51
|
Zecha JAEM, Raber-Durlacher JE, Brandt BW, Buijs MJ, Zaura E, de Lange J, Smeele LE, Laheij AMGA. Oral microbial changes, oral mucositis and febrile neutropenia during myelosuppressive chemotherapy in patients diagnosed with a solid tumor or lymphoma. FRONTIERS IN ORAL HEALTH 2024; 5:1461463. [PMID: 39610787 PMCID: PMC11602456 DOI: 10.3389/froh.2024.1461463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
Objectives To evaluate the possible changes of the oral microbiome during myelosuppressive chemotherapy (CT) and to investigate the potential relationship between the oral microbiome, the presence of oral mucositis (OM) and febrile neutropenia (FN). Methods A prospective, longitudinal, observational study was conducted in patients receiving myelosuppressive CT for a solid tumor or lymphoma. Oral rinsing samples were retrieved before, during and after the start of CT, but also when OM or FN was present. The samples were analyzed using 16S rRNA gene amplicon sequencing and statistical analysis was performed using alpha (Shannon) and beta (PERMANOVA) diversity analyses. Furthermore, differential abundances were analyzed using ALDEx2v1.32.0. Differences between groups were calculated using the Mann Whitney U-test, Kruskal-Wallis test and Wilcoxon Signed Rank using R. Results Forty-six patients, with a mean follow up of 114 days, were included for analysis and a total of 138 oral rinsing samples were available in the CLR-transformed data for PERMANOVA and 137 samples-for alpha diversity calculation. Significant changes in alpha diversity were seen when OM or FN was present. Moreover, significant changes were seen in beta diversity during the course of the CT treatment and when OM was present. Genera showing substantial changes in relative abundance were Streptococcus during the course of CT treatment and Prevotella, Fusobacterium, Selenomonas, Actinomyces and Leptotrichia when OM was present. Conclusion Changes in the oral microbiome were observed during the CT-regimen and when OM was present. Furthermore, changes of the oral microbiota during FN episodes were observed; however, larger studies should be performed to substantiate our results.
Collapse
Affiliation(s)
- Judith A. E. M. Zecha
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judith E. Raber-Durlacher
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Oral Medicine, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ludwig E. Smeele
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alexa M. G. A. Laheij
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Oral Medicine, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
52
|
Debener N, Heine N, Legutko B, Denkena B, Prasanthan V, Frings K, Torres-Mapa ML, Heisterkamp A, Stiesch M, Doll-Nikutta K, Bahnemann J. Optically accessible, 3D-printed flow chamber with integrated sensors for the monitoring of oral multispecies biofilm growth in vitro. Front Bioeng Biotechnol 2024; 12:1483200. [PMID: 39588362 PMCID: PMC11586212 DOI: 10.3389/fbioe.2024.1483200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
The formation of pathogenic multispecies biofilms in the human oral cavity can lead to implant-associated infections, which may ultimately result in implant failure. These infections are neither easily detected nor readily treated. Due to high complexity of oral biofilms, detailed mechanisms of the bacterial dysbiotic shift are not yet even fully understood. In order to study oral biofilms in more detail and develop prevention strategies to fight implant-associated infections, in vitro biofilm models are sorely needed. In this study, we adapted an in vitro biofilm flow chamber model to include miniaturized transparent 3D-printed flow chambers with integrated optical pH sensors - thereby enabling the microscopic evaluation of biofilm growth as well as the monitoring of acidification in close proximity. Two different 3D printing materials were initially characterized with respect to their biocompatibility and surface topography. The functionality of the optically accessible miniaturized flow chambers was then tested using five-species biofilms (featuring the species Streptococcus oralis, Veillonella dispar, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis) and compared to biofilm growth on titanium specimens in the established flow chamber model. As confirmed by live/dead staining and fluorescence in situ hybridization via confocal laser scanning microscopy, the flow chamber setup proved to be suitable for growing reproducible oral biofilms under flow conditions while continuously monitoring biofilm pH. Therefore, the system is suitable for future research use with respect to biofilm dysbiosis and also has great potential for further parallelization and adaptation to achieve higher throughput as well as include additional optical sensors or sample materials.
Collapse
Affiliation(s)
- Nicolas Debener
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nils Heine
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Beate Legutko
- Institute of Production Engineering and Machine Tools, Leibniz University Hannover, Hannover, Germany
| | - Berend Denkena
- Institute of Production Engineering and Machine Tools, Leibniz University Hannover, Hannover, Germany
| | - Vannila Prasanthan
- Institute of Production Engineering and Machine Tools, Leibniz University Hannover, Hannover, Germany
| | - Katharina Frings
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Alexander Heisterkamp
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| |
Collapse
|
53
|
Bogdan-Andreescu CF, Bănățeanu AM, Albu CC, Poalelungi CV, Botoacă O, Damian CM, Dȋră LM, Albu ŞD, Brăila MG, Cadar E, Brăila AD. Oral Mycobiome Alterations in Postmenopausal Women: Links to Inflammation, Xerostomia, and Systemic Health. Biomedicines 2024; 12:2569. [PMID: 39595135 PMCID: PMC11592264 DOI: 10.3390/biomedicines12112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The oral mycobiome plays a critical role in maintaining oral and systemic health, with its composition and function influenced by various physiological and environmental factors. This descriptive review explores the changes in the oral mycobiome among postmenopausal women, examining how aging and associated inflammatory processes contribute to these alterations. These changes are linked to an increased prevalence of xerostomia, oral dysbiosis, and inflammation, which can negatively impact both oral and systemic health. We discuss the impact of hormonal fluctuations and immune senescence on fungal diversity and abundance, highlighting key species implicated in oral and systemic diseases. The review also examines the role of systemic conditions and medications, which are common in postmenopausal women, in further exacerbating oral mycobiome alterations. Lastly, it highlights the need for future research to better understand these interactions and develop targeted therapeutic strategies. The current literature indicates a significant association between menopausal status, age-related mycobiome shifts, and increased inflammatory responses, suggesting potential pathways for intervention.
Collapse
Affiliation(s)
- Claudia Florina Bogdan-Andreescu
- Department of Speciality Disciplines, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania; (C.F.B.-A.); (A.-M.B.); (O.B.)
| | - Andreea-Mariana Bănățeanu
- Department of Speciality Disciplines, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania; (C.F.B.-A.); (A.-M.B.); (O.B.)
| | - Cristina-Crenguţa Albu
- Department of Genetics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristian-Viorel Poalelungi
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana Botoacă
- Department of Speciality Disciplines, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania; (C.F.B.-A.); (A.-M.B.); (O.B.)
| | - Constantin Marian Damian
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.D.); (L.M.D.); (A.D.B.)
| | - Laurențiu Mihai Dȋră
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.D.); (L.M.D.); (A.D.B.)
| | - Ştefan-Dimitrie Albu
- Department of Periodontology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Matei Georgian Brăila
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Emin Cadar
- Faculty of Pharmacy, “Ovidius” University, 900470 Constanta, Romania;
| | - Anca Daniela Brăila
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.D.); (L.M.D.); (A.D.B.)
| |
Collapse
|
54
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. MICROBIOME 2024; 12:228. [PMID: 39497165 PMCID: PMC11533410 DOI: 10.1186/s40168-024-01941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remain less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called "vanishing microbiomes" potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. RESULTS Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the USA within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain sources. CONCLUSION Our findings demonstrate that by studying populations within Nepal, we can isolate an important role of lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M Proctor
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Sidney Kimmel Medical College, Philadelphia, PA, UAE
| | | | - David A Relman
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ahmed A Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
55
|
Goo BJ, Choi YS, Gim DH, Jeong SW, Choi JW, Sung H, Lee JY, Bae JW. Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities. J Microbiol 2024; 62:973-983. [PMID: 39531154 DOI: 10.1007/s12275-024-00178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
We isolated three novel strains, S1T, S2T, and S5T, from human oral cavities and identified them as distinct novel species. All these strains are facultatively anaerobic, Gram-stain-positive, and non-flagellated bacteria. Their optimal growth conditions for these strains were observed in Columbia broth (CB) at 37 °C, pH 7.0, and in the absence of NaCl. Phylogenetic analyses, employing the 16S rRNA gene and whole-genome sequencing, confirmed that all three strains belong to the genus Streptococcus. The 16S rRNA gene sequences of strains S1T, S2T, and S5T showed the highest similarities to Streptococcus parasanguinis, 98.57%, 99.05%, and 99.05%, respectively, and the orthologous average nucleotide identity (OrthoANI) values between the three strains and S. parasanguinis were 93.82%, 93.67%, and 94.04%, respectively. The pairwise OrthoANI values between the novel strains were 94.37% (S1T-S2T), 95.03% (S2T-S5T), and 94.71% (S1T-S5T). All strains had C20:1 ω9c and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major cellular fatty acids. Additionally, diphosphatidylglycerol (DPG) and hydroxyphosphatidylethanolamine (OH-PE) were identified as major polar lipids. Menaquinone was undetected in all strains. The results from the phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses collectively indicated that strains S1T, S2T, and S5T represent three distinct novel species within the genus Streptococcus, and we propose the names Streptococcus dentalis sp. nov. for strain S1T (= KCTC 21234T = JCM 36526T), Streptococcus gingivalis sp. nov. for strain S2T (= KCTC 21235T = JCM 36527T), and Streptococcus lingualis sp. nov. for strain S5T (= KCTC 21236T = JCM 36528T).
