51
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
52
|
Bulut H. Drug development targeting SARS-CoV-2 main protease. Glob Health Med 2022; 4:296-300. [PMID: 36589216 PMCID: PMC9773221 DOI: 10.35772/ghm.2022.01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic with more than 6.5 million deaths since 2019. Although a number of vaccines significantly reduced the mortality rate, a large number of the world population is yet being infected with highly contagious omicron variants/subvarints. Additional therapeutic interventions are needed to reduce hospitalization and curb the ongoing pandemic. The activity of the SARS-CoV-2 enzyme; chymotrypsin-like main protease (Mpro) is essential for the cleavage of viral nonstructural polypeptides into individual functional proteins and therefore Mpro is an attractive drug target. The aim of this review is to summarize recent progress toward the development of therapeutic drugs against Mpro protease.
Collapse
Affiliation(s)
- Haydar Bulut
- The Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Sharma G, Song LF, Merz KM. Effect of an Inhibitor on the ACE2-Receptor-Binding Domain of SARS-CoV-2. J Chem Inf Model 2022; 62:6574-6585. [PMID: 35118864 PMCID: PMC8848506 DOI: 10.1021/acs.jcim.1c01283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of COVID-19 infection started in Wuhan, China, and spread across China and beyond. Since the WHO declared COVID-19 a pandemic (March 11, 2020), three vaccines and only one antiviral drug (remdesivir) have been approved (Oct 22, 2020) by the FDA. The coronavirus enters human epithelial cells by the binding of the densely glycosylated fusion spike protein (S protein) to a receptor (angiotensin-converting enzyme 2, ACE2) on the host cell surface. Therefore, inhibiting the viral entry is a promising treatment pathway for preventing or ameliorating the effects of COVID-19 infection. In the current work, we have used all-atom molecular dynamics (MD) simulations to investigate the influence of the MLN-4760 inhibitor on the conformational properties of ACE2 and its interaction with the receptor-binding domain (RBD) of SARS-CoV-2. We have found that the presence of an inhibitor tends to completely/partially open the ACE2 receptor where the two subdomains (I and II) move away from each other, while the absence results in partial or complete closure. The current study increases our understanding of ACE inhibition by MLN-4760 and how it modulates the conformational properties of ACE2.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lin Frank Song
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
54
|
Shaheer M, Singh R, Sobhia ME. Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10905-10917. [PMID: 34328382 DOI: 10.1080/07391102.2021.1953601] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has afflicted many lives and led to approvals of drugs and vaccines for emergency use. Even though vaccines have emerged, the high mortality of COVID-19 and its insurgent proliferation throughout the masses commands an innovative therapeutic proposition for the treatment. Targeted protein degradation has been applied to various disease domains and we propose that it could be incredibly beneficial to tackle the current pandemic. In this study, we have attempted to furnish insights on the design of suitable PROTACs for the main protease (Mpro) of SARS-CoV-2, a protein that is considered to be an essential target for viral replication. We have employed protein-protein docking to predict the possible complementarity between a cereblon E3 ligase and Mpro of SARS-CoV-2, and estimate possible linker length. Molecular Dynamic simulation and analysis on generated ternary complexes demonstrated stable interactions that suggested that designed PROTAC has a potential to cause degradation. The superior characteristics rendered by PROTACS led us to propose them as possibly the next-generation antiviral drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammed Shaheer
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Ravi Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
55
|
Wang L, Yu Z, Wang S, Guo Z, Sun Q, Lai L. Discovery of novel SARS-CoV-2 3CL protease covalent inhibitors using deep learning-based screen. Eur J Med Chem 2022; 244:114803. [PMID: 36209629 PMCID: PMC9528019 DOI: 10.1016/j.ejmech.2022.114803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
SARS-CoV-2 3CL protease is one of the key targets for drug development against COVID-19. Most known SARS-CoV-2 3CL protease inhibitors act by covalently binding to the active site cysteine. Yet, computational screens against this enzyme were mainly focused on non-covalent inhibitor discovery. Here, we developed a deep learning-based stepwise strategy for selective covalent inhibitor screen. We used a deep learning framework that integrated a directed message passing neural network with a feed-forward neural network to construct two different classifiers for either covalent or non-covalent inhibition activity prediction. These two classifiers were trained on the covalent and non-covalent 3CL protease inhibitors dataset, respectively, which achieved high prediction accuracy. We then successively applied the covalent inhibitor model and the non-covalent inhibitor model to screen a chemical library containing compounds with covalent warheads of cysteine. We experimentally tested the inhibition activity of 32 top-ranking compounds and 12 of them were active, among which 6 showed IC50 values less than 12 μM and the strongest one inhibited SARS-CoV-2 3CL protease with an IC50 of 1.4 μM. Further investigation demonstrated that 5 of the 6 active compounds showed typical covalent inhibition behavior with time-dependent activity. These new covalent inhibitors provide novel scaffolds for developing highly active SARS-CoV-2 3CL covalent inhibitors.
Collapse
Affiliation(s)
- Liying Wang
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Zhongtian Yu
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Shiwei Wang
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Zheng Guo
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China,Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, 100871, PR China,Corresponding author. BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, PR China,Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, 100871, PR China,Corresponding author. BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| |
Collapse
|
56
|
Terekhov SS, Shmygarev VI, Purtov KV, Smirnov IV, Yampolsky IV, Tsarkova AS. Drug design strategies for the treatment of coronavirus infection. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The increasing size and density of the human population is leading to an increasing risk of infectious diseases that threaten to spread yet another pandemics. The widespread use of vaccination has reduced morbidity and mortality associated with viral infections and in some cases eradicated the virus from the population entirely. Regrettably, some virus species retain the ability to mutate rapidly and thus evade the vaccine-induced immune response. New antiviral drugs are therefore needed for the treatment and prevention of viral diseases. Modern research into the structures and properties of viral proteases, which are of key importance in the life cycle of viruses, makes it possible, in our opinion, to turn these enzymes into promising targets for the development of effective viral disease control methods.
Collapse
Affiliation(s)
- SS Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - VI Shmygarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - KV Purtov
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| | - IV Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - IV Yampolsky
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - AS Tsarkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
57
|
Immunostimulatory Activity of Cordyceps militaris Fermented with Pediococcus pentosaceus SC11 Isolated from a Salted Small Octopus in Cyclophosphamide-Induced Immunocompromised Mice and Its Inhibitory Activity against SARS-CoV 3CL Protease. Microorganisms 2022; 10:microorganisms10122321. [PMID: 36557573 PMCID: PMC9781638 DOI: 10.3390/microorganisms10122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the immune-enhancing and anti-viral effects of germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus SC11 (GRC-SC11) isolated from a salted small octopus. The cordycepin, β-glucan, and total flavonoid contents increased in GRC after SC11 fermentation. GRC-SC11 inhibits 3CL protease activity in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GRC-SC11 significantly increased thymus and spleen indices in immunocompromised mice. The rate of splenocyte proliferation was higher in GRC-SC11-treated immunocompromised mice than that in GRC-treated immunocompromised mice in the presence or absence of concanavalin A. In addition, GRC-SC11 increased the phagocytic activity and nitric oxide production in immunocompromised mice. The mRNA expression of interferon-gamma (IFN-γ), interferon-alpha (IFN-α), and interferon-stimulated gene 15 (ISG15) was up-regulated in GRC-SC11 treated RAW 264.7 macrophages, compared to GRC. Our study indicates that GRC-SC11 might be a potential therapeutic agent for immunocompromised patients who are vulnerable to SARS-CoV infection.
Collapse
|
58
|
Fàbrega-Ferrer M, Herrera-Morandé A, Muriel-Goñi S, Pérez-Saavedra J, Bueno P, Castro V, Garaigorta U, Gastaminza P, Coll M. Structure and inhibition of SARS-CoV-1 and SARS-CoV-2 main proteases by oral antiviral compound AG7404. Antiviral Res 2022; 208:105458. [PMID: 36336176 PMCID: PMC9632241 DOI: 10.1016/j.antiviral.2022.105458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) pose a threat to global public health. The 3C-like main protease (Mpro), which presents structural similarity with the active site domain of enterovirus 3C protease, is one of the best-characterized drug targets of these viruses. Here we studied the antiviral activity of the orally bioavailable enterovirus protease inhibitor AG7404 against SARS-CoV-1 and SARS-CoV-2 from a structural, biochemical, and cellular perspective, comparing it with the related molecule rupintrivir (AG7800). Crystallographic structures of AG7404 in complex with SARS-CoV-1 Mpro and SARS-CoV-2 Mpro and of rupintrivir in complex with SARS-CoV-2 Mpro were solved, revealing that all protein residues interacting with the inhibitors are conserved between the two proteins. A detailed analysis of protein-inhibitor interactions indicates that AG7404 has a better fit to the active site of the target protease than rupintrivir. This observation was further confirmed by biochemical FRET assays showing IC50 values of 47 μM and 101 μM for AG7404 and rupintrivir, respectively, in the case of SARS-CoV-2 Mpro. Equivalent IC50 values for SARS-CoV-1 also revealed greater inhibitory capacity of AG7404, with a value of 29 μM vs. 66 μM for rupintrivir. Finally, the antiviral activity of the two inhibitors against SARS-CoV-2 was confirmed in a human cell culture model of SARS-CoV-2 infection, although rupintrivir showed a higher potency and selectivity index in this assay.
