51
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
52
|
Araujo MAD, Melo AARD, Silva VM, Reis ARD. Selenium enhances ROS scavenging systems and sugar metabolism increasing growth of sugarcane plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107798. [PMID: 37301189 DOI: 10.1016/j.plaphy.2023.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Selenium (Se) beneficial effect on plants is related to an increase in nitrogen (N) assimilation and its role as an abiotic stress mitigator by reactive oxygen species (ROS) scavenging enhanced by antioxidant metabolism. This study aimed to evaluate sugarcane (Saccharum spp.) growth, photosynthetic and antioxidant responses, and sugar accumulation in response to Se supply. The experimental design was a factorial scheme 2 × 4: two sugarcane varieties (RB96 6928 and RB86 7515) and four Se application rates (0; 5; 10 and 20 μmol L-1) applied as sodium selenate in the nutrient solution. Leaf Se concentration increased under Se application in both varieties. The enzymes SOD (EC 1.15.1.1) and APX (EC 1.11.1.11) showed increase activities under Se application on variety RB96 6928. Nitrate reductase activity increased in both varieties resulting in the conversion of nitrate into higher total amino acids concentration indicating an enhanced N assimilation. This led to an increased concentration of chlorophylls and carotenoids, increased CO2 assimilation rate, stomatal conductance, and internal CO2 concentration. Selenium provided higher starch accumulation and sugar profiles in leaves boosting plant growth. This study shows valuable information regarding the role of Se on growth, photosynthetic process, and sugar accumulation in sugarcane leaves, which could be used for further field experiments. The application rate of 10 μmol Se L-1 was the most adequate for both varieties studied considering the sugar concentration and plant growth.
Collapse
Affiliation(s)
| | | | - Vinicius Martins Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 14884-900 Jaboticabal, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496 Tupã, SP, Brazil.
| |
Collapse
|
53
|
Semida WM, Abd El-Mageed TA, Gyushi MAH, Abd El-Mageed SA, Rady MM, Abdelkhalik A, Merah O, Sabagh AE, El-Metwally IM, Sadak MS, Abdelhamid MT. Exogenous Selenium Improves Physio-Biochemical and Performance of Drought-Stressed Phaseolus vulgaris Seeded in Saline Soil. SOIL SYSTEMS 2023; 7:67. [DOI: 10.3390/soilsystems7030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Water and salt stresses are among the most important global problems that limit the growth and production of several crops. The current study aims at the possibility of mitigating the effect of deficit irrigation of common bean plants growing in saline lands by foliar spraying with selenium via the assessment of growth, productivity, physiological, and biochemical measurements. In our study, two field-based trials were conducted in 2017 and 2018 to examine the influence of three selenium (Se) concentrations (0 (Se0), 25 (Se25), and 50 mg L−1 (Se50)) on common bean plants grown under full irrigation (I100 = 100% of the crop evapotranspiration; ETc) and deficit irrigation (I80 = 80% of ETc, and I60 = 60% of ETc). Bean plants exposed to water stress led to a notable reduction in growth, yield, water productivity (WP), water status, SPAD value, and chlorophyll a fluorescence features (Fv/Fm and PI). However, foliar spraying of selenium at 25 or 50 mg L−1 on stressed bean plants attenuated the harmful effects of water stress. The findings suggest that foliage application of 25 or 50 mg L−1 selenium to common bean plants grown under I80 resulted in a higher membrane stability index, relative water content, SPAD chlorophyll index, and better efficiency of photosystem II (Fv/Fm, and PI). Water deficit at 20% increased the WP by 17%; however, supplementation of 25 or 50 mg L−1 selenium mediated further increases in WP up to 26%. Exogenous application of selenium (25 mg L−1 or 50 mg L−1) to water-stressed bean plants elevated the plant defense system component, given that it increased the free proline, ascorbic acid, and glutathione levels, as well as antioxidant enzymes (SOD, APX, GPX, and CAT). It was concluded that the application of higher levels (25 or/and 50 mg L−1) of Se improves plant water status as well as the growth and yield of common beans cultivated in saline soil.
Collapse
Affiliation(s)
- Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mohammed A. H. Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | | | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier-Toulouse III, IUT A, 32000 Auch, France
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Ibrahim M. El-Metwally
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
| | - Mervat Sh. Sadak
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2474, USA
| |
Collapse
|
54
|
Sarath NG, Shackira AM, Puthur JT. Adaptive physio-anatomical modulations and ionomics of Volkameria inermis L. in response to NaCl. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:114-130. [PMID: 37405369 DOI: 10.1080/15226514.2023.2229443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This study illustrates the salinity tolerance mechanisms in Volkameria inermis (a mangrove-associate), making it an ideal candidate for establishment in saline lands. The plant was exposed to 100, 200, 300, and 400 mM NaCl and the TI value indicates that the stress-imparting concentration was 400 mM. There was a decrease in biomass and tissue water, and a gradual increase in osmolytes like soluble sugars, proline, and free amino acids content was observed in plantlets with the increase in NaCl concentrations. Higher number of lignified cells in the vascular region of the plantlet's leaves treated with NaCl (400 mM) may influence the transport through the conducting tissues. SEM data reveals the presence of thick-walled xylem elements, an increased number of trichomes, and partially/fully closed stomata in the 400 mM NaCl-treated samples of V. inermis. In general, macro and micronutrient distribution tend to be affected in the NaCl-treated plantlets. However, Na content increased remarkably in plantlets treated with NaCl, and the highest accumulation was observed in roots (5.58-fold). Volkameria inermis can be a good option for phytodesalination in salt-affected areas since it is equipped with strong NaCl tolerance strategies and can be exploited for desalinization purpose of salt affected lands.
Collapse
Affiliation(s)
- Nair G Sarath
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Calicut, Kerala, India
| | | | - Jos T Puthur
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Calicut, Kerala, India
| |
Collapse
|
55
|
Chen J, Hao S, Bañuelos G, Zhou X. A quantitative review of the effects of Se application on the reduction of Hg concentration in plant: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1199721. [PMID: 37409302 PMCID: PMC10318138 DOI: 10.3389/fpls.2023.1199721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Mercury (Hg) is a highly toxic heavy metal entering the human body through the food chain after absorption by plant. Exogenous selenium (Se) has been suggested as a potential solution to reduce Hg concentration in plants. However, the literature does not provide a consistent picture of the performance of Se on the accumulation of Hg in plant. To obtain a more conclusive answer on the interactions of Se and Hg, 1,193 data records were collected from 38 publications for this meta-analysis, and we tested the effects of different factors on Hg accumulation by meta-subgroup analysis and meta-regression model. The results highlighted a significant dose-dependent effect of Se/Hg molar ratio on the reduction of Hg concentration in plants, and the optimum condition for inhibiting Hg accumulation in plants is at a Se/Hg ratio of 1-3. Exogenous Se significantly reduced Hg concentrations in the overall plant species, rice grains, and non-rice species by 24.22%, 25.26%, and 28.04%, respectively. Both Se(IV) and Se(VI) significantly reduced Hg accumulation in plants, but Se(VI) had a stronger inhibiting effect than Se(IV). Se significantly decreased the BAFGrain in rice, which indicated that other physiological processes in rice may be involved in restricting uptake from soil to rice grain. Therefore, Se can effectively reduce Hg accumulation in rice grain, which provides a strategy for effectively alleviating the transfer of Hg to the human body through the food chain.
Collapse
Affiliation(s)
- Jiefei Chen
- College of Resources and Environment, Southwest University, Chongqing, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Gary Bañuelos
- United States Department of Agriculture-Agricultural Research Service, Parlier, CA, United States
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
56
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
57
|
Mejía-Ramírez F, Benavides-Mendoza A, González-Morales S, Juárez-Maldonado A, Lara-Viveros FM, Morales-Díaz AB, Morelos-Moreno Á. Seed Priming Based on Iodine and Selenium Influences the Nutraceutical Compounds in Tomato ( Solanum lycopersicum L.) Crop. Antioxidants (Basel) 2023; 12:1265. [PMID: 37371995 DOI: 10.3390/antiox12061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L-1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L-1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, β-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption.
Collapse
Affiliation(s)
- Fernando Mejía-Ramírez
- Department of Horticulture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | - Susana González-Morales
- National Council of Humanities, Science and Technology (CONAHCYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | - Francisco Marcelo Lara-Viveros
- Department of Biosciences and Agrotechnology, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Mexico
| | - América Berenice Morales-Díaz
- Robotics and Advanced Manufacturing, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ramos Arizpe 25900, Mexico
| | - Álvaro Morelos-Moreno
- National Council of Humanities, Science and Technology (CONAHCYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| |
Collapse
|
58
|
Cipriano PE, da Silva RF, de Oliveira C, de Lima AB, Martins FAD, Celante G, Dos Santos AA, Archilha MVLR, Pinatto Botelho MF, Faquin V, Guilherme LRG. Sodium Selenate, Potassium Hydroxy-Selenide, Acetylselenide and Their Effect on Antioxidant Metabolism and Plant Nutrition and Yield in Sorghum Genotypes. Foods 2023; 12:foods12102034. [PMID: 37238851 DOI: 10.3390/foods12102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Agronomic biofortification with selenium (Se) effectively reduces hidden hunger and increases the nutritional intake of Se in people and animals. Because sorghum is a staple diet for millions of people and is used in animal feed, it becomes a crop with biofortification potential. Consequently, this study aimed to compare organoselenium compounds with selenate, which is effective in numerous crops, and to assess grain yield, the effect in the antioxidant system, and macronutrient/micronutrient contents of different sorghum genotypes treated with Se, via foliar spray. The trials used a 4 × 8 factorial design, with four Se sources (control-without Se supply, sodium selenate, potassium hydroxy-selenide, acetylselenide) and eight genotypes (BM737, BRS310, Enforcer, K200, Nugrain320, Nugrain420, Nugrain430, and SHS410). The Se rate used was 0.125 mg plant-1. All genotypes reacted effectively to foliar fertilization with Se through sodium selenate. In this experiment, potassium hydroxy-selenide and acetylselenide showed low Se levels and lower Se uptake and absorption efficiency than selenate. Selenium fertilization increased grain yield and altered lipid peroxidation by malondialdehyde content, hydrogen peroxide content, catalase activity, ascorbate peroxidase, superoxide dismutase, and macronutrients and micronutrients content of the studied genotypes. In sum, biofortification with selenium led to an overall yield increase of sorghum plants and supplementation with selenium through sodium selenate was more efficient than organoselenium compounds, yet acetylselenide had a positive effect on the antioxidant system. Sorghum can be effectively biofortified through the foliar application of sodium selenate; however, studying the interaction between organic and inorganic Se compounds in plants is necessary.
