51
|
SPATA18 Expression Predicts Favorable Clinical Outcome in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23052753. [PMID: 35269894 PMCID: PMC8910917 DOI: 10.3390/ijms23052753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of mitochondrial quality control has been reported to be associated with cancer and degenerative diseases. SPATA18 (spermatogenesis-associated 18, also known as Mieap) encodes a p53-inducible protein that can induce lysosome-like organelles within mitochondria that eliminate oxidized mitochondrial proteins and has tumor suppressor functions in mitochondrial quality control. In the present study, 268 primary colorectal cancers (CRCs) were evaluated immunohistochemically for SPATA18 expression to assess its predictive utility and its association with cellular proliferation activity. Furthermore, the association with p53 immunoreactivity, a surrogate marker for TP53 mutation, was analyzed. Non-neoplastic colonic mucosa showed cytoplasmic SPATA18 expression. Seventy-two percent of the lesions (193/268) displayed high SPATA18 expression in the cytoplasm of CRC cells. Univariate analyses revealed significant associations between SPATA18 expression and tumor size (p < 0.0001), histological differentiation (p = 0.0017), and lymph node metastasis (p = 0.00039). The log-rank test revealed that patients with SPATA18-high CRCs had significantly better survival than SPATA18-low patients (p < 0.0001). Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio [HR] = 0.25), age < 70 years (HR = 0.50), and SPATA18-high (HR = 0.55) as potential favorable factors. Lymph node metastasis (HR = 1.98) and peritoneal metastasis (HR = 5.45) were cited as potential independent risk factors. Cellular proliferation activity was significantly higher in SPATA18-high tumors. However, no significant correlation was detected between SPATA18 expression and p53 immunoreactivity or KRAS/BRAF mutation status. On the basis of our observations, SPATA18 immunohistochemistry can be used in the prognostication of CRC patients.
Collapse
|
52
|
Nathan CA, Khandelwal AR, Wolf GT, Rodrigo JP, Mäkitie AA, Saba NF, Forastiere AA, Bradford CR, Ferlito A. TP53 mutations in head and neck cancer. Mol Carcinog 2022; 61:385-391. [PMID: 35218075 DOI: 10.1002/mc.23385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising in the mucosal linings of the upper aerodigestive tract are highly heterogeneous, aggressive, and multifactorial tumors affecting more than half a million patients worldwide each year. Classical etiological factors for HNSCC include alcohol, tobacco, and human papillomavirus (HPV) infection. Current treatment options for HNSCCs encompass surgery, radiotherapy, chemotherapy, or combinatorial remedies. Comprehensive integrative genomic analysis of HNSCC has identified mutations in TP53 gene as the most frequent of all somatic genomic alterations. TP53 mutations are associated with either loss of wild-type p53 function or gain of functions that promote invasion, metastasis, genomic instability, and cancer cell proliferation. Interestingly, disruptive TP53 mutations in tumor DNA are associated with aggressiveness and reduced survival after surgical treatment of HNSCC. This review summarizes the current evidence and impact of TP53 mutations in HNSCC.
Collapse
Affiliation(s)
- Cherie-Ann Nathan
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Health Shreveport, Shreveport, Louisiana, USA
| | - Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Health Shreveport, Shreveport, Louisiana, USA
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Juan P Rodrigo
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, USA
| | - Arlene A Forastiere
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carol R Bradford
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
53
|
Elhady SS, Habib ES, Abdelhameed RFA, Goda MS, Hazem RM, Mehanna ET, Helal MA, Hosny KM, Diri RM, Hassanean HA, Ibrahim AK, Eltamany EE, Abdelmohsen UR, Ahmed SA. Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae Hypnea musciformis in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling. Mar Drugs 2022; 20:md20010063. [PMID: 35049918 PMCID: PMC8778197 DOI: 10.3390/md20010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids-docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6-as well as three ceramides-A (1), B (2), and C (3)-with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Reem M. Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt;
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hashim A. Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
- Correspondence: or ; Tel.: +20-010-92638387
| |
Collapse
|
54
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
55
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
56
|
Wang M, Attardi LD. A Balancing Act: p53 Activity from Tumor Suppression to Pathology and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:205-226. [PMID: 34699262 DOI: 10.1146/annurev-pathol-042320-025840] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TP53, encoding the p53 transcription factor, is the most frequently mutated tumor suppressor gene across all human cancer types. While p53 has long been appreciated to induce antiproliferative cell cycle arrest, apoptosis, and senescence programs in response to diverse stress signals, various studies in recent years have revealed additional important functions for p53 that likely also contribute to tumor suppression, including roles in regulating tumor metabolism, ferroptosis, signaling in the tumor microenvironment, and stem cell self-renewal/differentiation. Not only does p53 loss or mutation cause cancer, but hyperactive p53 also drives various pathologies, including developmental phenotypes, premature aging, neurodegeneration, and side effects of cancer therapies. These findings underscore the importance of balanced p53 activity and influence our thinking of how to best develop cancer therapies based on modulating the p53 pathway. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mengxiong Wang
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Laura D Attardi
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA; .,Department of Genetics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
57
|
Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021; 22:ijms221910883. [PMID: 34639222 PMCID: PMC8509445 DOI: 10.3390/ijms221910883] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
58
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
59
|
Sun H, Li L, Li W, Yang F, Zhang Z, Liu Z, Du W. p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep 2021; 22:e52537. [PMID: 34459531 DOI: 10.15252/embr.202152537] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is essential for membrane biogenesis, cell proliferation, and differentiation. The role of cholesterol in cancer development and the regulation of cholesterol synthesis are still under active investigation. Here we show that under normal-sterol conditions, p53 directly represses the expression of SQLE, a rate-limiting and the first oxygenation enzyme in cholesterol synthesis, in a SREBP2-independent manner. Through transcriptional downregulation of SQLE, p53 represses cholesterol production in vivo and in vitro, leading to tumor growth suppression. Inhibition of SQLE using small interfering RNA (siRNA) or terbinafine (a SQLE inhibitor) reverses the increased cell proliferation caused by p53 deficiency. Conversely, SQLE overexpression or cholesterol addition promotes cell proliferation, particularly in p53 wild-type cells. More importantly, pharmacological inhibition or shRNA-mediated silencing of SQLE restricts nonalcoholic fatty liver disease (NAFLD)-induced liver tumorigenesis in p53 knockout mice. Therefore, our findings reveal a role for p53 in regulating SQLE and cholesterol biosynthesis, and further demonstrate that downregulation of SQLE is critical for p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Huishan Sun
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fan Yang
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zizhao Liu
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
60
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
61
|
Zhang H, Zhang H, Cao S, Sui C, Song Y, Zhao Y, Liu S. Knockout of p53 leads to a significant increase in ALV-J replication. Poult Sci 2021; 100:101374. [PMID: 34411963 PMCID: PMC8377548 DOI: 10.1016/j.psj.2021.101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 01/27/2023] Open
Abstract
Avian leukemia is a common malignant disease, and and its regulatory mechanism is complex. As the most extensive tumor suppressor gene in cancer research, p53 can control multiple functions such as that of DNA repair, induction of apoptosis, cell cycle arrest and so on. In view of the diversity associated with varied function of p53, this study analyzed the possible effect of gene on ALV-J replication and its regulatory mechanism. We successfully constructed a p53 knockout DF-1 cell line (p53-KO-DF-1 cells) by using CRISPR-Cas9 system. When ALV-J was co-infected with DF-1 and p53-KO-DF-1 cells, it was found that compared with wild-type DF-1 cells, the viral copy number of p53-KO-DF-1 cells infected with ALV-J increased significantly 48 h after infection, whereas the expression of innate immune factors such as Il-2,TNF- α, IFN- γ and MX1 decreased significantly. Detection of p53-related tumor genes indicated that after p53 deletion, the expression of c-myc, bcl-2, and bak increased significantly, while the expression of p21 and p27 was noted to be decreased. The cell cycle distribution and apoptosis of the 2 cell lines was detected by flow cytometry analysis. The results showed that p53 knockout prevented G0/G1 and G2 M phase arrest induced by ALV-J, and substantially decreased the rate of apoptosis. Overall, the results indicated that p53 gene can effectively inhibits ALV-J replication by regulating important cellular processes, and p53 gene related proteins involved in cell cycle activity may function as the key targets for the prevention and treatment of ALV-J.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Huixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
| | - Shengliang Cao
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yinuo Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Yiran Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Sidang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China.
