51
|
Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Lett 2016; 377:17-24. [PMID: 27102001 DOI: 10.1016/j.canlet.2016.04.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Mutual communication between multiple myeloma (MM) cells and mesenchymal stromal cells (MSC) plays a pivotal role in supporting MM progression. In MM, MSC exhibit a different genomic profile and dysregulated cytokine secretion compared to normal MSC, however the mechanisms involved in these changes are not fully understood. Here, we examined the miRNA changes in human MSC after culture with conditioned medium of MM cells and found 19 dysregulated miRNAs, including upregulated miR-146a. Moreover, exosomes derived from MM cells contained miR-146a and could be transferred into MSC. After overexpressing miR-146a in MSC, secretion of several cytokines and chemokines including CXCL1, IL6, IL-8, IP-10, MCP-1, and CCL-5 was elevated, resulting in the enhancement of MM cell viability and migration. DAPT, an inhibitor of the endogenous Notch pathway, was able to abrogate the miR-146a-induced increase of cytokines in MSC, suggesting the involvement of the Notch pathway. Taken together, our results demonstrate a positive feedback loop between MM cells and MSC: MM cells promote the increase of miR146a in MSC which leads to more cytokine secretion, which in turn favors MM cell growth and migration.
Collapse
|
52
|
Zhu Z, Fang Z, Hu X, Zhou S. MicroRNAs and mesenchymal stem cells: hope for pulmonary hypertension. Braz J Cardiovasc Surg 2016; 30:380-5. [PMID: 26313730 PMCID: PMC4541786 DOI: 10.5935/1678-9741.20150033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension is a devastating and refractory disease and there is no cure
for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel
methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may
participate in the process of pulmonary hypertension. It seems microRNAs or
mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in
animals and even improve heart and lung function during pulmonary hypertension.
Nevertheless, the relationship between mesenchymal stem cells, microRNAs and
pulmonary hypertension is not clear. And the mechanisms underlying their function
still need to be investigated. In this study we review the recent findings in
mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment,
focusing on the potential role of microRNAs regulated mesenchymal stem cells in
pulmonary hypertension and the role of exosomes between mesenchymal stem cells and
pulmonary hypertension.
Collapse
Affiliation(s)
- Zhaowei Zhu
- The Second Xiangya Hospital, Central South University, Huan Province, CN
| | - Zhenfei Fang
- Department of Cardiology, Second Xiangya Hospital, Central South University, Huan Province, CN
| | - Xinqun Hu
- Department of Cardiology, Second Xiangya Hospital, Central South University, Huan Province, CN
| | - Shenghua Zhou
- The Second Xiangya Hospital, Central South University, Huan Province, CN
| |
Collapse
|
53
|
Raut A, Khanna A. Enhanced expression of hepatocyte-specific microRNAs in valproic acid mediated hepatic trans-differentiation of human umbilical cord derived mesenchymal stem cells. Exp Cell Res 2016; 343:237-247. [PMID: 27001466 DOI: 10.1016/j.yexcr.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/29/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) play an important role in the control of cell fate determination during differentiation. In this study, we analyzed the expression pattern of microRNAs (miRNAs) during hepatic trans-differentiation. The protocol employed the use of histone deacetylase inhibitor (HDACI), valproic acid (VPA) to induce hepatic trans-differentiation of human umbilical cord Wharton's jelly derived mesenchymal stem cells (hUC-MSCs). The differentiated hepatocyte like cells (HLCs) from hUC-MSCs shared typical characteristics with mature hepatocytes, including morphology, expression of hepatocyte -specific genes at the molecular and cellular level. Moreover, the functionality of HLCs was confirmed through various liver function tests such as periodic acid-Schiff (PAS) stain for glycogen accumulation, enzyme-linked immunosorbent assay (ELISA) for synthesis of albumin and release of urea. The aim of the present work was to examine the effect of VPA treatment on miRNA expression during hepatic trans-differentiation. The analysis at miRNA level showed that there was a significant increase in expression of miRNAs involved in hepatic differentiation, due to VPA pre-treatment during differentiation. The study, thus demonstrated that improved expression of hepatocyte-specific miRNAs, miR-23b cluster (miR-27b-3p, miR-24-1-5p and miR-23b-3p), miR-30a-5p, miR-26a-5p, miR-148a-3p, miR-192-5p, miR-122-5p due to VPA pre-treatment contributed to a more efficient hepatic trans-differentiation from hUC-MSCs. The putative targets of these upregulated miRNAs were predicted using Bioinformatics analysis. Finally, miR-122-5p, highly upregulated miRNA during hepatic differentiation, was selected for target verification studies. Thus, this study also provides the basis for the function of miR-122-5p during hepatic differentiation of hUC-MSCs.
