51
|
Joiner CM, Levine ZG, Aonbangkhen C, Woo CM, Walker S. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. J Am Chem Soc 2019; 141:12974-12978. [PMID: 31373491 PMCID: PMC6849375 DOI: 10.1021/jacs.9b06061] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
O-GlcNAc is an abundant post-translational modification found on nuclear and cytoplasmic proteins in all metazoans. This modification regulates a wide variety of cellular processes, and elevated O-GlcNAc levels have been implicated in cancer progression. A single essential enzyme, O-GlcNAc transferase (OGT), is responsible for all nucleocytoplasmic O-GlcNAcylation. Understanding how this enzyme chooses its substrates is critical for understanding, and potentially manipulating, its functions. Here we use protein microarray technology and proteome-wide glycosylation profiling to show that conserved aspartate residues in the tetratricopeptide repeat (TPR) lumen of OGT drive substrate selection. Changing these residues to alanines alters substrate selectivity and unexpectedly increases rates of protein glycosylation. Our findings support a model where sites of glycosylation for many OGT substrates are determined by TPR domain contacts to substrate side chains five to fifteen residues C-terminal to the glycosite. In addition to guiding design of inhibitors that target OGT's TPR domain, this information will inform efforts to engineer substrates to explore biological functions.
Collapse
Affiliation(s)
- Cassandra M. Joiner
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115
| | - Zebulon G. Levine
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115
| | - Chanat Aonbangkhen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115
| |
Collapse
|
52
|
Jo S, Lockridge A, Alejandro EU. eIF4G1 and carboxypeptidase E axis dysregulation in O-GlcNAc transferase-deficient pancreatic β-cells contributes to hyperproinsulinemia in mice. J Biol Chem 2019; 294:13040-13050. [PMID: 31300553 DOI: 10.1074/jbc.ra119.008670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
An early hallmark of type 2 diabetes is a failure of proinsulin-to-insulin processing in pancreatic β-cells, resulting in hyperproinsulinemia. Proinsulin processing is quite sensitive to nutrient flux, and β-cell-specific deletion of the nutrient-sensing protein modifier OGlcNAc transferase (βOGTKO) causes β-cell failure and diabetes, including early development of hyperproinsulinemia. The mechanisms underlying this latter defect are unknown. Here, using several approaches, including site-directed mutagenesis, Click O-GlcNAc labeling, immunoblotting, and immunofluorescence and EM imaging, we provide the first evidence for a relationship between the O-GlcNAcylation of eukaryotic translation initiation factor 4γ1 (eIF4G1) and carboxypeptidase E (CPE)-dependent proinsulin processing in βOGTKO mice. We first established that βOGTKO hyperproinsulinemia is independent of age, sex, glucose levels, and endoplasmic reticulum-CCAAT enhancer-binding protein homologous protein (CHOP)-mediated stress status. Of note, OGT loss was associated with a reduction in β-cell-resident CPE, and genetic reconstitution of CPE in βOGTKO islets rescued the dysfunctional proinsulin-to-insulin ratio. We show that although CPE is not directly OGlcNAc modified in islets, overexpression of the suspected OGT target eIF4G1, previously shown to regulate CPE translation in β-cells, increases islet CPE levels, and fully reverses βOGTKO islet-induced hyperproinsulinemia. Furthermore, our results reveal that OGT O-GlcNAc-modifies eIF4G1 at Ser-61 and that this modification is critical for eIF4G1 protein stability. Together, these results indicate a direct link between nutrient-sensitive OGT and insulin processing, underscoring the importance of post-translational O-GlcNAc modification in general cell physiology.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
53
|
Nie H, Yi W. O-GlcNAcylation, a sweet link to the pathology of diseases. J Zhejiang Univ Sci B 2019; 20:437-448. [PMID: 31090269 PMCID: PMC6568225 DOI: 10.1631/jzus.b1900150] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification occurring on myriad proteins in the cell nucleus, cytoplasm, and mitochondria. The donor sugar for O-GlcNAcylation, uridine-diphosphate N-acetylglucosamine (UDP-GlcNAc), is synthesized from glucose through the hexosamine biosynthetic pathway (HBP). The recycling of O-GlcNAc on proteins is mediated by two enzymes in cells-O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and removal of O-GlcNAc, respectively. O-GlcNAcylation is involved in a number of important cell processes including transcription, translation, metabolism, signal transduction, and apoptosis. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular diseases. A better understanding of the roles of O-GlcNAcylation in physiopathological processes would help to uncover novel avenues for therapeutic intervention. The aim of this review is to discuss the recent updates on the mechanisms and impacts of O-GlcNAcylation on these diseases, and its potential as a new clinical target.
Collapse
|
54
|
Jaskiewicz NM, Townson DH. Hyper-O-GlcNAcylation promotes epithelial-mesenchymal transition in endometrial cancer cells. Oncotarget 2019; 10:2899-2910. [PMID: 31080560 PMCID: PMC6499600 DOI: 10.18632/oncotarget.26884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2019] [Indexed: 01/06/2023] Open
Abstract
Diabetic women have a 2–3 fold increased risk of developing endometrial cancer, however, the molecular aspects of this risk are not fully understood. This study investigated the alteration of cellular O-GlcNAcylation of proteins as the potential mechanistic connection between these two conditions. The endometrial cancer cell line (Ishikawa) was utilized to study the effect of dysregulation of O-GlcNAcylation on epithelial mesenchymal transition (EMT). Hyper-O-GlcNAcylation (via 1 μM Thiamet-G/ThmG or 25 mM Glucose) enhanced the expression of EMT-associated genes (WNT5B and FOXC2), and protein expression of the EMT adhesion molecule, N-Cadherin. Reorganization of stress filaments (actin filaments), consistent with EMT, was also noted in ThmG-treated cells. Interestingly, Hypo-O-GlcNAcylation (via 50 μM OSMI-1) also upregulated WNT5B, inferring that any disruption to O-GlcNAc cycling impacts EMT. However, Hypo-O-GlcNAcylation reduced overall cellular proliferation/migration and the expression of pro-EMT genes (AHNAK, TGFB2, FGFBP1, CALD1, TFPI2). In summary, disruption of O-GlcNAc cycling (i.e., Hyper- or Hypo-O-GlcNAcylation) promoted EMT at both the molecular and cellular levels, but only Hyper-O-GlcNAcylation provoked cellular proliferation/migration, and cytoskeletal reorganization.