| |
Collapse
|
62
|
Panatta E, Zampieri C, Melino G, Amelio I. Understanding p53 tumour suppressor network. Biol Direct 2021; 16:14. [PMID: 34362419 PMCID: PMC8348811 DOI: 10.1186/s13062-021-00298-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The mutation of TP53 gene affects half of all human cancers, resulting in impairment of the regulation of several cellular functions, including cell cycle progression and cell death in response to genotoxic stress. In the recent years additional p53-mediated tumour suppression mechanisms have been described, questioning the contribution of its canonical pathway for tumour suppression. These include regulation of alternative cell death modalities (i.e. ferroptosis), cell metabolism and the emerging role in RNA stability. Here we briefly summarize our knowledge on p53 “canonical DNA damage response” and discuss the most relevant recent findings describing potential mechanistic explanation of p53-mediated tumour suppression.
Collapse
Affiliation(s)
- Emanuele Panatta
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carlotta Zampieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy. .,School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
63
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
64
|
Bowen ME, Mulligan AS, Sorayya A, Attardi LD. Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects. Cell Death Differ 2021; 28:2083-2094. [PMID: 33574585 PMCID: PMC8257737 DOI: 10.1038/s41418-021-00738-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
Inappropriate activation of the p53 transcription factor is thought to contribute to the developmental phenotypes in a range of genetic syndromes. Whether p53 activation drives these developmental phenotypes by triggering apoptosis, cell cycle arrest, or other p53 cellular responses, however, has remained elusive. As p53 hyperactivation in embryonic neural crest cells (NCCs) drives a number of phenotypes, including abnormal craniofacial and neuronal development, we investigate the basis for p53 action in this context. We show that p53-driven developmental defects are associated with the induction of a robust pro-apoptotic transcriptional signature. Intriguingly, however, deleting Puma or Caspase9, which encode key components of the intrinsic apoptotic pathway, does not rescue craniofacial, neuronal or pigmentation defects triggered by p53 hyperactivation in NCCs. Immunostaining analyses for two key apoptosis markers confirm that deleting Puma or Caspase9 does indeed impair p53-hyperactivation-induced apoptosis in NCCs. Furthermore, we demonstrate that p53 hyperactivation does not trigger a compensatory dampening of cell cycle progression in NCCs upon inactivation of apoptotic pathways. Together, our results indicate that p53-driven craniofacial, neuronal and pigmentation defects can arise in the absence of apoptosis and cell cycle arrest, suggesting that p53 hyperactivation can act via alternative pathways to trigger developmental phenotypes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abigail S Mulligan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aryo Sorayya
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
65
|
Wang J, Thomas HR, Li Z, Yeo NCF, Scott HE, Dang N, Hossain MI, Andrabi SA, Parant JM. Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death Dis 2021; 12:659. [PMID: 34193827 PMCID: PMC8245518 DOI: 10.1038/s41419-021-03902-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Cellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance of key stress response components in vivo, we have generated zebrafish null alleles in puma, noxa, p53, p63, and p73. Utilizing these genetic mutants, we have deciphered that the apoptotic response to genotoxic stress requires p53 and puma, but not p63, p73, or noxa. We also identified a delayed secondary wave of genotoxic stress-induced apoptosis that is p53/puma independent. Contrary to genotoxic stress, ER stress-induced apoptosis requires p63 and puma, but not p53, p73, or noxa. Lastly, the oxidative stress-induced apoptotic response requires p63, and both noxa and puma. Our data also indicate that while the neural tube is poised for apoptosis due to genotoxic stress, the epidermis is poised for apoptosis due to ER and oxidative stress. These data indicate there are convergent as well as unique molecular pathways involved in the different stress responses. The commonality of puma in these stress pathways, and the lack of gross or tumorigenic phenotypes with puma loss suggest that a inhibitor of Puma may have therapeutic application. In addition, we have also generated a knockout of the negative regulator of p53, mdm2 to further evaluate the p53-induced apoptosis. Our data indicate that the p53 null allele completely rescues the mdm2 null lethality, while the puma null completely rescues the mdm2 null apoptosis but only partially rescues the phenotype. Indicating Puma is the key mediator of p53-dependent apoptosis. Interestingly the p53 homozygous null zebrafish develop tumors faster than the previously described p53 homozygous missense mutant zebrafish, suggesting the missense allele may be hypomorphic allele.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nan Cher Florence Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Hannah E Scott
- Department of Biology, University of Alabama at Birmingham Collage of Arts and Sciences Department and Genetics Department, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Nghi Dang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Mohammed Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
66
|
Bos T, Ratti JA, Harada H. Targeting Stress-Response Pathways and Therapeutic Resistance in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:676643. [PMID: 35048023 PMCID: PMC8757684 DOI: 10.3389/froh.2021.676643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Head and neck cancer is the sixth leading cancer worldwide; head and neck squamous cell carcinoma (HNSCC) accounts for more than 90% of incident cases. In the US, cases of HNSCC associated with human papillomavirus (HPV) have been growing in proportion amongst a younger demographic with superior outcomes to the same treatments, relative to cases associated with tobacco. Yet failures to improve the long-term prognosis of advanced HNSCC over the last three decades persist in part due to intrinsic and acquired mechanisms of resistance. Deregulation of the pathways to respond to stress, such as apoptosis and autophagy, often contributes to drug resistance and tumor progression. Here we review the stress-response pathways in drug response and resistance in HNSCC to explore strategies to overcome these resistance mechanisms. We focus on the mechanisms of resistance to current standard cares, such as chemotherapy (i.e., cisplatin), radiation, and cetuximab. Then, we discuss the strategies to overcome these resistances, including novel combinations and immunotherapy.