Collapse
Affiliation(s)
- Akshata Raut
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai, Maharashtra, India
| | - Aparna Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai, Maharashtra, India.
| |
Collapse
|
54
|
Ning MS, Andl T. Concise review: custodians of the transcriptome: how microRNAs guard stemness in squamous epithelia. Stem Cells 2016; 33:1047-54. [PMID: 25524325 DOI: 10.1002/stem.1922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
At the core of every dynamic epithelium resides a population of carefully regulated stem cells ensuring its maintenance and balance. The complex mammalian epidermis is no exception to this rule. The last decade has delivered a wealth of knowledge regarding the biology of adult stem cells, but questions still remain regarding the intricate details of their function and maintenance. To help address these gaps, we turn to the small, single-stranded RNA molecules known as microRNAs. Since their discovery, microRNAs have provided us with novel insights and ground-breaking impulses to enhance our understanding of the biological sciences. Due to their unique role in post-transcriptional regulation, microRNAs are essential to cutaneous biology as well as the epidermal stem cell. By serving as buffers to balance between epithelial stemness, proliferation, and differentiation, microRNAs play essential roles in the maintenance of cutaneous stem cells and their transition out of the stem cell compartment. Following an updated overview of microRNA biology, we summarize the current knowledge of the role of microRNAs in cutaneous stem cells, focusing on three major players that have dominated the recent literature: miR-205, miR-203, and miR-125b. We then review clinical applications, discussing the potential of microRNAs as therapeutic targets in regenerative and oncological stem cell-based medicine.
Collapse
Affiliation(s)
- Matthew S Ning
- Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
55
|
Park H, Park H, Pak HJ, Yang DY, Kim YH, Choi WJ, Park SJ, Cho JA, Lee KW. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction. Differentiation 2015; 90:91-100. [PMID: 26677981 DOI: 10.1016/j.diff.2015.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation.
Collapse
Affiliation(s)
- Ho Park
- Medical Research Institute & Adult Stem Cell Research Institute, Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 108 Pyung-Dong, Jongro-Gu, Seoul, Republic of Korea; Department of Clinical Laboratory Science, Wonkwang Health Science University, 514 Iksandaero, Iksan, Jeonbuk, Republic of Korea
| | - Hyeon Park
- Wide River Institute of Immunology, Seoul National University College of Medicine,103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Ha-Jin Pak
- Medical Research Institute & Adult Stem Cell Research Institute, Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 108 Pyung-Dong, Jongro-Gu, Seoul, Republic of Korea
| | | | - Yun-Hong Kim
- Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won-Jun Choi
- Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Jin Park
- Department of Orthopedic Surgery Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Ah Cho
- Wide River Institute of Immunology, Seoul National University College of Medicine,103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea; BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Kyo-Won Lee
- Medical Research Institute & Adult Stem Cell Research Institute, Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 108 Pyung-Dong, Jongro-Gu, Seoul, Republic of Korea
| |
Collapse
|
56
|
Pizzute T, Lynch K, Pei M. Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system. Stem Cell Rev Rep 2015; 11:119-32. [PMID: 25113801 DOI: 10.1007/s12015-014-9546-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue-specific stem cells are found throughout the body and, with proper intervention and environmental cues, these stem cells exercise their capabilities for differentiation into several lineages to form cartilage, bone, muscle, and adipose tissue in vitro and in vivo. Interestingly, it has been widely demonstrated that they do not differentiate with the same efficacy during lineage-specific differentiation studies, as the tissue-specific stem cells are generally more effective when differentiating toward the tissues from which they were derived. This review focuses on four mesodermal lineages for tissue-specific stem cell differentiation: adipogenesis, chondrogenesis, myogenesis, and osteogenesis. It is intended to give insight into current multilineage differentiation and comparative research, highlight and contrast known trends regarding differentiation, and introduce supporting evidence which demonstrates particular tissue-specific stem cells' superiority in lineage-specific differentiation, along with their resident tissue origins and natural roles. In addition, some epigenetic and transcriptomic differences between stem cells which may explain the observed trends are discussed.