Collapse
Affiliation(s)
- Montserrat Fàbrega-Ferrer
- Institute for Research in Biomedicine IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain,Institut de Biologia Molecular de Barcelona IBMB-CSIC, Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Alejandra Herrera-Morandé
- Institute for Research in Biomedicine IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain,Institut de Biologia Molecular de Barcelona IBMB-CSIC, Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Sara Muriel-Goñi
- Institute for Research in Biomedicine IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain,Institut de Biologia Molecular de Barcelona IBMB-CSIC, Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Julia Pérez-Saavedra
- Institute for Research in Biomedicine IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain,Institut de Biologia Molecular de Barcelona IBMB-CSIC, Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Paula Bueno
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, 28049, Spain
| | - Victoria Castro
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, 28049, Spain
| | - Urtzi Garaigorta
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, 28049, Spain
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, 28049, Spain
| | - Miquel Coll
- Institute for Research in Biomedicine IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain,Institut de Biologia Molecular de Barcelona IBMB-CSIC, Baldiri Reixac 10, Barcelona, 08028, Spain,Corresponding author. Institute for Research in Biomedicine IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| |
Collapse
|
59
|
Hao Y, Chen M, Othman Y, Xie XQ, Feng Z. Virus-CKB 2.0: Viral-Associated Disease-Specific Chemogenomics Knowledgebase. ACS OMEGA 2022; 7:37476-37484. [PMID: 36312370 PMCID: PMC9609052 DOI: 10.1021/acsomega.2c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Transmissible and infectious viruses can cause large-scale epidemics around the world. This is because the virus can constantly mutate and produce different variants and subvariants to counter existing treatments. Therefore, a variety of treatments are urgently needed to keep up with the mutation of the viruses. To facilitate the research of such treatment, we updated our Virus-CKB 1.0 to Virus-CKB 2.0, which contains 10 kinds of viruses, including enterovirus, dengue virus, hepatitis C virus, Zika virus, herpes simplex virus, Andes orthohantavirus, human immunodeficiency virus, Ebola virus, Lassa virus, influenza virus, coronavirus, and norovirus. To date, Virus-CKB 2.0 archived at least 65 antiviral drugs (such as remdesivir, telaprevir, acyclovir, boceprevir, and nelfinavir) in the market, 178 viral-related targets with 292 available 3D crystal or cryo-EM structures, and 3766 chemical agents reported for these target proteins. Virus-CKB 2.0 is integrated with established tools for target prediction and result visualization; these include HTDocking, TargetHunter, blood-brain barrier (BBB) predictor, Spider Plot, etc. The Virus-CKB 2.0 server is accessible at https://www.cbligand.org/g/virus-ckb. By using the established chemogenomic tools and algorithms and newly developed tools, we can screen FDA-approved drugs and chemical compounds that may bind to these proteins involved in viral-associated disease regulation. If the virus strain mutates and the vaccine loses its effect, we can still screen drugs that can be used to treat the mutated virus in a fleeting time. In some cases, we can even repurpose FDA-approved drugs through Virus-CKB 2.0.
Collapse
Affiliation(s)
| | | | - Yasmin Othman
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
60
|
Cooper MS, Zhang L, Ibrahim M, Zhang K, Sun X, Röske J, Göhl M, Brönstrup M, Cowell JK, Sauerhering L, Becker S, Vangeel L, Jochmans D, Neyts J, Rox K, Marsh GP, Maple HJ, Hilgenfeld R. Diastereomeric Resolution Yields Highly Potent Inhibitor of SARS-CoV-2 Main Protease. J Med Chem 2022; 65:13328-13342. [PMID: 36179320 PMCID: PMC9574927 DOI: 10.1021/acs.jmedchem.2c01131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2 is the causative agent behind the COVID-19 pandemic. The main protease (Mpro, 3CLpro) of SARS-CoV-2 is a key enzyme that processes polyproteins translated from the viral RNA. Mpro is therefore an attractive target for the design of inhibitors that block viral replication. We report the diastereomeric resolution of the previously designed SARS-CoV-2 Mpro α-ketoamide inhibitor 13b. The pure (S,S,S)-diastereomer, 13b-K, displays an IC50 of 120 nM against the Mpro and EC50 values of 0.8-3.4 μM for antiviral activity in different cell types. Crystal structures have been elucidated for the Mpro complexes with each of the major diastereomers, the active (S,S,S)-13b (13b-K), and the nearly inactive (R,S,S)-13b (13b-H); results for the latter reveal a novel binding mode. Pharmacokinetic studies show good levels of 13b-K after inhalative as well as after peroral administration. The active inhibitor (13b-K) is a promising candidate for further development as an antiviral treatment for COVID-19.
Collapse
Affiliation(s)
- Mark S. Cooper
- Bio-Techne
(Tocris), The Watkins
Building, Atlantic Road, Bristol, BS11 9QD, U.K.
| | - Linlin Zhang
- Institute
of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Mohamed Ibrahim
- Institute
of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Kaixuan Zhang
- Institute
of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Xinyuanyuan Sun
- Institute
of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Judith Röske
- Institute
of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Matthias Göhl
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Partner
Site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Justin K. Cowell
- Bio-Techne
(Tocris), The Watkins
Building, Atlantic Road, Bristol, BS11 9QD, U.K.
| | - Lucie Sauerhering
- Institute
of Virology, University of Marburg, 35043 Marburg, Germany
| | - Stephan Becker
- Institute
of Virology, University of Marburg, 35043 Marburg, Germany
- German Center
for Infection Research (DZIF), Marburg-Gießen-Langen
Site, 35043 Marburg, Germany
| | - Laura Vangeel
- Rega
Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- Rega
Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000 Leuven, Belgium
| | - Johan Neyts
- Rega
Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000 Leuven, Belgium
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Partner
Site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Graham P. Marsh
- Bio-Techne
(Tocris), The Watkins
Building, Atlantic Road, Bristol, BS11 9QD, U.K.
| | - Hannah J. Maple
- Bio-Techne
(Tocris), The Watkins
Building, Atlantic Road, Bristol, BS11 9QD, U.K.
| | - Rolf Hilgenfeld
- Institute
of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German
Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems
Site, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
61
|
Wang YT, Liao JM, Lin WW, Li CC, Huang BC, Cheng TL, Chen TC. Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease complexation: a ligand Gaussian accelerated molecular dynamics study. Phys Chem Chem Phys 2022; 24:22898-22904. [PMID: 36124909 DOI: 10.1039/d2cp02882d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coronavirus 3C-like protease (3CLpro) is found in SARS-CoV-2 virus, which causes COVID-19. 3CLpro controls virus replication and is a major target for target-based antiviral discovery. As reported by Pfizer, Nirmatrelvir (PF-07321332) is a competitive protein inhibitor and a clinical candidate for orally delivered medication. However, the binding mechanisms between Nirmatrelvir and 3CLpro complex structures remain unknown. This study incorporated ligand Gaussian accelerated molecular dynamics, the one-dimensional and two-dimensional potential of mean force, normal molecular dynamics, and Kramers' rate theory to determine the binding and dissociation rate constants (koff and kon) associated with the binding of the 3CLpro protein to the Nirmatrelvir inhibitor. The proposed approach addresses the challenges in designing small-molecule antiviral drugs.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jun-Min Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ching Li
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| |
Collapse
|
62
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
63
|
Fang Y, Wang J, Zhao M, Zheng Q, Ren C, Wang Y, Zhang J. Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy. J Med Chem 2022; 65:11454-11477. [PMID: 36006861 DOI: 10.1021/acs.jmedchem.2c00844] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are currently incurable diseases that cause progressive degeneration of nerve cells. Many of the disease-causing proteins of NDs are "undruggable" for traditional small-molecule inhibitors (SMIs). None of the compounds that attenuated the amyloid-β (Aβ) accumulation process have entered clinical practice, and many phase III clinical trials of SMIs for Alzheimer's disease (AD) have failed. In recent years, emerging targeted protein degradation (TPD) technologies such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimaeras (LYTACs), and autophagy-targeting chimeras (AUTACs) with TPD-assistive technologies such as click-formed proteolysis-targeting chimeras (CLIPTACs) and deubiquitinase-targeting chimera (DUBTAC) have developed rapidly. In vitro and in vivo experiments have also confirmed that TPD technology can target the degradation of ND pathogenic proteins, bringing hope for the treatment of NDs. Herein, we review the latest TPD technologies, introduce their targets and technical characteristics, and discuss the emerging TPD technologies with potential in ND research, with the hope of providing a new perspective for the development of TPD technology in the NDs field.
