which could lead to tumor hyperthermia. All of these merits play the synergism with the tumor microenvironment and qualify the Fe3O4@PDA@BSA-Bi2S3 NPs for a competent agent in the MRI/CT-monitored enhanced PTT/CDT synergistic therapy. Findings in this research will evoke new interests in future cancer therapeutic strategies based on biocompatible nanomaterials.
Collapse
Affiliation(s)
- Keyi Luo
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Chengzheng Jia
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Yongkang Chen
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Zhilun Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Jing Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| |
Collapse
|
85
|
Wang S, Yang X, Zhou L, Li J, Chen H. 2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. J Mater Chem B 2020; 8:2974-2989. [PMID: 32207478 DOI: 10.1039/c9tb02845e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Much attention has been paid to the fabrication of two-dimensional (2D) nanomaterials as therapeutics for nanomedicine in recent years owing to their special physicochemical characteristics. These fascinating physicochemical properties alongside their diverse biomedical applications drive us to give a review of the present endeavors of interest in these 2D nanomaterials. In this review, the up-to-date research advances of the preparation, biocompatibility and biodegradation behaviors of 2D nanomaterials including transition-metal dichalcogenides (TMDs), transition metal oxides (TMOs), black phosphorus (BP) nanosheets, metal-organic frameworks (MOFs), 2D boron (B), boron nitride (BN), layered double hydroxides (LDHs), 2D nanoscale metals, and other kinds of 2D nanomaterials are introduced. The in vitro and in vivo bio-compatibility, including their degradation assessments from the aspects of a redox reaction, enzymes, pH, and the cell environment, etc., of the above categories of 2D nanomaterials are discussed in detail. Finally, the prospects and challenges of the development of 2D nanomaterials aiming for biomedical applications are summarized.
Collapse
Affiliation(s)
- Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | | | | | | | | |
Collapse
|
86
|
Abedi M, Abolmaali SS, Abedanzadeh M, Farjadian F, Mohammadi Samani S, Tamaddon AM. Core-Shell Imidazoline-Functionalized Mesoporous Silica Superparamagnetic Hybrid Nanoparticles as a Potential Theranostic Agent for Controlled Delivery of Platinum(II) Compound. Int J Nanomedicine 2020; 15:2617-2631. [PMID: 32368044 PMCID: PMC7182466 DOI: 10.2147/ijn.s245135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction As widely used chemotherapeutic agents, platinum compounds have several therapeutic challenges, such as drug resistance and adverse effects. Theranostic systems, macromolecular or colloidal therapeutics with companion diagnostics, not only address controlled drug delivery but also enable real-time monitoring of tumor sites. Methods Synthesis of magnetic mesoporous silica nanoparticles (MMSNs) was performed for dual magnetic resonance imaging and drug delivery. MMSN surfaces were modified by imidazoline groups (MMSN-Imi) for cisplatin (Cis-Pt) conjugation via free N-termini to achieve well-controlled drug-release kinetics. Cis-Pt adsorption isotherms and drug-release profile at pH 5 and 7.4 were investigated using inductively coupled plasma atomic emission spectroscopy. Results MMSN-Imi showed a specific surface area of 517.6 m2 g−1, mean pore diameter of 3.26 nm, and saturated magnetization of 53.63 emu/g. A relatively high r2/r1 relaxivity value was obtained for MMSN-Imi. The nanoparticles provided high Cis-Pt loading with acceptable loading capacity (~30% w:w). Sustained release of Cis-Pt under acidic conditions led to specific inhibitory effects on the growth of human epithelial ovarian carcinoma cells, determined using MTT assays. Dual acridine orange–propidium iodide staining was investigated, confirming induction of apoptosis and necrotic cell death. Conclusion MMSN-Imi exhibited potential for applications in cancer chemotherapy and combined imaging.