Collapse
Affiliation(s)
| | | | - Hisashi Harada
- School of Dentistry, Philips Institute for Oral Health Research, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
67
|
Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci 2021; 22:6262. [PMID: 34200820 PMCID: PMC8230539 DOI: 10.3390/ijms22126262] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most frequently diagnosed carcinomas and one of the leading causes of cancer-related death worldwide. Metabolic reprogramming, a hallmark of cancer, is closely related to the initiation and progression of carcinomas, including CRC. Accumulating evidence shows that activation of oncogenic pathways and loss of tumor suppressor genes regulate the metabolic reprogramming that is mainly involved in glycolysis, glutaminolysis, one-carbon metabolism and lipid metabolism. The abnormal metabolic program provides tumor cells with abundant energy, nutrients and redox requirements to support their malignant growth and metastasis, which is accompanied by impaired metabolic flexibility in the tumor microenvironment (TME) and dysbiosis of the gut microbiota. The metabolic crosstalk between the tumor cells, the components of the TME and the intestinal microbiota further facilitates CRC cell proliferation, invasion and metastasis and leads to therapy resistance. Hence, to target the dysregulated tumor metabolism, the TME and the gut microbiota, novel preventive and therapeutic applications are required. In this review, the dysregulation of metabolic programs, molecular pathways, the TME and the intestinal microbiota in CRC is addressed. Possible therapeutic strategies, including metabolic inhibition and immune therapy in CRC, as well as modulation of the aberrant intestinal microbiota, are discussed.
Collapse
Affiliation(s)
| | | | | | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, University Hospital Jena, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
68
|
Barnoud T, Indeglia A, Murphy ME. Shifting the paradigms for tumor suppression: lessons from the p53 field. Oncogene 2021; 40:4281-4290. [PMID: 34103683 PMCID: PMC8238873 DOI: 10.1038/s41388-021-01852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023]
Abstract
The TP53 gene continues to hold distinction as the most frequently mutated gene in cancer. Since its discovery in 1979, hundreds of research groups have devoted their efforts toward understanding why this gene is so frequently selected against by tumors, with the hopes of harnessing this information toward improved therapy of cancer. The result is that this protein has been meticulously analyzed in tumor and normal cells, resulting in over one hundred thousand publications, with an average of five thousand papers published on p53 every year for the past decade. The journey toward understanding p53 function has been anything but straightforward; in fact, the field is notable for the numerous times that established paradigms not only have been shifted, but in fact have been shattered or reversed. In this review, we will discuss the manuscripts, or series of manuscripts, that have most radically changed our thinking about how this tumor suppressor functions, and we will delve into the emerging challenges for the future in this important area of research. It is hoped that this review will serve as a useful historical reference for those interested in p53, and a useful lesson on the need to be flexible in the face of established paradigms.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Valente LJ, Tarangelo A, Li AM, Naciri M, Raj N, Boutelle AM, Li Y, Mello SS, Bieging-Rolett K, DeBerardinis RJ, Ye J, Dixon SJ, Attardi LD. p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. J Cell Biol 2021; 219:152074. [PMID: 32886745 PMCID: PMC7594498 DOI: 10.1083/jcb.201908212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which TP53, the most frequently mutated gene in human cancer, suppresses tumorigenesis remain unclear. p53 modulates various cellular processes, such as apoptosis and proliferation, which has led to distinct cellular mechanisms being proposed for p53-mediated tumor suppression in different contexts. Here, we asked whether during tumor suppression p53 might instead regulate a wide range of cellular processes. Analysis of mouse and human oncogene-expressing wild-type and p53-deficient cells in physiological oxygen conditions revealed that p53 loss concurrently impacts numerous distinct cellular processes, including apoptosis, genome stabilization, DNA repair, metabolism, migration, and invasion. Notably, some phenotypes were uncovered only in physiological oxygen. Transcriptomic analysis in this setting highlighted underappreciated functions modulated by p53, including actin dynamics. Collectively, these results suggest that p53 simultaneously governs diverse cellular processes during transformation suppression, an aspect of p53 function that would provide a clear rationale for its frequent inactivation in human cancer.
Collapse
Affiliation(s)
- Liz J Valente
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Amy Tarangelo
- Department of Biology, Stanford University, Stanford, CA
| | - Albert Mao Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Marwan Naciri
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Anthony M Boutelle
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Yang Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Stephano Spano Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY
| | - Kathryn Bieging-Rolett
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiangbin Ye
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
70
|
Han CW, Lee HN, Jeong MS, Park SY, Jang SB. Structural basis of the p53 DNA binding domain and PUMA complex. Biochem Biophys Res Commun 2021; 548:39-46. [PMID: 33631672 DOI: 10.1016/j.bbrc.2021.02.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
PUMA (p53-upregulated modulator of apoptosis) is localized in mitochondria and a direct target in p53-mediated apoptosis. p53 elicits mitochondrial apoptosis via transcription-dependent and independent mechanisms. p53 is known to induce apoptosis via the transcriptional induction of PUMA, which encodes proapoptotic BH3-only members of the Bcl-2 protein family. However, the transcription-independent mechanisms of human PUMA remain poorly defined. For example, it is not known whether PUMA interacts directly with the DNA binding domain (DBD: residues 92-293) of p53 in vitro. Here, the structure of the complex between the DBD of p53 and PUMA peptide was elucidated by X-ray crystallography. Isothermal titration calorimetry showed that PUMA peptide binds strongly with p53 DBD, and the crystal structure of p53-PUMA peptide complex revealed it contains four molecules of p53 DBD and one PUMA peptide per asymmetric unit in space group P1. PUMA peptide bound to the N-terminal residues of p53 DBD. A cell proliferation assay demonstrated PUMA peptide inhibited the growth of a lung cancer cell line. These results contribute to understanding of the mechanism responsible for p53-mediated apoptosis.