Collapse
Affiliation(s)
- Tyler Pizzute
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | | | | |
Collapse
|
57
|
Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int 2015; 2016:1073140. [PMID: 26649044 PMCID: PMC4663346 DOI: 10.1155/2016/1073140] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.
Collapse
|
58
|
De-Ugarte L, Yoskovitz G, Balcells S, Güerri-Fernández R, Martinez-Diaz S, Mellibovsky L, Urreizti R, Nogués X, Grinberg D, García-Giralt N, Díez-Pérez A. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genomics 2015; 8:75. [PMID: 26555194 PMCID: PMC4640351 DOI: 10.1186/s12920-015-0149-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators of gene expression, with documented roles in bone metabolism and osteoporosis, suggesting potential therapeutic targets. Our aim was to identify miRNAs differentially expressed in fractured vs nonfractured bones. Additionally, we performed a miRNA profiling of primary osteoblasts to assess the origin of these differentially expressed miRNAs. Methods Total RNA was extracted from (a) fresh femoral neck trabecular bone from women undergoing hip replacement due to either osteoporotic fracture (OP group, n = 6) or osteoarthritis in the absence of osteoporosis (Control group, n = 6), matching the two groups by age and body mass index, and (b) primary osteoblasts obtained from knee replacement due to osteoarthritis (n = 4). Samples were hybridized to a microRNA array containing more than 1900 miRNAs. Principal component analysis (PCA) plots and heat map hierarchical clustering were performed. For comparison of expression levels, the threshold was set at log fold change > 1.5 and a p-value < 0.05 (corrected for multiple testing). Results Both PCA and heat map analyses showed that the samples clustered according to the presence or absence of fracture. Overall, 790 and 315 different miRNAs were detected in fresh bone samples and in primary osteoblasts, respectively, 293 of which were common to both groups. A subset of 82 miRNAs was differentially expressed (p < 0.05) between osteoporotic and control osteoarthritic samples. The eight miRNAs with the lowest p-values (and for which a validated miRNA qPCR assay was available) were assayed, and two were confirmed: miR-320a and miR-483-5p. Both were over-expressed in the osteoporotic samples and expressed in primary osteoblasts. miR-320a is known to target CTNNB1 and predicted to regulate RUNX2 and LEPR, while miR-483-5p down-regulates IGF2. We observed a reduction trend for this target gene in the osteoporotic bone. Conclusions We identified two osteoblast miRNAs over-expressed in osteoporotic fractures, which opens novel prospects for research and therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0149-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura De-Ugarte
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain
| | - Guy Yoskovitz
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain
| | - Susana Balcells
- Departament de Genètica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Universitat de Barcelona, IBUB, Barcelona, Spain
| | - Robert Güerri-Fernández
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain.,Internal Medicine Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santos Martinez-Diaz
- Orthopaedic Surgery and Traumatology Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain.,Internal Medicine Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roser Urreizti
- Departament de Genètica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Universitat de Barcelona, IBUB, Barcelona, Spain
| | - Xavier Nogués
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain.,Internal Medicine Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Grinberg
- Departament de Genètica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Universitat de Barcelona, IBUB, Barcelona, Spain
| | - Natalia García-Giralt
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain.