Collapse
Affiliation(s)
- Yingxu Fang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Min Zhao
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| | - Qinwen Zheng
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| |
Collapse
|
64
|
Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Eur J Med Chem 2022; 238:114508. [PMID: 35688005 PMCID: PMC9162962 DOI: 10.1016/j.ejmech.2022.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and biological evaluation. Similarity search led to the identification of compound F8–S43 with the enzymatic IC50 value of 10.76 μM. Further structure-based drug design and synthetic optimization uncovered compounds F8–B6 and F8–B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 μM and 1.55 μM, respectively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8–B6 was a reversible covalent inhibitor of Mpro. Besides, F8–B6 showed low cytotoxicity with CC50 values of more than 100 μM in Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful starting point for further structural optimization.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bingding Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yangbin Lu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zheng Guo
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongtian Yu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
65
|
Kashyap P, Bhardwaj VK, Chauhan M, Chauhan V, Kumar A, Purohit R, Kumar A, Kumar S. A ricin-based peptide BRIP from Hordeum vulgare inhibits M pro of SARS-CoV-2. Sci Rep 2022; 12:12802. [PMID: 35896605 PMCID: PMC9326418 DOI: 10.1038/s41598-022-15977-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 led to the research aiming to find the inhibitors of this virus. Towards this world problem, an attempt was made to identify SARS-CoV-2 main protease (Mpro) inhibitory peptides from ricin domains. The ricin-based peptide from barley (BRIP) was able to inhibit Mpro in vitro with an IC50 of 0.52 nM. Its low and no cytotoxicity upto 50 µM suggested its therapeutic potential against SARS-CoV-2. The most favorable binding site on Mpro was identified by molecular docking and steered molecular dynamics (MD) simulations. The Mpro-BRIP interactions were further investigated by evaluating the trajectories for microsecond timescale MD simulations. The structural parameters of Mpro-BRIP complex were stable, and the presence of oppositely charged surfaces on the binding interface of BRIP and Mpro complex further contributed to the overall stability of the protein-peptide complex. Among the components of thermodynamic binding free energy, Van der Waals and electrostatic contributions were most favorable for complex formation. Our findings provide novel insight into the area of inhibitor development against COVID-19.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Vijay Kumar Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Mahima Chauhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Varun Chauhan
- Covid-19 Testing Facility, Dietetics & Nutrition Technology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India, 176061
| | - Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Rituraj Purohit
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
66
|
Bian DJH, Sabri S, Abdulkarim BS. Interactions between COVID-19 and Lung Cancer: Lessons Learned during the Pandemic. Cancers (Basel) 2022; 14:cancers14153598. [PMID: 35892857 PMCID: PMC9367272 DOI: 10.3390/cancers14153598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary COVID-19 is a respiratory infectious disease caused by the coronavirus SARS-CoV-2. Lung cancer is the leading cause of all cancer-related deaths worldwide. As both SARS-CoV-2 and lung cancer affect the lungs, the aim of this narrative review is to provide a consolidation of lessons learned throughout the pandemic regarding lung cancer and COVID-19. Risk factors found in lung cancer patients, such as advanced cancers, smoking, male, etc., have been associated with severe COVID-19. The cancer treatments hormonal therapy, immunotherapy, and targeted therapy have shown no association with severe COVID-19 disease, but chemotherapy and radiation therapy have shown conflicting results. Logistical changes and modifications in treatment plans were instituted during the pandemic to minimize SARS-CoV-2 exposure while maintaining life-saving cancer care. Finally, medications have been developed to treat early COVID-19, which can be highly beneficial in vulnerable cancer patients, with paxlovid being the most efficacious drug currently available. Abstract Cancer patients, specifically lung cancer patients, show heightened vulnerability to severe COVID-19 outcomes. The immunological and inflammatory pathophysiological similarities between lung cancer and COVID-19-related ARDS might explain the predisposition of cancer patients to severe COVID-19, while multiple risk factors in lung cancer patients have been associated with worse COVID-19 outcomes, including smoking status, older age, etc. Recent cancer treatments have also been urgently evaluated during the pandemic as potential risk factors for severe COVID-19, with conflicting findings regarding systemic chemotherapy and radiation therapy, while other therapies were not associated with altered outcomes. Given this vulnerability of lung cancer patients for severe COVID-19, the delivery of cancer care was significantly modified during the pandemic to both proceed with cancer care and minimize SARS-CoV-2 infection risk. However, COVID-19-related delays and patients’ aversion to clinical settings have led to increased diagnosis of more advanced tumors, with an expected increase in cancer mortality. Waning immunity and vaccine breakthroughs related to novel variants of concern threaten to further impede the delivery of cancer services. Cancer patients have a high risk of severe COVID-19, despite being fully vaccinated. Numerous treatments for early COVID-19 have been developed to prevent disease progression and are crucial for infected cancer patients to minimize severe COVID-19 outcomes and resume cancer care. In this literature review, we will explore the lessons learned during the COVID-19 pandemic to specifically mitigate COVID-19 treatment decisions and the clinical management of lung cancer patients.
Collapse
Affiliation(s)
- David J. H. Bian
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute, McGill University Health Center Glen Site, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Bassam S. Abdulkarim
- Cancer Research Program, Research Institute, and Department of Oncology, Cedars Cancer Center, McGill University Health Center Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
67
|
Yang KS, Leeuwon SZ, Xu S, Liu WR. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. J Med Chem 2022; 65:8686-8698. [PMID: 35731933 PMCID: PMC9236210 DOI: 10.1021/acs.jmedchem.2c00404] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/15/2022]
Abstract
The U.S. FDA approval of PAXLOVID, a combination therapy of nirmatrelvir and ritonavir has significantly boosted our morale in fighting the COVID-19 pandemic. Nirmatrelvir is an inhibitor of the main protease (MPro) of SARS-CoV-2. Since many SARS-CoV-2 variants that resist vaccines and antibodies have emerged, a concern of acquired viral resistance to nirmatrelvir naturally arises. Here, possible mutations in MPro to confer viral evasion of nirmatrelvir are analyzed and discussed from both evolutionary and structural standpoints. The analysis indicates that those mutations will likely reside in the whole aa45-51 helical region and residues including M165, L167, P168, R188, and Q189. Relevant mutations have also been observed in existing SARS-CoV-2 samples. Implications of this analysis to the fight against future drug-resistant viral variants and the development of broad-spectrum antivirals are discussed as well.
Collapse
Affiliation(s)
- Kai S. Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Sunshine Z. Leeuwon
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
68
|
Thakur A, Sharma G, Badavath VN, Jayaprakash V, Merz KM, Blum G, Acevedo O. Primer for Designing Main Protease (M pro) Inhibitors of SARS-CoV-2. J Phys Chem Lett 2022; 13:5776-5786. [PMID: 35726889 PMCID: PMC9235046 DOI: 10.1021/acs.jpclett.2c01193] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 05/08/2023]
Abstract
The COVID-19 outbreak has been devastating, with hundreds of millions of infections and millions of deaths reported worldwide. In response, the application of structure-activity relationships (SAR) upon experimentally validated inhibitors of SARS-CoV-2 main protease (Mpro) may provide an avenue for the identification of new lead compounds active against COVID-19. Upon the basis of information gleaned from a combination of reported crystal structures and the docking of experimentally validated inhibitors, four "rules" for designing potent Mpro inhibitors have been proposed. The aim here is to guide medicinal chemists toward the most probable hits and to provide guidance on repurposing available structures as Mpro inhibitors. Experimental examination of our own previously reported inhibitors using the four "rules" identified a potential lead compound, the cathepsin inhibitor GB111-NH2, that was 2.3 times more potent than SARS-CoV-2 Mpro inhibitor N3.