Collapse
Affiliation(s)
- Nicole Morin Jaskiewicz
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
55
|
Dong L, Shen S, Xu Y, Wang L, Feng R, Zhang J, Lu H. Computational Studies on the Potency and Selectivity of PUGNAc Derivatives Against GH3, GH20, and GH84 β-N-acetyl-D-hexosaminidases. Front Chem 2019; 7:235. [PMID: 31111026 PMCID: PMC6499197 DOI: 10.3389/fchem.2019.00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
β-N-acetyl-D-hexosaminidases have attracted significant attention due to their crucial role in diverse physiological functions including antibacterial synergists, pathogen defense, virus infection, lysosomal storage, and protein glycosylation. In particular, the GH3 β-N-acetyl-D-hexosaminidase of V. cholerae (VcNagZ), human GH20 β-N-acetyl-D-hexosaminidase B (HsHexB), and human GH84 β-N-acetyl-D-hexosaminidase (hOGA) are three important representative glycosidases. These have been found to be implicated in β-lactam resistance (VcNagZ), lysosomal storage disorders (HsHexB) and Alzheimer's disease (hOGA). Considering the profound effects of these three enzymes, many small molecule inhibitors with good potency and selectivity have been reported to regulate the corresponding physiological functions. In this paper, the best-known inhibitors PUGNAc and two of its derivatives (N-valeryl-PUGNAc and EtBuPUG) were selected as model compounds and docked into the active pockets of VcNagZ, HsHexB, and hOGA, respectively. Subsequently, molecular dynamics simulations of the nine systems were performed to systematically compare their binding modes from active pocket architecture and individual interactions. Furthermore, the binding free energy and free energy decomposition are calculated using the MM/GBSA methods to predict the binding affinities of enzyme-inhibitor systems and to quantitatively analyze the contribution of each residue. The results show that PUGNAc is deeply-buried in the active pockets of all three enzymes, which indicates its potency (but not selectivity) against VcNagZ, HsHexB, and hOGA. However, EtBuPUG, bearing branched 2-isobutamido, adopted strained conformations and was only located in the active pocket of VcNagZ. It has completely moved out of the pocket of HsHexB and lacks interactions with HsHexB. This indicates why the selectivity of EtBuPUG to VcNagZ/HsHexB is the largest, reaching 968-fold. In addition, the contributions of the catalytic residue Asp253 (VcNagZ), Asp254 (VcNagZ), Asp175 (hOGA), and Asp354 (HsHexB) are important to distinguish the activity and selectivity of these inhibitors. The results of this study provide a helpful structural guideline to promote the development of novel and selective inhibitors against specific β-N-acetyl-D-hexosaminidases.
Collapse
Affiliation(s)
- Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yefei Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Leng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ruirui Feng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
56
|
Herrero-Beaumont G, Pérez-Baos S, Sánchez-Pernaute O, Roman-Blas JA, Lamuedra A, Largo R. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol 2019; 165:24-32. [PMID: 30825432 DOI: 10.1016/j.bcp.2019.02.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degradation, osteophyte formation, subchondral bone sclerosis, and synovitis. Systemic factors such as obesity and the components of the metabolic syndrome seem to contribute to its progression. Breakdown of cartilage ensues from an altered balance between mechanical overload and its absorption by this tissue. There is in this context a status of persistent local inflammation by means of the chronic activation of innate immunity. A broad variety of danger-associated molecular patterns inside OA joint are able to activate pattern recognition receptors, mainly TLR (toll-like receptor) 2 and 4, which are overexpressed in the OA cartilage. Chronic activation of innate immune responses in chondrocytes results in a robust production of pro-inflammatory cytokines and chemokines, as well as of tissue-destructive enzymes, downstream of NF-κB and MAPK (mitogen activated protein kinase) dependent pathways. Besides, the toxic effects of an excess of glucose and/or fatty acids, which share the same pro-inflammatory intracellular signalling pathways, may add fuel to the fire. Not only high concentrations of glucose can render cells prone to inflammation, but also AGEs (advanced glycation end products) are integrated into the TLR signalling network through their own innate immune receptors. Considering these mechanisms, we argue for the control of both primary inflammation and proteolytic catabolism as a preventive strategy in OA, instead of focusing treatment on the enhancement of anabolic responses. Even though this approach would not return to normal already degraded cartilage, it nonetheless might avoid damage extension to the surrounding tissue.
Collapse
Affiliation(s)
| | - Sandra Pérez-Baos
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Jorge A Roman-Blas
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Raquel Largo
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
| |
Collapse
|
57
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
58
|
Dierschke SK, Miller WP, Favate JS, Shah P, Imamura Kawasawa Y, Salzberg AC, Kimball SR, Jefferson LS, Dennis MD. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina. J Biol Chem 2019; 294:5508-5520. [PMID: 30733333 PMCID: PMC6462503 DOI: 10.1074/jbc.ra119.007494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.
Collapse
Affiliation(s)
- Sadie K Dierschke
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - William P Miller
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - John S Favate
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Premal Shah
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Yuka Imamura Kawasawa
- the Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, and
| | - Anna C Salzberg
- the Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Scot R Kimball
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Leonard S Jefferson
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
59
|
Das S, Bailey SK, Metge BJ, Hanna A, Hinshaw DC, Mota M, Forero-Torres A, Chatham JC, Samant RS, Shevde LA. O-GlcNAcylation of GLI transcription factors in hyperglycemic conditions augments Hedgehog activity. J Transl Med 2019; 99:260-270. [PMID: 30420690 PMCID: PMC6857801 DOI: 10.1038/s41374-018-0122-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) promotes tumor cell survival, proliferation, epigenetic changes, angiogenesis, invasion, and metastasis. Here we demonstrate that in conditions of elevated glucose, there is increased expression of key drug resistance proteins (ABCB1, ABCG2, ERCC1, and XRCC1), all of which are regulated by the Hedgehog pathway. In elevated glucose conditions, we determined that the Hedgehog pathway transcription factors, GLI1 and GLI2, are modified by O-GlcNAcylation. This modification functionally enhanced their transcriptional activity. The activity of GLI was enhanced when O-GlcNAcase was inhibited, while inhibiting O-GlcNAc transferase caused a decrease in GLI activity. The metabolic impact of hyperglycemic conditions impinges on maintaining PKM2 in the less active state that facilitates the availability of glycolytic intermediates for biosynthetic pathways. Interestingly, under elevated glucose conditions, PKM2 directly influenced GLI activity. Specifically, abrogating PKM2 expression caused a significant decline in GLI activity and expression of drug resistance proteins. Cumulatively, our results suggest that elevated glucose conditions upregulate chemoresistance through elevated transcriptional activity of the Hedgehog/GLI pathway. Interfering in O-GlcNAcylation of the GLI transcription factors may be a novel target in controlling cancer progression and drug resistance of breast cancer.
Collapse
Affiliation(s)
- Shamik Das
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
| | - Sarah K Bailey
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
| | - Brandon J Metge
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
| | - Ann Hanna
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
| | - Dominique C Hinshaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
| | - Mateus Mota
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
| | - Andres Forero-Torres
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, USA
| | - John C Chatham
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, USA
| | - Rajeev S Samant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, USA.
- Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
60
|
Issad T, Lefebvre T. Editorial: O-GlcNAcylation: Expanding the Frontiers. Front Endocrinol (Lausanne) 2019; 10:867. [PMID: 31920977 PMCID: PMC6923674 DOI: 10.3389/fendo.2019.00867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Tarik Issad
- Université de Paris, CNRS UMR8104, INSERM U1016, Institut Cochin, Paris, France
- *Correspondence: Tarik Issad
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Lille, France
- Tony Lefebvre
| |
Collapse
|
61
|
Di Domenico F, Lanzillotta C, Tramutola A. Therapeutic potential of rescuing protein O-GlcNAcylation in tau-related pathologies. Expert Rev Neurother 2018; 19:1-3. [PMID: 30354776 DOI: 10.1080/14737175.2019.1540932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fabio Di Domenico
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| | | | | |
Collapse
|
62
|
Consumption of a high fat diet promotes protein O-GlcNAcylation in mouse retina via NR4A1-dependent GFAT2 expression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3568-3576. [PMID: 30254013 DOI: 10.1016/j.bbadis.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 01/30/2023]
Abstract
The incidence of type 2 diabetes, the most common cause of diabetic retinopathy (DR), is rapidly on the rise in developed countries due to overconsumption of calorie rich diets. Using an animal model of diet-induced obesity/pre-diabetes, we evaluated the impact of a diet high in saturated fat (HFD) on O-GlcNAcylation of retinal proteins, as dysregulated O-GlcNAcylation contributes to diabetic complications and evidence supports a role in DR. Protein O-GlcNAcylation was increased in the retina of mice fed a HFD as compared to littermates receiving control chow. Similarly, O-GlcNAcylation was elevated in retinal Müller cells in culture exposed to the saturated fatty acid palmitate or the ceramide analog Cer6. One potential mechanism responsible for elevated O-GlcNAcylation is increased flux through the hexosamine biosynthetic pathway (HBP). Indeed, inhibition of the pathway's rate-limiting enzyme glutamine-fructose-6-phosphate amidotransferase (GFAT) prevented Cer6-induced O-GlcNAcylation. Importantly, expression of the mRNA encoding GFAT2, but not GFAT1 was elevated in both the retina of mice fed a HFD and in retinal cells in culture exposed to palmitate or Cer6. Notably, expression of nuclear receptor subfamily 4 group A member 1 (NR4A1) was increased in the retina of mice fed a HFD and NR4A1 expression was sufficient to promote GFAT2 mRNA expression and O-GlcNAcylation in retinal cells in culture. Whereas palmitate or Cer6 addition to culture medium enhanced NR4A1 and GFAT2 expression, chemical inhibition of NR4A1 transactivation repressed Cer6-induced GFAT2 mRNA expression. Overall, the results support a model wherein HFD increases retinal protein O-GlcNAcylation by promoting NR4A1-dependent GFAT2 expression.