Collapse
Affiliation(s)
- Patriciani Estela Cipriano
- Department of Soil Science, Federal University of Lavras, Lavras 37200-900, MG, Brazil
- Minas Gerais Agricultural Research Agency, Experimental Field of Maria da Fé, Maria da Fé 37517-000, MG, Brazil
| | | | - Cynthia de Oliveira
- Department of Soil Science, Federal University of Lavras, Lavras 37200-900, MG, Brazil
| | | | | | - Gizele Celante
- Institute of Chemistry, University of São Paulo, Butantã 05508-000, SP, Brazil
| | | | | | - Marcos Felipe Pinatto Botelho
- Institute of Chemistry, University of São Paulo, Butantã 05508-000, SP, Brazil
- SelenoLife Selênio P/Vida Ltda, Butantã 05508-000, SP, Brazil
| | - Valdemar Faquin
- Department of Soil Science, Federal University of Lavras, Lavras 37200-900, MG, Brazil
| | | |
Collapse
|
59
|
Ran S, He T, Li S, Yin D, Wu P, Xu Y, Zhao J. Selenium/sulfur-modified montmorillonite materials mitigate mercury pollution in farmland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121719. [PMID: 37105467 DOI: 10.1016/j.envpol.2023.121719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) amendment could reduce mercury (Hg) bioaccumulation in crops, but sometimes it could cause excessive Se accumulation in crops and potential Se exposure risks for humans. In this study, we designed and synthesized selenium and sulfur-modified montmorillonite materials (Se/S-Mont) to effectively reduce mercury levels and avoid excessive Se enrichment in plants. The results of pot experiments (1 g Se/S-Mont/100 g soil) and field microplot trials (0.3 g Se/S-Mont/100 g soil, 8 t/ha) showed that Se/S-Mont amendments significantly reduced the Hg concentrations in water spinach and hybrid Pennisetum by 28-68% and 57%-92% (P < 0.05), respectively, while they did not lead to excessive Se bioaccumulation in the plants. Se/S-Mont was more efficient in mitigating soil Hg pollution than adding raw materials (e.g., NaSeO₃) and their combinations, and they significantly reduced the available Se fraction in the soil and the Se levels in the plants (P < 0.05). The potential mechanisms revealed by X-ray absorption near-edge spectra (XANES) and pot experiments were the adsorption and slow release of Hg, S, and Se by Se/S-Mont, the high affinity between Hg and Se, competition between Se and S, and the formation of stable complexes containing Se-S-Hg. The Se/S-Mont immobilizer was easy to prepare and required the application of small amounts, and the remediation effect was relatively stable and exhibited few negative effects; therefore, the approach showed high environmental and economic potentials.
Collapse
Affiliation(s)
- Shu Ran
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Shengpeng Li
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Yiyuan Xu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; CAS Key Laboratory of Nuclear Analytical Techniques. Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
60
|
Wang L, Wu K, Liu Z, Li Z, Shen J, Wu Z, Liu H, You L, Yang G, Rensing C, Feng R. Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins, hemicelluloses, lignins, callose and Casparian strips in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130812. [PMID: 36709735 DOI: 10.1016/j.jhazmat.2023.130812] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) can reduce cadmium (Cd) uptake/translocation via regulating pectins, hemicelluloses and lignins of plant root cell walls, but the detailed molecular mechanisms are not clear. In this study, six hydroponic experiments were set up to explore the relationships of uptake/translocation inhibition of Cd by selenite (Se(IV)) with cell wall component (CWC) synthesis and/or interactions. Cd and Se was supplied (alone or combinedly) at 1.0 mg L-1 and 0.5 mg L-1, respectively, with the treatment without Cd and Se as the control. When compared to the Cd1 treatment, the Se0.5Cd1 treatment 1) significantly increased total sugar concentrations in pectins, hemicelluloses and callose, suggesting an enhanced capacity of binding Cd or blocking Cd translocation; 2) stimulated the deposition of Casparian strips (CS) in root endodermis and exodermis to block Cd translocation; 3) stimulated the release of C-O-C (-OH- or -O-) and CO (carboxyl, carbonyl, or amide) to combine Cd; 4) regulated differential expression genes (DEGs) and metabolites (DMs) correlated with synthesis and/or interactions of CWSs to affect cell wall net structure to affect root cell division, subsequent root morphology and finally elemental uptake; and 5) stimulated de-methylesterification of pectins via reducing expression abundances of many DMs and DEGs in the Yang Cycle to reduce supply of methyls to homogalacturonan, and regulated gene expressions of pectin methylesterase to release carboxyls to combine Cd; and 6) down-regulated gene expressions associated with Cd uptake/translocation.
Collapse
Affiliation(s)
- LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - LeXing You
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - GuiDi Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
61
|
Nie M, Wu C, Tang Y, Shi G, Wang X, Hu C, Cao J, Zhao X. Selenium and Bacillus proteolyticus SES synergistically enhanced ryegrass to remediate Cu-Cd-Cr contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121272. [PMID: 36780973 DOI: 10.1016/j.envpol.2023.121272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal compound contaminated soil is an ecological threat, and soil containing copper (Cu), cadmium (Cd) and chromium (Cr) simultaneously is widely distributed. The application of phytoremediation in heavy metal combined contamination is still limited. In this study, to explore whether and how exogenous selenium (Se) and Bacillus proteolyticus SES enhance the remediation of combined Cu-Cd-Cr contaminated soil by ryegrass, pot experiments were carried out. Se alone or in combination with B. proteolyticus SES treatment increased the removal rates of heavy metals in the rhizosphere soil by 17.38%-157.25% relative to the control, while Se + B. proteolyticus SES treatment played a greater role in improving the heavy metals tolerance of ryegrass and increasing the activity of soil acid phosphatase. Moreover, Se and B. proteolyticus SES favored the preferential recruitment of specific taxa with the capacity of plant growth promotion and heavy metals resistance to the rhizosphere. The rhizosphere soil of Se treatment was specifically enriched with Lysobacter, Rhodanobacter, Micrococcales, Paenarthrobacter, and Adhaeribacter, while from class Bacilli to genus Bacillus enriched extensively and specifically in the rhizosphere of B. proteolyticus SES + Se treatment. Furthermore, five functional beneficial rhizosphere microbes including: Microbacterium sp., Pseudomonas extremaustralis, Bacillus amyloliquefaciens, Priestia megaterium, and Bacillus subtilis were isolated from the two treatments with the best remediation effect and synthetic communities (SynComs) were constructed. SynComs inoculation experiment further demonstrated the role of specific beneficial microbes in regulating the bioavailability of heavy metals. Results revealed that Se supplementation efficiently facilitated the phytoextraction of combined Cu-Cd-Cr contaminated soil, and B. proteolyticus SES inoculation showed the synergistical enhancement effect in the presence of Se.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China; Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Jun Cao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China.
| |
Collapse
|
62
|
Ma B, Shao S, Ai L, Chen S, Zhang L. Influences of biochar with selenite on bacterial community in soil and Cd in peanut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114742. [PMID: 37032575 DOI: 10.1016/j.ecoenv.2023.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/06/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) pollution in crops seriously affects the ecosystem and human health. Effective measures should be employed to reduce the absorption and accumulation of cadmium in crops. Currently, there are many pieces of research on the application of biochar (BC) and selenium (Se) alone to the remediation of soil Cd pollution; however, few investigations have been devoted to the application of BC and Se together to the remediation of soil Cd pollution. The peanut was taken as the target crop to explore the effects of exogenous selenium and biochar on the remediation of soil Cd pollution. The response of the soil bacterial community to two levels of Cd concentration and its relationship with soil properties and Cd availability are methodically investigated. This study sets two cadmium pollution concentrations of low Cd (5 mg/ kg) and high Cd (20 mg/kg), as well as six treatments: blank, BC, soil Se, soil Se-BC, leaf Se, and leaf Se-BC. The achieved results revealed that both Se and BC could noticeably enhance the yield of peanut seeds and reduce the Cd content in peanut seeds. Among them, Se-BC treatment on soil exhibits the most influence, which reduces the Cd content by 47.86%. Se and BC also affect the physical and chemical properties of soil and remarkably magnify the content of soil available phosphorus, organic matter, soil pH, and soil conductivity. For instance, then effect is detected in the case of applying selenium biochar to soil, leading to an increase of about 64.38%, 72.62%, 2.64%, and 61.15%, respectively, and reducing the content of soil available cadmium by 21.02%. Redundancy analysis confirms that these properties enhance the abundance of dominant bacteria Actinobacteria, Proteobacteria, and Chloroflexi. The correlation analysis also indicates that Saccharimonadales, Bacillus, Arthrobacter, and other bacteria with the function of reducing the bioavailability of cadmium in soil reveal a considerable positive correlation with the variations of physical and chemical properties. In general, exogenous Se and BC incorporate to drop the content of available Cd in the soil through direct passivation, passivation caused by soil environmental change, and passivation caused by altering the soil microbial community structure; as a result, the migration and enrichment of Cd in peanut seeds are blocked and reduced. Moreover, the mixed application of BC and soil Se exhibits the best effect.