| | - Adolfo Díez-Pérez
- Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain.,Internal Medicine Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
59
|
Dong CL, Liu HZ, Zhang ZC, Zhao HL, Zhao H, Huang Y, Yao JH, Sun TS. The influence of MicroRNA-150 in Osteoblast Matrix Mineralization. J Cell Biochem 2015. [PMID: 26212040 DOI: 10.1002/jcb.25245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chun-Ling Dong
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Hao-Zhi Liu
- Department of Pharmacology; Linyi Health School; Linyi 276000 P.R. China
| | - Zhen-Chun Zhang
- Department of Rheumatism Immunity; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Huan-Li Zhao
- Department of Orthopedics; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Hui Zhao
- Department of Rheumatism Immunity; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Yan Huang
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Jian-Hua Yao
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| | - Tian-Sheng Sun
- Department of Nursing; Linyi People's Hospital; Linyi 276003 P.R. China
| |
Collapse
|
60
|
Hyun J, Wang S, Kim J, Kim GJ, Jung Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep 2015; 5:14135. [PMID: 26370741 PMCID: PMC4569897 DOI: 10.1038/srep14135] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Although chorionic plate-derived mesenchymal stem cells (CP-MSCs) were shown to promote liver regeneration, the mechanisms underlying the effect remain unclear. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged liver. MSCs release microRNAs mediating various cellular responses. Hence, we hypothesized that microRNAs from CP-MSCs regulated Hh signaling, which influenced liver regeneration. Livers were obtained from carbon tetrachloride (CCl4)-treated rats transplanted with human CP-MSCs (Tx) or saline (non-Tx). Sonic Hh, one of Hh ligands, increased in CCl4-treated liver, whereas it decreased in CP-MSC-treated liver with CCl4. The expression of Hh-target genes was significantly downregulated in the Tx. Reduced expansion of progenitors and regressed fibrosis were observed in the liver of the Tx rats. CP-MSCs suppressed the expression of Hh and profibrotic genes in co-cultured LX2 (human hepatic stellate cell) with CP-MSCs. MicroRNA-125b targeting smo was retained in exosomes of CP-MSCs. CP-MSCs with microRNA-125b inhibitor failed to attenuate the expression of Hh signaling and profibrotic genes in the activated HSCs. Therefore, these results demonstrated that microRNA-125b from CP-MSCs suppressed the activation of Hh signaling, which promoted the reduced fibrosis, suggesting that microRNA-mediated regulation of Hh signaling contributed to liver regeneration by CP-MSCs.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Integrated Biological Science, Pusan, 609-735, Korea
| | - Sihyung Wang
- Department of Integrated Biological Science, Pusan, 609-735, Korea
| | - Jieun Kim
- Department of Integrated Biological Science, Pusan, 609-735, Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, 463-400, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan, 609-735, Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 609-735, Korea
| |
Collapse
|
61
|
MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem 2015; 411:23-33. [DOI: 10.1007/s11010-015-2565-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
|
62
|
Gori M, Trombetta M, Santini D, Rainer A. Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opin Biol Ther 2015. [DOI: 10.1517/14712598.2015.1071349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Nguyen LH, Diao HJ, Chew SY. MicroRNAs and their potential therapeutic applications in neural tissue engineering. Adv Drug Deliv Rev 2015; 88:53-66. [PMID: 25980934 DOI: 10.1016/j.addr.2015.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/01/2023]
Abstract
The inherent poor regeneration capacity of nerve tissues, especially in the central nervous system, poses a grand challenge for neural tissue engineering. After injuries, the local microenvironment often contains potent inhibitory molecules and glial scars, which do not actively support axonal regrowth. MicroRNAs can direct fate of neural cells and are tightly controlled during nerve development. Thus, RNA interference using microRNAs is a promising method to enhance nerve regeneration. Although the physiological roles of microRNA expression levels in various cellular activities or disease conditions have been extensively investigated, the translational use of these understanding for neural tissue engineering remains limited. This review aims to highlight essential microRNAs that participate in cellular behaviors within the adult nervous system and their potential therapeutic applications. In addition, possible delivery methods are also suggested for effective gene silencing in neural tissue engineering.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hua Jia Diao
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
64
|
Park SK, Lee JS, Choi EK, You D, Kim CS, Suh N. Global knockdown of microRNAs affects the expression of growth factors and cytokines in human adipose-derived mesenchymal stem cells. BMB Rep 2015; 47:469-74. [PMID: 24912780 PMCID: PMC4206720 DOI: 10.5483/bmbrep.2014.47.8.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 01/09/2023] Open