Collapse
Affiliation(s)
- Abhishek Thakur
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gaurav Sharma
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vishnu Nayak Badavath
- School
of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India
| | - Venkatesan Jayaprakash
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Galia Blum
- Institute
for Drug Research, The Hebrew University
of Jerusalem, Jerusalem, 9112001, Israel
| | - Orlando Acevedo
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
69
|
Glab-ampai K, Kaewchim K, Saenlom T, Thepsawat W, Mahasongkram K, Sookrung N, Chaicumpa W, Chulanetra M. Human Superantibodies to 3CL pro Inhibit Replication of SARS-CoV-2 across Variants. Int J Mol Sci 2022; 23:ijms23126587. [PMID: 35743031 PMCID: PMC9223907 DOI: 10.3390/ijms23126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus agent. In this study, human single-chain antibodies (HuscFvs) of the SARS-CoV-2 3CLpro were generated using phage display technology. The 3CLpro-bound phages were used to infect Escherichia coli host for the production the 3CLpro-bound HuscFvs. Computerized simulation was used to guide the selection of the phage infected-E. coli clones that produced HuscFvs with the 3CLpro inhibitory potential. HuscFvs of three phage infected-E. coli clones were predicted to form contact interface with residues for 3CLpro catalytic activity, substrate binding, and homodimerization. These HuscFvs were linked to a cell-penetrating peptide to make them cell-penetrable, i.e., became superantibodies. The superantibodies blocked the 3CLpro activity in vitro, were not toxic to human cells, traversed across membrane of 3CLpro-expressing cells to co-localize with the intracellular 3CLpro and most of all, they inhibited replication of authentic SARS-CoV-2 Wuhan wild type and α, β, δ, and Omicron variants that were tested. The superantibodies should be investigated further towards clinical application as a safe and broadly effective anti-Betacoronavirus agent.
Collapse
Affiliation(s)
- Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Correspondence: ; Tel.: +662-419-2934
| |
Collapse
|
70
|
Feng J, Li D, Zhang J, Yin X, Li J. Crystal structure of SARS-CoV 3C-like protease with baicalein. Biochem Biophys Res Commun 2022; 611:190-194. [PMID: 35490659 PMCID: PMC9027212 DOI: 10.1016/j.bbrc.2022.04.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022]
Abstract
The 3C-like protease (Mpro, 3CLpro) plays a key role in the replication process in coronaviruses (CoVs). The Mpro is an essential enzyme mediates CoVs replication and is a promising target for development of antiviral drugs. Until now, baicalein has been shown the specific activity for SARS-CoV Mpro in vitro experiments. In this study, we resolved the SARS-CoV Mpro with baicalein by X-ray diffraction at 2.25 Å (PDB code 7XAX), which provided a structural basis for the research and development of baicalein as an anti-CoVs drug.
Collapse
|
71
|
Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022; 10:biomedicines10051067. [PMID: 35625804 PMCID: PMC9139167 DOI: 10.3390/biomedicines10051067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
In the present work, and for the first time, three whey protein-derived peptides (IAEK, IPAVF, MHI), endowed with ACE inhibitory activity, were examined for their antiviral activity against the SARS-CoV-2 3C-like protease (3CLpro) and Human Rhinovirus 3C protease (3Cpro) by employing molecular docking. Computational studies showed reliable binding poses within 3CLpro for the three investigated small peptides, considering docking scores as well as the binding free energy values. Validation by in vitro experiments confirmed these results. In particular, IPAVF exhibited the highest inhibitory activity by returning an IC50 equal to 1.21 μM; it was followed by IAEK, which registered an IC50 of 154.40 μM, whereas MHI was less active with an IC50 equal to 2700.62 μM. On the other hand, none of the assayed peptides registered inhibitory activity against 3Cpro. Based on these results, the herein presented small peptides are introduced as promising molecules to be exploited in the development of “target-specific antiviral” agents against SARS-CoV-2.
Collapse
|
72
|
Garland GD, Harvey RF, Mulroney TE, Monti M, Fuller S, Haigh R, Gerber PP, Barer MR, Matheson NJ, Willis AE. Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity. Biochem J 2022; 479:901-920. [PMID: 35380004 PMCID: PMC9162461 DOI: 10.1042/bcj20220105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Diagnostic testing continues to be an integral component of the strategy to contain the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) global pandemic, the causative agent of Coronavirus Disease 2019 (COVID-19). The SARS-CoV-2 genome encodes the 3C-like protease (3CLpro) which is essential for coronavirus replication. This study adapts an in vitro colorimetric gold nanoparticle (AuNP) based protease assay to specifically detect the activity of SARS-CoV-2 3CLpro as a purified recombinant protein and as a cellular protein exogenously expressed in HEK293T human cells. We also demonstrate that the specific sensitivity of the assay for SARS-CoV-2 3CLpro can be improved by use of an optimised peptide substrate and through hybrid dimerisation with inactive 3CLpro mutant monomers. These findings highlight the potential for further development of the AuNP protease assay to detect SARS-CoV-2 3CLpro activity as a novel, accessible and cost-effective diagnostic test for SARS-CoV-2 infection at the point-of-care. Importantly, this versatile assay could also be easily adapted to detect specific protease activity associated with other viruses or diseases conditions.
Collapse
Affiliation(s)
- Gavin D. Garland
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
- Correspondence: Gavin D. Garland () or Anne E. Willis ()
| | - Robert F. Harvey
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| | | | - Mie Monti
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| | - Stewart Fuller
- Department of Medicine, University of Cambridge, Cambridge, U.K
| | - Richard Haigh
- Department of Respiratory Sciences, Maurice Shock Medical Sciences Building, University Road, Leicester, U.K
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Cambridge, U.K
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, U.K
| | - Michael R. Barer
- Department of Respiratory Sciences, Maurice Shock Medical Sciences Building, University Road, Leicester, U.K
| | - Nicholas J. Matheson
- Department of Medicine, University of Cambridge, Cambridge, U.K
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, U.K
- NHS Blood and Transplant, Cambridge, U.K
| | - Anne E. Willis
- MRC Toxicology Unit, Gleeson Building, Tennis Court Rd, Cambridge, U.K
- Correspondence: Gavin D. Garland () or Anne E. Willis ()
| |
Collapse
|
73
|
Glaser J, Sedova A, Galanie S, Kneller DW, Davidson RB, Maradzike E, Del Galdo S, Labbé A, Hsu DJ, Agarwal R, Bykov D, Tharrington A, Parks JM, Smith DMA, Daidone I, Coates L, Kovalevsky A, Smith JC. Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor. ACS Pharmacol Transl Sci 2022; 5:255-265. [PMID: 35434531 PMCID: PMC9003389 DOI: 10.1021/acsptsci.2c00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/29/2022]
Abstract
![]()
Inhibition of the SARS-CoV-2 main
protease (Mpro) is
a major focus of drug discovery efforts against COVID-19. Here we
report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot
Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2
Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline
series, we searched a database of over a billion compounds using a
cheminformatics molecular fingerprinting approach. We identified and
tested 48 compounds in enzyme inhibition assays, of which 21 exhibited
inhibitory activity above 50% at 20 μM. Among these,
four compounds with IC50 values around 1 μM
were found. Interestingly, despite the large search space, the isoquinolone
motif was conserved in each of these four strongest binders. Room-temperature
X-ray structures of co-crystallized protein–inhibitor complexes
were determined up to 1.9 Å resolution for two of these
compounds as well as one of the stronger inhibitors in the original
isoquinoline series, revealing essential interactions with the binding
site and water molecules. Molecular dynamics simulations and quantum
chemical calculations further elucidate the binding interactions as
well as electrostatic effects on ligand binding. The results help
explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series,
while demonstrating the effectiveness of a high-throughput computational
approach to expanding a pharmacophore library.
Collapse
Affiliation(s)
- Jens Glaser
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Ada Sedova
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Stephanie Galanie
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States.,Protein Engineering, Merck, 126 East Lincoln Avenue, RY800-C303, Rahway, New Jersey 07065, United States
| | - Daniel W Kneller
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States.,New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Russell B Davidson
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Elvis Maradzike
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Sara Del Galdo
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67010 L'Aquila, Italy
| | - Audrey Labbé
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Darren J Hsu
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Rupesh Agarwal
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Dmytro Bykov
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Arnold Tharrington
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Jerry M Parks
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Dayle M A Smith
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67010 L'Aquila, Italy
| | - Leighton Coates
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Andrey Kovalevsky
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Jeremy C Smith
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
74
|
Using a System Pharmacology Method to Search for the Potential Targets and Pathways of Yinqiaosan against COVID-19. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9248674. [PMID: 35340244 PMCID: PMC8941516 DOI: 10.1155/2022/9248674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The first reported case of coronavirus disease 2019 (COVID-19) occurred in Wuhan, Hubei, China. Thereafter, it spread through China and worldwide in only a few months, reaching a pandemic level. It can cause severe respiratory illnesses such as pneumonia and lung failure. Since the onset of the disease, the rapid response and intervention of traditional Chinese medicine (TCM) have played a significant role in the effective control of the epidemic. Yinqiaosan (YQS) was used to treat COVID-19 pneumonia, with good curative effects. However, a systematic overview of its active compounds and the therapeutic mechanisms underlying its action has yet to be performed. The purpose of the current study is to explore the compounds and mechanism of YQS in treating COVID-19 pneumonia using system pharmacology. A system pharmacology method involving drug-likeness assessment, oral bioavailability forecasting, virtual docking, and network analysis was applied to estimate the active compounds, hub targets, and key pathways of YQS in the treatment of COVID-19 pneumonia. With this method, 117 active compounds were successfully identified in YQS, and 77 potential targets were obtained from the targets of 95 compounds and COVID-19 pneumonia. The results show that YQS may act in treating COVID-19 pneumonia and its complications (atherosclerosis and nephropathy) through Kaposi sarcoma-related herpesvirus infection and the AGE-RAGE signaling pathway in diabetic complications and pathways in cancer. We distinguished the hub molecular targets within pathways such as TNF, GAPDH, MAPK3, MAPK1, EGFR, CASP3, MAPK8, mTOR, IL-2, and MAPK14. Five of the more highly active compounds (acacetin, kaempferol, luteolin, naringenin, and quercetin) have anti-inflammatory and antioxidative properties. In summary, by introducing a systematic network pharmacology method, our research perfectly forecasts the active compounds, potential targets, and key pathways of YQS applied to COVID-19 and helps to comprehensively clarify its mechanism of action.