Collapse
|
63
|
Pinho TS, Verde DM, Correia SC, Cardoso SM, Moreira PI. O-GlcNAcylation and neuronal energy status: Implications for Alzheimer's disease. Ageing Res Rev 2018; 46:32-41. [PMID: 29787816 DOI: 10.1016/j.arr.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023]
Abstract
Since the first clinical case reported more than 100 years ago, it has been a long and winding road to demystify the initial pathological events underling the onset of Alzheimer's disease (AD). Fortunately, advanced imaging techniques extended the knowledge regarding AD origin, being well accepted that a decline in brain glucose metabolism occurs during the prodromal phases of AD and is aggravated with the progression of the disease. In this sense, in the last decades, the post-translational modification O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) has emerged as a potential causative link between hampered brain glucose metabolism and AD pathology. This is not surprising taking into account that this dynamic post-translational modification acts as a metabolic sensor that links glucose metabolism to normal neuronal functioning. Within this scenario, the present review aims to summarize the current understanding on the role of O-GlcNAcylation in neuronal physiology and AD pathology, emphasizing the close association of this post-translational modification with the emergence of AD-related hallmarks and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Tiffany S Pinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diogo M Verde
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
64
|
Tramutola A, Sharma N, Barone E, Lanzillotta C, Castellani A, Iavarone F, Vincenzoni F, Castagnola M, Butterfield DA, Gaetani S, Cassano T, Perluigi M, Di Domenico F. Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3309-3321. [PMID: 30031227 DOI: 10.1016/j.bbadis.2018.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Nidhi Sharma
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy; Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Providencia, Santiago, Chile
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Castellani
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
65
|
Shan S, Chatterjee A, Qiu Y, Hammes HP, Wieland T, Feng Y. O-GlcNAcylation of FoxO1 mediates nucleoside diphosphate kinase B deficiency induced endothelial damage. Sci Rep 2018; 8:10581. [PMID: 30002415 PMCID: PMC6043576 DOI: 10.1038/s41598-018-28892-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Nucleoside diphosphate kinase B (NDPK-B) acts as a protective factor in the retinal vasculature. NDPK-B deficiency leads to retinal vasoregression mimicking diabetic retinopathy (DR). Angiopoetin 2 (Ang-2), an initiator of retinal vasoregression in DR, is upregulated in NDPK-B deficient retinas and in NDPK-B depleted endothelial cells (ECs) in vitro. We therefore investigated the importance of Ang-2 in NDPK-B deficient retinas and characterized the mechanisms of Ang-2 upregulation upon NDPK-B depletion in cultured ECs. The crucial role of retinal Ang-2 in the initiation of vasoregression was verified by crossing NDPK-B deficient with Ang-2 haplodeficient mice. On the molecular level, FoxO1, a transcription factor regulating Ang-2, was upregulated in NDPK-B depleted ECs. Knockdown of FoxO1 abolished the elevation of Ang-2 induced by NDPK-B depletion. Furthermore O-GlcNAcylated FoxO1 was found preferentially in the nucleus. An increased O-GlcNAcylation of FoxO1 was revealed upon NDPK-B depletion. In accordance, the inhibition of protein O-GlcNAcylation normalized NDPK-B depletion induced Ang-2 upregulation. In summary, we demonstrated that the upregulation of Ang-2 upon NDPK-B deficiency is driven by O-GlcNAcylation of FoxO1. Our data provide evidence for a central role of protein O-GlcNAcylation in NDPK-B associated vascular damage and point to the hexosamine pathway as an important target in retinal vasoregression.
Collapse
Affiliation(s)
- Shenliang Shan
- Experimental Pharmacology Mannheim (EPM), European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology Mannheim (EPM), European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yi Qiu
- Experimental Pharmacology Mannheim (EPM), European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology Mannheim (EPM), European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
66
|
Lo WY, Yang WK, Peng CT, Pai WY, Wang HJ. MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression. Front Physiol 2018; 9:355. [PMID: 29720943 PMCID: PMC5915961 DOI: 10.3389/fphys.2018.00355] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: Increased O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins by O-GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O-GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3′-untranslated region (3′-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O-GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3′-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O-GlcNAcylation levels; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Additionally, siRNA-mediated OGT depletion reduced HG-induced protein O-GlcNAcylation; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion, confirming that HG-induced endothelial inflammation is partially mediated via OGT-induced protein O-GlcNAcylation. These results were validated in vivo: tail-vein injection of miR-200a/200b mimics downregulated endothelial OGT and ICAM-1 expression in db/db mice. Conclusion: miR-200a/200b are involved in modulating HG-induced endothelial inflammation by regulating OGT-mediated protein O-GlcNAcylation, suggesting the therapeutic role of miR-200a/200b on vascular complications in diabetes.
Collapse
Affiliation(s)
- Wan-Yu Lo
- Cardiovascular and Translational Medicine Laboratory, Department of Biotechnology, Hungkuang University, Taichung, Taiwan.,Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan
| | - Wen-Kai Yang
- Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Tien Peng
- Department of Pediatrics, Children's Hospital, China Medical University and Hospital, Taichung, Taiwan
| | - Wan-Yu Pai
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Huang-Joe Wang
- School of Medicine, China Medical University, Taichung, Taiwan.,Cardiovascular Research Laboratory, Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
67
|
Dhar S, Sun Z, Meininger GA, Hill MA. Nonenzymatic glycation interferes with fibronectin-integrin interactions in vascular smooth muscle cells. Microcirculation 2018; 24. [PMID: 28005306 DOI: 10.1111/micc.12347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/19/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We aimed to investigate whether advanced nonenzymatic glycation of the ECM protein, fibronectin, impacts its normal integrin-mediated interaction with arteriolar VSMC. METHODS AFM was performed on cultured VSMC from rat cremaster arterioles to study native and glycated fibronectin (FN and gFN) interactions with cellular integrins. AFM probes were functionalized with FN or gFN or with native or glycated albumin (gAlb) as controls. RESULTS VSMC showed increased adhesion probability to gFN (72.9±3.5%) compared with native FN (63.0±1.6%). VSMC similarly showed increased probability of adhesion (63.8±1.7%) to gAlb compared with native Alb (40.1±4.7%). Adhesion of native FN to VSMC was α5 and β1 integrin dependent whereas adhesion of gFN to VSMC was integrin independent. The RAGE-selective inhibitor, FPS-ZM1, blocked gFN (and gAlb) adhesion, suggesting that adhesion of glycated proteins was RAGE dependent. Interaction of FN with VSMC was not altered by soluble gFN while soluble native FN did not inhibit adhesion of gFN to VSMC. In contrast, gAlb inhibited adhesion of gFN to VSMC in a concentration-dependent manner. CONCLUSIONS Glycation of FN shifts the nature of cellular adhesion from integrin- to RAGE-dependent mechanisms.