Collapse
Affiliation(s)
- Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Han Na Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mi Suk Jeong
- Korea Nanobiotechnology Center, Pusan National University, 2,Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - So Young Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
71
|
Maor-Nof M, Shipony Z, Lopez-Gonzalez R, Nakayama L, Zhang YJ, Couthouis J, Blum JA, Castruita PA, Linares GR, Ruan K, Ramaswami G, Simon DJ, Nof A, Santana M, Han K, Sinnott-Armstrong N, Bassik MC, Geschwind DH, Tessier-Lavigne M, Attardi LD, Lloyd TE, Ichida JK, Gao FB, Greenleaf WJ, Yokoyama JS, Petrucelli L, Gitler AD. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell 2021; 184:689-708.e20. [PMID: 33482083 PMCID: PMC7886018 DOI: 10.1016/j.cell.2020.12.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.
Collapse
Affiliation(s)
- Maya Maor-Nof
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Zohar Shipony
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia A Castruita
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel R Linares
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kai Ruan
- Department of Neurology, Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gokul Ramaswami
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Simon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aviv Nof
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel Santana
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Laura D Attardi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E Lloyd
- Department of Neurology, Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
72
|
Zhou X, Zou L, Chen W, Yang T, Luo J, Wu K, Shu F, Tan X, Yang Y, Cen S, Li C, Mao X. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res 2021; 164:105305. [PMID: 33197601 DOI: 10.1016/j.phrs.2020.105305] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
On account of incurable castration-resistant prostate cancer (CRPC) inevitably developing after treating with androgen deprivation therapy, it is an urgent need to find new therapeutic strategies. Flubendazole is a well-known anti-malarial drug that is recently reported to be a potential anti-tumor agent in various types of human cancer cells. However, whether flubendazole could inhibit the castration-resistant prostate cancer has not been well charified. Thus, the aim of the present study was to characterize the precise mechanism of action of flubendazole on the CRPC. In this study, we investigated the potential effect of flubendazole on cell proliferation, cell cycle and cell death in CRPC cells (PC3 and DU145). We found that flubendazole inhibited cell proliferation, caused cell cycle arrest in G2/M phase and promoted cell death in vitro, and suppressed growth of CRPC tumor in xenograft models. In addition, we reported that flubendazole induced the expression of P53, which partly accounted for the G2/M phase arrest and led to inhibition of the transcription of SLC7A11, and then downregulated the GPX4, which is a major ferroptosis-related gene. Furthermore, flubendazole exhibited synergistic effect with 5-fluorouracil (5-Fu) in chemotherapy of CRPC. This study provides biological evidence that flubendazole is a novel P53 inducer which exerts anti-proliferation and pro-apoptosis effects in CRPC through hindering the cell cycle and activating the ferroptosis, and indicates that a novel utilization of flubendazole in neoadjuvant chemotherapy of CRPC.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Xiao Tan
- Department of Urology, The First Affiliated Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
73
|
Boutelle AM, Attardi LD. p53 and Tumor Suppression: It Takes a Network. Trends Cell Biol 2021; 31:298-310. [PMID: 33518400 DOI: 10.1016/j.tcb.2020.12.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The TP53 tumor suppressor is the most frequently mutated gene in human cancer. p53 suppresses tumorigenesis by transcriptionally regulating a network of target genes that play roles in various cellular processes. Though originally characterized as a critical regulator for responses to acute DNA damage (activation of apoptosis and cell cycle arrest), recent studies have highlighted new pathways and transcriptional targets downstream of p53 regulating genomic integrity, metabolism, redox biology, stemness, and non-cell autonomous signaling in tumor suppression. Here, we summarize our current understanding of p53-mediated tumor suppression, situating recent findings from mouse models and unbiased screens in the context of previous studies and arguing for the importance of the pleiotropic effects of the p53 transcriptional network in inhibiting cancer.
Collapse
Affiliation(s)
- Anthony M Boutelle
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
74
|
Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Mol Cell 2021; 80:452-469.e9. [PMID: 33157015 PMCID: PMC7654708 DOI: 10.1016/j.molcel.2020.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/19/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.
Collapse
|
75
|
Wu W, Wei T, Li Z, Zhu J. p53-dependent apoptosis is essential for the antitumor effect of paclitaxel response to DNA damage in papillary thyroid carcinoma. Int J Med Sci 2021; 18:3197-3205. [PMID: 34400889 PMCID: PMC8364467 DOI: 10.7150/ijms.61944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
A functional p53 protein plays an important role in killing tumor cells. Previous studies showed that chemotherapeutic drug, paclitaxel (PTX), showed anti-tumor activity through inducing G2/M arrest and apoptosis by targeting microtubules in tumor cells. However, PTX was not sensitive to p53-inactivated papillary thyroid carcinoma (PTC) cells by inducing G2/M arrest only. Recombinant adenovirus-p53 (rAd-p53) was used to increase the level of p53, which significantly increased the sensitivity of PTC cells to PTX by inducing S arrest, G2/M arrest and apoptosis. To discuss the anti-tumor mechanism of rAd-p53 + PTX and found p53 activation was necessary for anti-tumor effect of PTX in PTC cells. There was high level of p53 in rAd-p53-treated PTC cells. rAd-p53 + PTX increased the level of p21, p-ATM and γ-H2AX and decreased the level of Cyclin D1/E1, suggesting p53 activated p21 which negatively regulated cyclins to induce S arrest response to DNA damage in PTC cells. rAd-p53 + PTX increased the levels of cleaved-PARP-1, cleaved -Caspase 3, and BAX and decreased the level of BCL-XL, suggesting p53 regulates the expression of BAX/BCL-XL to mediate DNA damage-induced apoptosis in PTC cells. Furthermore, rAd-p53 + PTX showed significant tumor inhibition in TPC-1 xenograft model, with an inhibitory rate of 79.39%. TUNEL assay showed rAd-p53 + PTX induced notable apoptosis in tumor tissues. rAd-p53 showed good sensitization of PTX in vitro and in vivo through inducing DNA damage induced-apoptosis indicated p53-dependent apoptosis was essential for the antitumor effect of PTX in PTC.
Collapse
Affiliation(s)
- Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - ZhiHui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Muys BR, Anastasakis DG, Claypool D, Pongor L, Li XL, Grammatikakis I, Liu M, Wang X, Prasanth KV, Aladjem MI, Lal A, Hafner M. The p53-induced RNA-binding protein ZMAT3 is a splicing regulator that inhibits the splicing of oncogenic CD44 variants in colorectal carcinoma. Genes Dev 2021; 35:102-116. [PMID: 33334821 PMCID: PMC7778265 DOI: 10.1101/gad.342634.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.