Collapse
Affiliation(s)
- Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mozhgan Abedanzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Fatemeh Farjadian
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Soliman Mohammadi Samani
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
87
|
Wang J, Wu X, Shen P, Wang J, Shen Y, Shen Y, Webster TJ, Deng J. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Int J Nanomedicine 2020; 15:1903-1914. [PMID: 32256067 PMCID: PMC7094149 DOI: 10.2147/ijn.s239751] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cancer is one of the major causes of death and is difficult to cure using existing clinical therapies. Clinical cancer treatments [such as surgery, chemotherapy (CHT), radiotherapy (RT) and immunotherapy (IT)] are widely used but they have limited therapeutic effects and unavoidable side effects. Recently, the development of novel nanomaterials offers a platform for combinational therapy (meaning a combination of two or more therapeutic agents) which is a promising approach for cancer therapy. Recent studies have demonstrated several types of nanomaterials suitable for photothermal therapy (PTT) based on a near-infrared (NIR) light-responsive system. PTT possesses favorable properties such as being low in cost, and having high temporospatial control with minimal invasiveness. However, short NIR light penetration depth limits its functions. METHODS In this review, due to their promise, we focus on inorganic nanomaterials [such as hollow mesoporous silica nanoparticles (HMSNs), tungsten sulfide quantum dots (WS2QDs), and gold nanorods (AuNRs)] combining PTT with CHT, RT or IT in one treatment, aiming to provide a comprehensive understanding of PTT-based combinational cancer therapy. RESULTS This review found much evidence for the use of inorganic nanoparticles for PTT-based combinational cancer therapy. CONCLUSION Under synergistic effects, inorganic nanomaterial-based combinational treatments exhibit enhanced therapeutic effects compared to PTT, CHT, RT, IT or PDT alone and should be further investigated in the cancer field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xia Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Jun Wang
- Department of General Surgery, The Fifth People’s Hospital of Wujiang, Suzhou, People’s Republic of China
| | - Yidan Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| |
Collapse
|
88
|
Zhang J, An X, Zheng Y, Chen Y, Wu C, Wang S. Injectable Ovalbumin-Based Composite Implant for Photothermal Tumor Therapy. Chembiochem 2020; 21:865-873. [PMID: 31613042 DOI: 10.1002/cbic.201900556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Polymeric hydrogels with three-dimensional network structures have found tremendous applications in biomedicine. Herein, we report the synthesis of a multifunctional implant based on ovalbumin (OVA) as a carrier capable of synergistically delivering a photothermal transducing agent (polydopamine, PDA) to tumors. The formation of PDA was achieved by utilizing the basicity of OVA, whereas the formation of the hydrogel implant was achieved through the in vitro/in vivo near-infrared (NIR) laser-induced hyperthermia of PDA. The as-prepared PDA@OVA implant exhibits high photothermal conversion efficiency (38.7 %). Once implanted in vivo, the OVA-based implant shows great versatility in the treatment of malignant tumors. Furthermore, a chemotherapeutic (doxorubicin, DOX) and a contrast agent (iohexol), dispersed in the OVA solution in advance, can also be firmly entrapped in the hydrogel along with the hydrogel formation. It is anticipated that the multifunctional OVA-based implant, not showing any obvious toxicity to healthy tissue, could be a promising system for synergistic cancer treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Xiao An
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China
| | - Yuting Zheng
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Yongkang Chen
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Chenyao Wu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P. R. China
| |
Collapse
|
89
|
Li W, Hu J, Wang J, Tang W, Yang W, Liu Y, Li R, Liu H. Polydopamine‐mediated polypyrrole/doxorubicin nanocomplex for chemotherapy‐enhanced photothermal therapy in both NIR‐I and NIR‐II biowindows against tumor cells. J Appl Polym Sci 2020. [DOI: 10.1002/app.49239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenchao Li