Collapse
Affiliation(s)
- Srijita Dhar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
68
|
Shi H, Munk A, Nielsen TS, Daughtry MR, Larsson L, Li S, Høyer KF, Geisler HW, Sulek K, Kjøbsted R, Fisher T, Andersen MM, Shen Z, Hansen UK, England EM, Cheng Z, Højlund K, Wojtaszewski JFP, Yang X, Hulver MW, Helm RF, Treebak JT, Gerrard DE. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Mol Metab 2018. [PMID: 29525407 PMCID: PMC6001359 DOI: 10.1016/j.molmet.2018.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Type 2 diabetic humans have elevated O-GlcNAc levels in skeletal muscle. Knockout of OGT in muscle elevates whole body insulin sensitivity. Knockout of OGT in muscle increases resistance to diet-induced obesity. Muscle-specific OGT knockout mice have elevated plasma IL-15 levels. OGT in muscle controls Il15 expression by O-GlcNAcylation and inhibition of EZH2.
Collapse
Affiliation(s)
- Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexander Munk
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Thomas S Nielsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Morgan R Daughtry
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Louise Larsson
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Shize Li
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kasper F Høyer
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, DK8000, Denmark
| | - Hannah W Geisler
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Karolina Sulek
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Taylor Fisher
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Marianne M Andersen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ulrik K Hansen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Eric M England
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Virginia Tech Metabolic Phenotyping Core, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark.
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
69
|
Ducheix S, Magré J, Cariou B, Prieur X. Chronic O-GlcNAcylation and Diabetic Cardiomyopathy: The Bitterness of Glucose. Front Endocrinol (Lausanne) 2018; 9:642. [PMID: 30420836 PMCID: PMC6215811 DOI: 10.3389/fendo.2018.00642] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a major risk factor for heart failure. Diabetic cardiomyopathy (DC) is characterized by diastolic dysfunction and left ventricular hypertrophy. Epidemiological data suggest that hyperglycaemia contributes to the development of DC. Several cellular pathways have been implicated in the deleterious effects of high glucose concentrations in the heart: oxidative stress, accumulation of advanced glycation end products (AGE), and chronic hexosamine biosynthetic pathway (HBP) activation. In the present review, we focus on the effect of chronic activation of the HBP on diabetic heart function. The HBP supplies N-acetylglucosamine moiety (O-GlcNAc) that is O-linked by O-GlcNAc transferase (OGT) to proteins on serine or threonine residues. This post-translational protein modification modulates the activity of the targeted proteins. In the heart, acute activation of the HBP in response to ischaemia-reperfusion injury appears to be protective. Conversely, chronic activation of the HBP in the diabetic heart affects Ca2+ handling, contractile properties, and mitochondrial function and promotes stress signaling, such as left ventricular hypertrophy and endoplasmic reticulum stress. Many studies have shown that O-GlcNAc impairs the function of key protein targets involved in these pathways, such as phospholamban, calmodulin kinase II, troponin I, and FOXO1. The data show that excessive O-GlcNAcylation is a major trigger of the glucotoxic events that affect heart function under chronic hyperglycaemia. Supporting this finding, pharmacological or genetic inhibition of the HBP in the diabetic heart improves heart function. In addition, the SGLT2 inhibitor dapagliflozin, a glucose lowering agent, has recently been shown to lower cardiac HBP in a lipodystophic T2D mice model and to concomitantly improve the diastolic dysfunction of these mice. Therefore, targeting cardiac-excessive O-GlcNAcylation or specific target proteins represents a potential therapeutic option to treat glucotoxicity in the diabetic heart.
Collapse
Affiliation(s)
- Simon Ducheix
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Jocelyne Magré
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Cariou
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Xavier Prieur
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- *Correspondence: Xavier Prieur
| |
Collapse
|
70
|
Kim G, Cao L, Reece EA, Zhao Z. Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy. Sci Rep 2017; 7:11107. [PMID: 28894244 PMCID: PMC5593976 DOI: 10.1038/s41598-017-11655-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus in early pregnancy can cause neural tube defects (NTDs) in embryos by perturbing protein activity, causing cellular stress, and increasing programmed cell death (apoptosis) in the tissues required for neurulation. Hyperglycemia augments a branch pathway in glycolysis, the hexosamine biosynthetic pathway (HBP), to increase uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlcNAc can be added to proteins by O-GlcNAc transferase (OGT) to regulate protein activity. In the embryos of diabetic mice, OGT is highly activated in association with increases in global protein O-GlcNAcylation. In neural stem cells in vitro, high glucose elevates O-GlcNAcylation and reactive oxygen species, but the elevations can be suppressed by an OGT inhibitor. Inhibition of OGT in diabetic pregnant mice in vivo decreases NTD rate in the embryos. This effect is associated with reduction in global O-GlcNAcylation, alleviation of intracellular stress, and decreases in apoptosis in the embryos. These suggest that OGT plays an important role in diabetic embryopathy via increasing protein O-GlcNAcylation, and that inhibiting OGT could be a candidate approach to prevent birth defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Gyuyoup Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
71
|
Shi J, Tomašič T, Sharif S, Brouwer AJ, Anderluh M, Ruijtenbeek R, Pieters RJ. Peptide microarray analysis of the cross-talk between O-GlcNAcylation and tyrosine phosphorylation. FEBS Lett 2017; 591:1872-1883. [DOI: 10.1002/1873-3468.12708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/31/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | | | - Suhela Sharif
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | - Arwin J. Brouwer
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | | | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
- PamGene International BV; ‘s-Hertogenbosch The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| |
Collapse
|
72
|
|
73
|
Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, Dollet L, Le May C, Toumaniantz G, Manrique A, Charpentier F, Staels B, Magré J, Cariou B, Prieur X. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes 2017; 66:1030-1040. [PMID: 28052965 DOI: 10.2337/db16-0733] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a well-recognized independent risk factor for heart failure. T2DM is associated with altered cardiac energy metabolism, leading to ectopic lipid accumulation and glucose overload, the exact contribution of these two parameters remaining unclear. To provide new insight into the mechanism driving the development of diabetic cardiomyopathy, we studied a unique model of T2DM: lipodystrophic Bscl2-/- (seipin knockout [SKO]) mice. Echocardiography and cardiac magnetic resonance imaging revealed hypertrophic cardiomyopathy with left ventricular dysfunction in SKO mice, and these two abnormalities were strongly correlated with hyperglycemia. Surprisingly, neither intramyocardial lipid accumulation nor lipotoxic hallmarks were detected in SKO mice. [18F]Fludeoxyglucose positron emission tomography showed increased myocardial glucose uptake. Consistently, the O-GlcNAcylated protein levels were markedly increased in an SKO heart, suggesting a glucose overload. To test this hypothesis, we treated SKO mice with the hypoglycemic sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin and the insulin sensitizer pioglitazone. Both treatments reduced the O-GlcNAcylated protein levels in SKO mice, and dapagliflozin successfully prevented the development of hypertrophic cardiomyopathy. Our data demonstrate that glucotoxicity by itself can trigger cardiac dysfunction and that a glucose-lowering agent can correct it. This result will contribute to better understanding of the potential cardiovascular benefits of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Michael Joubert
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
- Endocrinologie, CHU Caen, Caen, France
- EA 4650, UNICAEN, GIP Cyceron, Caen, France