Abstract
Cell therapies utilizing mesenchymal stem cells (MSCs) have a great potential in many research and clinical settings. The mechanisms underlying the therapeutic effects of MSCs have been studied previously and the paracrine effects elicited by their production of various growth factors and cytokines were recognized as being crucial. However, the molecular controls that govern these paracrine effects remain poorly understood. To elucidate the molecular regulators of this process, we performed a global knockdown of microRNAs (miRNAs) in human adipose-derived mesenchymal stem cells (hADSCs) by inhibiting DGCR8, a key protein in miRNA biogenesis. Global disruption of miRNA biogenesis in hADSCs caused dramatic changes in the expression of subsets of growth factors and cytokines. By performing an extensive bioinformatic analysis, we were able to associate numerous putative miRNAs with these genes. Taken together, our results strongly suggest that miRNAs are essential for the production of growth factors and cytokines in hADSCs. [BMB Reports 2014; 47(8): 469-474]
Collapse
Affiliation(s)
- Seul-Ki Park
- Asan Institute for Life Sciences, Asan Medical Center; Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jung Shin Lee
- Institute for Innovative Cancer Research; Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Eun Kyung Choi
- Institute for Innovative Cancer Research; Department of Internal Medicine; Department of Radiation Oncology; Center for Development and Commercialization of Anti-Cancer Therapeutics, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Dalsan You
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Nayoung Suh
- Asan Institute for Life Sciences, Asan Medical Center; Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
65
|
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3:15005. [PMID: 26273537 PMCID: PMC4472151 DOI: 10.1038/boneres.2015.5] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Naznin Akhtar
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Hossen Mohammad Jamil
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Rajat Suvra Banik
- Lab of Network Biology, Biotechnology and Genetic Engineering Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Sikder M Asaduzzaman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| |
Collapse
|
66
|
Wang YM, Ding XB, Dai Y, Liu XF, Guo H, Zhang Y. Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Mol Cell Biochem 2015; 404:113-22. [DOI: 10.1007/s11010-015-2371-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
67
|
Li YT, Cai HF, Zhang ZL. Timing of the initiation of bisphosphonates after surgery for fracture healing: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2015; 26:431-41. [PMID: 25266485 DOI: 10.1007/s00198-014-2903-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
SUMMARY We performed a systematic review and meta-analysis of randomized clinical trials. Early administration of bisphosphonates (BPs) after surgery did not appear to delay fracture healing time either radiologically or clinically. Furthermore, the anti-resorptive efficacy of BPs given immediately after surgical repair should positively affect the rate of subsequent fractures. INTRODUCTION Bisphosphonates (BPs) are widely used in the prophylaxis and treatment of osteoporosis. However, early administration of BPs after surgical repair of a fracture may limit the reserve capacity of bone to heal. The aim of this review and meta-analysis was to analyze the benefits and adverse effects of early administration of BPs and give recommendations regarding when BPs should be utilized. METHODS We identified randomized controlled trials comparing the early administration of BPs to placebo, delayed BP treatment, or no therapy in adult patients after surgery. The search was performed in PubMed, the Cochrane Library, and Embase. RESULTS Ten studies with 2888 patients were included. Four trials used alendronate, three trials used zoledronic, two trials used risedronate, and one trial used etidronate. Early administration of BPs was considered less than 3 months after surgery. Patients treated with BP therapy had no significant differences in radiological fracture healing times compared with patients in the control group (mean difference [MD] 0.47, 95% confidence interval [CI] -2.75 to 3.69). There were also no significant differences in the rate of delay or nonunion of fracture healing (odds ratio [OR] 0.98, 95% CI 0.64 to 1.50). However, the bone mineral density (BMD) of total hips did significantly improve after 12 months of treatment with BPs. And most bone turnover markers of patients in the study group were significantly decreased. CONCLUSIONS Early administration of BPs after surgery did not appear to delay fracture healing time either radiologically or clinically. Furthermore, according to the changes in BMD and bone turnover markers, the anti-resorptive efficacy of BPs given immediately after surgical repair should positively affect the rate of subsequent fractures.