Collapse
Affiliation(s)
- Beom-Jin Goo
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young-Sik Choi
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do-Hun Gim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Won Jeong
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee-Won Choi
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
56
|
Kwak S, Wang C, Usyk M, Wu F, Freedman ND, Huang WY, McCullough ML, Um CY, Shrubsole MJ, Cai Q, Li H, Ahn J, Hayes RB. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol 2024; 10:1537-1547. [PMID: 39325441 PMCID: PMC11428028 DOI: 10.1001/jamaoncol.2024.4006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/21/2024] [Indexed: 09/27/2024]
Abstract
Importance The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. Objective To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. Design, Setting, and Participants Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. Exposures Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. Main Outcomes and Measures The primary outcome was HNSCC incidence. Results The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. Conclusions and Relevance This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
Collapse
Affiliation(s)
- Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Feng Wu
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Richard B. Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| |
Collapse
|
57
|
Banakar M, Fernandes GVO, Etemad‐Moghadam S, Frankenberger R, Pourhajibagher M, Mehran M, Yazdi MH, Haghgoo R, Alaeddini M. The strategic role of biotics in dental caries prevention: A scoping review. Food Sci Nutr 2024; 12:8651-8674. [PMID: 39620008 PMCID: PMC11606839 DOI: 10.1002/fsn3.4473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 01/31/2025] Open
Abstract
Dental caries is a global oral health issue that is prevalent and preventable. Biotics (probiotics, prebiotics, symbiotics, and postbiotics) are recommended as low-cost methods for preventing dental caries. This scoping review aimed to critically review the scientific evidence concerning the role of biotics in caries prevention and maintaining oral health benefits. A systematic search was conducted in several databases from 2012 onward, using specific keywords. The search resulted in 69 articles. While there is limited research on the mechanism of biotics in preventing caries, numerous studies have investigated the impacts of probiotics on decreasing caries risk factors. Probiotics can reduce cariogenic bacteria, reduce acidogenic bacteria, increase pH, and produce antimicrobial compounds. Probiotics can be used as a therapeutic approach to manage caries by restoring eubiosis at the host-microbial interface, which may not be accomplished with traditional therapies. Its positive effect on reducing dental caries is influenced by the choice of potent probiotic strains, appropriate dosage, treatment period, vehicle, and microbial interaction with the host. Specific oral bacteria have also been shown to utilize prebiotics such as urea and arginine, increasing pH levels. This highlights the potential of combining prebiotic and probiotic bacteria for caries prevention. In addition, this review is focused on bacterial-derived compounds, namely postbiotics, due to their valuable effects in preventing caries. Biotics have demonstrated potential in preventing dental caries and maintaining oral health. Further research is needed to optimize their use and explore the potential of postbiotics for caries prevention.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
- Department of Pediatric Dentistry, Faculty of DentistryShahed UniversityTehranIran
| | | | - Shahroo Etemad‐Moghadam
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| | - Roland Frankenberger
- Department of Operative Dentistry and Endodontics, Dental SchoolUniversity of Marburg and University Medical Center Giessen and MarburgMarburgGermany
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| | - Majid Mehran
- Department of Pediatric Dentistry, Faculty of DentistryShahed UniversityTehranIran
| | | | - Roza Haghgoo
- Department of Pediatric Dentistry, Faculty of DentistryShahed UniversityTehranIran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
58
|
Nair DP, Asby S, de Lucena FS, Pfeifer CS. An introduction to antibacterial materials in composite restorations. JADA FOUNDATIONAL SCIENCE 2024; 3:100038. [PMID: 39868358 PMCID: PMC11759481 DOI: 10.1016/j.jfscie.2024.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with Streptococcus mutans being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as S mutans. One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate. Many antibacterial compounds have already been proposed for use in dental materials, including but not limited to phenolic compounds, antimicrobial peptides, quaternary ammonium compounds, and nanoparticles. In general, the goal of incorporating them directly into the material is to increase their availability in the oral cavity past the fleeting effect they would otherwise have in mouth rinses. This review focuses specifically on natural compounds, of which polyphenols are the most abundant category. The authors examined attempts at using these either as pretreatment or incorporated directly into restorative material as a step toward fulfilling a long-recognized need for restorations that can combat or prevent secondary caries formation. Repeatedly restoring failed restorations comes with the loss of more tooth structure along with increasingly complex and costly dental procedures, which is detrimental to not only oral health but also systemic health.
Collapse
Affiliation(s)
- Devatha P Nair
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO
| | - Sarah Asby
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO
| | - Fernanda S de Lucena
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR
| | - Carmem S Pfeifer
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR
| |
Collapse
|
59
|
Benedyk-Machaczka M, Mydel P, Mäder K, Kaminska M, Taudte N, Naumann M, Kleinschmidt M, Sarembe S, Kiesow A, Eick S, Buchholz M. Preclinical Validation of MIN-T: A Novel Controlled-Released Formulation for the Adjunctive Local Application of Minocycline in Periodontitis. Antibiotics (Basel) 2024; 13:1012. [PMID: 39596707 PMCID: PMC11591261 DOI: 10.3390/antibiotics13111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Adjunctive treatment of periodontitis lacks solutions which allow for enough time for wound healing in the periodontal pockets by avoiding fast re-colonization. Such a solution might be an antibiotic-containing formulation with a controlled release over a period of weeks. Here, a recently described minocycline-containing approach is qualified for further clinical development by focusing on proof-of-concept, systemic burden, resistance development, and degradation studies. Methods: Animal studies were done in two different (mouse-chamber, rat Porphyromonas gingivalis challenging) models, including effects on inflammation markers, bone loss, and bone structure. Also, serum concentrations of minocycline after local application were determined by HPLC-MS/MS. The resistance status of bacterial clinical isolates against minocycline was investigated and the degradation of the formulation was characterized by laser scanning and scanning electron microscopy. Results: Animal studies clearly demonstrated the applicability of the new formulation in the investigated models. Inflammation markers decreased in a dose-dependent manner and reduced bone loss compared to non-treated group was observed. Therefore, the systemic burden of the antibiotic was neglectable. Minocycline is still effective against oral pathogens; resistance development was not seen. The biodegradable thread was first swollen and subsequently degraded over a period of weeks. Conclusions: The results support the continued clinical development of this new formulation. A phase I clinical trial is planned to further evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Małgorzata Benedyk-Machaczka
- H&G Ltd., 31-431 Krakow, Poland; (M.B.-M.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Mydel
- H&G Ltd., 31-431 Krakow, Poland; (M.B.-M.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| | - Marta Kaminska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Nadine Taudte
- PerioTrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Marcel Naumann
- Department Drug Design and Analytical Chemistry, Fraunhofer IZI-MWT, Weinbergweg 22, 06120 Halle (Saale), Germany; (M.N.)
| | - Martin Kleinschmidt
- Department Drug Design and Analytical Chemistry, Fraunhofer IZI-MWT, Weinbergweg 22, 06120 Halle (Saale), Germany; (M.N.)
| | - Sandra Sarembe
- Department Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure and Systems IMWS, Walter-Huelse-Strasse 1, 06120 Halle (Saale), Germany
| | - Andreas Kiesow
- Department Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure and Systems IMWS, Walter-Huelse-Strasse 1, 06120 Halle (Saale), Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland;
| | - Mirko Buchholz
- PerioTrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
60
|
Golipoor M, Rafat Z, Saberi A, Roostaei D, Shabanpour AM. Comparing the frequency, antifungal susceptibility, and enzymatic profiles of the oral fungal composition in patients with and without Alzheimer's disease admitted to a neurology clinic. Front Cell Infect Microbiol 2024; 14:1477230. [PMID: 39492992 PMCID: PMC11527782 DOI: 10.3389/fcimb.2024.1477230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background Studies have shown that changes in the frequency of oral microorganisms may play a key role in the development of Alzheimer's disease (AD). However, no research has been conducted on the oral fungal composition in AD-patients. The present study aimed to investigate the changes in the frequency of oral fungal composition, the antifungal susceptibility, and the enzymatic profiles of oral fungal composition in patients suffering from AD compared to non-AD individuals. Materials and methods In the present analytical cross-sectional study during 12 months, 76 hospitalized patients with AD were matched with 76 individuals without AD. A sterile serum physiology-moistened cotton-tipped swab was used to sample the mouth area. All swabs were cultured on Sabouraud Chloramphenicol Agar. Fungal identified were confirmed through the PCR-sequencing techniques. Enzyme activity index (EAI) for important pathogenic factors including proteinase, esterase and hemolysin was measured using relevant protocols. The susceptibility to 8 antifungal agents (nystatin, voriconazole, itraconazole, fluconazole, posaconazole, amphotericin B, 5-fluorocytosine, and caspofungin) against fungal strains obtained from AD-patients was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines, document M38-A2 for filamentous fungi, and document M27-A4 for yeasts. Results The results showed that compared to the non-AD individuals, the prevalence of oral fungal composition in AD group was 1.6 times higher. Candida albicans was the most common fungal species isolated from oral swab samples of AD group (n=53, 80%) and non-AD group (n=28, 40%), and the diversity of the oral fungal composition in AD-patients were lower than non-AD individuals. Among the 3 investigated virulence factors, a statistically significant difference was shown in terms of hemolysin activity level between the two studied groups (p<0.05) and the activity level of esterase and proteinase enzymes did not show a significant difference in the two studied groups (p>0.05). The results showed that almost all of the tested isolates were susceptible to nystatin, the most widely prescribed antifungal to treat superficial infections, and only 1.69 % (2/118) of the Candida isolates were resistant to this antifungal drug. Conclusion Understanding the changes in the frequency of oral fungal composition the antifungal susceptibility, and the enzymatic profiles of oral fungal composition in patients suffering from AD compared to non-AD individuals makes it possible to better understand the etiology of this disease.