Collapse
|
75
|
Nocentini A, Capasso C, Supuran CT. Perspectives on the design and discovery of α-ketoamide inhibitors for the treatment of novel coronavirus: where do we stand and where do we go? Expert Opin Drug Discov 2022; 17:547-557. [DOI: 10.1080/17460441.2022.2052847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
76
|
Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J, Bajwa SK, Hockman D, Fischer C, Lamer T, Vuong W, van Belkum MJ, Gu Z, Lin F, Du Y, Xu J, Rahim M, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. J Med Chem 2022; 65:2905-2925. [PMID: 34242027 PMCID: PMC8291138 DOI: 10.1021/acs.jmedchem.1c00616] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and in vitro viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability. Compounds 15e, 15h, and 15l displayed selectivity for SARS-CoV-2 3CL protease over CatB and CatS and superior in vitro SARS-CoV-2 antiviral replication inhibition compared with the reported peptidomimetic inhibitors with other warheads. The cocrystallization of 15l with SARS-CoV-2 3CL protease confirmed the formation of a covalent adduct. α-Acyloxymethylketone compounds also exhibited antiviral activity against an alphacoronavirus and non-SARS betacoronavirus strains with similar potency and a better selectivity index than remdesivir. These findings demonstrate the potential of the substituted heteroaromatic and aliphatic α-acyloxymethylketone warheads as coronavirus inhibitors, and the described results provide a basis for further optimization.
Collapse
Affiliation(s)
- Bing Bai
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Appan Srinivas Kandadai
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Holly A. Saffran
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Justin A. Shields
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Elena Arutyunova
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jimmy Lu
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sardeev K. Bajwa
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Darren Hockman
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Conrad Fischer
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tess Lamer
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne Vuong
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marco J. van Belkum
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhengxian Gu
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Fusen Lin
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Yanhua Du
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Jia Xu
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Mohammad Rahim
- Rane Pharmaceuticals, Inc.
4290 91a Street NW, Edmonton, Alberta T6E 5V2, Canada
| | - Howard S. Young
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - M. Joanne Lemieux
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James A. Nieman
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| |
Collapse
|
77
|
Wang Y, Xu B, Ma S, Wang H, Shang L, Zhu C, Ye S. Discovery of SARS-CoV-2 3CL Pro Peptidomimetic Inhibitors through the Catalytic Dyad Histidine-Specific Protein-Ligand Interactions. Int J Mol Sci 2022; 23:ijms23042392. [PMID: 35216507 PMCID: PMC8878928 DOI: 10.3390/ijms23042392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/22/2022] Open
Abstract
As the etiological agent for the coronavirus disease 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenges the ongoing efforts of vaccine development and drug design. Due to the accumulating cases of breakthrough infections, there are urgent needs for broad-spectrum antiviral medicines. Here, we designed and examined five new tetrapeptidomimetic anti-SARS-CoV-2 inhibitors targeting the 3C-Like protease (3CLPro), which is highly conserved among coronaviruses and essential for viral replications. We significantly improved the efficacy of a ketoamide lead compound based on high-resolution co-crystal structures, all-atom simulations, and binding energy calculations. The inhibitors successfully engaged the catalytic dyad histidine residue (H41) of 3CLPro as designed, and they exhibited nanomolar inhibitory capacity as well as mitigated the viral loads of SARS-CoV-2 in cellular assays. As a widely applicable design principle, our results revealed that the potencies of 3CLPro-specific drug candidates were determined by the interplay between 3CLPro H41 residue and the peptidomimetic inhibitors.
Collapse
Affiliation(s)
- Yaxin Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.W.); (B.X.); (S.M.)
| | - Binghong Xu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.W.); (B.X.); (S.M.)
| | - Sen Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.W.); (B.X.); (S.M.)
| | - Hao Wang
- KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China; (H.W.); (L.S.)
| | - Luqing Shang
- KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China; (H.W.); (L.S.)
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.W.); (B.X.); (S.M.)
- Correspondence: (C.Z.); (S.Y.)
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.W.); (B.X.); (S.M.)
- Correspondence: (C.Z.); (S.Y.)
| |
Collapse
|
78
|
Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie LWK, Lundkvist Å, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J, Sandberg K, Danielson UH, Carlsson J. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. J Am Chem Soc 2022; 144:2905-2920. [PMID: 35142215 PMCID: PMC8848513 DOI: 10.1021/jacs.1c08402] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.
Collapse
Affiliation(s)
- Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Hjalmar Gullberg
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Eldar Abdurakhmanov
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Duy Duc Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75123 Uppsala, Sweden
| | | | - Natalia Nekhotiaeva
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Janina Krambrich
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75123 Uppsala, Sweden
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Ylva Gravenfors
- Science for Life Laboratory, Drug Discovery & Development Platform, Department of Organic Chemistry, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Alexander J Craig
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Yoseph Atilaw
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lindon W K Moodie
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden.,Uppsala Antibiotic Centre, Uppsala University, SE-75123 Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75123 Uppsala, Sweden
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Johan Lennerstrand
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kristian Sandberg
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.,Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden
| | - U Helena Danielson
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
79
|
|
80
|
Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Front Chem 2022; 9:819165. [PMID: 35186898 PMCID: PMC8850931 DOI: 10.3389/fchem.2021.819165] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of severe acute respiratory syndrome (SARS-CoV-2) in 2019 marked the third occurrence of a highly pathogenic coronavirus in the human population since 2003. As the death toll surpasses 5 million globally and economic losses continue, designing drugs that could curtail infection and disease progression is critical. In the US, three highly effective Food and Drug Administration (FDA)-authorized vaccines are currently available, and Remdesivir is approved for the treatment of hospitalized patients. However, moderate vaccination rates and the sustained evolution of new viral variants necessitate the ongoing search for new antivirals. Several viral proteins have been prioritized as SARS-CoV-2 antiviral drug targets, among them the papain-like protease (PLpro) and the main protease (Mpro). Inhibition of these proteases would target viral replication, viral maturation, and suppression of host innate immune responses. Knowledge of inhibitors and assays for viruses were quickly adopted for SARS-CoV-2 protease research. Potential candidates have been identified to show inhibitory effects against PLpro and Mpro, both in biochemical assays and viral replication in cells. These results encourage further optimizations to improve prophylactic and therapeutic efficacy. In this review, we examine the latest developments of potential small-molecule inhibitors and peptide inhibitors for PLpro and Mpro, and how structural biology greatly facilitates this process.
Collapse
Affiliation(s)
- Zongyang Lv
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kristin E. Cano
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lijia Jia
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Shaun K. Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
81
|
Zhang JW, Xiong Y, Wang F, Zhang FM, Yang X, Lin GQ, Tian P, Ge G, Gao D. Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CL pro inhibitors for treating COVID-19. Eur J Med Chem 2022; 228:114030. [PMID: 34883292 PMCID: PMC8634693 DOI: 10.1016/j.ejmech.2021.114030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022]
Abstract
The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 μM and 1.81 ± 0.17 μM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fu-Mao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping Tian
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dingding Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
82
|
Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. Eur J Med Chem 2022; 231:114130. [PMID: 35114541 PMCID: PMC8783839 DOI: 10.1016/j.ejmech.2022.114130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/28/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease (3CLpro) has been regarded as an extremely promising antiviral target for the treatment of coronavirus disease 2019 (COVID-19). Here, we carried out a virtual screening based on commercial compounds database to find novel covalent non-peptidomimetic inhibitors of this protease. It allowed us to identify 3 hit compounds with potential covalent binding modes, which were evaluated through an enzymatic activity assay of the SARS-CoV-2 3CLpro. Moreover, an X-ray crystal structure of the SARS-CoV-2 3CLpro in complex with compound 8, the most potent hit with an IC50 value of 8.50 μM, confirmed the covalent binding of the predicted warhead to the catalytic residue C145, as well as portrayed interactions of the compound with S1’ and S2 subsites at the ligand binding pocket. Overall, the present work not merely provided an experiment-validated covalent hit targeting the SARS-CoV-2 3CLpro, but also displayed a prime example to seeking new covalent small molecules by a feasible and effective computational approach.