| | - Benoît Jagu
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - David Montaigne
- Universite Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Xavier Marechal
- Universite Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Angela Tesse
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Audrey Ayer
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Lucile Dollet
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Cédric Le May
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Gilles Toumaniantz
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | | | | | - Bart Staels
- Universite Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Jocelyne Magré
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Bertrand Cariou
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, CHU Nantes, Nantes, France
| | - Xavier Prieur
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| |
Collapse
|
74
|
Wong MHT, Mutch DM, McNicholas PD. Two-way learning with one-way supervision for gene expression data. BMC Bioinformatics 2017; 18:150. [PMID: 28257645 PMCID: PMC5336648 DOI: 10.1186/s12859-017-1564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A family of parsimonious Gaussian mixture models for the biclustering of gene expression data is introduced. Biclustering is accommodated by adopting a mixture of factor analyzers model with a binary, row-stochastic factor loadings matrix. This particular form of factor loadings matrix results in a block-diagonal covariance matrix, which is a useful property in gene expression analyses, specifically in biomarker discovery scenarios where blood can potentially act as a surrogate tissue for other less accessible tissues. Prior knowledge of the factor loadings matrix is useful in this application and is reflected in the one-way supervised nature of the algorithm. Additionally, the factor loadings matrix can be assumed to be constant across all components because of the relationship desired between the various types of tissue samples. Parameter estimates are obtained through a variant of the expectation-maximization algorithm and the best-fitting model is selected using the Bayesian information criterion. The family of models is demonstrated using simulated data and two real microarray data sets. The first real data set is from a rat study that investigated the influence of diabetes on gene expression in different tissues. The second real data set is from a human transcriptomics study that focused on blood and immune tissues. The microarray data sets illustrate the biclustering family's performance in biomarker discovery involving peripheral blood as surrogate biopsy material. RESULTS The simulation studies indicate that the algorithm identifies the correct biclusters, most optimally when the number of observation clusters is known. Moreover, the biclustering algorithm identified biclusters comprised of biologically meaningful data related to insulin resistance and immune function in the rat and human real data sets, respectively. CONCLUSIONS Initial results using real data show that this biclustering technique provides a novel approach for biomarker discovery by enabling blood to be used as a surrogate for hard-to-obtain tissues.
Collapse
Affiliation(s)
- Monica H. T. Wong
- Department of Mathematics and Statistics, McMaster University, Hamilton, L8S 4L8 ON Canada
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, N1G 2W1 ON Canada
| | - Paul D. McNicholas
- Department of Mathematics and Statistics, McMaster University, Hamilton, L8S 4L8 ON Canada
| |
Collapse
|
75
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
76
|
Hu J, Chen R, Jia P, Fang Y, Liu T, Song N, Xu X, Ji J, Ding X. Augmented O-GlcNAc signaling via glucosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats. Free Radic Biol Med 2017; 103:121-132. [PMID: 28017896 DOI: 10.1016/j.freeradbiomed.2016.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/27/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is an iatrogenic renal injury and associated with substantial morbidity and mortality in susceptible individuals. Despite extensive study of a variety of agents for renal protection, limited strategies have been shown to be effective in the reduction of CI-AKI. O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational regulatory modification of intracellular proteins and governs the function of numerous proteins, both cytosolic and nuclear. Increasing evidence suggests that O-GlcNAc levels are increased in response to stress and that acute augmentation of this reaction is cytoprotective. However, the underlying mechanisms by which augmented OGlcNAc signaling provides renoprotection against contrast media insults is still unknown. Here, we investigated the effect of augmented O-GlcNAc signaling via glucosamine on CI-AKI and explored the underlying molecular mechanisms, particularly its relationship with PI3-kinase (PI3K)/Akt signaling. We used a novel and reliable CI-AKI model consisting of 5/6 nephrectomized (NE) rats, and a low-osmolar contrast media (iohexol, 10mL/kg, 3.5gI) injected via the tail vein after dehydration for 48h. The results showed that augmented O-GlcNAc signaling by glucosamine prevented the kidneys against iohexol-induced injury characterized by the attenuation of renal dysfunction, tubular damage, apoptosis and oxidative stress. Furthermore, this renoprotection was blocked by treatment with alloxan, an O-GlcNAc transferase inhibitor. Augmented O-GlcNAc signaling also increased the protein expression levels of phospho-Akt (Ser473, but not Thr308 and Thr450), phospho-GSK-3β, Nrf2, and Bcl-2, and decreased the levels of Bax and cleaved caspase-3. Both alloxan and specific inhibitors of PI3K (Wortmannin and LY294002) blocked the protection of glucosamine via inhibiting Akt signaling pathway. We further identified O-GlcNAcylated Akt through immunoprecipitation and western blot. We confirmed that Akt was modified by O-GlcNAcylation, and glucosamine pretreatment increased the O-GlcNAcylation of Akt. Collectively, the results demonstrate that glucosamine induces renoprotection against CI-AKI through augmented O-GlcNAc and activation of PI3K/Akt signaling, making it a promising strategy for preventing CI-AKI.
Collapse
Affiliation(s)
- Jiachang Hu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Rongyi Chen
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Chang zhou No. 2 Hospital of Nanjing Medical College, Changzhou, Jiangsu 213003, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Jun Ji
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China.
| |
Collapse
|
77
|
Kim EJ, Bond MR, Nam G, Hanover JA. Evaluation of the Chemical Reporter Analog PNP-6AzGlcNAc as an O-GlcNAcase Substrate. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eun J. Kim
- Department of Science Education-Chemistry Major; Daegu University; GyeongBuk 712-714 S. Korea
| | - Michelle R. Bond
- Laboratory of Cell Biochemistry and Biology; NIDDK, National Institute of Health; Bethesda MD 20892 USA
| | - Ghilsoo Nam
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology; Seoul 136-791 S. Korea
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology; NIDDK, National Institute of Health; Bethesda MD 20892 USA
| |
Collapse
|
78
|
Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease. Neurobiol Dis 2017; 98:1-8. [DOI: 10.1016/j.nbd.2016.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/05/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022] Open
|
79
|
Hwang JS, Kwon MY, Kim KH, Lee Y, Lyoo IK, Kim JE, Oh ES, Han IO. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells. J Biol Chem 2016; 292:1724-1736. [PMID: 27927986 DOI: 10.1074/jbc.m116.737940] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Mi-Youn Kwon
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyung-Hong Kim
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yunkyoung Lee
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eok-Soo Oh
- the Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Inn-Oc Han
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
80
|
Effects of caloric restriction on O-GlcNAcylation, Ca2+ signaling, and learning impairment in the hippocampus of ob/ob mice. Neurobiol Aging 2016; 44:127-137. [DOI: 10.1016/j.neurobiolaging.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
|
81
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
82
|
Maccari S, Polese D, Reynaert ML, Amici T, Morley-Fletcher S, Fagioli F. Early-life experiences and the development of adult diseases with a focus on mental illness: The Human Birth Theory. Neuroscience 2016; 342:232-251. [PMID: 27235745 DOI: 10.1016/j.neuroscience.2016.05.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022]
Abstract
In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life.