Collapse
Affiliation(s)
- Bing Ma
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Shiwei Shao
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Liuhuan Ai
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Shiyao Chen
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Lei Zhang
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China.
| |
Collapse
|
63
|
Li L, Wang S, Wu S, Rao S, Li L, Cheng S, Cheng H. Morphological and Physiological Indicators and Transcriptome Analyses Reveal the Mechanism of Selenium Multilevel Mitigation of Cadmium Damage in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12081583. [PMID: 37111807 PMCID: PMC10141491 DOI: 10.3390/plants12081583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
64
|
Borgo L, Rabêlo FHS, Rossi ML, Santos FHD, Nogueira MLG, Alleoni LRF, Linhares FS, Vangronsveld J, Lavres J. Effect of selenium and soil pH on cadmium phytoextraction by Urochloa decumbens grown in Oxisol. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130771. [PMID: 36696772 DOI: 10.1016/j.jhazmat.2023.130771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It has been speculated that selenium (Se) supply can affect cadmium (Cd) 'availability' and increase the Cd tolerance of plants used for phytoextraction, in a pH-dependent process. Thus, we evaluated the interaction Cd-Se and the effects of soil pH in this interaction on plant availability of Cd and phytoextraction efficiency of Urochloa decumbens cv. Basilisk grown in Oxisol. Two soil concentrations of Cd (0.93 and 3.6 mg kg-1) and Se (<0.2 and 1 mg kg-1) and two soil pH (0.01 mol L-1 CaCl2) conditions (4.1 and 5.7) were considered. At both pH, Se supply increased the exchangeable fraction of Cd and decreased the residual Cd fraction. At pH 4.1, the growth of U. decumbens was impaired by Se addition, regardless of Cd exposure. The lower root growth and tillering of U. decumbens exposed to Cd disappeared at pH 5.7 due to uptake of low Se concentrations. Thus, the toxic or beneficial effects of Se on growth of U. decumbens used for Cd phytoextraction depend on the amount of Se assimilated. The Cd phytoextraction efficiency of U. decumbens was not improved by Se supply, regardless of soil pH. Therefore, we cannot recommend the application of Se to increase Cd phytoextraction by this grass.
Collapse
Affiliation(s)
- Lucélia Borgo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba 13416-000, Brazil.
| | | | - Mônica Lanzoni Rossi
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba 13416-000, Brazil
| | | | | | | | | | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Diepenbeek B3590, Belgium; Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Plant Physiology and Biophysics, Lublin 20-033, Poland
| | - José Lavres
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba 13416-000, Brazil
| |
Collapse
|
65
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
66
|
Hall JA, Bobe G, Filley SJ, Bohle MG, Pirelli GJ, Wang G, Davis TZ, Bañuelos GS. Impact of selenium biofortification on production characteristics of forages grown following standard management practices in Oregon. FRONTIERS IN PLANT SCIENCE 2023; 14:1121605. [PMID: 37063195 PMCID: PMC10102540 DOI: 10.3389/fpls.2023.1121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Low selenium (Se) concentrations in soils and plants pose a health risk for ruminants consuming locally-grown forages. Previous studies have shown that Se concentrations in forages can be increased using soil-applied selenate amendments. However, the effects of foliar selenate amendments applied with traditional nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizers on forage yields, and nutrient contents, and agronomic efficiencies are unknown. METHODS Using a split plot design, we determined the effects of springtime sodium selenate foliar amendment rates (0, 45, and 90 g Se ha-1) and NPKS application (none, NPK for grasses/PK for alfalfa, and NPKS/PKS fertilization at amounts adapted to meet local forage and soil requirements) on forage growth and N, S, and Se concentrations, yields, and agronomic efficiencies. This 2-year study was conducted across Oregon on four representative forage fields: orchardgrass (Dactylis glomerata L.) in Terrebonne (central Oregon), grass-clover mixture in Roseburg (southwestern Oregon), and both grass mixture and alfalfa (Medicago sativa L.) fields in Union (eastern Oregon). RESULTS Grasses grew poorly and were low in N content without NPK fertilization. Fertilization with NPK/PK promoted forage growth, increased forage N concentrations, and had to be co-applied with S when plant available S was low. Without Se amendment, forage Se concentrations were low and further decreased with NPKS/PKS fertilization. Selenate amendment linearly increased forage Se concentration without adversely affecting forage yields, N and S concentrations, or N and S agronomic efficiencies. DISCUSSION Importantly, S fertilization did not interfere with Se uptake in Se amended plots. In conclusion, co-application of NPKS/PKS fertilizers and foliar sodium selenate in springtime is an effective strategy to increase forage total Se concentrations, while maintaining optimal growth and quality of Oregon forages.
Collapse
Affiliation(s)
- Jean A. Hall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Shelby J. Filley
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Mylen G. Bohle
- Department of Crop and Soil Science, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Gene J. Pirelli
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Guogie Wang
- Department of Crop and Soil Science, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - T. Zane Davis
- United States Department of Agriculture (USDA), Agricultural Research Service-Poisonous Plant Research Lab, Logan, UT, United States
| | - Gary S. Bañuelos
- United States Department of Agriculture (USDA), Agricultural Research Service-San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| |
Collapse
|
67
|
Chen B, Miao J, Ye H, Xia Z, Huang W, Guo J, Liang X, Yin Y, Zheng Y, Cao Y. Purification, Identification, and Mechanistic Investigation of Novel Selenium-Enriched Antioxidant Peptides from Moringa oleifera Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4625-4637. [PMID: 36892038 DOI: 10.1021/acs.jafc.2c08965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, five novel Se-enriched antioxidant peptides (FLSeML, LSeMAAL, LASeMMVL, SeMLLAA, and LSeMAL) were purified and identified from Se-enriched Moringa oleifera (M. oleifera) seed protein hydrolysate. The five peptides showed excellent cellular antioxidant activity, with respective EC50 values of 0.291, 0.383, 0.662, 0.1, and 0.123 μg/mL. The five peptides (0.025 mg/mL) increased the cell viability from 78.72 to 90.71, 89.16, 93.92, 83.68, and 98.29%, respectively, effectively reducing reactive oxygen species accumulation and significantly increasing superoxide dismutase and catalase activities in damaged cells. Molecular docking results revealed that the five novel Se-enriched peptides interacted with the key amino acid of Keap1, thus directly blocking the interaction of Keap1-Nrf2 and activating the antioxidant stress response to enhance the ability of scavenging free radicals in vitro. In conclusion, Se-enriched M. oleifera seed peptides exhibited significant antioxidant activity and can be expected to find widespread use as a highly active natural functional food additive and ingredient.
Collapse
Affiliation(s)
- Bingbing Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guilin 541004, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoduo Ye
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Xia
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Wen Huang
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Guo
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Xingtang Liang
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yong Cao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
68
|
Shahbaz M, Akram A, Raja NI, Mukhtar T, Mehak A, Fatima N, Ajmal M, Ali K, Mustafa N, Abasi F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One 2023; 18:e0274679. [PMID: 36749754 PMCID: PMC9904489 DOI: 10.1371/journal.pone.0274679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 02/08/2023] Open
Abstract
Plant extract-based green synthesis of nanoparticles is an emerging class of nanotechnology that has revolutionized the entire field of biological sciences. Green synthesized nanoparticles are used as super-growth promoters and antifungal agents. In this study, selenium nanoparticles (SeNPs) were synthesized using Melia azedarach leaves extract as the main reducing and stabilizing agent and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and fourier transform infrared spectrometer (FTIR). The green synthesized SeNPs were exogenously applied on Mangifera indica infected with mango malformation disease. The SeNPs at a concentration of 30 μg/mL were found to be the best concentration which enhanced the physiological (chlorophyll and membrane stability index), and biochemical (proline and soluble sugar) parameters. The antioxidant defense system was also explored, and it was reported that green synthesized SeNPs significantly reduced the biotic stress by enhancing enzymatic and non-enzymatic activities. In vitro antifungal activity of SeNPs reported that 300 μg/mL concentration inhibited the Fusarium mangiferae the most. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs to improve the health of mango malformation-infected plants and effective management strategy to inhibit the growth of F. mangifera.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Abida Akram
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Asma Mehak
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Maryam Ajmal
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- * E-mail: (KA); (MA)
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Doha, Qatar
- * E-mail: (KA); (MA)
| | - Nilofar Mustafa
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Fozia Abasi
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
69
|
Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological Activity of Selenium and Its Impact on Human Health. Int J Mol Sci 2023; 24:2633. [PMID: 36768955 PMCID: PMC9917223 DOI: 10.3390/ijms24032633] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| |
Collapse
|
70
|
Biochemical and proteomic insights revealed selenium priming induced phosphorus stress tolerance in common bean (Phaseolus vulgaris L.). Mol Biol Rep 2023; 50:3141-3153. [PMID: 36693987 DOI: 10.1007/s11033-023-08242-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mineral stress is one of the dominating abiotic stresses, which leads to decrease in crop production. Selenium (Se) seed priming is a recent approach to mitigate the plant's mineral deficiency stress. Although not an essential element, Se has beneficial effects on the plants in terms of growth, quality, yield and plant defense system thus, enhancing plant tolerance to mineral deficiency. METHODS AND RESULTS The present research was accomplished to find out the effect of Se priming on common bean plant (SFB-1 variety) under phosphorus (P) stress. The seeds were grown invitro on four different MGRL media which are normal MGRL media as control with non-Se primed seeds (Se- P+), non -Se primed seeds grown on P deficient MGRL media (Se- P-), Se primed seeds grown on normal MGRL media (Se+P+) and Se primed seeds grown on P deficient MGRL media (Se+P -). The various morphological and biochemical parameters such as proline content, total sugar content, polyphenols and expression of proteins were analyzed under P stress. The results showed that Se priming has significantly (p ≤ 0.05) affected the morphological as well as biochemical parameters under normal and P stress conditions. The morphological parameters-length, weight, number of nodes and leaves of Se+P+, Se+P- root and shoot tissue showed significant increase as compared to Se-P+, Se-P-. Similarly various biochemical parameters such as total chlorophyll content, proline, total sugar content and polyphenols of Se+P+, Se+P- increased significantly as compared to Se-P+, Se-P-. The differential protein expression in both Se+P+, Se+P- and Se-P+, Se-P- plants were determined using MALDI-MS/MS. The differentially expressed proteins in Se+P+, Se+P- plants were identified as caffeic acid-3-O-methyltransferase (COMT) and SecA protein (a subunit of Protein Translocan transporter), and are found responsible for lignin synthesis in root cell walls and ATP dependent movement of thylakoid proteins across the membranes in shoot respectively. The differential expression of proteins in plant tissues, validated morphological and biochemical responses such as maintaining membrane integrity, enhanced modifications in cellular metabolism, improved polyphenol activities and expression of defensive proteins against mineral deficiency. CONCLUSIONS The study provided an understanding of Se application as a potential approach increasing tolerance and yield in crop plants against mineral deficiency.