Collapse
|
83
|
Proteases of SARS Coronaviruses. REFERENCE MODULE IN LIFE SCIENCES 2022. [PMCID: PMC9308495 DOI: 10.1016/b978-0-12-821618-7.00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coronaviruses such as SARS and SARS-CoV-2 have established themselves as a global health concern after causing an epidemic and a pandemic in the last twenty years. Understanding the life cycle of such viruses is critical to reveal their pathogenic potential. As one of the essential viral enzymes, SARS proteases are indispensable for the processing of viral polypeptides and for the replication of the virus. SARS-CoV and SARS-CoV-2 encode for 2 viral proteases: the main protease (3CLpro) and the papain-like protease (PLPro), which are conserved among different coronaviruses and are absent in humans. This review summarizes the existing literature on the structure and function of these proteases; highlighting the similarity and differences between the enzymes of SARS and SARS-CoV-2. It also discusses the development of inhibitors to target viral proteases.
Collapse
|
84
|
Desantis J, Mercorelli B, Celegato M, Croci F, Bazzacco A, Baroni M, Siragusa L, Cruciani G, Loregian A, Goracci L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur J Med Chem 2021; 226:113814. [PMID: 34534839 PMCID: PMC8416298 DOI: 10.1016/j.ejmech.2021.113814] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Indomethacin (INM), a well-known non-steroidal anti-inflammatory drug, has recently gained attention for its antiviral activity demonstrated in drug repurposing studies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although the mechanism of action of INM is not yet fully understood, recent studies have indicated that it acts at an early stage of the coronaviruses (CoVs) replication cycle. In addition, a proteomic study reported that the anti-SARS-CoV-2 activity of INM could be also ascribed to its ability to inhibit human prostaglandin E synthase type 2 (PGES-2), a host protein which interacts with the SARS-CoV-2 NSP7 protein. Although INM does not potently inhibit SARS-CoV-2 replication in infected Vero E6 cells, here we have explored for the first time the application of the Proteolysis Targeting Chimeras (PROTACs) technology in order to develop more potent INM-derived PROTACs with anti-CoV activity. In this study, we report the design, synthesis, and biological evaluation of a series of INM-based PROTACs endowed with antiviral activity against a panel of human CoVs, including different SARS-CoV-2 strains. Two PROTACs showed a strong improvement in antiviral potency compared to INM. Molecular modelling studies support human PGES-2 as a potential target of INM-based antiviral PROTACs, thus paving the way toward the development of host-directed anti-CoVs strategies. To the best of our knowledge, these PROTACs represent the first-in-class INM-based PROTACs with antiviral activity and also the first example of the application of PROTACs to develop pan-coronavirus agents.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Federico Croci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | | | - Massimo Baroni
- Molecular Discovery Ltd., Centennial Park, Borehamwood, Hertfordshire, United Kingdom
| | | | - Gabriele Cruciani
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
85
|
Kneller DW, Li H, Galanie S, Phillips G, Labbé A, Weiss KL, Zhang Q, Arnould MA, Clyde A, Ma H, Ramanathan A, Jonsson CB, Head MS, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. J Med Chem 2021; 64:17366-17383. [PMID: 34705466 PMCID: PMC8565456 DOI: 10.1021/acs.jmedchem.1c01475] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 02/08/2023]
Abstract
Creating small-molecule antivirals specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins is crucial to battle coronavirus disease 2019 (COVID-19). SARS-CoV-2 main protease (Mpro) is an established drug target for the design of protease inhibitors. We performed a structure-activity relationship (SAR) study of noncovalent compounds that bind in the enzyme's substrate-binding subsites S1 and S2, revealing structural, electronic, and electrostatic determinants of these sites. The study was guided by the X-ray/neutron structure of Mpro complexed with Mcule-5948770040 (compound 1), in which protonation states were directly visualized. Virtual reality-assisted structure analysis and small-molecule building were employed to generate analogues of 1. In vitro enzyme inhibition assays and room-temperature X-ray structures demonstrated the effect of chemical modifications on Mpro inhibition, showing that (1) maintaining correct geometry of an inhibitor's P1 group is essential to preserve the hydrogen bond with the protonated His163; (2) a positively charged linker is preferred; and (3) subsite S2 prefers nonbulky modestly electronegative groups.
Collapse
Affiliation(s)
- Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
| | - Hui Li
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephanie Galanie
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
| | - Audrey Labbé
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
| | - Mark A. Arnould
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Austin Clyde
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Computer Science, University of Chicago, Chicago, IL 60615, USA
| | - Heng Ma
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Arvind Ramanathan
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60615
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Martha S. Head
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA
| | - Peter V. Bonnesen
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, 20585, USA
| |
Collapse
|
86
|
Du L, Xie Y, Zheng K, Wang N, Gao M, Yu T, Cao L, Shao Q, Zou Y, Xia W, Fang Q, Zhao B, Guo D, Peng X, Pan JA. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication. Redox Biol 2021; 48:102199. [PMID: 34847508 PMCID: PMC8616692 DOI: 10.1016/j.redox.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
3CLpro is a key proteinase for SARS-CoV-2 replication and serves as an important target for antiviral drug development. However, how its activity is regulated intracellularly is still obscure. In this study, we developed a 3CLpro protease activity reporter system to examine the impact of various factors, including nutrient supplements, ions, pHs, or oxidative stress inducers, on 3CLpro protease activity. We found that oxidative stress could increase the overall activity of 3CLpro. Not altering the expression, oxidative stress decreased the solubility of 3CLpro in the lysis buffer containing 1% Triton-X-100. The Triton-X-100-insoluble 3CLpro was correlated with aggregates' formation and responsible for the increased enzymatic activity. The disulfide bonds formed between Cys85 sites of 3CLpro protomers account for the insolubility and the aggregation of 3CLpro. Besides being regulated by oxidative stress, 3CLpro impaired the cellular antioxidant capacity by regulating the cleavage of GPx1 at its N-terminus. This cleavage could further elevate the 3CLpro-proximate oxidative activity, favor aggregation and activation of 3CLpro, and thus lead to a positive feedback loop. In summary, we reported that oxidative stress transforms 3CLpro into a detergent-insoluble form that is more enzymatically active, leading to increased viral replication/transcription. Our study provided mechanistic evidence that suggests the therapeutic potential of antioxidants in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Liubing Du
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yanchun Xie
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Kai Zheng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Niu Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Mingcheng Gao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Ting Yu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Liu Cao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - QianQian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangming Science City, Shenzhen, 518107, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangming Science City, Shenzhen, 518107, China
| | - Bo Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
87
|
Kneller DW, Zhang Q, Coates L, Louis JM, Kovalevsky A. Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCRJ 2021; 8:973-979. [PMID: 34804549 PMCID: PMC8562657 DOI: 10.1107/s2052252521010113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 06/06/2023]
Abstract
SARS-CoV-2 emerged at the end of 2019 to cause an unprecedented pandemic of the deadly respiratory disease COVID-19 that continues to date. The viral main protease (Mpro) is essential for SARS-CoV-2 replication and is therefore an important drug target. Understanding the catalytic mechanism of Mpro, a cysteine protease with a catalytic site comprising the noncanonical Cys145-His41 dyad, can help in guiding drug design. Here, a 2.0 Å resolution room-temperature X-ray crystal structure is reported of a Michaelis-like complex of Mpro harboring a single inactivating mutation C145A bound to the octapeptide Ac-SAVLQSGF-CONH2 corresponding to the nsp4/nsp5 autocleavage site. The peptide substrate is unambiguously defined in subsites S5 to S3' by strong electron density. Superposition of the Michaelis-like complex with the neutron structure of substrate-free Mpro demonstrates that the catalytic site is inherently pre-organized for catalysis prior to substrate binding. Induced fit to the substrate is driven by P1 Gln binding in the predetermined subsite S1 and rearrangement of subsite S2 to accommodate P2 Leu. The Michaelis-like complex structure is ideal for in silico modeling of the SARS-CoV-2 Mpro catalytic mechanism.