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Jie Hu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Jingjing Wang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Wei Tang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Wenting Yang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Yanqing Liu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Rui Li
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Hui Liu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| |
Collapse
|
90
|
Wei Y, Liu S, Pan C, Yang Z, Liu Y, Yong J, Quan L. Molecular Antenna-Sensitized Upconversion Nanoparticle for Temperature Monitored Precision Photothermal Therapy. Int J Nanomedicine 2020; 15:1409-1420. [PMID: 32184595 PMCID: PMC7060035 DOI: 10.2147/ijn.s236371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background Photothermal therapy with accurate and real-time temperature detection is desired in clinic. Upconversion nanocrystals (UCNs) are candidate materials for simultaneous temperature detection and photothermal agents carrying. However, the weak luminescence and multiple laser excitations of UCNs limit their application in thermal therapy. Materials and Methods NaYF4:Yb3+,Er3+,Nd3+, PL-PEG-NH2, IR-806 and folic acid are selected as structural components. A nanoprobe (NP) integrated with efficient photothermal conversion and sensitive temperature detection capabilities is synthesized for precise photothermal therapy. The probes are based on near-infrared upconversion nanocrystals doped with Yb, Er and Nd ions, which can be excited by 808 nm light. IR-806 dye molecules are modified on the surface as molecular antennas to strongly absorb near-infrared photons for energy transfer and conversion. Results The results show that under an 808 nm laser irradiation upconversion luminescence of the nanocrystals is enhanced based on both the Nd ion absorption and the FRET energy transfer of IR-806. The luminescence ratio at 520 and 545 nm is calculated to accurately monitor the temperature of the nanoparticles. The temperature of the nanoprobes increases significantly through energy conversion of the molecular antennas. The nanoparticles are found successfully distributed to tumor cells and tumor tissue due to the modification of the biocompatible molecules on the surface. Tumor cells can be killed efficiently based on the photothermal effect of the NPs. Under the laser irradiation, temperature at mouse tumor site increases significantly, tissue necrosis and tumor cell death can be observed. Conclusion Precision photothermal therapy can thus be achieved by highly efficient near-infrared light absorption and accurate temperature monitoring, making it promising for tumor treatment, as well as the biological microzone temperature detection.
Collapse
Affiliation(s)
- Yanchun Wei
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Changjiang Pan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Zhongmei Yang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Ying Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Jianfang Yong
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Li Quan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| |
Collapse
|
91
|
Transparent chitosan based nanobiocomposite hydrogel: Synthesis, thermophysical characterization, cell adhesion and viability assay. Int J Biol Macromol 2020; 144:715-724. [PMID: 31862375 DOI: 10.1016/j.ijbiomac.2019.10.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/03/2023]
Abstract
This study designed to explore the characteristic features of the novel prepared hydrogel. This transparent nanocomposite hydrogel was formulated with employing environmental friendly biopolymer, "chitosan". To increase the hydrophilicity of chitosan, it was quaternized with triethyl amine. Also by incorporating click protocol, the triazole rings were inserted in the structure. After decoration with appropriate chemicals using efficient methods, functionalized chitosan and the corresponding hydrogel were investigated by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC) and dynamic-mechanical thermal analysis (DMTA). Swelling behavior of the synthesized hydrogel was assayed in both room temperature and 37 °C. Moreover, swelling kinetics were appraised and found that the experimental data fit the Schott's equation. To study the cell adhesion and proliferation, MTT assay was performed and the SEM images of 24, 48 and 72 h of direct cell culture on the surface of the scaffold were obtained. Morphological features of cultured cells were confirmed with Giemsa staining. The results displayed the potential capability of the synthesized scaffold for being used in bioapplications.