Collapse
|
71
|
Kamali-Andani N, Fallah S, Peralta-Videa JR, Golkar P. Selenium nanoparticles reduce Ce accumulation in grains and ameliorate yield attributes in mung bean (Vigna radiata) exposed to CeO 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120638. [PMID: 36370974 DOI: 10.1016/j.envpol.2022.120638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Exposure of crops to CeO2 nanoparticles (nCeO2) in agricultural environments impact crop quality and human health. In this regard, the effects of selenium nanoparticles (nSe) on the yield and quality of Vigna radiata (L.) exposed to nCeO2 were investigated. The experiment was carried out as a factorial with two factors: NPs (nCeO2, and nSe) as factor one and concentrations as factor two [(0, 250, 500 and 1000 mg/L nCeO2; 0, 25, 50 and 75 mg/L nSe)]. Nanoparticles were foliar applied to 45-day old mung bean shoot in two steps and one-week interval. At 250-1000 mg/L, nCeO2 increased P, protein and Ce accumulation in grain. Additionally, at 1000 mg/L, the nCeO2, significantly decreased seed number, yield, Fe, and Zn storage in seeds. Conversely, at 25 and 50 mg/L, nSe stimulated the growth and yield of mung bean, and significantly increased P, Fe, Zn, and Se in seeds, but reduced the protein content in seeds. The Se25+Ce250 and Se50+Ce250 significantly increased pod number, seed number, grain weight, yield, Fe, Zn and Se storage in grains. In contrast, the Ce accumulation in seeds decreased in all combination treatments (nCeO2 + nSe) compared to their respective single nCeO2 treatments. Moreover, in the plants exposed to high nCeO2 concentrations, nSe application resulted in undamaged vacuoles, less starch granules' accumulation, significant yield improvement, and elevated Fe, Se, and Zn in seeds. Data suggest that selenium nanoparticles prevent nCeO2 stress in mung bean and improve grain production and quality.
Collapse
Affiliation(s)
- Najmeh Kamali-Andani
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Jose R Peralta-Videa
- Department of Chemistry & Biochemistry, Chemistry and Computer Science Building, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, USA
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran. Research Institute for Biotechnology and Bioengineering, Isfahan, University of Technology, Iran
| |
Collapse
|
72
|
Xu Y, Bi R, Li Y. Effects of anthropogenic and natural environmental factors on the spatial distribution of trace elements in agricultural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114436. [PMID: 36525951 DOI: 10.1016/j.ecoenv.2022.114436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The concentrations of trace elements in agricultural soils directly affect the ecological security and quality of agricultural products. A comprehensive study aimed at quantitatively analyze the effects of anthropogenic and natural environmental factors on the spatial distribution of heavy metals (HMs) and selenium (Se) in agricultural soils in a typical grain producing area of China. Factors considered in this study were parent rock, soil physicochemical properties, topography, precipitation, mine activity, and vegetation. Results showed that the median values of Zn, Cd, Cr, and Cu of 111 topsoil samples exceeded the background values of Guangxi province but were lower than the relevant national soil quality standards, and 85% of soil samples were classified as having rich Se levels (0.40 -3.0 mg kg-1). The potential ecological risk index of soil heavy metals as a whole was low, with Cd in 9% of the samples posing moderate ecological risk. The concentrations of heavy metals and Se were relatively high in soils from shale rock. Soil properties, mainly Fe2O3 and Mn played a dominant role on soil HMs and Se concentrations. Based on GeoDetector, we found that the interaction effects of two factors on the spatial differentiation of soil HMs and Se were greater than their sum effect. Among the factors, Mn enhanced the explanatory power of the model the most when interacting with other factors for soil Zn; the greatest interactive effect was between distance from mining area and Mn for Cd (q = 0.70); Fe2O3 significantly promoted the spatial differentiation of soil Cr, Cu and Se when interacting with other factors (q > 0.50). These findings contribute to a better understanding of the factors that drive the distribution of HMs and Se in agricultural soils.
Collapse
Affiliation(s)
- Yuefeng Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Rutian Bi
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
73
|
Liu H, Xiao C, Qiu T, Deng J, Cheng H, Cong X, Cheng S, Rao S, Zhang Y. Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:44. [PMID: 36616173 PMCID: PMC9824017 DOI: 10.3390/plants12010044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant growth is affected by various abiotic stresses, including water, temperature, light, salt, and heavy metals. Selenium (Se) is not an essential nutrient for plants but plays important roles in alleviating the abiotic stresses suffered by plants. This article summarizes the Se uptake and metabolic processes in plants and the functions of Se in response to water, temperature, light, salt, and heavy metal stresses in plants. Se promotes the uptake of beneficial substances, maintains the stability of plasma membranes, and enhances the activity of various antioxidant enzymes, thus alleviating adverse effects in plants under abiotic stresses. Future research directions on the relationship between Se and abiotic stresses in plants are proposed. This article will further deepen our understanding of the relationship between Se and plants.
Collapse
Affiliation(s)
- Haodong Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chunmei Xiao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tianci Qiu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Deng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| |
Collapse
|
74
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
75
|
Farag HAS, Ibrahim MFM, El-Yazied AA, El-Beltagi HS, El-Gawad HGA, Alqurashi M, Shalaby TA, Mansour AT, Alkhateeb AA, Farag R. Applied Selenium as a Powerful Antioxidant to Mitigate the Harmful Effects of Salinity Stress in Snap Bean Seedlings. AGRONOMY 2022; 12:3215. [DOI: 10.3390/agronomy12123215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Selenium (Se) plays several significant roles in regulating growth, development and plant responses to various abiotic stresses. However, its influence on sulfate transporters (SULTRS) and achieving the harmony with other salt-tolerance features is still limited in the previous literatures. This study elucidated the effect of Se supplementation (5, 10 and 20 µM) on salt-stressed (50 mM NaCl) snap bean seedlings. Generally, the results indicated that Se had dual effects on the salt stressed seedlings according to its concentration. At a low level (5 µM), plants demonstrated a significant improvement in shoot (13.8%) and root (22.8%) fresh weight, chlorophyll a (7.4%), chlorophyll b (14.7%), carotenoids (23.2%), leaf relative water content (RWC; 8.5%), proline (17.2%), total soluble sugars (34.3%), free amino acids (FAA; 18.4%), K (36.7%), Ca (33.4%), K/Na ratio (77.9%), superoxide dismutase (SOD; 18%), ascorbate peroxidase (APX;12.8%) and guaiacol peroxidase (G-POX; 27.1%) compared to the untreated plants. Meanwhile, most of these responses as well as sulfur (S), Se and catalase (CAT) were obviously decreased in parallel with increasing the applied Se up to 20 µM. The molecular study revealed that three membrane sulfate transporters (SULTR1, SULTR2 and SULTR 3) in the root and leaves and salinity responsive genes (SOS1, NHX1 and Osmotin) in leaves displayed different expression patterns under various Se treatments. Conclusively, Se at low doses can be beneficial in mitigating salinity-mediated damage and achieving the functioning homeostasis to tolerance features.
Collapse
|
76
|
Qu L, Jia W, Dai Z, Xu Z, Cai M, Huang W, Han D, Dang B, Ma X, Gao Y, Xu J. Selenium and molybdenum synergistically alleviate chromium toxicity by modulating Cr uptake and subcellular distribution in Nicotiana tabacum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114312. [PMID: 36455352 DOI: 10.1016/j.ecoenv.2022.114312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is a harmful heavy metal that poses a serious threat to plants and animals. Selenium (Se) and molybdenum (Mo) are two beneficial elements for plant growth and resistance. However, their interactive effects on Cr uptake and distribution are poorly understood. Therefore, a hydroponics experiment was conducted to explore the effects of the use of Se and Mo alone and simultaneously on mitigating Cr toxicity. In this study, Nicotiana tabacum L. seedlings were exposed to control, 50 µM Cr, 50 μM Cr + 2 μM Se, 50 μM Cr + 1 μM Mo, or 50 μM Cr + 2 μM Se + 1 μM Mo in Hoagland solution. After 2 weeks, the plant biomass, Cr, Se and Mo contents, photosynthesis, leaf ultrastructure, antioxidant system, subcellular distribution and associated gene expression in Nicotiana tabacum L. were determined. The results showed that simultaneous use of Se and Mo promoted tobacco growth under Cr stress, as evidenced by reducing reactive oxygen species (ROS) content and reducing Cr translocation factor (TF) and inducing a 51.3% reduction in Cr content in shoots. Additionally, Se-Mo interactions increased the levels of glutathione (GSH) and phytochelatin (PC) and the distribution of Cr in the cell walls and organelles. Furthermore, the relative expression of PCS1 was upregulated, while those of NtST1 and MSN1 were downregulated. The results concluded that the simultaneous use of Se and Mo effectively alleviated Cr toxicity in Nicotiana tabacum L., which not only offers an efficient way for crops to resist Cr toxicity but also provides evidence for the benefit of Se combined with Mo.