Collapse
Affiliation(s)
- Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dimitrios G Anastasakis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Duncan Claypool
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lörinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Minxue Liu
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
77
|
Kon N, Ou Y, Wang SJ, Li H, Rustgi AK, Gu W. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev 2020; 35:59-64. [PMID: 33303641 PMCID: PMC7778266 DOI: 10.1101/gad.340919.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Here, we showed that the acetylation-defective p53-4KR mice, lacking the ability of cell cycle arrest, senescence, apoptosis, and ferroptosis, were tumor prone but failed to develop early-onset tumors. By identifying a novel p53 acetylation site at lysine K136, we found that simultaneous mutations at all five acetylation sites (p53-5KR) diminished its remaining tumor suppression function. Moreover, the embryonic lethality caused by the deficiency of mdm2 was fully rescued in the background of p535KR/5KR , but not p534KR/4KR background. p53-4KR retained the ability to suppress mTOR function but this activity was abolished in p53-5KR cells. Notably, the early-onset tumor formation observed in p535KR/5KR and p53-null mice was suppressed upon the treatment of the mTOR inhibitor. These results suggest that p53-mediated mTOR regulation plays an important role in both embryonic development and tumor suppression, independent of cell cycle arrest, senescence, apoptosis, and ferroptosis.
Collapse
Affiliation(s)
- Ning Kon
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Yang Ou
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Shang-Jui Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
78
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
79
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
80
|
Best SA, Vandenberg CJ, Abad E, Whitehead L, Guiu L, Ding S, Brennan MS, Strasser A, Herold MJ, Sutherland KD, Janic A. Consequences of Zmat3 loss in c-MYC- and mutant KRAS-driven tumorigenesis. Cell Death Dis 2020; 11:877. [PMID: 33082333 PMCID: PMC7575595 DOI: 10.1038/s41419-020-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
TP53 is a critical tumor suppressor that is mutated in approximately 50% of human cancers. Unveiling the downstream target genes of TP53 that fulfill its tumor suppressor function is an area of intense investigation. Zmat3 (also known as Wig-1 or PAG608) is one such downstream target of p53, whose loss in hemopoietic stem cells lacking the apoptosis and cell cycle regulators, Puma and p21, respectively, promotes the development of leukemia. The function of Zmat3 in tumorigenesis however remains unclear. Here, to investigate which oncogenic drivers co-operate with Zmat3 loss to promote neoplastic transformation, we utilized Zmat3 knockout mice in models of c-MYC-driven lymphomagenesis and KrasG12D-driven lung adenocarcinoma development. Interestingly, unlike loss of p53, Zmat3 germline loss had little impact on the rate of tumor development or severity of malignant disease upon either the c-MYC or KrasG12D oncogenic activation. Furthermore, loss of Zmat3 failed to rescue KrasG12D primary lung tumor cells from oncogene-induced senescence. Taken together, we conclude that in the context of c-MYC-driven lymphomagenesis or mutant KrasG12D-driven lung adenocarcinoma development, additional co-occurring mutations are required to resolve Zmat3 tumor suppressive activity.
Collapse
Affiliation(s)
- Sarah A Best
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Laia Guiu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Sheryl Ding
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Margs S Brennan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Kate D Sutherland
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| | - Ana Janic
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
81
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
82
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
83
|
Duffy MJ, Crown J. Drugging "undruggable" genes for cancer treatment: Are we making progress? Int J Cancer 2020; 148:8-17. [PMID: 32638380 DOI: 10.1002/ijc.33197] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
RAS, TP53 (p53) and MYC are among the most frequently altered driver genes in cancer. Thus, RAS is the most frequently mutated oncogene, MYC the most frequently amplified gene and TP53 the most frequently mutated tumor suppressor gene and overall the most frequently mutated gene in cancer. Theoretically, therefore, these genes are highly attractive targets for cancer treatment. However, as the protein products of each of these genes lack an accessible hydrophobic pocket into which low molecular weight compounds might bind with high affinity, they have proved difficult to target and have traditionally been referred to as "undruggable." Despite this branding, several low molecular weight compounds targeting each of these proteins have recently been reported to have anticancer activity in preclinical models. Indeed, several drugs inhibiting mutant KRAS, MYC overexpression or reactivating mutant p53 have undergone or are currently undergoing clinical trials. For targeting mutant KRAS and reactivating mutant p53, trials have progressed to a Phase III stage, that is, the mutant-p53 reactivating drug, APR-246 is currently being investigated in patients with myelodysplastic syndrome (MDS) and the RAS inhibitor, rigosertib is also undergoing evaluation in patients with MDS. Although there appears to be no directly acting MYC inhibitor currently being tested in a clinical trial, an anti-MYC compound, known as OmoMYC has been extensively validated in multiple preclinical models and is being developed for clinical evaluation. Based on current evidence, the traditional perception of RAS, p53 and MYC as being "undruggable" would appear to be coming to an end.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.,UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland
| |
Collapse
|
84
|
Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 2020; 9:1569-1584. [PMID: 32953528 PMCID: PMC7481593 DOI: 10.21037/tlcr-20-341] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferroptosis is a novel form of non-apoptotic regulated cell death (RCD), with distinct characteristics and functions in physical conditions and multiple diseases such as cancers. Unlike apoptosis and autophagy, this new RCD is an iron-dependent cell death with features of lethal accumulation of reactive oxygen species (ROS) and over production of lipid peroxidation. Excessive iron from aberrant iron metabolisms or the maladjustment of the two main redox systems thiols and lipid peroxidation role as the major causes of ROS generation, and the redox-acrive ferrous (intracellular labile iron) is a crucial factor for the lipid peroxidation. Regulation of ferrroptosis also involves different pathways such as mevalonate pathway, P53 pathway and p62-Keap1-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Ferroptosis roles as a double-edged sword either suppressing or promoting tumor progression with the release of multiple signaling molecules in the tumor microenvironment. Emerging evidence suggests ferroptosis as a potential target for cancer therapy and ferroptosis inducers including small molecules and nanomaterials have been developed. The application of ferroptosis inducers also relates to overcoming drug resistance and preventing tumor metastasis, and may become a promising strategy combined with other anti-cancer therapies. Here, we summarize the ferroptosis characters from its underlying basis and role in cancer, followed by its possible applications in cancer therapies and challenges maintained.
Collapse
Affiliation(s)
- Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otolaryngology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
85
|
Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020; 1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.