Collapse
|
92
|
Kim M, Ahn Y, Lee K, Jung W, Cha C. In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture. Carbohydr Polym 2020; 229:115538. [DOI: 10.1016/j.carbpol.2019.115538] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
|
93
|
Wang H, Zhang F, Wen H, Shi W, Huang Q, Huang Y, Xie J, Li P, Chen J, Qin L, Zhou Y. Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J Nanobiotechnology 2020; 18:8. [PMID: 31918714 PMCID: PMC6950814 DOI: 10.1186/s12951-019-0562-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/24/2023] Open
Abstract
Chemotherapeutic drugs frequently encounter multidrug resistance. ATP from mitochondria helps overexpression of drug efflux pumps to induce multidrug resistance, so mitochondrial delivery as a means of "repurposing'' chemotherapeutic drugs currently used in the clinic appears to be a worthwhile strategy to pursue for the development of new anti-drug-resistant cancer agents. TPP-Pluronic F127-hyaluronic acid (HA) (TPH), with a mitochondria-targeting triphenylphosphine (TPP) head group, was first synthesized through ester bond formation. Paclitaxel (PTX)-loaded TPH (TPH/PTX) nanomicelles exhibited excellent physical properties and significantly inhibited A549/ADR cells. After TPH/PTX nanomicelles entered acidic lysosomes through macropinocytosis, the positively charged TP/PTX nanomicelles that resulted from degradation of HA by hyaluronidase (HAase) in acidic lysosomes were exposed and completed lysosomal escape at 12 h, finally localizing to mitochondria over a period of 24 h in A549/ADR cells. Subsequently, TPH/PTX caused mitochondrial outer membrane permeabilization (MOMP) by inhibiting antiapoptotic Bcl-2, leading to cytochrome C release and activation of caspase-3 and caspase-9. In an A549/ADR xenograft tumor model and a drug-resistant breast cancer-bearing mouse model with lung metastasis, TPH/PTX nanomicelles exhibited obvious tumor targeting and significant antitumor efficacy. This work presents the potential of a single, nontoxic nanoparticle (NP) platform for mitochondria-targeted delivery of therapeutics for diverse drug-resistant cancers.
Collapse
Affiliation(s)
- He Wang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.,Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Fangke Zhang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Huaying Wen
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Wenwen Shi
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Qiudi Huang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yugang Huang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jiacui Xie
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Peiyin Li
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jianhai Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Yi Zhou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
94
|
Wu H, Wang W, Zhang Z, Li J, Zhao J, Liu Y, Wu C, Huang M, Li Y, Wang S. Synthesis of a Clay-Based Nanoagent for Photonanomedicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:390-399. [PMID: 31800211 DOI: 10.1021/acsami.9b19930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photo-induced cancer therapies, mainly including photothermal therapy (PTT) and photodynamic therapy (PDT), have attracted numerous attentions owing to the high selectivity, convenience, and few side effects. However, single PTT usually requires high laser power density, and single PDT usually needs a high photosensitizer dosage. Herein, a kind of composite nanocarrier based on clay (laponite)-polypyrrole (LP) nanodisks was synthesized via the in situ polymerization of pyrrole in the interlayer space of laponite. LP composite nanodisks were then coated with polyvinylpyrrolidone (PVP) to form the LP-PVP (LPP) composite nanodisks which show an excellent colloidal stability and in vitro and in vivo biocompatibility. The interlayer space of LPP can be further used for the loading of Chlorin e6 (Ce6), with an ultrahigh loading capacity of about 89.2%. Furthermore, the LPP nanocarrier can enhance the PDT effect of Ce6 under the irradiation of a 660 nm laser, through enhancing its solubility and cellular uptake amount. Besides, it was found that LPP nanodisks exhibit a more outstanding photothermal performance under a 980 nm near-infrared laser (NIR) than a 808 nm NIR laser, with the photothermal conversion efficiency of 45.7 and 27.7%, respectively. The in vitro and in vivo tumor therapy results evidently confirm that the Ce6-loaded LPP nanodisks have a combined tumor PTT and PDT effect, which can significantly suppress the tumor malignant proliferation.