Collapse
Affiliation(s)
- Lili Qu
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Zhihua Dai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zicheng Xu
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Miaomiao Cai
- Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxing Huang
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Dan Han
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Xiaohan Ma
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Yun Gao
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan agricultural university, Zhengzhou, Henan, China.
| |
Collapse
|
77
|
Skrypnik L, Feduraev P, Golovin A, Maslennikov P, Styran T, Antipina M, Riabova A, Katserov D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3432. [PMID: 36559543 PMCID: PMC9788459 DOI: 10.3390/plants11243432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Selenium is a micronutrient with a wide range of functions in animals, including humans, and in microorganisms such as microalgae. However, its role in plant metabolism remains ambiguous. Recent studies of Se supplementation showed that not only does it increase the content of the element itself, but also affects the accumulation of secondary metabolites in plants. The purpose of this review is to analyze and summarize the available data on the place of selenium in the secondary metabolism of plants and its effect on the accumulation of some plant metabolites (S- and N-containing secondary metabolites, terpenes, and phenolic compounds). In addition, possible molecular mechanisms and metabolic pathways underlying these effects are discussed. It should be noted that available data on the effect of Se on the accumulation of secondary metabolites are inconsistent and contradictory. According to some studies, selenium has a positive effect on the accumulation of certain metabolites, while other similar studies show a negative effect or no effect at all. The following aspects were identified as possible ways of regulating plant secondary metabolism by Se-supplementation: changes occurring in primary S/N metabolism, hormonal regulation, redox metabolism, as well as at the transcriptomic level of secondary metabolite biosynthesis. In all likelihood, the confusion in the results can be explained by other, more complex regulatory mechanisms in which selenium is involved and which affect the production of metabolites. Further study on the involvement of various forms of selenium in metabolic and signaling pathways is crucial for a deeper understanding of its role in growth, development, and health of plants, as well as the regulatory mechanisms behind them.
Collapse
|
78
|
Hosseinzadeh Rostam Kalaei M, Abdossi V, Danaee E. Evaluation of foliar application of selenium and flowering stages on selected properties of Iranian Borage as a medicinal plant. Sci Rep 2022; 12:12568. [PMID: 35869115 PMCID: PMC9306425 DOI: 10.1038/s41598-022-16241-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Many of the active constituents of drug or medicines were originally derived from medicinal plants. Iranian Borage are still being used in regular basis. Selenium (Se) is an essential mineral nutrient for animal and human growth. The aim of this research was to determine the effect of (2, 4, 8 and 16 mg L−1) of as sodium selenate (Na2SeO4) and as sodium selenite (Na2SeO3) on some important properties of Iranian Borage in factorial based on Randomized Complete Block Design via four steps: 2 true leaves stage, ten leaves, 2 weeks and 1 week before flowering. The traits were evaluated during flowering period. Results showed that the highest shoot fresh and dry weight and shoot length, total alkaloid, essential oil percentage were obtained by 4 mg L−1 sodium selenate at the end of flowering. In addition, 4 mg L−1 sodium selenate concentration significantly improved flower yield (diameter, number, weight). The plants were treated with 8 mg L−1 sodium selenate, the higher total phenols and flavonoids, antioxidant activity, soluble sugars, root and fresh weight was seen at end of flowering. When the plants were sprayed with 4 mg L−1 sodium selenite higher total chlorophyll was observed at full of flowering. 16 mg L−1 sodium selenite released the maximum Se acclimation in the petals. 20 composites were discovered containing ɑ-Pinene (23.61%) with sodium selenate in 4 mg L−1. Generally, selenium sources significantly improved morpho-physiological and phytochemical.
Collapse
|
79
|
Li X, Luo Y, Zeng C, Zhong Q, Xiao Z, Mao X, Cao F. Selenium accumulation in plant foods and selenium intake of residents in a moderately selenium-enriched area of Mingyueshan, Yichun, China. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
80
|
Response surface optimization of selenium-enriched Moringa oleifera seed peptides with antioxidant, ACEI and XOI activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
81
|
Li L, Yu J, Li L, Rao S, Wu S, Wang S, Cheng S, Cheng H. Treatment of Ginkgo biloba with Exogenous Sodium Selenite Affects Its Physiological Growth, Changes Its Phytohormones, and Synthesizes Its Terpene Lactones. Molecules 2022; 27:7548. [PMID: 36364373 PMCID: PMC9655945 DOI: 10.3390/molecules27217548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2023] Open
Abstract
Ginkgolide is a unique terpenoid natural compound in Ginkgo biloba, and it has an important medicinal value. Proper selenium has been reported to promote plant growth and development, and improve plant quality, stress resistance, and disease resistance. In order to study the effects of exogenous selenium (Se) on the physiological growth and the content of terpene triolactones (TTLs) in G. biloba seedlings, the seedlings in this work were treated with Na2SeO3. Then, the physiological indexes, the content of the TTLs, and the expression of the related genes were determined. The results showed that a low dose of Na2SeO3 was beneficial to plant photosynthesis as it promoted the growth of ginkgo seedlings and increased the root to shoot ratio. Foliar Se application significantly increased the content of soluble sugar and protein and promoted the content of TTLs in ginkgo leaves; indeed, it reached the maximum value of 7.95 mg/g in the ninth week, whereas the application of Se to the roots inhibited the synthesis of TTLs. Transcriptome analysis showed that foliar Se application promoted the expression levels of GbMECPs, GbMECT, GbHMGR, and GbMVD genes, whereas its application to the roots promoted the expression of GbDXS and GbDXR genes. The combined analysis results of metabolome and transcriptome showed that genes such as GbDXS, GbDXR, GbHMGR, GbMECPs, and GbCYP450 were significantly positively correlated with transcription factors (TFs) GbWRKY and GbAP2/ERF, and they were also positively correlated with the contents of terpene lactones (ginkgolide A, ginkgolide B, ginkgolide M, and bilobalide). Endogenous hormones (MeJA-ILE, ETH, and GA7) were also involved in this process. The results suggested that Na2SeO3 treatment affected the transcription factors related to the regulation of endogenous hormones in G. biloba, and further regulated the expression of genes related to the terpene synthesis structure, thus promoting the synthesis of ginkgo TTLs.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Yu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
82
|
Ramakrishnan M, Arivalagan J, Satish L, Mohan M, Samuel Selvan Christyraj JR, Chandran SA, Ju HJ, John L A, Ramesh T, Ignacimuthu S, Kalishwaralal K. Selenium: a potent regulator of ferroptosis and biomass production. CHEMOSPHERE 2022; 306:135531. [PMID: 35780987 DOI: 10.1016/j.chemosphere.2022.135531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence supports the notion that selenium (Se) plays a beneficial role in plant development for modern crop production and is considered an essential micronutrient and the predominant source of plants. However, the essential role of selenium in plant metabolism remains unclear. When used in moderate concentrations, selenium promotes plant physiological processes such as enhancing plant growth, increasing antioxidant capacity, reducing reactive oxygen species and lipid peroxidation and offering stress resistance by preventing ferroptosis cell death. Ferroptosis, a recently discovered mechanism of regulated cell death (RCD) with unique features such as iron-dependant accumulation of lipid peroxides, is distinctly different from other known forms of cell death. Glutathione peroxidase (GPX) activity plays a significant role in scavenging the toxic by-products of lipid peroxidation in plants. A low level of GPX activity in plants causes high oxidative stress, which leads to ferroptosis. An integrated view of ferroptosis and selenium in plants and the selenium-mediated nanofertilizers (SeNPs) have been discussed in more recent studies. For instance, selenium supplementation enhanced GPX4 expression and increased TFH cell (Follicular helper T) numbers and the gene transcriptional program, which prevent lipid peroxidase and protect cells from ferroptosis. However, though ferroptosis in plants is similar to that in animals, only few studies have focused on plant-specific ferroptosis; the research on ferroptosis in plants is still in its infancy. Understanding the implication of selenium with relevance to ferroptosis is indispensable for plant bioresource technology. In this review, we hypothesize that blocking ferroptosis cell death improves plant immunity and protects plants from abiotic and biotic stresses. We also examine how SeNPs can be the basis for emerging unconventional and advanced technologies for algae/bamboo biomass production. For instance, algae treated with SeNPs accumulate high lipid profile in algal cells that could thence be used for biodiesel production. We also suggest that further studies in the field of SeNPs are essential for the successful application of this technology for the large-scale production of plant biomass.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jaison Arivalagan
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA, USA; VAXIGEN International Research Center Private Limited, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 India
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Anoopa John L
- The Dale View College of Pharmacy and Research Centre, Thiruvananthapuram, Kerala, India
| | - Thiyagarajan Ramesh
- Deapartment of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University,P.O.Box:173, AI-Kharaj 11942,Saudi Arabia
| | | | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
83
|
Bayanati M, Al-Tawaha AR, Al-Taey D, Al-Ghzawi AL, Abu-Zaitoon YM, Shawaqfeh S, Al-Zoubi O, Al-Ramamneh EAD, Alomari L, Al-Tawaha AR, Dey A. Interaction between zinc and selenium bio-fortification and toxic metals (loid) accumulation in food crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1001992. [PMID: 36388536 PMCID: PMC9659969 DOI: 10.3389/fpls.2022.1001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Biofortification is the supply of micronutrients required for humans and livestock by various methods in the field, which include both farming and breeding methods and are referred to as short-term and long-term solutions, respectively. The presence of essential and non-essential elements in the atmosphere, soil, and water in large quantities can cause serious problems for living organisms. Knowledge about plant interactions with toxic metals such as cadmium (Cd), mercury (Hg), nickel (Ni), and lead (Pb), is not only important for a healthy environment, but also for reducing the risks of metals entering the food chain. Biofortification of zinc (Zn) and selenium (Se) is very significant in reducing the effects of toxic metals, especially on major food chain products such as wheat and rice. The findings show that Zn- biofortification by transgenic technique has reduced the accumulation of Cd in shoots and grains of rice, and also increased Se levels lead to the formation of insoluble complexes with Hg and Cd. We have highlighted the role of Se and Zn in the reaction to toxic metals and the importance of modifying their levels in improving dietary micronutrients. In addition, cultivar selection is an essential step that should be considered not only to maintain but also to improve the efficiency of Zn and Se use, which should be considered more climate, soil type, organic matter content, and inherent soil fertility. Also, in this review, the role of medicinal plants in the accumulation of heavy metals has been mentioned, and these plants can be considered in line with programs to improve biological enrichment, on the other hand, metallothioneins genes can be used in the program biofortification as grantors of resistance to heavy metals.