Collapse
Affiliation(s)
- Owain Roberts
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
86
|
Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol 2020; 11:284-292. [PMID: 30500901 PMCID: PMC6487777 DOI: 10.1093/jmcb/mjy070] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
p53 plays a key role in tumor suppression. The tumor suppressive function of p53 has long been attributed to its ability to induce apoptosis, cell cycle arrest, and senescence in cells. However, recent studies suggest that other functions of p53 also contribute to its role as a tumor suppressor, such as its function in metabolic regulation. p53 regulates various metabolic pathways to maintain the metabolic homeostasis of cells and adapt cells to stress. In addition, recent studies have also shown that gain-of-function (GOF) mutant p53 proteins drive metabolic reprogramming in cancer cells, contributing to cancer progression. Further understanding of p53 and its GOF mutants in metabolism will provide new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
87
|
Lieschke E, Wang Z, Kelly GL, Strasser A. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53. J Mol Cell Biol 2020; 11:212-223. [PMID: 30496435 PMCID: PMC6478126 DOI: 10.1093/jmcb/mjy077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Activation of the tumour suppressor p53 upon cellular stress can induce a number of different cellular processes. The diverse actions of these processes are critical for the protective function of p53 in preventing the development of cancer. However, it is still not fully understood which process(es) activated by p53 is/are critical for tumour suppression and how this might differ depending on the type of cells undergoing neoplastic transformation and the nature of the drivers of oncogenesis. Moreover, it is not clear why upon activation of p53 some cells undergo cell cycle arrest and senescence whereas others die by apoptosis. Here we discuss some of the cellular processes that are crucial for p53-mediated tumour suppression and the factors that could impact cell fate upon p53 activation. Finally, we describe therapies aimed either at activating wild-type p53 or at changing the behaviour of mutant p53 to unleash tumour growth suppressive processes for therapeutic benefit in malignant disease.
Collapse
Affiliation(s)
- Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
88
|
Dobbelstein M, Levine AJ. Mdm2: Open questions. Cancer Sci 2020; 111:2203-2211. [PMID: 32335977 PMCID: PMC7385351 DOI: 10.1111/cas.14433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
The Mdm2 oncoprotein and its association with p53 were discovered 30 years ago, and a cornucopia of activities and regulatory pathways have been associated with it. In this review, we will raise questions about Mdm2 and its cousin Mdm4 that we consider worth pursuing in future research, reaching from molecular structures and intracellular activities all the way to development, evolution, and cancer therapy. We anticipate that such research will not only close a few gaps in our knowledge but could add new dimensions to our current view. This compilation of questions contributes to the preparation for the 10th Mdm2 Workshop in Tokyo.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
89
|
Huang R, Liu X, Li H, Zhou Y, Zhou PK. Integrated analysis of transcriptomic and metabolomic profiling reveal the p53 associated pathways underlying the response to ionizing radiation in HBE cells. Cell Biosci 2020; 10:56. [PMID: 32318262 PMCID: PMC7160934 DOI: 10.1186/s13578-020-00417-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/04/2020] [Indexed: 12/31/2022] Open
Abstract
Background Radiation damage to normal tissues is a serious concern. P53 is a well-known transcription factor which is closely associated with radiation-induced cell damage. Increasing evidence has indicated that regulation of metabolism by p53 represents a reviving mechanism vital to protect cell survival. We aimed to explore the interactions of radiation-induced transcripts with the cellular metabolism regulated by p53. Methods Human bronchial epithelial (HBE) cell line was used to knockout p53 using CRISPR/cas9. Transcriptomic analysis was conducted by microarray and metabolomic analysis was conducted by GC–MS. Integrative omics was performed using MetaboAnalyst. Results 326 mRNAs showed significantly altered expression in HBE p53-/- cells post-radiation, of which 269 were upregulated and 57 were downregulated. A total of 147 metabolites were altered, including 45 that increased and 102 that decreased. By integrated analysis of both omic data, we found that in response to radiation insult, nitrogen metabolism, glutathione metabolism, arachidonic acid metabolism, and glycolysis or gluconeogenesis may be dysregulated due to p53. Conclusions Our study provided a pilot comprehensive view of the metabolism regulated by p53 in response to radiation exposure. Detailed evaluation of these important p53-regulated metabolic pathways, including their roles in the response to radiation of cells, is essential to elucidate the molecular mechanisms of radiation-induced damage.
Collapse
Affiliation(s)
- Ruixue Huang
- 1Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078 China
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850 China
| | - He Li
- 1Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078 China
| | - Yao Zhou
- 1Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078 China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850 China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850 China.,3Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| |
Collapse
|
90
|
Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy. J Control Release 2020; 320:392-403. [DOI: 10.1016/j.jconrel.2020.01.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
|
91
|
LCZ696 (sacubitril/valsartan) protects against cyclophosphamide-induced testicular toxicity in rats: Role of neprilysin inhibition and lncRNA TUG1 in ameliorating apoptosis. Toxicology 2020; 437:152439. [PMID: 32197949 DOI: 10.1016/j.tox.2020.152439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
Cyclophosphamide (CP) is widely used as chemotherapy in various cancers; however, testicular atrophy has been encountered as an associated adverse effect. Oxidative stress, enhanced endoplasmic reticulum (ER) stress, and subsequent apoptosis are involved in the molecular mechanisms of CP-induced testicular toxicity. In addition to the cardiovascular benefits of LCZ696 (sacubitril/valsartan (VAL)), neprilysin inhibition was shown to mediate Ca2+ sequestration inside the ER. Furthermore, long noncoding RNA taurine-upregulated gene 1 (lncRNA TUG1) was shown to ameliorate apoptosis in various diseases. This tempted us to investigate the possible benefit of LCZ696 against CP-induced testicular dysfunction in rats through neprilysin inhibition axis, and the downstream apoptotic cascade, with highlighting the impact of lncRNA TUG1 in regulating testicular toxicity. Sixty adult male Wistar rats were randomly allocated as control, LCZ696, VAL, CP, CP + LCZ696, and CP + VAL. Testicular atrophy was induced by single-dose injection of CP (200 mg/kg; i.p.). LCZ696 treated group received LCZ696 (30 mg/kg; p.o.) for 6 days, with CP (200 mg/kg; i.p.) single-dose on day 5. LCZ696 increased lncRNA TUG1 expression, improved sperm characteristics, hormonal profile, testicular function, antioxidant defences, and Bcl-2. The histopathological picture and reduced oxidative and ER stress markers, aligned with declined Bax, caspase-3 and the expression of CHOP, PUMA, Noxa, Bim, and p53, with a subtle superior effect over VAL-treated group. In conclusion, the current study highlights the promising impact of LCZ696 in ameliorating chemotherapy-induced testicular atrophy; yet, further investigation regarding longer duration and different doses of LCZ696 is warranted.