Collapse
Affiliation(s)
- Stefania Maccari
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; IRCCS Neuromed, 86077, Italy; Sapienza University of Rome, 00185 Rome, Italy.
| | - Daniela Polese
- NESMOS Department, Sant'Andrea Hospital, Sapienza University of Rome, Italy; Unit of Psychiatry, Federico II University of Naples, Italy
| | - Marie-Line Reynaert
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | | | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Francesca Fagioli
- Prevention and early Intervention Mental Health (PIPSM) ASL Rome 1, Italy
| |
Collapse
|
83
|
Yagihashi S. Glucotoxic Mechanisms and Related Therapeutic Approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:121-49. [PMID: 27133148 DOI: 10.1016/bs.irn.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropathy is the earliest and commonest complication of diabetes. With increasing duration of diabetes, frequency and severity of neuropathy are worsened. Long-term hyperglycemia is therefore implicated in the development of this disorder. Nerve tissues require glucose energy to function and survive. Upon excessive glucose entry into the peripheral nerve, the glycolytic pathway and collateral glucose-utilizing pathways are overactivated and initiate adverse effects on nerve tissues. During hyperglycemia, flux through the polyol pathway, formation of advanced glycation end-products, production of free radicals, flux into the glucosamine pathway, and protein kinase C activity are all enhanced to negatively influence nerve function and structure. Suppression of these aberrant metabolic pathways has succeeded in prevention and inhibition of the development of neuropathy in animal models with diabetes. Satisfactory results were not attained, however, in patients with diabetes and further clinical trials are required. In this review, the author summarizes the hitherto proposed theories on the pathogenesis of diabetic neuropathy related to glucose metabolism and future prospects for the effective treatment of neuropathy.
Collapse
Affiliation(s)
- S Yagihashi
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
84
|
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis 2016; 7:90-110. [PMID: 26816666 DOI: 10.14336/ad.2015.0702] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and its complications are caused by chronic glucotoxicity driven by persistent hyperglycemia. In this article, we review the mechanisms of diabetic glucotoxicity by focusing mainly on hyperglycemic stress and carbon stress. Mechanisms of hyperglycemic stress include reductive stress or pseudohypoxic stress caused by redox imbalance between NADH and NAD(+) driven by activation of both the polyol pathway and poly ADP ribose polymerase; the hexosamine pathway; the advanced glycation end products pathway; the protein kinase C activation pathway; and the enediol formation pathway. Mechanisms of carbon stress include excess production of acetyl-CoA that can over-acetylate a proteome and excess production of fumarate that can over-succinate a proteome; both of which can increase glucotoxicity in diabetes. For hyperglycemia stress, we also discuss the possible role of mitochondrial complex I in diabetes as this complex, in charge of NAD(+) regeneration, can make more reactive oxygen species (ROS) in the presence of excess NADH. For carbon stress, we also discuss the role of sirtuins in diabetes as they are deacetylases that can reverse protein acetylation thereby attenuating diabetic glucotoxicity and improving glucose metabolism. It is our belief that targeting some of the stress pathways discussed in this article may provide new therapeutic strategies for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Xiaoting Luo
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 2 Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi province, China, 341000
| | - Jinzi Wu
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siqun Jing
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 3 College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China, 830046
| | - Liang-Jun Yan
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
85
|
|
86
|
Zhao Y, Tang Z, Zhu X, Wang X, Wang C, Zhang W, Xia N, Wang S, Huang J, Cui S. TAB3 involves in hepatic insulin resistance through activation of MAPK pathway. Gen Comp Endocrinol 2015; 224:228-34. [PMID: 26320856 DOI: 10.1016/j.ygcen.2015.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Insulin resistance is often accompanied by chronic inflammatory responses. The mitogen-activated protein kinase (MAPK) pathway is rapidly activated in response to many inflammatory cytokines. But the functional role of MAPKs in palmitate-induced insulin resistance has yet to be clarified. In this study, we found that transforming growth factor β-activated kinase binding protein-3 (TAB3) was up-regulated in insulin resistance. Considering the relationship between transforming growth factor β-activated kinase (TAK1) and MAPK pathway, we assumed TAB3 involved in insulin resistance through activation of MAPK pathway. To certify this hypothesis, we knocked down TAB3 in palmitate treated HepG2 cells and detected subsequent biological responses. Importantly, TAB3 siRNA directly reversed insulin sensitivity by improving insulin signal transduction. Moreover, silencing of TAB3 could facilitate hepatic glucose uptake, reverse gluconeogenesis and improve ectopic fat accumulation. Meanwhile, we found that the positive effect of knocking down TAB3 was more significant when insulin resistance occurred. All these results indicate that TAB3 acts as a negative regulator in insulin resistance through activation of MAPK pathway.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Xiaohui Zhu
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Xueqin Wang
- Department of Endocrinology, Nantong First People's Hospital, 6 Hai'erxiang Road, Nantong 226001, Jiangsu Province, China
| | - Cuifang Wang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Wanlu Zhang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Nana Xia
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Suxin Wang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Jieru Huang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Shiwei Cui
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
87
|
Liao HW, Hsu JM, Xia W, Wang HL, Wang YN, Chang WC, Arold ST, Chou CK, Tsou PH, Yamaguchi H, Fang YF, Lee HJ, Lee HH, Tai SK, Yang MH, Morelli MP, Sen M, Ladbury JE, Chen CH, Grandis JR, Kopetz S, Hung MC. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. J Clin Invest 2015; 125:4529-43. [PMID: 26571401 DOI: 10.1172/jci82826] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.
Collapse
|
88
|
Makino A, Dai A, Han Y, Youssef KD, Wang W, Donthamsetty R, Scott BT, Wang H, Dillmann WH. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice. Am J Physiol Cell Physiol 2015; 309:C593-9. [PMID: 26269457 PMCID: PMC4628934 DOI: 10.1152/ajpcell.00069.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Cells, Cultured
- Connexins/metabolism
- Coronary Artery Disease/enzymology
- Coronary Artery Disease/genetics
- Coronary Artery Disease/physiopathology
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Coronary Vessels/physiopathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Induction
- Enzyme Inhibitors/pharmacology
- Glycosylation
- Histone Acetyltransferases/antagonists & inhibitors
- Histone Acetyltransferases/biosynthesis
- Histone Acetyltransferases/genetics
- Humans
- Hyaluronoglucosaminidase/antagonists & inhibitors
- Hyaluronoglucosaminidase/biosynthesis
- Hyaluronoglucosaminidase/genetics
- Male
- Mice, Transgenic
- N-Acetylglucosaminyltransferases/metabolism
- Neovascularization, Physiologic
- Protein Processing, Post-Translational
- Signal Transduction
- Vasodilation
- beta-N-Acetylhexosaminidases/antagonists & inhibitors
- beta-N-Acetylhexosaminidases/biosynthesis
- beta-N-Acetylhexosaminidases/genetics
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Ayako Makino
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicine, University of California, San Diego, La Jolla, California
| | - Anzhi Dai
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ying Han
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Katia D Youssef
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Reshma Donthamsetty
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Hong Wang
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
89
|
Issad T. O-GlcNAcylation of connexin 40: a sweet connection between diabetes and endothelial cell dysfunction? Focus on “O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice”. Am J Physiol Cell Physiol 2015; 309:C590-2. [DOI: 10.1152/ajpcell.00260.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tarik Issad
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, UMR8104, Paris, France; and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
90
|
Zhao Y, Tang Z, Shen A, Tao T, Wan C, Zhu X, Huang J, Zhang W, Xia N, Wang S, Cui S, Zhang D. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance. Int J Mol Sci 2015; 16:22856-69. [PMID: 26402673 PMCID: PMC4613339 DOI: 10.3390/ijms160922856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/01/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B), which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1), thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386). Palmitate acid (PA) impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Chunhua Wan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Xiaohui Zhu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Jieru Huang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Wanlu Zhang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Nana Xia
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Suxin Wang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| | - Shiwei Cui
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.