Collapse
Affiliation(s)
- Mandana Golipoor
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Rafat
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alia Saberi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Roostaei
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir-Mohammad Shabanpour
- Student research committee, Anzali International Medical Campus, Guilan University of Medical Sciences, Guilan, Iran
| |
Collapse
|
61
|
Chen X, Zou T, Ding G, Jiang S. Findings and methodologies in oral phageome research: a systematic review. J Oral Microbiol 2024; 16:2417099. [PMID: 39420944 PMCID: PMC11485842 DOI: 10.1080/20002297.2024.2417099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background The oral microbiome serves as both an indicator and a mediator of oral health. Evidence indicates that bacteriophages (phages) are widely present in the oral microbiome and exhibit diverse classifications and interactions with human cells and other microbes. These phages constitute the oral phageome, which potentially exerts significant yet unexplored effects on the interplay between oral and general health. Methods Three databases (PubMed/MEDLINE, Embase and Scopus) were searched for metagenomic analyses that investigated the oral phageome. Eligible studies were synthesized based on their methodological approaches and findings. Results A total of 14 articles were included in this systematic review. Among the 14 articles included, there were six studies that discussed disease-related alterations, along with a discursive examination of additional variables such as sampling niches, external interventions and methodologies. The phages that infect Streptococcus Actinomyces Haemophilus, and Veillonella have been discovered to be associated with chronic periodontitis, caries, and pancreatic ductal carcinoma. Conclusions This systematic review focuses on findings and methodologies in oral phageome studies, which were conducted using highly heterogeneous methodologies that explored the oral phageome in multiple directions while placing constraints on quantitative statistics. Combining different kinds of sample types, utilizing the characteristics of different methods, involving both DNA and RNA phages, and differentiating lysogenic and lytic phages should be the distinction of further studies.
Collapse
Affiliation(s)
- Xin Chen
- Shenzhen Children’s Hospital, China Medical University (CMU), Shenzhen, China
- Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Ting Zou
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, Guangdong, China
- Central Laboratory, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Guicong Ding
- Shenzhen Children’s Hospital, China Medical University (CMU), Shenzhen, China
- Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Shan Jiang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, Guangdong, China
- Department of Periodontology, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| |
Collapse
|
62
|
Pisanu L, Mucaj K, Conio V, Bertuccio F, Giana I, Arlando L, Russo M, Montini S, Bortolotto C, Corsico AG, Stella GM. Lung bronchiectasisas a paradigm of the interplay between infection and colonization on plastic modulation of the pre-metastatic niche. Front Oncol 2024; 14:1480777. [PMID: 39469649 PMCID: PMC11513253 DOI: 10.3389/fonc.2024.1480777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
The lungs are most often a preferential target organ for malignant spreading and growth. It is well known that chronic parenchymal inflammation and prolonged injuries represents an independent risk factor for cancer onset. Growing evidence supports the implication of lung microbiota in the pathogenesis of lung cancer. However, the full interplay between chronic inflammation, bacterial colonization, pathologic condition as bronchiectasis and malignant growth deserves better clarification. We here aim at presenting and analyzing original data and discussing the state-of-the-art on the knowledge regarding how this complex milieu acts on the plasticity of the lung pre-metastatic niche to point out the rationale for early diagnosis and therapeutic targeting.
Collapse
Affiliation(s)
- Lucrezia Pisanu
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Klodjana Mucaj
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Valentina Conio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Ilaria Giana
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Arlando
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Marianna Russo
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia Medical School, Pavia, Italy
- Radiology Institute, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
63
|
Wang B, Zhang C, Shi C, Zhai T, Zhu J, Wei D, Shen J, Liu Z, Jia K, Zhao L. Mechanisms of oral microflora in Parkinson's disease. Behav Brain Res 2024; 474:115200. [PMID: 39134178 DOI: 10.1016/j.bbr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with complex pathogenesis and no effective treatment. Recent studies have shown that dysbiosis of the oral microflora is closely related to the development of PD. The abnormally distributed oral microflora of PD patients cause degenerative damage and necrosis of dopamine neurons by releasing their own components and metabolites, intervening in the oral-gut-brain axis, crossing the biofilm, inducing iron dysregulation, activating inter-microflora interactions, and through the mediation of saliva,ultimately influencing the development of the disease. This article reviews the structure of oral microflora in patients with PD, the mechanism of development of PD caused by oral microflora, and the potential value of targeting oral microflora in developing a new strategy for PD prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Caizhen Shi
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Juan Shen
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Zehao Liu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Kunpeng Jia
- Yan'an University Affiliated Hospital, Yan'an, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
64
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
65
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
66
|
de Lima PMN, Pereira TC, de Carvalho LS, dos Santos LF, Oliveira CER, Ramos LDP, Marcucci MC, Abu Hasna A, de Oliveira LD. Antimicrobial and synergistic effects of lemongrass and geranium essential oils against Streptococcus mutans, Staphylococcus aureus, and Candida spp. World J Crit Care Med 2024; 13:92531. [PMID: 39253314 PMCID: PMC11372514 DOI: 10.5492/wjccm.v13.i3.92531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND The oral cavity harbors more than 700 species of bacteria, which play crucial roles in the development of various oral diseases including caries, endodontic infection, periodontal infection, and diverse oral diseases. AIM To investigate the antimicrobial action of Cymbopogon Schoenanthus and Pelargonium graveolens essential oils against Streptococcus mutans, Staphylococcus aureus, Candida albicans, Ca. dubliniensis, and Ca. krusei. METHODS Minimum microbicidal concentration was determined following Clinical and Laboratory Standards Institute documents. The synergistic antimicrobial activity was evaluated using the Broth microdilution checkerboard method, and the antibiofilm activity was evaluated with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. Data were analyzed by one-way analysis of variance followed by the Tukey post-hoc test (P ≤ 0.05). RESULTS C. schoenanthus and P. graveolens essential oils were as effective as 0.12% chlorhexidine against S. mutans and St. aureus monotypic biofilms after 24 h. After 24 h P. graveolens essential oil at 0.25% was more effective than the nystatin group, and C. schoenanthus essential oil at 0.25% was as effective as the nystatin group. CONCLUSION C. schoenanthus and P. graveolens essential oils are effective against S. mutans, St. aureus, Ca. albicans, Ca. dubliniensis, and Ca. krusei at different concentrations after 5 min and 24 h.
Collapse
Affiliation(s)
- Patrícia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Lara Steffany de Carvalho
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Letícia Ferreira dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | | | - Lucas de Paula Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, São Paulo, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| |
Collapse
|
67
|
Costa LCMC, Carvalho MDG, Vale FF, Marques AT, Rasmussen LT, Chen T, Barros-Pinheiro M. Helicobacter pylori in oral cavity: current knowledge. Clin Exp Med 2024; 24:209. [PMID: 39230790 PMCID: PMC11374826 DOI: 10.1007/s10238-024-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The oral cavity may play a role as a reservoir and in the transmission and colonization of Helicobacter pylori. The route of transmission for H. pylori is not fully understood. The prevalence of this pathogen varies globally, affecting half of the world's population, predominantly in developing countries. Here, we review the prevalence of H. pylori in the oral cavity, the characteristics that facilitate its colonization and dynamics in the oral microbiome, the heterogeneity and diversity of virulence of among strains, and noninvasive techniques for H. pylori detection in oral samples. The prevalence of H. pylori in the oral cavity varies greatly, being influenced by the characteristics of the population, regions where samples are collected in the oral cavity, and variations in detection methods. Although there is no direct association between the presence of H. pylori in oral samples and stomach infection, positive cases for gastric H. pylori frequently exhibit a higher prevalence of the bacterium in the oral cavity, suggesting that the stomach may not be the sole reservoir of H. pylori. In the oral cavity, H. pylori can cause microbiome imbalance and remodeling of the oral ecosystem. Detection of H. pylori in the oral cavity by a noninvasive method may provide a more accessible diagnostic tool as well as help prevent transmission and gastric re-colonization. Further research into this bacterium in the oral cavity will offer insights into the treatment of H. pylori infection, potentially developing new clinical approaches.