Collapse
Affiliation(s)
- Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC 20585, USA
| |
Collapse
|
88
|
Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, Abdullah I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem Biol Drug Des 2021; 98:604-619. [PMID: 34148292 PMCID: PMC8444677 DOI: 10.1111/cbdd.13914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 11/27/2022]
Abstract
3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| | | | - Lee Yean Kee
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| | - Mamoona Nazir
- Department of PharmacyThe University of LahoreLahorePakistan
| | - Noorsaadah Abdul Rahman
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| | - John F. Trant
- Department of Chemistry and BiochemistryUniversity of WindsorWindsorONCanada
| | - Iskandar Abdullah
- Drug Design Development Research GroupDepartment of ChemistryFaculty of ScienceUniversiti MalayaKuala LumpurMalaysia
| |
Collapse
|
89
|
Gajjar ND, Dhameliya TM, Shah GB. In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. J Mol Struct 2021; 1239:130488. [PMID: 33903778 PMCID: PMC8059878 DOI: 10.1016/j.molstruc.2021.130488] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
Corona Virus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus (SARS CoV-2) has been declared a worldwide pandemic by WHO recently. The complete understanding of the complex genomic structure of SARS CoV-2 has enabled the use of computational tools in search of SARS CoV-2 inhibitors against the multiple proteins responsible for its entry and multiplication in human cells. With this endeavor, 177 natural, anti-viral chemical entities and their derivatives, selected through the critical analysis of the literatures, were studied using pharmacophore screening followed by molecular docking against RNA dependent RNA polymerase and main protease. The identified hits have been subjected to molecular dynamic simulations to study the stability of ligand-protein complexes followed by ADMET analysis and Lipinski filters to confirm their drug likeliness. It has led to an important start point in the drug discovery and development of therapeutic agents against SARS CoV-2.
Collapse
Key Words
- 3CLpro, 3-chymotrypsin-like protease
- ACE, Angiotensin converting enzyme
- ADMET, Absorption, distribution, metabolism, excretion, and toxicity
- ASL, Atom specification language
- COVID-19, Corona virus disease-2019
- Dscore, Druggability score
- EM, Electron microscopy
- HB, Hydrogen bond
- MD simulation
- MD simulation, Molecular dynamic simulation
- Molecular docking
- Mpro
- Mpro, Main protease
- Natural products
- PLpro, Papain-like protease
- RMSD, Root mean square deviation
- RMSF, Root mean square fluctuation
- RdRP, RNA-dependent RNA polymerase
- RdRp
- RoG, Radius of gyration
- SARS CoV-2
- SARS CoV-2, Severe acute respiratory syndrome coronavirus 2
- SASA, Solvent accessible surface area
- SP, Standard precision
- WHO, World health organization
- nsp, Non-structural protein
Collapse
|
90
|
Peroni LA, Toscaro JM, Canateli C, Tonoli CCC, de Olivera RR, Benedetti CE, Coimbra LD, Pereira AB, Marques RE, Proença-Modena JL, Lima GC, Viana R, Borges JB, Lin-Wang HT, Abboud CS, Gun C, Franchini KG, Bajgelman MC. Serological Testing for COVID-19, Immunological Surveillance, and Exploration of Protective Antibodies. Front Immunol 2021; 12:635701. [PMID: 34489923 PMCID: PMC8417107 DOI: 10.3389/fimmu.2021.635701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Serological testing is a powerful tool in epidemiological studies for understanding viral circulation and assessing the effectiveness of virus control measures, as is the case of SARS-CoV-2, the pathogenic agent of COVID-19. Immunoassays can quantitatively reveal the concentration of antiviral antibodies. The assessment of antiviral antibody titers may provide information on virus exposure, and changes in IgG levels are also indicative of a reduction in viral circulation. In this work, we describe a serological study for the evaluation of antiviral IgG and IgM antibodies and their correlation with antiviral activity. The serological assay for IgG detection used two SARS-CoV-2 proteins as antigens, the nucleocapsid N protein and the 3CL protease. Cross-reactivity tests in animals have shown high selectivity for detection of antiviral antibodies, using both the N and 3CL antigens. Using samples of human serum from individuals previously diagnosed by PCR for COVID-19, we observed high sensitivity of the ELISA assay. Serological results with human samples also suggest that the combination of higher titers of antiviral IgG antibodies to different antigen targets may be associated with greater neutralization activity, which can be enhanced in the presence of antiviral IgM antibodies.
Collapse
Affiliation(s)
- Luis A. Peroni
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Jessica M. Toscaro
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Medical School, University of Campinas, Campinas, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Celisa C. C. Tonoli
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata R. de Olivera
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Celso E. Benedetti
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Lais D. Coimbra
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Alexandre Borin Pereira
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - José L. Proença-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| | - Gabriel C. Lima
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Molecular Sciences Undergrad Program, University of São Paulo, São Paulo, Brazil
| | - Renata Viana
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Jessica B. Borges
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Cely S. Abboud
- Infectious Diseases Section and Hospital Infection Control Committee, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Carlos Gun
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Kleber G. Franchini
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Medical School, University of Campinas, Campinas, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Medical School, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
91
|
Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021; 19:4684-4701. [PMID: 34426762 PMCID: PMC8373586 DOI: 10.1016/j.csbj.2021.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
92
|
Daoust L, Pilon G, Marette A. Perspective: Nutritional Strategies Targeting the Gut Microbiome to Mitigate COVID-19 Outcomes. Adv Nutr 2021; 12:1074-1086. [PMID: 33783468 PMCID: PMC8083677 DOI: 10.1093/advances/nmab031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
More than a year has passed since the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection in the city of Wuhan in China's Hubei Province. Until now, few antiviral medications (e.g., remdesivir) or drugs that target inflammatory complications associated with SARS-CoV2 infection have been considered safe by public health authorities. By the end of November 2020, this crisis had led to >1 million deaths and revealed the high susceptibility of people with pre-existing comorbidities (e.g., obesity, diabetes, coronary heart disease, hypertension) to suffer from a severe form of the disease. Elderly people have also been found to be highly susceptible to SARS-CoV2 infection and morbidity. Gastrointestinal manifestations and gut microbial alterations observed in SARS-CoV2-infected hospitalized patients have raised awareness of the potential role of intestinal mechanisms in increasing the severity of the disease. It is therefore critically important to find alternative or complementary approaches, not only to prevent or treat the disease, but also to reduce its growing societal and economic burden. In this review, we explore potential nutritional strategies that implicate the use of polyphenols, probiotics, vitamin D, and ω-3 fatty acids with a focus on the gut microbiome, and that could lead to concrete recommendations that are easily applicable to both vulnerable people with pre-existing metabolic comorbidities and the elderly, but also to the general population.
Collapse
Affiliation(s)
- Laurence Daoust
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - André Marette
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
93
|
Xiong Y, Zhu GH, Zhang YN, Hu Q, Wang HN, Yu HN, Qin XY, Guan XQ, Xiang YW, Tang H, Ge GB. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CL pro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Int J Biol Macromol 2021; 187:976-987. [PMID: 34333006 PMCID: PMC8322037 DOI: 10.1016/j.ijbiomac.2021.07.167] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 10/25/2022]
Abstract
Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.
Collapse
Affiliation(s)
- Yuan Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Ni Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Hu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Nan Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Nan Yu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ya Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, China
| | - Xiao-Qing Guan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
94
|
Drayman N, DeMarco JK, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Han KY, O’Brien A, Tomatsidou A, Meyer B, Vignuzzi M, Missiakas D, Botten JW, Brooke CB, Lee H, Baker SC, Mounce BC, Heaton NS, Severson WE, Palmer KE, Dickinson BC, Joachimiak A, Randall G, Tay S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 2021; 373:931-936. [PMID: 34285133 PMCID: PMC8809056 DOI: 10.1126/science.abg5827] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).
Collapse
Affiliation(s)
- Nir Drayman
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| | - Jennifer K. DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Krysten A. Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Kemin Tan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Natalia Ivanovna Maltseva
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Siquan Chen
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Steve Dvorkin
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kevin Furlong
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Mason R. Firpo
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Vincent Mastrodomenico
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Emily A. Bruce
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Madaline M. Schmidt
- Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Jedrzejczak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | | | - Brooke Schuster
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vishnu Nair
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kyu-yeon Han
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bjoern Meyer
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Marco Vignuzzi
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Jason W. Botten
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Christopher B. Brooke
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Lee
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Susan C. Baker
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - William E. Severson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Kenneth E. Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Savaş Tay
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| |
Collapse
|
95
|
Silva JRA, Kruger HG, Molfetta FA. Drug repurposing and computational modeling for discovery of inhibitors of the main protease (M pro) of SARS-CoV-2. RSC Adv 2021; 11:23450-23458. [PMID: 35479789 PMCID: PMC9036595 DOI: 10.1039/d1ra03956c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
The main protease (Mpro or 3CLpro) is a conserved cysteine protease from the coronaviruses and started to be considered an important drug target for developing antivirals, as it produced a deadly outbreak of COVID-19. Herein, we used a combination of drug reposition and computational modeling approaches including molecular docking, molecular dynamics (MD) simulations, and the calculated binding free energy to evaluate a set of drugs in complex with the Mpro enzyme. Particularly, our results show that darunavir and triptorelin drugs have favorable binding free energy (-63.70 and -77.28 kcal mol-1, respectively) in complex with the Mpro enzyme. Based on the results, the structural and energetic features that explain why some drugs can be repositioned to inhibit Mpro from SARS-CoV-2 were exposed. These features should be considered for the design of novel Mpro inhibitors.