| |
Collapse
|
91
|
Kim EJ. The Utilities of Chemical Reactions and Molecular Tools for O-GlcNAc Proteomic Studies. Chembiochem 2015; 16:1397-409. [PMID: 26096757 DOI: 10.1002/cbic.201500183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 11/05/2022]
Abstract
The post-translational modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) is involved in a wide variety of cellular processes and is associated with the pathological progression of chronic diseases. Considering its emerging biological significance, systematic identification, site mapping, and quantification of O-GlcNAc proteins are essential and have led to the development of several approaches for O-GlcNAc protein profiling. This minireview mainly focuses on the various useful chemical reactions and molecular tools with detailed reaction mechanisms widely adopted for O-GlcNAc protein/peptide enrichment and its quantification for comprehensive O-GlcNAc protein profiling.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongsan-si, GyeongBuk 712-714 (Republic of Korea). ,
| |
Collapse
|
92
|
Liu Y, Dai S, Xing L, Xu Y, Chong K. O-linked β-N-acetylglucosamine modification and its biological functions. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0816-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
93
|
Fardini Y, Perez-Cervera Y, Camoin L, Pagesy P, Lefebvre T, Issad T. Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified. Biochem Biophys Res Commun 2015; 462:151-8. [PMID: 25944660 DOI: 10.1016/j.bbrc.2015.04.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023]
Abstract
O-GlcNAcylation is a reversible post-translational modification that regulates cytosolic and nuclear proteins. We and others previously demonstrated that FoxO1 is O-GlcNAcylated in different cell types, resulting in an increase in its transcriptional activity. Four O-GlcNAcylation sites were identified in human FOXO1 but directed mutagenesis of each site individually had modest (T317) or no effect (S550, T648, S654) on its O-GlcNAcylation status and transcriptional activity. Moreover, the consequences of mutating all four sites had not been investigated. In the present work, we mutated these sites in the mouse Foxo1 and found that mutation of all four sites did not decrease Foxo1 O-GlcNAcylation status and transcriptional activity, and would even tend to increase them. In an attempt to identify other O-GlcNAcylation sites, we immunoprecipitated wild-type O-GlcNAcylated Foxo1 and analysed the tryptic digest peptides by mass spectrometry using High-energy Collisional Dissociation. We identified T646 as a new O-GlcNAcylation site on Foxo1. However, site directed mutagenesis of this site individually or together with all four previously identified residues did not impair Foxo1 O-GlcNAcylation and transcriptional activity. These results suggest that residues important for the control of Foxo1 activity by O-GlcNAcylation still remain to be identified.
Collapse
Affiliation(s)
- Yann Fardini
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yobana Perez-Cervera
- Structural and Functional Glycobiology Unit, Lille 1 University, CNRS (UMR 8576), IFR 117, Villeneuve d'Ascq, France; Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Luc Camoin
- INSERM, U1068, CRCM, Marseille Protéomique IBiSA, Marseille, F-13009, France; Institut Paoli-Calmettes Team, Cell Polarity, Cell Signaling and Cancer, Marseille, F-13009, France; Aix-Marseille Université, F-13284, Marseille, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Patrick Pagesy
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Tony Lefebvre
- Structural and Functional Glycobiology Unit, Lille 1 University, CNRS (UMR 8576), IFR 117, Villeneuve d'Ascq, France
| | - Tarik Issad
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
94
|
Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes 2015; 8:181-188. [PMID: 25897251 PMCID: PMC4396517 DOI: 10.2147/dmso.s82272] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic hyperglycemia and the corresponding glucotoxicity are the main pathogenic mechanisms of diabetes and its complications. Streptozotocin (STZ)-induced diabetic animal models are useful platforms for the understanding of β cell glucotoxicity in diabetes. As diabetes induced by a single STZ injection is often referred to as type 1 diabetes that is caused by STZ's partial destruction of pancreas, one question often being asked is whether the STZ type 1 diabetes animal model is a good model for studying the mitochondrial mechanisms of β cell glucotoxicity. In this mini review, we provide evidence garnered from the literature that the STZ type 1 diabetes is indeed a suitable model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Evidence presented includes: 1) continued β cell derangement is due to chronic hyperglycemia after STZ is completely eliminated out of the body; 2) STZ diabetes can be reversed by insulin treatment, which indicates that β cell responds to treatment and shows ability to regenerate; and 3) STZ diabetes can be ameliorated or alleviated by administration of phytochemicals. In addition, mechanisms of STZ action and fundamental gaps in understanding mitochondrial mechanisms of β cell dysfunction are also discussed.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
95
|
Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 2015; 20:3503-13. [PMID: 24180389 DOI: 10.2174/13816128113196660745] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.
Collapse
Affiliation(s)
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse14, 1090 Vienna, Austria.
| |
Collapse
|
96
|
Testa R, Vanhooren V, Bonfigli AR, Boemi M, Olivieri F, Ceriello A, Genovese S, Spazzafumo L, Borelli V, Bacalini MG, Salvioli S, Garagnani P, Dewaele S, Libert C, Franceschi C. N-glycomic changes in serum proteins in type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters. PLoS One 2015; 10:e0119983. [PMID: 25793407 PMCID: PMC4368037 DOI: 10.1371/journal.pone.0119983] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/15/2015] [Indexed: 01/28/2023] Open
Abstract
Background Glycosylation, i.e the enzymatic addition of oligosaccharides (or glycans) to proteins and lipids, known as glycosylation, is one of the most common co-/posttranslational modifications of proteins. Many important biological roles of glycoproteins are modulated by N-linked oligosaccharides. As glucose levels can affect the pathways leading to glycosylation of proteins, we investigated whether metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM), pathological conditions characterized by altered glucose levels, are associated with specific modifications in serum N-glycome. Methods We enrolled in the study 562 patients with Type 2 Diabetes Mellitus (T2DM) (mean age 65.6±8.2 years) and 599 healthy control subjects (CTRs) (mean age, 58.5±12.4 years). N-glycome was evaluated in serum glycoproteins. Results We found significant changes in N-glycan composition in the sera of T2DM patients. In particular, α(1,6)-linked arm monogalactosylated, core-fucosylated diantennary N-glycans (NG1(6)A2F) were significantly reduced in T2DM compared with CTR subjects. Importantly, they were equally reduced in diabetic patients with and without complications (P<0.001) compared with CTRs. Macro vascular-complications were found to be related with decreased levels of NG1(6)A2F. In addition, NG1(6)A2F and NG1(3)A2F, identifying, respectively, monogalactosylated N-glycans with α(1,6)- and α(1,3)-antennary galactosylation, resulted strongly correlated with most MS parameters. The plasmatic levels of these two glycans were lower in T2DM as compared to healthy controls, and even lower in patients with complications and MS, that is the extreme “unhealthy” phenotype (T2DM+ with MS). Conclusions Imbalance of glycosyltransferases, glycosidases and sugar nucleotide donor levels is able to cause the structural changes evidenced by our findings. Serum N-glycan profiles are thus sensitive to the presence of diabetes and MS. Serum N-glycan levels could therefore provide a non-invasive alternative marker for T2DM and MS.