Collapse
Affiliation(s)
- Liana Cristina Melo Carneiro Costa
- Programa de Pós-graduação em Ciências da Saúde, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
- BioISI - BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipa F Vale
- BioISI - BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia T Marques
- BioISI - BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Tsute Chen
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Melina Barros-Pinheiro
- Programa de Pós-graduação em Ciências da Saúde, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil
| |
Collapse
|
68
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
69
|
Talapko J, Erić S, Meštrović T, Stipetić MM, Juzbašić M, Katalinić D, Bekić S, Muršić D, Flam J, Belić D, Lešić D, Fureš R, Markanović M, Škrlec I. The Impact of Oral Microbiome Dysbiosis on the Aetiology, Pathogenesis, and Development of Oral Cancer. Cancers (Basel) 2024; 16:2997. [PMID: 39272855 PMCID: PMC11394246 DOI: 10.3390/cancers16172997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Although the oral cavity is an easily accessible area for visual examination, the OSCC is more often detected at an advanced stage. The global prevalence of OSCC is around 6%, with increasing trends posing a significant health problem due to the increase in morbidity and mortality. The oral cavity microbiome has been the target of numerous studies, with findings highlighting the significant role of dysbiosis in developing OSCC. Dysbiosis can significantly increase pathobionts (bacteria, viruses, fungi, and parasites) that trigger inflammation through their virulence and pathogenicity factors. In contrast, chronic bacterial inflammation contributes to the development of OSCC. Pathobionts also have other effects, such as the impact on the immune system, which can alter immune responses and contribute to a pro-inflammatory environment. Poor oral hygiene and carbohydrate-rich foods can also increase the risk of developing oral cancer. The risk factors and mechanisms of OSCC development are not yet fully understood and remain a frequent research topic. For this reason, this narrative review concentrates on the issue of dysbiosis as the potential cause of OSCC, as well as the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
| | - Suzana Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia; (J.F.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia;
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marinka Mravak Stipetić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dora Muršić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia; (J.F.)
| | - Josipa Flam
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia; (J.F.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dino Belić
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia; (J.F.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Manda Markanović
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.M.S.); (D.K.); (D.M.); (R.F.)
| |
Collapse
|
70
|
Anitua E, Murias-Freijo A, Tierno R, Tejero R, Alkhraisat MH. Assessing peri-implant bacterial community structure: the effect of microbiome sample collection method. BMC Oral Health 2024; 24:1001. [PMID: 39187802 PMCID: PMC11348724 DOI: 10.1186/s12903-024-04675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Oral microbiota comprises polymicrobial communities shaped by mutualistic coevolution with the host, contributing to homeostasis and regulating immune function. Nevertheless, dysbiosis of oral bacterial communities is associated with a number of clinical symptoms that ranges from infections to oral cancer. Peri-implant diseases are biofilm-associated inflammatory conditions affecting the soft and hard tissues around dental implants. Characterization and identification of the biofilm community are essential for the understanding of the pathophysiology of such diseases. For that sampling methods should be representative of the biofilm communities Therefore, there is a need to know the effect of different sampling strategies on the biofilm characterization by next generation sequencing. METHODS With the aim of selecting an appropriate microbiome sampling procedure for periimplant biofilms, next generation sequencing was used for characterizing the bacterial communities obtained by three different sampling strategies two months after transepithelial abutment placement: adjacent periodontal crevicular fluid (ToCF), crevicular fluid from transepithelial abutment (TACF) and transepithelial abutment (TA). RESULTS Significant differences in multiple alpha diversity indices were detected at both the OTU and the genus level between different sampling procedures. Differentially abundant taxa were detected between sample collection strategies, including peri-implant health and disease related taxa. At the community level significant differences were also detected between TACF and TA and also between TA and ToCF. Moreover, differential network properties and association patterns were identified. CONCLUSIONS The selection of sample collection strategy can significantly affect the community composition and structure. TRIAL REGISTRATION This research is part of a randomized clinical trial that was designed to assess the effect of transepithelial abutment surface on the biofilm formation. The trial was registered at Trial Registration ClinicalTrials.gov under the number NCT03554876.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain.
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain.
| | - Alia Murias-Freijo
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
- Biomedical Investigation, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
| | - Ricardo Tejero
- BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
| |
Collapse
|
71
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
72
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Singh S, Hegde M. Root caries a challenge to the restorative dentist in the next decade. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:789. [PMID: 39372566 PMCID: PMC11451681 DOI: 10.4103/jcde.jcde_415_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Shishir Singh
- Editor in Chief, Journal of Conservative Dentistry and Endodontics, Dean, Professor and Head of Conservative Dentistry and Endodontics Department, Terna Dental College, Nerul, Navi Mumbai, Maharashtra
| | - Mithra Hegde
- Section Editor, Journal of Conservative Dentistry and Endodontics, A B Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India, President, Aesthetic Dentistry Association of India, Secretary, Association of Conservative Dentistry and Endodontics of Karnataka, Past President, Indian Dental Association, Dakshina Kannada Branch, Past Vice President, Indian Association of Conservative Dentistry and Endodontics
| |
Collapse
|
74
|
Pedergnana A, Seiler R, Huber R, Eppenberger P, Rühli F. Insights into medieval rural lives: A paleo-odontological investigation of two central European communities. Arch Oral Biol 2024; 164:105985. [PMID: 38703544 DOI: 10.1016/j.archoralbio.2024.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Oral status is an important indicator of past lifestyles. Determining the presence and extent of oral pathologies helps reconstruct average oral health, paramasticatory activities and diet of ancient and historical populations. DESIGN In this study, the dental remains from the early medieval cemetery of Früebergstrasse in Baar (Canton of Zug, Switzerland) and the high medieval Dalheim cemetery (North Rhine-Westphalia, Germany) were analyzed. Caries, periodontal condition, periapical lesions, antemortem tooth loss, and enamel hypoplasia were assessed in 654 teeth (993 observable loci) from 68 individuals (Baar: n = 36; Dalheim: n = 32). RESULTS The oral status of both populations was affected by age with higher values of tooth wear in advanced age individuals. High tooth wear values in both populations point towards the consumption of abrasive foods. Pronounced anterior tooth wear in Baar may also be due to non-masticatory tooth usage. Finally, possible nutritional deficiencies were hypothesized for the Baar population. A higher caries prevalence was observed in the Baar group, probably due to differences in carbohydrate intake. The oral conditions observed in the two studied populations exhibited several analogies, suggesting comparable lifestyles despite their separation in space and time. The only differences observed are related to the use of teeth as "tools" and are thus determined by behavioral choices rather than diverse socioeconomic factors. CONCLUSIONS Using multiple dental parameters to examine the oral health of premodern individuals can provide useful insights into the interactions between humans and their environment, from dietary patterns to paramasticatory activities.
Collapse
Affiliation(s)
- Antonella Pedergnana
- Institute of Evolutionary Medicine - University of Zurich, Winterthurerstrasse, 190, 8057 Zurich, Switzerland; South Tyrol Archeological Museum, Bozen, Italy; Institute for Mummy Studies, Eurac Research, Bozen, Italy.
| | - Roger Seiler
- Institute of Evolutionary Medicine - University of Zurich, Winterthurerstrasse, 190, 8057 Zurich, Switzerland
| | - Renata Huber
- Amt für Denkmalpflege und Archäologie, Canton Zug, Switzerland
| | - Patrick Eppenberger
- Institute of Evolutionary Medicine - University of Zurich, Winterthurerstrasse, 190, 8057 Zurich, Switzerland
| | - Frank Rühli
- Institute of Evolutionary Medicine - University of Zurich, Winterthurerstrasse, 190, 8057 Zurich, Switzerland
| |
Collapse
|
75
|
Dubois M, Ortis M, Doglio A, Bougault V. Microbiote oral et santé bucco-dentaire des sportifs : revue narrative. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2024; 59:233-242. [DOI: 10.1016/j.cnd.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
76
|
Jeong J, Ahn K, Yun K, Kim M, Choi Y, Han M, Mun S, Kim YT, Lee KE, Kim MY, Ahn Y, Han K. Exploring oral bacterial compositional network in two oral disease groups using a convergent approach of NGS-molecular diagnostics. Genes Genomics 2024; 46:881-898. [PMID: 38847972 DOI: 10.1007/s13258-024-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Since most of the commonly known oral diseases are explained in link with balance of microbial community, an accurate bacterial taxonomy profiling for determining bacterial compositional network is essential. However, compared to intestinal microbiome, research data pool related to oral microbiome is small, and general 16S rRNA screening method has a taxonomy misclassification issue in confirming complex bacterial composition at the species level. OBJECTIVE Present study aimed to explore bacterial compositional networks at the species level within saliva of 39 oral disease patients (Dental Caries group: n = 26 and Periodontitis group: n = 13) through comparison with public Korean-specific healthy oral microbiome data. METHODS Here, we applied comprehensive molecular diagnostics based on qRT-PCR and Sanger sequencing methods to complement the technical limitations of NGS-based 16S V3-V4 amplicon sequencing technology. RESULTS As a result of microbiome profiling at the genus level, relative frequencies of many nitrate-reducing bacteria within each oral disease group were found to be significantly low compared to the healthy group. In addition, the molecular diagnostics-based bacterial identification method allowed the determination of the correct taxonomy of screened primary colonizers (Streptococcus and Actinomyces unclassification clusters) for each oral disease. Finally, as with the results of microbiome profiling at the genus level, many core-species classified within the saliva of each oral disease group were also related to nitrate-reduction, and it was estimated that various pathogens associated with each disease formed a bacterial network with the core-species. CONCLUSION Our study introduced a novel approach that can compensate for the difficulty of identifying an accurate bacterial compositional network at the species level due to unclear taxonomy classification by using the convergent approach of NGS-molecular diagnostics. Ultimately, we suggest that our experimental approach and results could be potential reference materials for researchers who intend to prevent oral disease by determining the correlation between oral health and bacterial compositional network according to the changes in the relative frequency for nitrate-reducing species.