Collapse
Affiliation(s)
- Mina Bayanati
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Duraid Al-Taey
- Department of Horticulture, University of Al-Qasim Green, Babylon, Iraq
| | - Abdul Latief Al-Ghzawi
- Department of Biology and Biotechnology, Faculty of Science, the Hashemite University, Zarqa, Jordan
| | | | - Samar Shawaqfeh
- Department Of Plant Production & Protection, College of Agriculture. Jerash University, Jerash, Jordan
| | - Omar Al-Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr, Saudi Arabia
| | | | - Laith Alomari
- Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel Razzaq Al-Tawaha
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
84
|
Wang W, Zhang F, Liu D, Chen K, Du B, Qiu X, Xu J, Xing D. Distribution characteristics of selenium, cadmium and arsenic in rice grains and their genetic dissection by genome-wide association study. Front Genet 2022; 13:1007896. [PMCID: PMC9612882 DOI: 10.3389/fgene.2022.1007896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
High selenium (Se) and low cadmium (Cd) and arsenic (As) contents in rice grains were good for human health. The genetic basis and relationship of Se, Cd and As concentrations in rice grains are still largely unknown. In the present study, large variations were observed in Se, Cd and As concentrations in brown and milled rice in normal and Se treatment conditions in 307 rice accessions from 3K Rice Genomes Project. Se fertilizer treatment greatly increased Se concentrations but had no obvious changes in concentrations of Cd and As both in brown and milled rice. Total of 237 QTL were identified for Se, Cd and As concentrations in brown and milled rice in normal and Se treatment conditions as well as ratio of concentrations under Se treatment to normal conditions. Only 19 QTL (13.4%) were mapped for concentrations of Se and Cd, Se and As, and Se, Cd and As in the same or adjacent regions, indicating that most Se concentration QTL are independent of Cd and As concentration QTL. Forty-three favorable alleles were identified for 40 candidate genes by gene-based association study and haplotype analysis in 14 important QTL regions. Se-enriched rice variety will be developed by pyramiding favorable alleles at different Se QTL and excluding undesirable alleles at Cd and As QTL, or combining favorable alleles at Se QTL with the alleles at Se-sensitive QTL by marker-assisted selection.
Collapse
Affiliation(s)
- Wenxi Wang
- College of Economy and Management, Hubei University of Technology, Wuhan, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Fan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapu Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Du
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Xianjin Qiu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Xianjin Qiu, ; Jianlong Xu,
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- *Correspondence: Xianjin Qiu, ; Jianlong Xu,
| | - Danying Xing
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
85
|
Yuan W, Wang X, Lin CJ, Wu F, Luo K, Zhang H, Lu Z, Feng X. Mercury Uptake, Accumulation, and Translocation in Roots of Subtropical Forest: Implications of Global Mercury Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14154-14165. [PMID: 36150175 DOI: 10.1021/acs.est.2c04217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant roots are responsible for transporting large quantities of nutrients in forest ecosystems and yet are frequently overlooked in global assessments of Hg cycling budgets. In this study, we systematically determined the distribution of total Hg mass and its stable isotopic signatures in a subtropical evergreen forest to elucidate sources of Hg in plant root tissues and the associated translocation mechanisms. Hg stored in roots and its isotopic signatures show significant correlations to those found in surrounding soil at various soil depths. The odd mass-independent fractionation (MIF) of root Hg at a shallow soil depth displays a -0.10‰ to -0.50‰ negative transition compared to the values in aboveground woody biomass. The evidence suggests that root Hg is predominantly derived from surrounding soil, rather than translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-dependent fractionation (MDF) of -0.10‰ to -1.20‰ compared to the soil samples, indicating a preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root components imply limited Hg transport in roots. This work highlights that Hg stored in plant roots is not a significant sink of atmospheric Hg. The heterogeneous distribution of Hg mass in roots of various sizes represents a significant uncertainty of current estimates of Hg pool size in forest ecosystems.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
86
|
El-Badri AM, Batool M, Mohamed IAA, Wang Z, Wang C, Tabl KM, Khatab A, Kuai J, Wang J, Wang B, Zhou G. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119815. [PMID: 35926737 DOI: 10.1016/j.envpol.2022.119815] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/28/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
In recent years, much attention has been directed toward using nanoparticles (NPs) as one of the most effective strategies to improve plant growth, especially under salt stress conditions. Further research has been conducted to develop NPs using various chemical ways; accordingly, knowledge about the beneficial effect of bioSeNPs in rapeseed is obscure. Selenium (Se) is a vital micronutrient with a series of physiological and antioxidative properties. Seed priming is emerging as a low-cost, efficient, and environment-friendly seed treatment in nanotechnology. The current study was carried out to examine the promising effects of nanopriming via bioSeNPs on the expression level of aquaporin genes, seed microstructure, seed germination, growth traits, physiochemical attributes, and minerals uptake of two rapeseed cultivars under salinity stress conditions. Our investigation monitored the positive effects of bioSeNPs on the expression level of aquaporin genes (BnPIP1-1 and BnPIP2-1) and water uptake during the seed imbibition (4 and 8 h of priming), which indicated higher imbibition potential and germination promotion with bioSeNPs application (most effective at 150 μmol/L). The total performance index was significantly enhanced with nano-treatments in rapeseed seedlings. Collectively, nano-application improved seed microstructure, seed germination, and photosynthetic efficiency directly correlated with higher seedlings biomass, especially with a higher concentration of bioSeNPs. The enhancement in α-amylase and free amino acid contents in nanoprimed seeds resulted in rapid seed germination. Moreover, bioSeNPs increased the osmotic adjustment and enhanced the efficiency of the plant's defense system by improving the activity of enzymatic and non-enzymatic antioxidants, thus enhancing ROS scavenging under salt stress. The obtained results may indicate the strengthening of seed vigor, improving seedling growth and physiochemical attributes via bioSeNPs. Our findings displayed that bioSeNPs modulated the Na+ and K+ uptake, which improved the rapeseed growth and showed a close relationship with the low contents of toxic Na+ ion; thus, it prevented oxidative damage due to salt stress. This comprehensive data can add more knowledge to understand the mechanisms behind plant-bioSeNPs interaction and provide physiological evidence for the beneficial roles of nanopriming using bioSeNPs on rapeseed germination and seedling development under salinity stress conditions. Such studies can be used to develop simple prepackaged nano primer products, which can be used before sowing to boost seed germination and crop productivity under stress conditions.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ibrahim A A Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyun Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karim M Tabl
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531, Alexandria, Egypt
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
87
|
Lai X, Yang X, Rao S, Zhu Z, Cong X, Ye J, Zhang W, Liao Y, Cheng S, Xu F. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:913-919. [PMID: 35583793 DOI: 10.1111/plb.13435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) is a metalloid mineral nutrient for human and animal health. Plants are the main foodstuff source of the Se intake of humans. For plants, the addition of an appropriate amount of Se could promotes growth and development, and improves the tolerance to environmental stress, especially stress from some of heavy metals (HM) stress, such as cadmium (Cd) and mercury (Hg). This paper mainly reviews and summarizes the physiological mechanism of Se in enhancing HM stress tolerance in plants. The antagonistic effect of Se on HM is a comprehensive effect that includes many physiological mechanisms. Se can promote the removal of excessive reactive oxygen species and reduce the oxidative damage of plant cells under HM elements stress. Se participates in the regulation of the transportation and distribution of HM ions in plants, and alleviates the damage caused by of HM stress. Moreover, Se combine with HM elements to form Se-HM complexes and promote the production of phytochelatins (PCs), thereby reducing the accumulation of HM ions in plants. Overall, Se plays an important role in plant response to HM stress, but current studies mainly focus on physiological mechanism, and further in-depth study on the molecular mechanism is essential to confirm the participation of Se in plant response to environmental stress. This review helps to comprehensively understand the physiological mechanism of Se in plant tolerance against to HM stress of plants, and provides important theoretical support for the practical application of Se in environmental remediation and agricultural development.
Collapse
Affiliation(s)
- X Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - X Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Z Zhu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - X Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, China
| | - J Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - W Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Y Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - F Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
88
|
Silva MA, de Sousa GF, Corguinha APB, de Lima Lessa JH, Dinali GS, Oliveira C, Lopes G, Amaral D, Brown P, Guilherme LRG. Selenium biofortification of soybean genotypes in a tropical soil via Se-enriched phosphate fertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:988140. [PMID: 36186079 PMCID: PMC9517938 DOI: 10.3389/fpls.2022.988140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Soybean is a major crop in Brazil and is usually grown in oxidic soils that need high rates of phosphate (P) fertilizers. Soybean is also very suitable for biofortification with Se, since its grains have high protein contents and are widely consumed worldwide (directly or indirectly). Few studies have addressed Se application under field conditions for soybean biofortification, especially in tropical soils. Here, we evaluated agronomic and physiological responses resulting from different strategies for biofortifying soybean grains with Se by applying this element via soil, using both conventional and enhanced-efficiency P fertilizers as Se carriers. The experiment was carried out at the Uva Farm, in Capão Bonito (São Paulo), Brazil. The experimental design was a randomized block split-plot design, with four fertilizer sources-conventional monoammonium phosphate (C-MAP), conventional monoammonium phosphate + Se (C-MAP + Se), enhanced-efficiency monoammonium phosphate (E-MAP), and enhanced-efficiency monoammonium phosphate + Se (E-MAP + Se), and four soybean genotypes (M5917, 58I60 LANÇA, TMG7061, and NA5909). The selenium rate applied via C-MAP + Se and E-MAP + Se was 80 g ha-1. The application of the tested fertilizers was carried out at the sowing of the 2018/2019 cropping season, with their residual effect being also assessed in the 2019/2020 cropping season. Selenium application increased grain yield for the TMG7061 genotype. For all evaluated genotypes, Se content in grains increased in the 2018/2019 harvest with the application of Se via C-MAP + Se and E-MAP + Se. In general, the application of Se via C-MAP favored an increase in amino acid contents in grains and decreased lipid peroxidation. In summary, the application of Se-enriched P fertilizers via soil increased soybean grain yield, leading to better grain quality. No residual effects for biofortifying soybean grains were detected in a subsequent soybean cropping season.