Collapse
Affiliation(s)
- Huan Wu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Weifan Wang
- Department of Allergy and Immunology, Shanghai Children's Medical Center, School of Medicine , Shanghai Jiao Tong University , No. 1678 Dongfang Road , Shanghai 200127 , China
| | - Zhilun Zhang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Jinfeng Li
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Jiayan Zhao
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Yiyun Liu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Chenyao Wu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Mingxian Huang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Shige Wang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| |
Collapse
|
95
|
Xu Y, Zhao J, Zhang Z, Zhang J, Huang M, Wang S, Xie P. Preparation of electrospray ALG/PDA-PVP nanocomposites and their application in cancer therapy. SOFT MATTER 2020; 16:132-141. [PMID: 31774105 DOI: 10.1039/c9sm01584a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, sodium alginate (ALG)/poly dopamine (PDA)-polyvinylpyrrolidone (PVP) nanocomposites was synthesized via a one-step electrostatic spraying method. The spinning solution of ALG and dopamine was electrostatically sprayed into an alkaline solution of PVP, calcium chloride and tris buffer (pH = 8.5), in which the gelation of ALG and the polymerization of dopamine could be simultaneously triggered. PDA hence produced possesses a high photothermal conversion efficiency, while the PVP that was facilely conjugated onto the surface of nanocomposites improves the colloidal stability and compatibility of the material. Moreover, the ALG renders the nanocomposite excellent drug (doxorubicine, DOX) loading capacity. Promisingly, the temperature increment during the PTT process could promote the DOX release, thus enhancing its therapeutic effect. The in vitro/in vivo biosafety and tumor treatment experiments further corroborate that the ALG/PDA-PVP nanocomposites have remarkable biocompatibility and synergism for tumor hyperthermia and chemotherapy. Consequently, such a one-step electrospray strategy provides a new way for designing nanomaterials and is expected to significantly promote the development of organic photothermal therapeutic agents with excellent bio-compatibility.
Collapse
Affiliation(s)
- Yangjie Xu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, P. R. China.
| | - Jiulong Zhao
- Department of Gastroenterology, Gongli Hospital, The Second Military Medical University, Shanghai, P. R. China. and Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, P. R. China
| | - Zhilun Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, P. R. China.
| | - Jing Zhang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, P. R. China.
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, P. R. China.
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, P. R. China.
| | - Pei Xie
- Department of Gastroenterology, Gongli Hospital, The Second Military Medical University, Shanghai, P. R. China. and Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
96
|
Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Mol Pharm 2020; 17:373-391. [PMID: 31877054 DOI: 10.1021/acs.molpharmaceut.9b01020] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an emerging drug carrier, hydrogels have been widely used for tumor drug delivery. A hydrogel drug carrier can cause less severe side effects than systemic chemotherapy and can achieve sustained delivery of a drug at tumor sites. In addition, hydrogels have excellent biocompatibility and biodegradability and lower toxicity than nanoparticle carriers. Smart hydrogels can respond to stimuli in the environment (e.g., heat, pH, light, and ultrasound), enabling in situ gelation and controlled drug release, which greatly enhance the convenience and efficiency of drug delivery. Here, we summarize the different sizes of hydrogels used for cancer treatment and their related delivery routes, discuss the design strategies for stimuli-responsive hydrogels, and review the research concerning smart hydrogels reported in the past few years.
Collapse
Affiliation(s)
- Zhaoyi Sun
- School of Chemistry and Chemical Engineering , Nanjing University , 210046 Nanjing , China
| | - Chengjun Song
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China.,Jiangsu Key Laboratory for Nano Technology , Nanjing University , 210093 Nanjing , China.,Institute of Drug R&D , Medical School of Nanjing University , 210093 Nanjing , China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences , Nanjing University , 210093 Nanjing , China.,Jiangsu Key Laboratory for Nano Technology , Nanjing University , 210093 Nanjing , China.,Institute of Drug R&D , Medical School of Nanjing University , 210093 Nanjing , China
| |
Collapse
|
97
|
Patra P, Patra N, Pal S. Opposite swelling characteristics through changing the connectivity in a biopolymeric hydrogel based on glycogen and glycine. Polym Chem 2020. [DOI: 10.1039/d0py00117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycine, a biomolecule, has been functionalized through a simple condensation reaction with one of two functional groups (–COOH and –NH2) to prepare two vinylic monomers.