Collapse
Affiliation(s)
- Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Kung Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea
| | - Kyeongeui Yun
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Minseo Kim
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yeseul Choi
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Miyang Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Yeon-Tae Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Kyung Eun Lee
- Department of Oral Medicine, Department of Anesthesiology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Korea
| | - Yongju Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea.
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea.
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
77
|
Albu ŞD, Suciu I, Albu CC, Dragomirescu AO, Ionescu E. Impact of Malocclusions on Periodontopathogenic Bacterial Load and Progression of Periodontal Disease: A Quantitative Analysis. Microorganisms 2024; 12:1553. [PMID: 39203395 PMCID: PMC11356265 DOI: 10.3390/microorganisms12081553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND (1) Periodontal disease (PD) is a globally prevalent chronic inflammatory condition, exacerbated by the dysbiosis of the oral microbiota. This study aims to evaluate the bacterial load of specific periodontopathogenic bacteria in patients with malocclusions (MAL) compared to those without. (2) Methods: Conducted at the "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania, this pilot study involved two groups: patients with MAL and PD, and patients with PD but without MAL. We included 20 patients: 10 with MAL (9 with crowding and 1 with an open bite) and 10 without MAL. Gingival crevicular fluid was collected for bacterial DNA extraction and quantified bacterial load using real-time PCR, focusing on 12 periodontopathogenic bacteria across different complexity classes. (3) Results: The study identified significantly higher concentrations of Treponema denticola (p = 0.023, median = 4.32, IQR = 2.76-5.53 vs. median = 1.93, IQR = 0-3.19), Tannerella forsythia (p = 0.020, mean = 6.04 ± 0.72 vs. mean = 4.4 ± 1.89) and Porphyromonas gingivalis (p = 0.002, median = 5.64, IQR = 4.94-5.98 vs. median = 2.48, IQR = 0-4.05) in patients with MAL compared to those without. This suggests that MAL contributes to an environment conducive to the proliferation of specific pathogens, potentially accelerating PD progression. Additionally, Eikenella corrodens (p = 0.040, mean = 4.55 ± 1.02 vs. mean = 3.23 ± 1.56), Campylobacter rectus (p < 0.001, mean = 4.2 ± 0.56 vs. mean = 1.8 ± 1.51), Prevotella intermedia (p = 0.043, median = 5.04, IQR = 0-5.49 vs. median = 0, IQR = 0-3.39), Capnocytophaga sputigena (p = 0.011, median = 5.91, IQR = 5.47-6.17 vs. median = 4.63, IQR = 3.83-5.64), and Capnocytophaga gingivalis (p = 0.007, median = 5.87, IQR = 5.34-6.03 vs. median = 4.4, IQR = 3.5-5.71) also showed elevated concentrations, indicating the broad impacts of MAL on oral microbial profiles. (4) Conclusions: The findings demonstrate a significant relationship between MAL and increased bacterial loads, underscoring the need for its integration in managing PD. Future research should expand demographic diversity and employ longitudinal designs to better understand the causative mechanisms at play.
Collapse
Affiliation(s)
- Ştefan-Dimitrie Albu
- Department of Periodontology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania;
| | - Ioana Suciu
- Department of Endodontics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania;
| | - Cristina-Crenguţa Albu
- Department of Genetics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Anca-Oana Dragomirescu
- Department of Orthodontics and Dentofacial Orthopaedics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.-O.D.); (E.I.)
| | - Ecaterina Ionescu
- Department of Orthodontics and Dentofacial Orthopaedics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.-O.D.); (E.I.)
| |
Collapse
|
78
|
Grodner B, Wu DT, Hahm S, Takayasu L, Wen N, Kim DM, Chen CY, De Vlaminck I. Microscale Spatial Dysbiosis in Oral biofilms Associated with Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604873. [PMID: 39211202 PMCID: PMC11360903 DOI: 10.1101/2024.07.24.604873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microbiome dysbiosis has largely been defined using compositional analysis of metagenomic sequencing data; however, differences in the spatial arrangement of bacteria between healthy and diseased microbiomes remain largely unexplored. In this study, we measured the spatial arrangement of bacteria in dental implant biofilms from patients with healthy implants, peri-implant mucositis, or peri-implantitis, an oral microbiome-associated inflammatory disease. We discovered that peri-implant biofilms from patients with mild forms of the disease were characterized by large single-genus patches of bacteria, while biofilms from healthy sites were more complex, mixed structures. Based on these findings, we propose a model of peri-implant dysbiosis where changes in biofilm spatial architecture allow the colonization of new community members. This model indicates that spatial structure could be used as a potential biomarker for community stability and has implications in diagnosis and treatment of peri-implant diseases. These results enhance our understanding of peri-implant disease pathogenesis and may be broadly relevant for spatially structured microbiomes.
Collapse
|
79
|
Nadaf R, Kumbar VM, Ghagane S. Unravelling the intricacies of Porphyromonas gingivalis: virulence factors, lifecycle dynamics and phytochemical interventions for periodontal disease management. APMIS 2024. [PMID: 39030947 DOI: 10.1111/apm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium recognized for its pivotal role in the pathogenesis of periodontal diseases. This review covers an overview of the virulence factors and lifecycle stages of P. gingivalis, with a specific focus on attachment and colonization, biofilm formation, growth and multiplication, dormancy survival and dissemination. Additionally, we explore the significance of inter-bacterial cross-feeding within biofilms. Furthermore, we discuss potential phytochemical-based strategies to target P. gingivalis, including the use of curcumin, apigenin, quercetin and resveratrol. Understanding the virulence factors and lifecycle stages of P. gingivalis, along with the promising phytochemical-based interventions, holds promise for advancing strategies in periodontal disease management and oral health promotion.