Collapse
Affiliation(s)
| | | | | | | | | | - Cynthia Oliveira
- Soil Science Department, Federal University of Lavras, Lavras, Brazil
| | - Guilherme Lopes
- Soil Science Department, Federal University of Lavras, Lavras, Brazil
| | - Douglas Amaral
- University of California, Handord—Agriculture and Natural Resources, Hanford, CA, United States
| | - Patrick Brown
- Department of Plant Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
89
|
Selenium-induced modulations in growth, productivity and physiochemical responses to water deficiency in Quinoa (Chenopodium quinoa) grown in sandy soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
90
|
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int J Mol Sci 2022; 23:8519. [PMID: 35955651 PMCID: PMC9368943 DOI: 10.3390/ijms23158519] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Vishwavidyala, Mohanpur 741251, India;
| | - Vivek Chandra Verma
- Department of Biochemistry, College of Basic Science and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India;
| | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Malamal Alickal Sarath Chandran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Kodigal A. Gopinath
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Govindarajan Venkatesh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Sushil Kumar Yadav
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | | |
Collapse
|
91
|
Saleem M, Fariduddin Q. Novel mechanistic insights of selenium induced microscopic, histochemical and physio-biochemical changes in tomato (Solanum lycopersicum L.) plant. An account of beneficiality or toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128830. [PMID: 35429754 DOI: 10.1016/j.jhazmat.2022.128830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is a well-known beneficial element in plants. The window of Se between toxic and optimal concentration is narrow and uneven which fluctuates with plants species. This experiment was aimed to investigate the morpho-physiological, microscopic and histochemical responses of two different varieties of tomato (S-22 and PKM-1), exposed to different concentrations of Se (0, 10, 40 or 80 µM), applied to soil at 30 days after transplantation (DAT). At 40 DAT, it was observed that high concentrations (40 or 80 µM) of Se radically increased oxidative stress examined by elevated reactive oxygen species (ROS), malondialdehyde (MDA) content, cell death, electrolyte leakage and decreased chlorophyll content leading phenotypic symptoms of Se-induced toxicity like stunted growth and chlorosis. Furthermore, high doses of Se altered the chloroplast and stomatal organisation, and adversely affected the photosynthetic performance of plants. But low concentration of Se improved the plant dry mass, photosynthesis, Rubisco activity, protein content and maintained the steady-state equilibrium among ROS generation and antioxidant enzymes like catalase, peroxidase and superoxide dismutase. Our outcomes proposed that high concentration of Se generated toxicity (phyto-selenosis), whereas lower concentration of Se-triggered positive impact by improving growth, photosynthetic traits and maintaining steady-state equilibrium between scavenging-system and ROS generation.
Collapse
Affiliation(s)
- Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
92
|
Kamali-Andani N, Fallah S, Peralta-Videa JR, Golkar P. A comprehensive study of selenium and cerium oxide nanoparticles on mung bean: Individual and synergistic effect on photosynthesis pigments, antioxidants, and dry matter accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154837. [PMID: 35346715 DOI: 10.1016/j.scitotenv.2022.154837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, the interaction effects of CeO2 NPs (250, 500 and 1000 mg L-1) and Se NPs (25, 50 and 75 mg L-1) were evaluated in mung bean (Vigna radiata). Single NPs and their combinations were foliar applied to 45-day old mung bean plants under greenhouse conditions. In each pot, a total volume of 100 mL of NPs suspension was sprayed on the plants shoot in two steps and one-week interval. After 94 days of growth, membrane degradation, antioxidant activity, photosynthetic pigments, and dry matter accumulation were assessed. At 250 and 500 mg CeO2-NPs L-1, there was partial increase of dry matter, stimulated activity of antioxidant enzymes (p ≤ 0.05), and reactive oxygen species (ROS). However, at 1000 mg L-1, CeO2-NPs caused strong accumulation of ROS (p ≤ 0.05), enlargement of starch granules and swelling of chloroplasts. In addition, at such concentration, there was accumulation of starch granules, reduction of photosynthetic pigments, biological nitrogen fixation, chlorosis, and a significant retardation in plant growth, compared with control, (p ≤ 0.05). Combination of Se-NPs (25 and 50 mg L-1) with 250 mg L-1 of CeO2 NPs decreased hydrogen peroxide, improved CAT, Chla, Chlb, and increased dry matter (p ≤ 0.05). At 1000 mg CeO2 NPs L-1, foliar spray of Se-NPs led to Ce accumulation in the cell wall and increased levels of SOD and proline (p ≤ 0.05). Results showed that 25 and 50 mg Se NPs L-1 ameliorate the stress of CeO2 NPs by upregulating photosynthesis pigments, antioxidants, and dry matter accumulation. Therefore, depending on the CeO2 NPs concentration, the mechanisms of Se NPs in modulating CeO2 NPs stress varied; low concentrations of Se NPs may strengthen the metabolism of legumes, and protect them against foliar toxicity of CeO2 NPs in semi-arid ecosystems.
Collapse
Affiliation(s)
- Najmeh Kamali-Andani
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Jose R Peralta-Videa
- Department of Chemistry & Biochemistry, Chemistry and Computer Science Building, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States.
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
93
|
Zhu Y, Dong Y, Zhu N, Jin H. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113681. [PMID: 35653978 DOI: 10.1016/j.ecoenv.2022.113681] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Biosynthetic nano-selenium (bio-SeNP), as a plant growth regulator, has better bioavailability and lower toxicity than selenite and selenate. This study investigated the beneficial role of bio-SeNP in mitigating the adverse effects of multiple heavy metals (HMs, e.g., Cd, Pb, and Hg) on growth and yield of pak choi (Brassica chinensis) grown in slightly or heavily polluted (SP or HP) soil by regulating metabolic and antioxidant systems. The results revealed that foliar application of bio-SeNP (5, 10, 20 mg L-1 Se) at the 6-leaf stage greatly reduced the levels of Cd, Pb, and Hg in shoots and roots of pak choi. Application of 5 mg L-1 bio-SeNP significantly (p < 0.05) decreased the translocation factor (TF) of Cd, Pb, and Hg from root to shoot by 9.83%, 44.21%, and 46.99% for SP soil, 24.17%, 56.00%, and 39.36% for HP soil, respectively. Meanwhile, all bio-SeNP treatments led to a significant improvement in plants growth by enhancing the antioxidant defense system (e.g., AsA-GSH) and promoting chlorophyll synthesis as well as suppressed the lipid peroxidation products contents (MDA) in shoots. Moreover, the enhanced levels of mineral nutrient elements (e.g., Ca, Mg, Fe, or Zn) and organic selenium (e.g., selenocystine, Se-methylselenocysteine, and selenomethionine) in the edible shoots of bio-SeNP-treated pak choi plant under multiple HMs stress indicated the positive impacts of bio-SeNP on the improvement of shoot quality and nutritional values. Collectively, our results indicated that bio-SeNP play an important role in the management of multiple HMs-induced adverse effects on pak choi. Foliar application of bio-SeNP at appropriate concentration (≤ 5 mg L-1 Se) can be considered as a promising agronomic measure for safety leafy vegetable production in multiple HMs polluted soils when bio-SeNP application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yiwei Dong
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
94
|
He L, Huang DY, Liu B, Zhang Q, Zhu HH, Xu C, Zhu QH. Combined exogenous selenium and biochemical fulvic acid reduce Cd accumulation in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50059-50069. [PMID: 35226268 DOI: 10.1007/s11356-022-19442-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Paddy soil Cd contamination and the related accumulation risk in rice grains have attracted global attention. The application of selenium and humic substances is considered to be a cost-effective Cd mitigation measure. However, the effect of a combined application of the two materials remains unclear. Therefore, a 2-season pot experiment was conducted, wherein sodium selenite (Se) and biochemical fulvic acid (BFA) were applied alone and together. Paddy soils with two levels of Cd contamination were used. The results indicate that Se application alone considerably decreased the rice grain Cd content by 36.1-48.7% compared to the control rice grain Cd concentration, which was above the food safety limit (0.2 mg kg-1). Although the application of BFA alone decreased the soil pH, it also increased the soil CaCl2 extractable Cd content by 0.2 to 19.3% and had a limited effect on Cd in the rice grains. The combined application of Se and BFA did not affect the soil pH or the CaCl2 extractable Cd, and more effectively reduced the Cd contents of the rice grains by 50.2 to 57.1%, except for the control rice grain Cd content, which was below the limit. The combined application of Se and BFA also inhibited Se accumulation in rice grains, maintaining the Se content at a safe level (0.33-0.58 mg kg-1) compared to Se application alone. The effects of reducing the Cd content of rice grains while safely increasing their Se contents could persist for at least two seasons. Therefore, the combined application of Se and BFA should be recommended to mitigate Cd contamination risks in Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dao-You Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Bo Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Chao Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China.
| |
Collapse
|
95
|
Zang H, Ma J, Wu Z, Yuan L, Lin ZQ, Zhu R, Bañuelos GS, Reiter RJ, Li M, Yin X. Synergistic Effect of Melatonin and Selenium Improves Resistance to Postharvest Gray Mold Disease of Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:903936. [PMID: 35812947 PMCID: PMC9257244 DOI: 10.3389/fpls.2022.903936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 05/23/2023]
Abstract
Melatonin (MT) is a ubiquitous hormone molecule that is commonly distributed in nature. MT not only plays an important role in animals and humans but also has extensive functions in plants. Selenium (Se) is an essential micronutrient for animals and humans, and is a beneficial element in higher plants at low concentrations. Postharvest diseases caused by fungal pathogens lead to huge economic losses worldwide. In this study, tomato fruits were treated with an optimal sodium selenite (20 mg/L) and melatonin (10 μmol/L) 2 h and were stored for 7 days at room temperature simulating shelf life, and the synergistic effects of Se and MT collectively called Se-Mel on gray mold decay in tomato fruits by Botrytis cinerea was investigated. MT did not have antifungal activity against B. cinerea in vitro, while Se significantly inhibited gray mold development caused by B. cinerea in tomatoes. However, the interaction of MT and Se showed significant inhibition of the spread and growth of the disease, showing the highest control effect of 74.05%. The combination of MT with Se treatment enhanced the disease resistance of fruits by improving the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as increasing the gene expression level of pathogenesis-related (PR) proteins. Altogether, our results indicate that the combination of MT and Se would induce the activation of antioxidant enzymes and increase the expression of PR proteins genes that might directly enhance the resistance in tomato fruit against postharvest pathogenic fungus B. cinerea.