Collapse
Affiliation(s)
- José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará Belém Pará 66075-110 Brazil
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal Durban 4000 South Africa
| | - Fábio A Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará CP 11101 60075-110 Belém PA Brazil
| |
Collapse
|
96
|
Morris A, McCorkindale W, Consortium TCM, Drayman N, Chodera JD, Tay S, London N, Lee AA. Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model. Chem Commun (Camb) 2021; 57:5909-5912. [PMID: 34008627 PMCID: PMC8204246 DOI: 10.1039/d1cc00050k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The SARS-CoV-2 main viral protease (Mpro) is an attractive target for antivirals given its distinctiveness from host proteases, essentiality in the viral life cycle and conservation across coronaviridae. We launched the COVID Moonshot initiative to rapidly develop patent-free antivirals with open science and open data. Here we report the use of machine learning for de novo design, coupled with synthesis route prediction, in our campaign. We discover novel chemical scaffolds active in biochemical and live virus assays, synthesized with model generated routes. We discovered potent SARS-CoV-2 main protease inhibitors using synthesis-directed molecular design.![]()
Collapse
Affiliation(s)
- Aaron Morris
- PostEra Inc, 2 Embarcadero Centre, San Franciso, CA 94111, USA.
| | | | | | - Nir Drayman
- The Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - John D Chodera
- Computational and Systems Biology Program Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Savaş Tay
- The Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alpha A Lee
- PostEra Inc, 2 Embarcadero Centre, San Franciso, CA 94111, USA.
| |
Collapse
|
97
|
Joshi D, Milligan JC, Zeisner TU, O'Reilly N, Diffley JFX, Papageorgiou G. An improved method for the incorporation of fluoromethyl ketones into solid phase peptide synthesis techniques. RSC Adv 2021; 11:20457-20464. [PMID: 34178310 PMCID: PMC8185805 DOI: 10.1039/d1ra03046a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
An improved and expedient technique for the synthesis of peptidyl-fluoromethyl ketones is described. The methodology is based on prior coupling of an aspartate fluoromethyl ketone to a linker and mounting it onto resin-bound methylbenzhydrylamine hydrochloride. Subsequently, by utilising standard Fmoc peptide procedures, a number of short Z-protected peptides were synthesised and assessed as possible inhibitors of the main protease from SARS-CoV-2 (3CLpro).
Collapse
Affiliation(s)
- Dhira Joshi
- Peptide Chemistry STP, The Francis Crick Institute 1 Midland Road London NW1 1AT UK +44 (0)203 796 2359
| | - Jennifer C Milligan
- Chromosome Replication Laboratory, The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Theresa U Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Nicola O'Reilly
- Peptide Chemistry STP, The Francis Crick Institute 1 Midland Road London NW1 1AT UK +44 (0)203 796 2359
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - George Papageorgiou
- Peptide Chemistry STP, The Francis Crick Institute 1 Midland Road London NW1 1AT UK +44 (0)203 796 2359
| |
Collapse
|
98
|
Wang S, Sun Q, Xu Y, Pei J, Lai L. A transferable deep learning approach to fast screen potential antiviral drugs against SARS-CoV-2. Brief Bioinform 2021; 22:6291517. [PMID: 34081143 PMCID: PMC8195169 DOI: 10.1093/bib/bbab211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
The COVID-19 pandemic calls for rapid development of effective treatments. Although various drug repurpose approaches have been used to screen the FDA-approved drugs and drug candidates in clinical phases against SARS-CoV-2, the coronavirus that causes this disease, no magic bullets have been found until now. In this study, we used directed message passing neural network to first build a broad-spectrum anti-beta-coronavirus compound prediction model, which gave satisfactory predictions on newly reported active compounds against SARS-CoV-2. Then, we applied transfer learning to fine-tune the model with the recently reported anti-SARS-CoV-2 compounds and derived a SARS-CoV-2 specific prediction model COVIDVS-3. We used COVIDVS-3 to screen a large compound library with 4.9 million drug-like molecules from ZINC15 database and recommended a list of potential anti-SARS-CoV-2 compounds for further experimental testing. As a proof-of-concept, we experimentally tested seven high-scored compounds that also demonstrated good binding strength in docking studies against the 3C-like protease of SARS-CoV-2 and found one novel compound that can inhibit the enzyme. Our model is highly efficient and can be used to screen large compound databases with millions or more compounds to accelerate the drug discovery process for the treatment of COVID-19.
Collapse
Affiliation(s)
- Shiwei Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Qi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Youjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Jianfeng Pei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
99
|
Zhai T, Zhang F, Haider S, Kraut D, Huang Z. An Integrated Computational and Experimental Approach to Identifying Inhibitors for SARS-CoV-2 3CL Protease. Front Mol Biosci 2021; 8:661424. [PMID: 34079818 PMCID: PMC8166273 DOI: 10.3389/fmolb.2021.661424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The newly evolved SARS-CoV-2 has caused the COVID-19 pandemic, and the SARS-CoV-2 main protease 3CLpro is essential for the rapid replication of the virus. Inhibiting this protease may open an alternative avenue toward therapeutic intervention. In this work, a computational docking approach was developed to identify potential small-molecule inhibitors for SARS-CoV-2 3CLpro. Totally 288 potential hits were identified from a half-million bioactive chemicals via a protein-ligand docking protocol. To further evaluate the docking results, a quantitative structure activity relationship (QSAR) model of 3CLpro inhibitors was developed based on existing small molecule inhibitors of the 3CLproSARS- CoV- 1 and their corresponding IC50 data. The QSAR model assesses the physicochemical properties of identified compounds and estimates their inhibitory effects on 3CLproSARS- CoV- 2. Seventy-one potential inhibitors of 3CLpro were selected through these computational approaches and further evaluated via an enzyme activity assay. The results show that two chemicals, i.e., 5-((1-([1,1'-biphenyl]-4-yl)-2,5-dimethyl-1H-pyrrol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione and N-(4-((3-(4-chlorophenylsulfonamido)quinoxalin-2-yl)amino)phenyl)acetamide, effectively inhibited 3CLpro SARS-CoV-2 with IC50's of 19 ± 3 μM and 38 ± 3 μM, respectively. The compounds contain two basic structures, pyrimidinetrione and quinoxaline, which were newly found in 3CLpro inhibitor structures and are of high interest for lead optimization. The findings from this work, such as 3CLpro inhibitor candidates and the QSAR model, will be helpful to accelerate the discovery of inhibitors for related coronaviruses that may carry proteases with similar structures to SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- Tianhua Zhai
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA, United States
| | - Fangyuan Zhang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA, United States
| | - Shozeb Haider
- School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Daniel Kraut
- Department of Chemistry, Villanova University, Villanova, PA, United States
| | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA, United States
| |
Collapse
|
100
|
Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Kinneberg JI, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, et alGünther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Kinneberg JI, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 2021; 372:642-646. [PMID: 33811162 PMCID: PMC8224385 DOI: 10.1126/science.abf7945] [Show More Authors] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Sebastian Günther
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Patrick Y A Reinke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yaiza Fernández-García
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Helen M Ginn
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Faisal H M Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ilona Dunkel
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Brandon Seychell
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Henry Gieseler
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Brenna Norton-Baker
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, USA
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sofiane Saouane
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anna Hänle
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Groessler
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fabian Trost
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Vision Systems, Hamburg University of Technology, 21071 Hamburg, Germany
| | - Chufeng Li
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ariana Peck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Frank Schlünzen
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - P Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nadine Werner
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Hina Andaleeb
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Najeeb Ullah
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Sven Falke
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Vasundara Srinivasan
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Bruno Alves França
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Martin Schwinzer
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Hévila Brognaro
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Cromarte Rogers
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Diogo Melo
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joanna Irina Zaitseva-Kinneberg
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gisel E Peña-Murillo
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Vincent Hennicke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | | | - Gleb Bourenkov
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David von Stetten
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Isabel Bento
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Ivars Karpics
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | - Stephan Niebling
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Günther
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Juliane Boger
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Diana C F Monteiro
- Hauptmann Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | | | - Jan Wollenhaupt
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Christian G Feiler
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Manfred S Weiss
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Eike-Christian Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Katarina Karničar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jure Loboda
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henning Tidow
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Russell Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Tobias Beck
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Dusan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Winfried Hinrichs
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Betzel
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|