Collapse
Affiliation(s)
- Rubeen Nadaf
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Shridhar Ghagane
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
80
|
Torre E, Morra M, Cassinelli C, Iviglia G. Anti-Bacterial and Anti-Inflammatory Effects of a Ceramic Bone Filler Containing Polyphenols from Grape Pomace. CERAMICS 2024; 7:975-988. [DOI: 10.3390/ceramics7030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Bone loss is a major burden for society and impacts people’s health all over the world. In a changing world looking toward a more conscious use of raw materials, efforts are being made to increasingly consider new promising biomaterials that account for, on one side, the ability to provide specific functional biological activities and, on the other, the feature of being well tolerated. In this regard, the use of phenolic compounds in the field of bone-related bioengineering shows a rising interest in the development of medical solutions aimed at taking advantage of the multiple beneficial properties of these plant molecules. In this work, the anti-bacterial and anti-inflammatory power of a biphasic calcium phosphate synthetic bone filler coated with a mixture of phenolic compounds was investigated by evaluating the minimal inhibitory concentration (MIC) value against Streptococcus mutans and Porphyromonas gingivalis and the expression of genes involved in inflammation and autophagy by real-time reverse transcription polymerase chain reaction (RT-qPCR) on J774a.1 murine macrophage cells. Results show a MIC of 0.8 μg/mL, a neat anti-inflammatory effect, and induction of autophagy key genes compared to a ceramic bone filler. In conclusion, functionalization with a polyphenol-rich extract confers to a ceramic bone filler anti-bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Marco Morra
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Clara Cassinelli
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Giorgio Iviglia
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| |
Collapse
|
81
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
82
|
Chen Y, Li C, Wang X, Zhang CL, Ren ZG, Wang ZQ. Oral microbiota distinguishes patients with osteosarcoma from healthy controls. Front Cell Infect Microbiol 2024; 14:1383878. [PMID: 39055977 PMCID: PMC11269967 DOI: 10.3389/fcimb.2024.1383878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE The human microbiota plays a key role in cancer diagnosis, pathogenesis, and treatment. However, osteosarcoma-associated oral microbiota alterations have not yet been unraveled. The aim of this study was to explore the characteristics of oral microbiota in osteosarcoma patients compared to healthy controls, and to identify potential microbiota as a diagnostic tool for osteosarcoma. METHODS The oral microbiota was analyzed in osteosarcoma patients (n = 45) and matched healthy controls (n = 90) using 16S rRNA MiSeq sequencing technology. RESULTS The microbial richness and diversity of the tongue coat were increased in osteosarcoma patients as estimated by the abundance-based coverage estimator indices, the Chao, and observed operational taxonomy units (OTUs). Principal component analysis delineated that the oral microbial community was significant differences between osteosarcoma patients and healthy controls. 14 genera including Rothia, Halomonas, Rhodococcus, and Granulicatella were remarkably reduced, whereas Alloprevotella, Prevotella, Selenomonas, and Campylobacter were enriched in osteosarcoma. Eventually, the optimal four OTUs were identified to construct a microbial classifier by the random forest model via a fivefold cross-validation, which achieved an area under the curve of 99.44% in the training group (30 osteosarcoma patients versus 60 healthy controls) and 87.33% in the test group (15 osteosarcoma patients versus 30 healthy controls), respectively. Notably, oral microbial markers validated strong diagnostic potential distinguishing osteosarcoma patients from healthy controls. CONCLUSION This study comprehensively characterizes the oral microbiota in osteosarcoma and reveals the potential efficacy of oral microbiota-targeted biomarkers as a noninvasive biological diagnostic tool for osteosarcoma.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pathogen Biology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun Lei Zhang
- Department of Orthopaedic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhi Gang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Pathogen Biology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
83
|
Loeurng V, Puth S, Hong SH, Lee YS, Radhakrishnan K, Koh JT, Kook JK, Rhee JH, Lee SE. A Flagellin-Adjuvanted Trivalent Mucosal Vaccine Targeting Key Periodontopathic Bacteria. Vaccines (Basel) 2024; 12:754. [PMID: 39066392 PMCID: PMC11281409 DOI: 10.3390/vaccines12070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontal disease (PD) is caused by microbial dysbiosis and accompanying adverse inflammatory responses. Due to its high incidence and association with various systemic diseases, disease-modifying treatments that modulate dysbiosis serve as promising therapeutic approaches. In this study, to simulate the pathophysiological situation, we established a "temporary ligature plus oral infection model" that incorporates a temporary silk ligature and oral infection with a cocktail of live Tannerella forsythia (Tf), Pophyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) in mice and tested the efficacy of a new trivalent mucosal vaccine. It has been reported that Tf, a red complex pathogen, amplifies periodontitis severity by interacting with periodontopathic bacteria such as Pg and Fn. Here, we developed a recombinant mucosal vaccine targeting a surface-associated protein, BspA, of Tf by genetically combining truncated BspA with built-in adjuvant flagellin (FlaB). To simultaneously induce Tf-, Pg-, and Fn-specific immune responses, it was formulated as a trivalent mucosal vaccine containing Tf-FlaB-tBspA (BtB), Pg-Hgp44-FlaB (HB), and Fn-FlaB-tFomA (BtA). Intranasal immunization with the trivalent mucosal vaccine (BtB + HB + BtA) prevented alveolar bone loss and gingival proinflammatory cytokine production. Vaccinated mice exhibited significant induction of Tf-tBspA-, Pg-Hgp44-, and Fn-tFomA-specific IgG and IgA responses in the serum and saliva, respectively. The anti-sera and anti-saliva efficiently inhibited epithelial cell invasion by Tf and Pg and interfered with biofilm formation by Fn. The flagellin-adjuvanted trivalent mucosal vaccine offers a novel method for modulating dysbiotic bacteria associated with periodontitis. This approach leverages the adjuvant properties of flagellin to enhance the immune response, aiming to restore a balanced microbial environment and improve periodontal health.
Collapse
Affiliation(s)
- Vandara Loeurng
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun Suhk Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Jeong Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection of Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
84
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601557. [PMID: 39005279 PMCID: PMC11244963 DOI: 10.1101/2024.07.01.601557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. Results Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. Conclusion Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.
Collapse
Affiliation(s)
- Erica P. Ryu
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M. Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, South Australia, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA
| | | | - David A. Relman
- Departments of Medicine, and of Microbiology & Immunology, Stanford University, Stanford, CA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Emily R. Davenport
- Department of Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
85
|
B N, Narayanarao G, T R S, B RS, Chandrasekaran D, Rakeeba F. Oral Commensals in Healthy Individuals: A Clinicocytological Study. Cureus 2024; 16:e65317. [PMID: 39184602 PMCID: PMC11344192 DOI: 10.7759/cureus.65317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Each human being has a specific group of microorganisms that are necessary for both sustaining health and causing illness. Normally, these microorganisms maintain bio-communalism, do not harm the host, and lead to a state known as symbiosis or eubiosis. The commensal nature of these bacteria is always maintained in symbiosis and attains pathogenic potential when there is an imbalance between host immunity and microorganisms. Our study focuses on the identification and differentiation of the various commensals present in the oral cavity of healthy individuals over a given period of time. Aims and objectives This study aims to: (i) identify various commensal bacterial species present in the oral cavity; (ii) differentiate each commensal bacterial species present in the oral cavity of healthy individuals using cytological and culturing methods; (iii) identify the presence of different types of commensal bacterial species in the same individuals with the specific time intervals; (iv) compare and correlate the presence or absence of bacterial species present as a commensal in both male and female; (v) identify and characterize the commensal bacterial species present in the oral cavity of healthy individuals; (vi) investigate the consistency of commensal bacterial species presence over time and between genders. Methodology We included sixty healthy individuals between the ages of 20 and 24 from both genders, took buccal smears once every two days for ten days, stained them with Gram stain, and grew them in blood agar and Mac Conkey agar. Results The most common commensals include Gram-positive cocci, and among them, Coagulase-negative staphylococcus species (85%) are predominant, followed by Staphylococcus aureus (13.33%), and Streptococcus species (1.67%). The presence of colonies remains the same in all three samples obtained from the same healthy individuals. Conclusion Loss of balance between commensals and pathogens can lead to dysbiosis, which results in disease.
Collapse
Affiliation(s)
- Nandhinipriya B
- Oral and Maxillofacial Pathology, CSI College of Dental Science and Research, Madurai, IND
| | - Gururaj Narayanarao
- Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, IND
| | - Sabarinath T R
- Oral and Maxillofacial Pathology, CSI College of Dental Science and Research, Madurai, IND
| | - Rethika Singh B
- Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, IND
| | | | - Fadhila Rakeeba
- Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, IND
| |
Collapse
|
86
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
87
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
88
|
Shi Q, Sun L, Gao J, Li F, Chen D, Shi T, Tan Y, Chang H, Liu X, Kang J, Lu F, Huang Z, Zhao H. Effects of sodium lauryl sulfate and postbiotic toothpaste on oral microecology. J Oral Microbiol 2024; 16:2372224. [PMID: 38939048 PMCID: PMC11210412 DOI: 10.1080/20002297.2024.2372224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
The diversity and delicate balance of the oral microbiome contribute to oral health, with its disruption leading to oral and systemic diseases. Toothpaste includes elements like traditional additives such as sodium lauryl sulfate (SLS) as well as novel postbiotics derived from probiotics, which are commonly employed for maintaining oral hygiene and a healthy oral cavity. However, the response of the oral microbiota to these treatments remains poorly understood. In this study, we systematically investigated the impact of SLS, and toothpaste containing postbiotics (hereafter, postbiotic toothpaste) across three systems: biofilms, animal models, and clinical populations. SLS was found to kill bacteria in both preformed biofilms (mature biofilms) and developing biofilms (immature biofilms), and disturbed the microbial community structure by increasing the number of pathogenic bacteria. SLS also destroyed periodontal tissue, promoted alveolar bone resorption, and enhanced the extent of inflammatory response level. The postbiotic toothpaste favored bacterial homeostasis and the normal development of the two types of biofilms in vitro, and attenuated periodontitis and gingivitis in vivo via modulation of oral microecology. Importantly, the postbiotic toothpaste mitigated the adverse effects of SLS when used in combination, both in vitro and in vivo. Overall, the findings of this study describe the impact of toothpaste components on oral microflora and stress the necessity for obtaining a comprehensive understanding of oral microbial ecology by considering multiple aspects.