Collapse
|
92
|
Barron KA, Jeffries KA, Krupenko NI. Sphingolipids and the link between alcohol and cancer. Chem Biol Interact 2020; 322:109058. [PMID: 32171848 DOI: 10.1016/j.cbi.2020.109058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence underscores alcohol consumption as a strong risk factor for multiple cancer types, with liver cancer being most commonly associated with alcohol intake. While mechanisms linking alcohol consumption to malignant tumor development are not fully understood, the likely players in ethanol-induced carcinogenesis are genotoxic stress caused by formation of acetaldehyde, increased oxidative stress, and altered nutrient metabolism, including the impairment of methyl transfer reactions. Alterations of sphingolipid metabolism and associated signaling pathways are another potential link between ethanol and cancer development. In particular, ceramides are involved in the regulation of cellular proliferation, differentiation, senescence, and apoptosis and are known to function as important regulators of malignant transformation as well as tumor progression. However, to date, the cross-talk between ceramides and alcohol in cancer disease is largely an open question and only limited data are available on this subject. Most studies linking ceramide to cancer considered liver steatosis as the underlying mechanism, which is not surprising taking into consideration that ceramide pathways are an integral part of the overall lipid metabolism. This review summarizes the latest studies pointing to ceramide as an important mediator of cancer-promoting effects of chronic alcohol consumption and underscores the necessity of understanding the role of sphingolipids and lipid signaling in response to alcohol in order to prevent and/or successfully manage diseases caused by alcohol.
Collapse
Affiliation(s)
| | | | - Natalia I Krupenko
- Department of Nutrition, UNC Chapel Hill, USA; Nutrition Research Institute, UNC Chapel Hill, USA.
| |
Collapse
|
93
|
Radiation resistance in head and neck squamous cell carcinoma: dire need for an appropriate sensitizer. Oncogene 2020; 39:3638-3649. [PMID: 32157215 PMCID: PMC7190570 DOI: 10.1038/s41388-020-1250-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/11/2023]
Abstract
Radiation is a significant treatment for patients with head and neck cancer. Despite advances to improve treatment, many tumors acquire radiation resistance resulting in poor survival. Radiation kills cancer cells by inducing DNA double-strand breaks. Therefore, radiation resistance is enhanced by efficient repair of damaged DNA. Head and neck cancers overexpress EGFR and have a high frequency of p53 mutations, both of which enhance DNA repair. This review discusses the clinical criteria for radiation resistance in patients with head and neck cancer and summarizes how cancer cells evade radiation-mediated apoptosis by p53- and epidermal growth factor receptor (EGFR)-mediated DNA repair. In addition, we explore the role of cancer stem cells in promoting radiation resistance, and how the abscopal effect provides rationale for combination strategies with immunotherapy.
Collapse
|
94
|
Yang X, Zhou Z, Mao Z, Shen M, Chen N, Miao D. Role of p53 deficiency in socket healing after tooth extractions. J Mol Histol 2020; 51:55-65. [PMID: 32006186 DOI: 10.1007/s10735-020-09856-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/26/2020] [Indexed: 12/17/2022]
Abstract
p53 is known to advance the cell arrest and cell senescence in human tumors. In this study, we displayed that osteogenic ability of p53-knockout (p53-/-) mice was significantly increased in the tooth extraction socket compared with wild-type (WT) counterparts. Bone marrow mesenchymal stem cells (BM-MSCs) from mandibular were collected and exhibited with elevated proliferation potential and colony-forming units compared with the control, as well as stronger mineral deposits and osteogenic markers. Besides, the bone mass and bone parameter in p53-/- mice were markedly enhanced compared with the counterpart after extractions by micro-CT. Masson's trichrome staining and immunohistochemistry also revealed that new bone filling and osterix/osteocalcin (Osx/OCN)-immunopositive staining in p53-/- mice were remarkably increased at each time point. Furthermore, consistent with the enhanced osteogenic markers, the angiogenic marker of blood vessels (alpha smooth muscle actin, α-SMA) was significantly elevated in p53-/- mice in contrast to WT mice. Importantly, we found that the osteoclast numbers exhibited an increased trend in p53-/- mice compared with WT mice during socket healing. Collectively, our result suggest that p53 deficiency could promote the osteogenesis and angiogenesis in the tooth extraction socket and might lend possibility for p53-based therapeutic approaches in acceleration of extraction bone healing.
Collapse
Affiliation(s)
- Xiaohan Yang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, People's Republic of China.,Department of Stomatology, The Second Affiliated Hospital of Nanjing Medical University, No. 262, Zhong Shan North Road, Nanjing, 210003, People's Republic of China
| | - Zhixuan Zhou
- Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, People's Republic of China
| | - Zhiyuan Mao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Department of Stomatology, The Second Affiliated Hospital of Nanjing Medical University, No. 262, Zhong Shan North Road, Nanjing, 210003, People's Republic of China
| | - Ming Shen
- Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, People's Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, People's Republic of China. .,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, People's Republic of China.
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China. .,Department of Stomatology, The Second Affiliated Hospital of Nanjing Medical University, No. 262, Zhong Shan North Road, Nanjing, 210003, People's Republic of China.
| |
Collapse
|
95
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
96
|
Pitolli C, Wang Y, Candi E, Shi Y, Melino G, Amelio I. p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers (Basel) 2019; 11:E1983. [PMID: 31835405 PMCID: PMC6966539 DOI: 10.3390/cancers11121983] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor p53 regulates different cellular pathways involved in cell survival, DNA repair, apoptosis, and senescence. However, according to an increasing number of studies, the p53-mediated canonical DNA damage response is dispensable for tumor suppression. p53 is involved in mechanisms regulating many other cellular processes, including metabolism, autophagy, and cell migration and invasion, and these pathways might crucially contribute to its tumor suppressor function. In this review we summarize the canonical and non-canonical functions of p53 in an attempt to provide an overview of the potentially crucial aspects related to its tumor suppressor activity.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100012, China;
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- IDI-IRCCS, Biochemistry Laboratory, 00133 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100012, China;
- Institutes for Translational Medicine, Soochow University, Suzhou 215006, China;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
97
|
Torgovnick A, Heger JM, Liaki V, Isensee J, Schmitt A, Knittel G, Riabinska A, Beleggia F, Laurien L, Leeser U, Jüngst C, Siedek F, Vogel W, Klümper N, Nolte H, Wittersheim M, Tharun L, Castiglione R, Krüger M, Schauss A, Perner S, Pasparakis M, Büttner R, Persigehl T, Hucho T, Herter-Sprie GS, Schumacher B, Reinhardt HC. The Cdkn1a SUPER Mouse as a Tool to Study p53-Mediated Tumor Suppression. Cell Rep 2019; 25:1027-1039.e6. [PMID: 30355482 DOI: 10.1016/j.celrep.2018.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Cdkn1a, which encodes p21, functions as a major route for p53-mediated cell-cycle arrest. However, the consequence of Cdkn1a gene dosage on tumor suppression has not been systematically investigated. Here, we employed BAC transgenesis to generate a Cdkn1aSUPER mouse, which harbors an additional Cdkn1a allele within its natural genomic context. We show that these mice display enhanced cell-cycle arrest and reduced apoptosis in response to genotoxic stress. Furthermore, using a chemically induced skin cancer model and an autochthonous Kras-driven lung adenocarcinoma model, we show that Cdkn1aSUPER mice display a cancer protection phenotype that is indistinguishable from that observed in Tp53SUPER animals. Moreover, we demonstrate that Tp53 and Cdkn1a cooperate in mediating cancer resistance, using a chemically induced fibrosarcoma model. Overall, our Cdkn1aSUPER allele enabled us to assess the contribution of Cdkn1a to Tp53-mediated tumor suppression.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Jan Michel Heger
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Vasiliki Liaki
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Straße 10, 50931 Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Gero Knittel
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Arina Riabinska
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Lucie Laurien
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Uschi Leeser
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; SYNLAB Holding Deutschland GmbH, Gubener Straße 39, 86156 Augsburg, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Florian Siedek
- Department of Radiology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Wenzel Vogel
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Lübeck and 23845 Borstel, Germany
| | - Niklas Klümper
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Lübeck and 23845 Borstel, Germany
| | - Hendrik Nolte
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Maike Wittersheim
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Roberta Castiglione
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Lübeck and 23845 Borstel, Germany
| | - Manolis Pasparakis
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Molecular Medicine, University Hospital Cologne, Robert Koch Straße 21, 50931 Cologne
| | - Thorsten Persigehl
- Department of Radiology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Straße 10, 50931 Cologne, Germany
| | - Grit Sophie Herter-Sprie
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; Center for Molecular Medicine, University Hospital Cologne, Robert Koch Straße 21, 50931 Cologne.