Collapse
Affiliation(s)
- Roberto Testa
- Experimental models in Clinical Pathology, Italian National Research Center on Aging (INRCA), Ancona, 60127, Italy
- * E-mail:
| | - Valerie Vanhooren
- VIB Inflammation Research Center, Technologiepark 927, B-9052, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Anna Rita Bonfigli
- Scientific Direction, Italian National Research Center on Aging (INRCA), Ancona, 60124, Italy
| | - Massimo Boemi
- Metabolic Diseases and Diabetology Unit, Italian National Research Center on Aging (INRCA), 60127, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, 60020, Italy
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA), Ancona, 60127, Italy
| | - Antonio Ceriello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, 08017, Spain
| | - Stefano Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica Sesto San Giovanni (MI), 20099, Italy
| | - Liana Spazzafumo
- Center of Biostatistic, Italian National Research Center on Aging (INRCA), Ancona, 60124, Italy
| | - Vincenzo Borelli
- Department of Experimental, Diagnostic and Specialty Medicine Experimental Pathology, University of Bologna, Via S. Giacomo 12, Bologna, 40126, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine Experimental Pathology, University of Bologna, Via S. Giacomo 12, Bologna, 40126, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine Experimental Pathology, University of Bologna, Via S. Giacomo 12, Bologna, 40126, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine Experimental Pathology, University of Bologna, Via S. Giacomo 12, Bologna, 40126, Italy
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, Bologna, 40138, Italy
- Interdepartmental Centre "L. Galvani" CIG, University of Bologna, Piazza di Porta S. Donato 1, Bologna, 40126, Italy
| | - Sylviane Dewaele
- VIB Inflammation Research Center, Technologiepark 927, B-9052, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Claude Libert
- VIB Inflammation Research Center, Technologiepark 927, B-9052, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine Experimental Pathology, University of Bologna, Via S. Giacomo 12, Bologna, 40126, Italy
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, Bologna, 40138, Italy
- Interdepartmental Centre "L. Galvani" CIG, University of Bologna, Piazza di Porta S. Donato 1, Bologna, 40126, Italy
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, 40124, Italy
| |
Collapse
|
97
|
Barnes JW, Tian L, Heresi GA, Farver CF, Asosingh K, Comhair SAA, Aulak KS, Dweik RA. O-linked β-N-acetylglucosamine transferase directs cell proliferation in idiopathic pulmonary arterial hypertension. Circulation 2015; 131:1260-8. [PMID: 25663381 DOI: 10.1161/circulationaha.114.013878] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary arterial hypertension (IPAH) is a cardiopulmonary disease characterized by cellular proliferation and vascular remodeling. A more recently recognized characteristic of the disease is the dysregulation of glucose metabolism. The primary link between altered glucose metabolism and cell proliferation in IPAH has not been elucidated. We aimed to determine the relationship between glucose metabolism and smooth muscle cell proliferation in IPAH. METHODS AND RESULTS Human IPAH and control patient lung tissues and pulmonary artery smooth muscle cells (PASMCs) were used to analyze a specific pathway of glucose metabolism, the hexosamine biosynthetic pathway. We measured the levels of O-linked β-N-acetylglucosamine modification, O-linked β-N-acetylglucosamine transferase (OGT), and O-linked β-N-acetylglucosamine hydrolase in control and IPAH cells and tissues. Our data suggest that the activation of the hexosamine biosynthetic pathway directly increased OGT levels and activity, triggering changes in glycosylation and PASMC proliferation. Partial knockdown of OGT in IPAH PASMCs resulted in reduced global O-linked β-N-acetylglucosamine modification levels and abrogated PASMC proliferation. The increased proliferation observed in IPAH PASMCs was directly impacted by proteolytic activation of the cell cycle regulator, host cell factor-1. CONCLUSIONS Our data demonstrate that hexosamine biosynthetic pathway flux is increased in IPAH and drives OGT-facilitated PASMC proliferation through specific proteolysis and direct activation of host cell factor-1. These findings establish a novel regulatory role for OGT in IPAH, shed a new light on our understanding of the disease pathobiology, and provide opportunities to design novel therapeutic strategies for IPAH.
Collapse
Affiliation(s)
- Jarrod W Barnes
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Liping Tian
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Gustavo A Heresi
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Carol F Farver
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Kewal Asosingh
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Suzy A A Comhair
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Kulwant S Aulak
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH
| | - Raed A Dweik
- From Department of Pathobiology, Lerner Research Institute (J.W.B., L.T., K.A., S.A.A.C., K.S.A. R.A.D.), Pulmonary and Critical Care Medicine, Respiratory Institute (G.A.H., R.A.D.), and Department of Pathology (C.F.F.), Cleveland Clinic, OH.
| |
Collapse
|
98
|
Are Dynamic Mechanistic Explanations Still Mechanistic? HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2015. [DOI: 10.1007/978-94-017-9822-8_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
99
|
Lefebvre T, Issad T. 30 Years Old: O-GlcNAc Reaches the Age of Reason - Regulation of Cell Signaling and Metabolism by O-GlcNAcylation. Front Endocrinol (Lausanne) 2015; 6:17. [PMID: 25709599 PMCID: PMC4321574 DOI: 10.3389/fendo.2015.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/27/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Tony Lefebvre
- Structural and Functional Glycobiology Unit, CNRS-UMR 8576, Lille 1 University, Villeneuve d’Ascq, France
- *Correspondence: ;
| | - Tarik Issad
- CNRS-UMR 8104, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
- *Correspondence: ;
| |
Collapse
|
100
|
Rao PV, Laurie A, Bean ES, Roberts CT, Nagalla SR. Salivary protein glycosylation as a noninvasive biomarker for assessment of glycemia. J Diabetes Sci Technol 2015; 9:97-104. [PMID: 25305283 PMCID: PMC4495545 DOI: 10.1177/1932296814554414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Assessment of short-term glycemic control can facilitate monitoring of diabetes development in at-risk individuals and monitoring response to lifestyle modification or medication. We evaluated salivary protein glycosylation levels as a novel, noninvasive, short-term glycemic index in comparison to hemoglobin A1c (HbA1c), fructosamine, 1,5-anhydroglucitol (1,5-AG), and continuous glucose monitoring (CGM). Ten subjects with type 2 diabetes were monitored by CGM and saliva and blood were collected at baseline and days 1, 7, 14, 21, and 28 for determination of salivary protein glycosylation, serum fructosamine, and serum 1,5-anhydroglucitol (1,5-AG) levels, as well as HbA1c (baseline and day 28). Weekly, 14-day, 21-day, and 28-day summary blood glucose measures from CGM were computed and matched to the time of each study visit. Salivary protein glycosylation exhibited a moderate correlation with fructosamine (r = .65) and 1,5-AG (r = -.48) at baseline, and weak correlation with HbA1c (r = .3). Salivary protein glycosylation exhibited a stronger correlation than fructosamine and 1,5-AG with 7-, 14-, and 21-day average BG (r = .84, .84, and .69, respectively, vs -.37, -.28, and .00 [fructosamine] and .00, -.21, and -.57 [1,5-AG]), maximum BG (r = .79, .76, and .53 vs -.09, -.21, and -.05 [fructosamine] and -.32, -.27, and -.52 [1,5-AG]), and percentage of time over 140 mg/dL (r = .87, .79, and .59 vs -.26, -.32, and .07 [fructosamine] and -.04, -.10, and -.50 [1,5-AG]). Salivary protein glycosylation represents a promising noninvasive technology for monitoring short-term glycemic control.
Collapse
Affiliation(s)
- Paturi V Rao
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | | | |
Collapse
|