Collapse
Affiliation(s)
- Qingying Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Lianlian Sun
- Stomatology Department, Binhai Hospital of Peking University, Tianjin, China
| | - Jing Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fengzhu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dongxiao Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tingting Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Youlan Tan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Huimin Chang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, Binhai Hospital of Peking University, Tianjin, China
| | - Jian Kang
- Periodontal Disease Department, Tianjin Stomatological Hospital, Tianjin, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zhengmei Huang
- Oral and Skin Microecology Institute of Tust & Benzhen, Science and Technology Park of Tianjin University of Science and Technology, Tianjin, China
| | - Huabing Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Oral and Skin Microecology Institute of Tust & Benzhen, Science and Technology Park of Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
89
|
Wang L, Gong C, Wang R, Wang J, Yang Z, Wang X. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus. Front Pediatr 2024; 12:1382466. [PMID: 38938502 PMCID: PMC11208633 DOI: 10.3389/fped.2024.1382466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Background Type 1 Diabetes Mellitus (T1DM) is one of the most common endocrine disorders of childhood and adolescence, showing a rapidly increasing prevalence worldwide. A study indicated that the composition of the oropharyngeal and gut microbiota changed in T1DM. However, no studies have yet associated the changes between the microbiomes of the oropharyngeal and intestinal sites, nor between the flora and clinical indicators. In this study, we examined the composition and characteristics of oropharyngeal and intestinal flora in patients with T1DM in compared to healthy children. We identified correlations between oropharyngeal and intestinal flora and evaluated their association with clinical laboratory tests in patients with T1DM. Methods The oropharyngeal and fecal samples from 13 T1DM and 20 healthy children were analyzed by high-throughput sequencing of the V3-V4 region of 16S rRNA. The associations between microbes and microorganisms in oropharyngeal and fecal ecological niches, as well as the correlation between these and clinical indicators were further analyzed. Results It was revealed that T1DM children had distinct microbiological characteristics, and the dominant oropharyngeal microbiota genus included Streptococcus, Prevotella, Leptotrichia, and Neisseria; that of intestinal microbiota included Blautia, Fusicatenibacter, Bacteroides, and Eubacterium_hallii_group. Furthermore, oropharyngeal Staphylococcus was significantly positively correlated with intestinal norank_f__Ruminococcaceae and Ruminococcus_torques_group in TIDM children. Moreover, in these children, differential genes in oropharyngeal and intestinal samples were enriched in metabolic pathways such as amino acid generation, fatty acid metabolism, and nucleotide sugar biosynthesis. Additionally, correlation analysis between the oropharyngeal/intestinal microbiome with laboratory tests showed significant correlations between several bacterial taxa in the oropharynx and intestines and glycated hemoglobin and C-peptide. Conclusion Unique microbial characteristics were found in the oropharynx and intestine in children with T1DM compared to healthy children. Positive correlations were found between changes in the relative abundance of oropharyngeal and gut microbiota in children with T1DM. Associations between the oropharyngeal/intestinal microbiota and laboratory investigations in children with T1DM suggest that the composition of the oropharyngeal and intestinal flora in children with T1DM may have some impact on glycemic control.
Collapse
Affiliation(s)
- Limin Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Chao Gong
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Ruiye Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Jinxue Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Zhanshuang Yang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| | - Xianhe Wang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| |
Collapse
|
90
|
Ashford JR. Impaired oral health: a required companion of bacterial aspiration pneumonia. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1337920. [PMID: 38894716 PMCID: PMC11183832 DOI: 10.3389/fresc.2024.1337920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Laryngotracheal aspiration has a widely-held reputation as a primary cause of lower respiratory infections, such as pneumonia, and is a major concern of care providers of the seriously ill orelderly frail patient. Laryngeal mechanical inefficiency resulting in aspiration into the lower respiratory tract, by itself, is not the cause of pneumonia. It is but one of several factors that must be present simultaneously for pneumonia to develop. Aspiration of oral and gastric contentsoccurs often in healthy people of all ages and without significant pulmonary consequences. Inthe seriously ill or elderly frail patient, higher concentrations of pathogens in the contents of theaspirate are the primary catalyst for pulmonary infection development if in an immunocompromised lower respiratory system. The oral cavity is a complex and ever changing eco-environment striving to maintain homogeneity among the numerous microbial communities inhabiting its surfaces. Poor maintenance of these surfaces to prevent infection can result inpathogenic changes to these microbial communities and, with subsequent proliferation, can altermicrobial communities in the tracheal and bronchial passages. Higher bacterial pathogen concentrations mixing with oral secretions, or with foods, when aspirated into an immunecompromised lower respiratory complex, may result in bacterial aspiration pneumonia development, or other respiratory or systemic diseases. A large volume of clinical evidence makes it clear that oral cleaning regimens, when used in caring for ill or frail patients in hospitals and long-term care facilities, drastically reduce the incidence of respiratory infection and death. The purpose of this narrative review is to examine oral health as a required causative companionin bacterial aspiration pneumonia development, and the effectiveness of oral infection control inthe prevention of this disease.
Collapse
|
91
|
Peřina V, Šmucler R, Němec P, Barták V. Update on Focal Infection Management: A Czech Interdisciplinary Consensus. Int Dent J 2024; 74:510-518. [PMID: 38044216 PMCID: PMC11123548 DOI: 10.1016/j.identj.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The focal infection theory has been used to explain several chronic systemic diseases in the past. Systemic diseases were thought to be caused by focal infections, such as caries and periodontal diseases, and dentists were held responsible for these diseases due to the spread of oral infections. As knowledge of the interrelationship between oral microorganisms and the host immune response has evolved over the last few decades, the focal infection theory has been modified in various ways. The relationship between oral and systemic health appears to be more complex than that suggested by the classical theory of focal infections. Indeed, the contribution of the oral microbiota to some systemic diseases is gaining acceptance, as there are strong associations between periodontal disease and atherosclerotic vascular disease, diabetes, and hospital-associated pneumonia, amongst others. As many jurisdictions have various protocols for managing this oral-systemic axis of disease, we sought to provide a consensus on this notion with the help of a multidisciplinary team from the Czech Republic. METHODS A multidisciplinary team comprising physicians/surgeons in the specialities of dentistry, ear-nose and throat (ENT), cardiology, orthopaedics, oncology, and diabetology were quetioned with regard to their conceptual understanding of the focal infection theory particularly in relation to the oral-systemic axis. The team also established a protocol to determine the strength of these associations and to plan the therapeutic steps needed to treat focal odontogenic infections whenever possible. RESULTS Scoring algorithms were devised for odontogenic inflammatory diseases and systemic risks, and standardised procedures were developed for general use. CONCLUSIONS The designed algorithm of the oral-systemic axis will be helpful for all health care workers in guiding their patient management protocol.
Collapse
Affiliation(s)
- Vojtěch Peřina
- Department of Oral and Maxillofacial Surgery, Masaryk University, Faculty of Medicine and University Hospital Brno, Brno, Czech Republic; Czech Dental Chamber, Prague, Czech Republic.
| | - Roman Šmucler
- Czech Dental Chamber, Prague, Czech Republic; Department of Stomatology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Department of Stomatology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Petr Němec
- Department of Cardiovascular Surgery and Transplantations, Masaryk University, Faculty of Medicine and St. Anne´s University Hospital, Brno, Czech Republic
| | - Vladislav Barták
- 1. Orthopedic Clinic of the 1st Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
92
|
Bartak H, Fareh T, Ben Othman N, Viard D, Cohen M, Rocher F, Ewig E, Drici MD, Lebrun-Frenay C. Dental Adverse Effects of Anti-CD20 Therapies. Neurol Ther 2024; 13:917-930. [PMID: 38668835 PMCID: PMC11136893 DOI: 10.1007/s40120-024-00616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION Over the past few years, anti-CD20 therapies like rituximab, ocrelizumab or ofatumumab have seen an increase in interest in the treatment of neurological autoimmune disorders such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), or resistant forms of generalized myasthenia gravis (MG). They are generally well-tolerated, but recent reports have highlighted severe dental disorders in patients undergoing anti-CD20 therapies. The aim was to describe a series of cases and to compare with the available scientific literature. METHODS We reviewed 6 patient cases with dental disorders during anti-CD20 therapy that were reported to the pharmacovigilance center. A disproportionality analysis was also conducted on Vigibase® for each anti-CD20 and each adverse effect described in the cases. RESULTS Six cases of dental and gingival conditions in relatively young patients were reported (median age: 40.5 years old [min: 34; max: 79]). Oral conditions were developed in four patients with MS treated with ocrelizumab and in two patients receiving rituximab (one patient with MG and one with NMOSD). The onset of oral conditions ranged from 10 days to 2 years after treatment initiation. Notably, all patients treated with ocrelizumab experienced gingival recession. Various dental pathologies were observed, including tooth loss, dental pain, caries, brittle teeth, dental fractures, dental abscesses, and periodontitis. Analysis of Vigibase® revealed 284 worldwide cases of dental and gingival conditions under ocrelizumab, 386 cases under rituximab, and 80 under ofatumumab. Significant associations were found between these therapies and dental pathologies, particularly tooth abscesses and infections. CONCLUSION To our knowledge, this is the first case series reporting dental conditions developed in patients long-term treated with anti-CD20 treatments. This issue, literature data, and Vigilyze® analysis might be considered a safety signal that necessitates being confirmed with more robust data, such as a retrospective study with a control group. Meanwhile, proactive measures are essential like frequent dental checkups and dental hygienic measures to prevent oral health problems associated with anti-CD20 therapies.