| | - Hans Christian Reinhardt
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Center for Molecular Medicine, University Hospital Cologne, Robert Koch Straße 21, 50931 Cologne.
| |
Collapse
|
98
|
Gong Y, Yang G, Wang Q, Wang Y, Zhang X. NME2 Is a Master Suppressor of Apoptosis in Gastric Cancer Cells via Transcriptional Regulation of miR-100 and Other Survival Factors. Mol Cancer Res 2019; 18:287-299. [PMID: 31694930 DOI: 10.1158/1541-7786.mcr-19-0612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/08/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022]
Abstract
Tumorigenesis is a result of uncontrollable cell proliferation which is regulated by a variety of complex factors including miRNAs. The initiation and progression of cancer are always accompanied by the dysregulation of miRNAs. However, the underlying mechanism of miRNA dysregulation in cancers is still largely unknown. Herein we found that miR-100 was inordinately upregulated in the sera of patients with gastric cancer, indicating that miR-100 might emerge as a biomarker for the clinical diagnosis of cancer. The abnormal expression of miR-100 in gastric cancer cells was mediated by a novel transcription factor NME2 (NME/NM23 nucleoside diphosphate kinase 2). Further data revealed that the transcription factor NME2 could promote the transcriptions of antiapoptotic genes including miRNA (i.e., miR-100) and protein-encoding genes (RIPK1, STARD5, and LIMS1) through interacting with RNA polymerase II and RNA polymerase II-associated protein 2 to mediate the phosphorylation of RNA polymerase II C-terminal domain at the 5th serine, leading to the suppression of apoptosis of gastric cancer cells both in vitro and in vivo. In this context, our study revealed that the transcription factor NME2 is a master suppressor for apoptosis of gastric cancer cells. IMPLICATIONS: Our study contributed novel insights into the mechanism involved in the expression regulation of apoptosis-associated genes and provided a potential biomarker of gastric cancer.
Collapse
Affiliation(s)
- Yi Gong
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, P.R. China
| | - Geng Yang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, P.R. China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yumeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
99
|
Zhou Y, Gan F, Zhang Y, He X, Shen C, Qiu H, Liu P. Selective Killing of Cancer Cells by Nonplanar Aromatic Hydrocarbon-Induced DNA Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901341. [PMID: 31728285 PMCID: PMC6839640 DOI: 10.1002/advs.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Indexed: 05/05/2023]
Abstract
A large number of current chemotherapeutic agents prevent the growth of tumors by inhibiting DNA synthesis of cancer cells. It has been found recently that many planar polycyclic aromatic hydrocarbons (PAHs) derivatives, previously known as carcinogenic, display anticancer activity through DNA cross-linking. However, the practical use of these PAHs is substantially limited by their low therapeutic efficiency and selectivity toward most tumors. Herein, the anticancer property of a nonplanar PAH named [4]helicenium, which exhibits highly selective cytotoxicity toward liver, lung cancer, and leukemia cells compared with normal cells, is reported. Moreover, [4]helicenium effectively inhibits tumor growth in liver cancer-bearing mice and shows little side effects in normal mice. RNA sequencing and confirmatory results demonstrate that [4]helicenium induces more DNA damage in tumor cells than in normal cells, resulting in tumor cell cycle arrest and apoptosis increment. This study reveals an unexpected role and molecular mechanism for PAHs in selectively killing tumor cells and provides an effective strategy for precision cancer therapies.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fuwei Gan
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Yuanliang Zhang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Xiaozhen He
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Chengshuo Shen
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Huibin Qiu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
100
|
Ochi S, Nishiyama Y, Morita A. Development of p53-targeting drugs that increase radioresistance in normal tissues. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:219-223. [PMID: 31656277 DOI: 10.2152/jmi.66.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Radiation damage to normal tissues is a serious concern in radiation therapy. Advances in radiotherapeutic technology have improved the dose distribution of the target volumes and risk organs, but damage to risk organs that are located within the irradiation field still limits the allowable prescription dose. To overcome this dose-limiting toxicity, and to further improve the efficacy of radiotherapy, the development of drugs that protect normal tissues but not cancer tissues from the effects of radiation are expected to be developed based on molecular target-based drugs. p53 is a well-known transcription factor that is closely associated with radiation-induced cell death. In radiation-injured tissues, p53 induces apoptosis in hematopoietic lineages, whereas it plays a radioprotective role in the gastrointestinal epithelium. These facts suggest that p53 inhibitor would be effective for radioprotection of the hematopoietic system, and that a drug that upregulates the radioprotective functions of p53 would enhance the radioresistance of gastrointestinal tissues. In this review, we summarize recent progress regarding the prevention of radiation injury by regulating p53 and provide new strategic insights into the development of radioprotectors in radiotherapy. J. Med. Invest. 66 : 219-223, August, 2019.
Collapse
Affiliation(s)
- Shintaro Ochi
- Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University
| | - Yuichi Nishiyama
- Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University
| | - Akinori Morita
- Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|