Collapse
Affiliation(s)
- Priyapratim Patra
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| | - Niladri Patra
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| | - Sagar Pal
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| |
Collapse
|
98
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
99
|
Zhu J, Zhao L, Yang J, Chen L, Shi J, Zhao J, Shi X. 99mTc-Labeled Polyethylenimine-Entrapped Gold Nanoparticles with pH-Responsive Charge Conversion Property for Enhanced Dual Mode SPECT/CT Imaging of Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13405-13412. [PMID: 31545902 DOI: 10.1021/acs.langmuir.9b02617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of tumor dual mode contrast agents is still a great challenge due to the relative low accumulation at tumor site, which result in the poor imaging efficiency. In this study, we constructed functional technetium-99m (99mTc) labeled polyethylenimine (PEI)-entrapped gold nanoparticles (Au PENs) with pH-responsive charge conversion property for enhanced single photon emission computed tomography (SPECT)/computed tomography (CT) dual mode imaging of cancer cells. PEI with amine functional groups (PEI.NH2) was successively modified with monomethyl ether and carboxyl functionalized polyethylene glycol (mPEG-COOH), maleimide and succinimidyl valerate functionalized PEG (MAL-PEG-SVA), diethylenetriaminepentaacetic dianhydride (DTPA), and fluorescein isothiocyanate (FI), and used to entrapped gold nanoparticles inside, followed by conjugation with the alkoxyphenyl acylsulfonamide (APAS) through the PEG maleimide, acetylation of the PEI leftover surface amines and 99mTc labeling. The created nanosystem with the mean Au core diameter of 3.3 nm and with a narrow size distribution displays an excellent colloidal stability and desired cytocompatibility in the investigated Au concentration range. Due to the fact that the attached APAS moieties are responsive to pH, the functionalized Au PENs with a neutral surface charge can switch to be positively charged under slightly acidic pH condition, which could improve the cellular uptake by cancer cells. With these properties, the developed functionalized Au PENs could achieve enhanced dual mode SPECT/CT imaging of cancer cells in vitro. The constructed PEI-based nanodevices may be adopted as an excellent dual mode contrast agent for SPECT/CT imaging of cancer cells of different types.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , People's Republic of China
| | - Junxing Yang
- School of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Liang Chen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Jianhui Shi
- School of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , People's Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
100
|
Chen Y, Zhao J, Wang S, Zhang Z, Zhang J, Wang Y, Xie P. Photothermal Composite Nanomaterials for Multimodal Tumor Therapy under MRI Guidance. ChemistrySelect 2019; 4:11156-11164. [DOI: 10.1002/slct.201903481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023]
Abstract
AbstractMultifunctional nanomaterials for cancer therapy has attracted researchers’ attention for decades. In this study, a unique oxidative method using KMnO4 or K2MnO4 as oxidizing agents to oxidize dopamine (DA) to polydopamine (PDA) was reported. The oxidizing agent was reduced to MnOx to form MnOx/PDA composite NPs. Afterwards, the MnOx/PDA composite NPs were surface‐modified with bovine serum albumin (BSA) to form a multifunctional theranostic agent, named MnOx/PDA@BSA NPs, with improved colloidal stability and biocompatibility. Such a material would become a photothermal nanoagent, since the PDA renders the composite NPs an admirable photothermal transforming ability with the photothermal conversion efficiency of 27.06%. Meanwhile, as a commonly used T1 contrast agent, manganese (Mn2+) endowed the MnOx/PDA@BSA NPs with MRI ability, rendering the as‐synthesized MnOx/PDA composite NPs a capability of imaging guided multi‐modal tumor therapy. Moreover, the formed MnOx/PDA@BSA NPs were used for drug loading, which was found to own the tunable drug loading and controlled drug releasing capacity. The as‐prepared composite NPs were successfully used for the combined tumor chemotherapy and photothermal therapy in vitro and in vivo. This research provides insights into the development of conjugated polymer‐based nanomaterial for various biomedical applications, especially in imaging guided cancer therapy.
Collapse
Affiliation(s)
- Yongkang Chen
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Zhilun Zhang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Jing Zhang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Pei Xie
- Department of Gastroenterology, Changhai Hospital Second Military Medical University Shanghai 200433 China
| |
Collapse
|