Collapse
Affiliation(s)
- Hélène Bartak
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France
| | - Tasnim Fareh
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France
| | - Nouha Ben Othman
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France
| | - Delphine Viard
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France
| | - Mikael Cohen
- Neurology MS Clinic, UMR2CA-URRIS, University Hospital of Nice, Nice, France
| | - Fanny Rocher
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France
| | - Elliot Ewig
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital of Nice, Nice, France.
| | | |
Collapse
|
93
|
Klimek L, Makówka M, Sobczyk-Guzenda A, Kula Z. Characteristics of Si (C,N) Silicon Carbonitride Layers on the Surface of Ni-Cr Alloys Used in Dental Prosthetics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2450. [PMID: 38793515 PMCID: PMC11122782 DOI: 10.3390/ma17102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Chromium- and cobalt-based alloys, as well as chrome-nickel steels, are most used in dental prosthetics. Unfortunately, these alloys, especially nickel-based alloys, can cause allergic reactions. A disadvantage of these alloys is also insufficient corrosion resistance. To improve the properties of these alloys, amorphous Si (C,N) coatings were deposited on the surfaces of metal specimens. This paper characterizes coatings of silicon carbide nitrides, deposited by the magnetron sputtering method on the surface of nickel-chromium alloys used in dental prosthetics. Depending on the deposition parameters, coatings with varying carbon to nitrogen ratios were obtained. The study analyzed their structure and chemical and phase composition. In addition, a study of surface wettability and surface roughness was performed. Based on the results obtained, it was found that amorphous coatings of Si (C,N) type with thicknesses of 2 to 4.5 µm were obtained. All obtained coatings increase the value of surface free energy. The study showed that Si (C,N)-type films can be used in dental prosthetics as protective coatings.
Collapse
Affiliation(s)
- Leszek Klimek
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, B. Stefanowskiego 1/15, 90-924 Lodz, Poland; (L.K.); (M.M.); (A.S.-G.)
| | - Marcin Makówka
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, B. Stefanowskiego 1/15, 90-924 Lodz, Poland; (L.K.); (M.M.); (A.S.-G.)
| | - Anna Sobczyk-Guzenda
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, B. Stefanowskiego 1/15, 90-924 Lodz, Poland; (L.K.); (M.M.); (A.S.-G.)
| | - Zofia Kula
- Department of Dental Technology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| |
Collapse
|
94
|
Ciani L, Libonati A, Dri M, Pomella S, Campanella V, Barillari G. About a Possible Impact of Endodontic Infections by Fusobacterium nucleatum or Porphyromonas gingivalis on Oral Carcinogenesis: A Literature Overview. Int J Mol Sci 2024; 25:5083. [PMID: 38791123 PMCID: PMC11121237 DOI: 10.3390/ijms25105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.
Collapse
Affiliation(s)
- Luca Ciani
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Antonio Libonati
- Department of Surgical Sciences, Catholic University of Our Lady of Good Counsel of Tirane, 1001 Tirana, Albania;
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Vincenzo Campanella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| |
Collapse
|
95
|
Altamura S, Del Pinto R, Pietropaoli D, Ferri C. Oral health as a modifiable risk factor for cardiovascular diseases. Trends Cardiovasc Med 2024; 34:267-275. [PMID: 36963476 PMCID: PMC10517086 DOI: 10.1016/j.tcm.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide with a high socioeconomic burden. Increasing evidence supports a convincing connection with increased cardiovascular risk of periodontal diseases (PD), a group of widespread, debilitating, and costly dysbiotic relapsing-remitting inflammatory diseases of the tissues supporting the teeth. Herein, we ensembled the best available evidence on the connection between CVDs and PD to review the recently emerging concept of the latter as a non-traditional risk factor for CVDs. We focused on oral dysbiosis, inflammation-associated molecular and cellular mechanisms, and epigenetic changes as potential causative links between PD and CVDs. The available evidence on the effects of periodontal treatment on cardiovascular risk factors and diseases was also described.
Collapse
Affiliation(s)
- Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Italy; Center of Oral Diseases, Prevention and Translational Research - Dental Clinic, L'Aquila, Italy; Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy; PhD School in Medicine and Public Health
| | - Rita Del Pinto
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Italy; Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy; Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, L'Aquila, Italy
| | - Davide Pietropaoli
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Italy; Center of Oral Diseases, Prevention and Translational Research - Dental Clinic, L'Aquila, Italy; Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy.
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Italy; Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy; Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
96
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
97
|
Cena JAD, Belmok A, Kyaw CM, Dame-Teixeira N. The Archaea domain: Exploring historical and contemporary perspectives with in silico primer coverage analysis for future research in Dentistry. Arch Oral Biol 2024; 161:105936. [PMID: 38422909 DOI: 10.1016/j.archoralbio.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.
Collapse
Affiliation(s)
| | - Aline Belmok
- Institute of Biology, University of Brasilia, Brazil
| | | | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, UK.
| |
Collapse
|
98
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
99
|
Zhang W, Yin Y, Jiang Y, Yang Y, Wang W, Wang X, Ge Y, Liu B, Yao L. Relationship between vaginal and oral microbiome in patients of human papillomavirus (HPV) infection and cervical cancer. J Transl Med 2024; 22:396. [PMID: 38685022 PMCID: PMC11059664 DOI: 10.1186/s12967-024-05124-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the microbial variations and biomarkers in the vaginal and oral environments of patients with human papillomavirus (HPV) and cervical cancer (CC) and to develop novel prediction models. MATERIALS AND METHODS This study included 164 samples collected from both the vaginal tract and oral subgingival plaque of 82 women. The participants were divided into four distinct groups based on their vaginal and oral samples: the control group (Z/KZ, n = 22), abortion group (AB/KAB, n = 17), HPV-infected group (HP/KHP, n = 21), and cervical cancer group (CC/KCC, n = 22). Microbiota analysis was conducted using full-length 16S rDNA gene sequencing with the PacBio platform. RESULTS The vaginal bacterial community in the Z and AB groups exhibited a relatively simple structure predominantly dominated by Lactobacillus. However, CC group shows high abundances of anaerobic bacteria and alpha diversity. Biomarkers such as Bacteroides, Mycoplasma, Bacillus, Dialister, Porphyromonas, Anaerococcus, and Prevotella were identified as indicators of CC. Correlations were established between elevated blood C-reactive protein (CRP) levels and local/systemic inflammation, pregnancy, childbirth, and abortion, which contribute to unevenness in the vaginal microenvironment. The altered microbial diversity in the CC group was confirmed by amino acid metabolism. Oral microbial diversity exhibited an inverse pattern to that of the vaginal microbiome, indicating a unique relationship. The microbial diversity of the KCC group was significantly lower than that of the KZ group, indicating a link between oral health and cancer development. Several microbes, including Fusobacterium, Campylobacter, Capnocytophaga, Veillonella, Streptococcus, Lachnoanaerobaculum, Propionibacterium, Prevotella, Lactobacillus, and Neisseria, were identified as CC biomarkers. Moreover, periodontal pathogens were associated with blood CRP levels and oral hygiene conditions. Elevated oral microbial amino acid metabolism in the CC group was closely linked to the presence of pathogens. Positive correlations indicated a synergistic relationship between vaginal and oral bacteria. CONCLUSION HPV infection and CC impact both the vaginal and oral microenvironments, affecting systemic metabolism and the synergy between bacteria. This suggests that the use of oral flora markers is a potential screening tool for the diagnosis of CC.
Collapse
Affiliation(s)
- Wei Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yanfei Yin
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yisha Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yangyang Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wentao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaoya Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Ge
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gynecology, Lanzhou University First Hospital, Lanzhou, China
| | - Bin Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| | - Lihe Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Department of Neurology, Lanzhou University First Hospital, Lanzhou, China.
| |
Collapse
|
100
|
Varzakas T, Antoniadou M. A Holistic Approach for Ethics and Sustainability in the Food Chain: The Gateway to Oral and Systemic Health. Foods 2024; 13:1224. [PMID: 38672896 PMCID: PMC11049237 DOI: 10.3390/foods13081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Food production is a complex matter, affecting people's lives, organizations' profits, and the well-being of the whole planet, and has multifaceted ethical considerations surrounding its production, distribution, and consumption. This paper addresses the pressing need to confront ethical challenges within the food system, encompassing issues such as environmental sustainability, food security, and individual food choices for better oral and systemic health of all individuals around the globe. From agricultural practices to global trade and food waste, ethical implications are addressed across various domains, highlighting the interconnectedness of ethical decision-making in the food industry. Central themes explored include the ethical dimensions of food production methods, the impact of global trade on food ethics, and the role of individuals in making ethically informed food choices. Additionally, this paper considers the spiritual and physical significance of food, particularly through the lens of oral health as a gateway to holistic well-being. Recognizing the complexity of the food and mouth ecosystem, this paper calls for serious interventions in legislation and economics to promote ethical protocols and techniques for sustainability reasons. It emphasizes the importance of ethical considerations in food safety management systems, regulatory frameworks, and quality standards. Moreover, this paper underlines the need for a comprehensive approach to address ethical dilemmas and moral values inherent in the food industry and oral health policies, adopting the precautionary principle and ethical decision-making frameworks. This article finally aims to serve as a call to action for stakeholders across the food industry and the healthcare sector, to prioritize ethical practices, promote transparency, rearrange economic parameters, and work towards a more sustainable and equitable food system for inner and outer oral and systemic health and human sustainability for all.
Collapse
Affiliation(s)
- Theodoros Varzakas
- Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Certified Systemic Analyst Program in Systemic Management (CSAP), University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|