Collapse
Affiliation(s)
- Huawei Zang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Jiaojiao Ma
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Zhilin Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhi-Qing Lin
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Renbin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Gary S. Bañuelos
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture – Agricultural Research Service, Parlier, CA, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Miao Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- The Central Area of Anhui Province Station for Integrative Agriculture, Research Institute of New Rural Development, Anhui Agricultural University, Hefei, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
96
|
Kiumarzi F, Morshedloo MR, Zahedi SM, Mumivand H, Behtash F, Hano C, Chen JT, Lorenzo JM. Selenium Nanoparticles (Se-NPs) Alleviates Salinity Damages and Improves Phytochemical Characteristics of Pineapple Mint (Mentha suaveolens Ehrh.). PLANTS 2022; 11:plants11101384. [PMID: 35631809 PMCID: PMC9147120 DOI: 10.3390/plants11101384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
The present study examined the effects of foliar spray of selenium nanoparticles (0, 10 and 20 mg/L) on the yield, phytochemicals and essential oil content and composition of pineapple mint (Mentha suaveolens Ehrh.) under salinity stress (0, 30, 60 and 90 mM NaCl). Obtained results demonstrated that severe salinity stress reduced the fresh weight (FW) and plant height (PH) by 16.40% and 19.10%, respectively compared with normal growth condition. On the other hands, under sever salinity stress relative water content (RWC) and chlorophyll index were reduced by 18.05% and 3.50%, respectively. Interestingly, selenium nanoparticles (Se-NPs; 10 mg/L) application improved the pineapple mint growth. Based on GC-FID and GC-MS analysis, 19 compounds were identified in pineapple mint essential oil. Foliar application of Se-NPs and salinity did not change the essential oil content of pineapple mint, however, the essential oil compounds were significantly affected by salinity and Se-NPs- applications. Foliar application of Se-NPs- had a significant effect on piperitenone oxide, limonene, jasmone, viridiflorol and β-myrsene under different salinity levels. The highest percentage of piperitenone oxide (79.4%) as the major essential oil component was recorded in the no salinity treatment by applying 10 mg/L of nanoparticle. Interestingly, application of 10 mg L−1 Se-NPs- under 60 mM NaCl increased the piperitenone oxide content by 9.1% compared with non-sprayed plants. Finally, the obtained results demonstrated that foliar application of Se-NPs (10 mg L−1) can improve the pineapple mint growth and secondary metabolites profile under saline conditions.
Collapse
Affiliation(s)
- Fatemeh Kiumarzi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran; (F.K.); (S.M.Z.); (F.B.)
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran; (F.K.); (S.M.Z.); (F.B.)
- Correspondence: (M.R.M.); (J.-T.C.); (J.M.L.)
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran; (F.K.); (S.M.Z.); (F.B.)
| | - Hasan Mumivand
- Department of Horticultural Science, Faculty of Agriculture, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Farhad Behtash
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran; (F.K.); (S.M.Z.); (F.B.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan
- Correspondence: (M.R.M.); (J.-T.C.); (J.M.L.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibraodas Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (M.R.M.); (J.-T.C.); (J.M.L.)
| |
Collapse
|
97
|
Yang L, Huang S, Liu Y, Zheng S, Liu H, Rensing C, Fan Z, Feng R. Selenate regulates the activity of cell wall enzymes to influence cell wall component concentration and thereby affects the uptake and translocation of Cd in the roots of Brassica rapa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153156. [PMID: 35041952 DOI: 10.1016/j.scitotenv.2022.153156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) can be used to counteract cadmium (Cd) toxicity in plants. However, mechanisms underlying the alleviation of Cd toxicity by Se have not been completely elucidated, especially those by which Se reduces Cd translocation. A hydroponic experiment was performed to illustrate the regulatory mechanisms of Cd transport by selenate (Se (VI)) in pakchoi (Brassica rapa L., LvYou 102). The results showed that this plant had a high accumulation capacity for Cd, and Se(VI) addition restricted Cd translocation from roots to shoots. Se(VI) exposure stimulated the concentrations of pectins and hemicellulose II but reduced the concentration of hemicellulose I in the roots. In many cases, the enzymes pectin methylesterase, polygalacturonase, and β-galactosidase were dose-dependently triggered by Se(VI) under Cd exposure, but root calcium concentration was significantly lowered (p < 0.05). Xyloglucan endoglycosidase (hydrolase) was triggered by Se(VI) under 2 mg L-1 Cd exposure and cellulase was generally activated by Se(VI) under Cd stress. The above results suggest that Se(VI) up-regulates pectin methylesterase activity, stimulates synthesis of pectins, and down-regulates root Ca concentration to release free carboxyl groups to combine Cd. In this study, the relationships between enzyme activity (e.g., peroxidase, superoxidase and β-galactosidase), hydrogen peroxide, cell wall structure strengthening/loosening, and Cd toxicity affected by Se(VI) were also discussed.
Collapse
Affiliation(s)
- Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ShuangQin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Agricultural College, Guangxi University, Nanning, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZhiLian Fan
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
98
|
Ortega-Hernández E, Antunes-Ricardo M, Cisneros-Zevallos L, Jacobo-Velázquez DA. Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091271. [PMID: 35567272 PMCID: PMC9100039 DOI: 10.3390/plants11091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Jal, Mexico
| |
Collapse
|
99
|
Chen Z, Sun H, Hu T, Wang Z, Wu W, Liang Y, Guo Y. Sunflower resistance against Sclerotinia sclerotiorum is potentiated by selenium through regulation of redox homeostasis and hormones signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38097-38109. [PMID: 35067873 DOI: 10.1007/s11356-021-18125-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
White mold of sunflower caused by Sclerotinia sclerotiorum is a devastating disease that causes serious yield losses. Selenium (Se) helps plants resist stress. In this study, the resistance of sunflower to S. sclerotiorum was improved after foliar application of selenite. Selenite sprayed on leaves can be absorbed by sunflowers and transformed to selenomethionine. Consequently, sunflowers treated with Se exhibited a delay in lesion development with decrease by 54% compared to mock inoculation at 36-h post inoculation (hpi). In addition, treatment with Se compromised the adverse effects caused by S. sclerotiorum infection by balancing the regulation of genes involved in redox homeostasis. In particular, cat expression on leaves treated with Se increased to 2.5-fold to alleviate the downregulation caused by S. sclerotiorum infection at 12 hpi. Additionally, apx expression on leaves treated with Se decreased by 36% to alleviate the upregulation caused by S. sclerotiorum infection at 24 hpi, whereas expressions of gpx, pox, and nox on leaves treated with Se also successively decreased by approximately 40-60% to alleviate the upregulation caused by S. sclerotiorum infection at 24 and 36 hpi, respectively. The use of Se also enhanced the regulation of genes involved in hormones signaling pathways, in which expressions of AOC and PAL increased to 2.0- and 1.5-fold, respectively, to enhance the upregulation caused by S. sclerotiorum infection at 12 hpi, whereas expressions of AOC and PDF1.2 increased to 2.7- and 1.8-fold at 24 hpi, respectively. In addition, EIN2 expression on leaves treated with Se increased to 1.8-, 2.0-, and 1.5-fold to alleviate the downregulation caused by S. sclerotiorum infection. These results suggest that Se can improve sunflower defense responses against S. sclerotiorum infection aiming a sustainable white mold management.
Collapse
Affiliation(s)
- Zhiying Chen
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ting Hu
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenliang Wu
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
100
|
Liao R, Zhu J. Amino acid promotes selenium uptake in medicinal plant Plantago asiatica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1005-1012. [PMID: 35722512 PMCID: PMC9203647 DOI: 10.1007/s12298-022-01196-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 05/03/2023]
Abstract
The medicinal plant, Plantago asiatica have high selenium (Se) accumulation ability but is considered lower compared to other Se-hyperaccumulators. In this experiment, we evaluated the effects of different amino acid concentrations (600, 900, 1200, and 1500-fold dilutions) on the growth and Se uptake in P. asiatica for possible improvement of Se accumulation ability and medicinal value of P. asiatica. The 600, 900, and 1200-fold amino acid dilutions increased the root and shoot biomass of P. asiatica. Additionally, the photosynthetic pigments contents (chlorophyll a, chlorophyll b, and total chlorophyll) and antioxidant enzymes activities (superoxide dismutase, peroxidase, and catalase) of P. asiatica were increased by the different amino acid concentrations. However, these amino acid concentrations reduced the soluble protein content of P. asiatica to some extent. The Se content and extraction from P. asiatica were also enhanced and had a quadratic polynomial regression relationship with the Se extraction tissues and their Se contents. In addition, there were significant correlations between the biomass of Se extraction tissues and their Se contents. Our findings indicate that various amino acid concentrations promote growth and Se uptake in P. asiatica, but 900-fold amino acid dilution is the best concentration for enhancing Se accumulation ability in P. asiatica shoots.
Collapse
Affiliation(s)
- Renyan Liao
- College of Traditional Chinese Medicine and Rehabilitation, Ya’an Polytechnic College, Ya’an, Sichuan China
| | - Jiying Zhu
- College of Traditional Chinese Medicine and Rehabilitation, Ya’an Polytechnic College, Ya’an, Sichuan China
| |
Collapse
|