Collapse
Affiliation(s)
- Y-T Li
- Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | | | | |
Collapse
|
68
|
The Expression and Significance of the Plasma Let-7 Family in Anti-N-methyl-D-aspartate Receptor Encephalitis. J Mol Neurosci 2015; 56:531-9. [PMID: 25603816 DOI: 10.1007/s12031-015-0489-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/01/2015] [Indexed: 01/09/2023]
Abstract
The study aimed to investigate the expression and significance of the plasma let-7 family in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Blood samples from 5 anti-NMDAR encephalitis patients and 5 negative controls were collected for microarray analysis. Blood samples from10 anti-NMDAR encephalitis patients, 10 anti-NMDAR encephalitis patients whose physical conditions have improved after 3 months of immunotherapy, 20 virus (meningitis) encephalitis patients, 20 tuberculosis (meningitis) encephalitis patients, 10 purulent (meningitis) encephalitis patients, 20 cerebral cysticercosis patients, 20 ischemic stroke patients, 20 intracerebral hemorrhage patients, 15 neuromyelitis optica patients, 15 multiple sclerosis patients, 15 moyamoya disease patients, and 20 negative controls were collected for real-time quantitative PCR (qRT-PCR) analysis. The expression levels of let-7a, let-7b, let-7d, and let-7f were significantly down-regulated in anti-NMDAR encephalitis compared with the negative controls (NC). The expression levels of let-7a, let-7d, and let-7f were significantly down-regulated in other nervous system diseases compared with the NC group while the expression level of let-7b was statistically insignificant in other nervous system diseases compared with the NC group. In addition, there was no significant dysregulation of let-7b in the anti-NMDAR encephalitis treatment group compared with the NC. Let-7b may be a potential diagnostic marker and an indicator that reflected the molecular mechanism of anti-NMDAR encephalitis.
Collapse
|
69
|
Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res 2014; 29:2307-22. [PMID: 25264148 PMCID: PMC4455538 DOI: 10.1002/jbmr.2373] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023]
Abstract
The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | | |
Collapse
|
70
|
Ragni E, Parazzi V, Crosti M, Moro M, Giordano R, Lazzari L. Diet composition transiently modulates proliferative and potency features of human cord blood-derived mesenchymal stem cells. Int J Biochem Cell Biol 2014; 55:269-78. [PMID: 25256683 DOI: 10.1016/j.biocel.2014.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSC) emerged in the last few years as a promise in regenerative medicine and have been actively tested in several clinical trials worldwide. However, the lack of common standards and a precise definition of MSC preparations remain a major obstacle in research and application. In this study, we compared the effects during culture of two different MSC commercial media (aMEM and SPE-IV) on the proliferative capacities, phenotypic and molecular features in human cord blood derived-MSC lines. Moreover, as miRNA are markers of stem cell multipotency and regulators of somatic cell reprogramming, we performed a miRNome analysis in both conditions. As a result, we observed that SPE-IV promoted a faster growth and modulated stemness and proliferation associated genes such as PDGFRB, p16 and p21. Notably, in aMEM miR-335 and miR-302b, both proposed as putative stemness markers, were upregulated together with miRNAs reported to decrease adipo- and osteogenesis confirming the observed reduced differentiation potential after growth in this condition. Intriguingly, phenotypic divergences were entirely due to culturing conditions and, most importantly, completely transitory since, after medium switch, the cells were able to revert their signatures. Thus, it emerges as crucial keeping constant the experimental settings, starting from culturing conditions, to avoid misleading characterization of stemness and/or potency markers when the eventual goal is unequivocal definition of such parameters for future clinical choice.
Collapse
Affiliation(s)
- Enrico Ragni
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Parazzi
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Monica Moro
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Rosaria Giordano
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lorenza Lazzari
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
71
|
Alizadeh E, Akbarzadeh A, Eslaminejad MB, Barzegar A, Hashemzadeh S, Nejati-Koshki K, Zarghami N. Up regulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of let-7b in mesenchymal stem cells. Chem Biol Drug Des 2014; 85:268-79. [PMID: 25059576 DOI: 10.1111/cbdd.12398] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/31/2014] [Accepted: 07/12/2014] [Indexed: 12/15/2022]
Abstract
MicroRNAs are small non-coding RNAs that regulate key processes of the stem cells. Although, microRNAs have emerged as powerful regulators of differentiation, few studies have been focused on the post-transcriptional regulation of hepatic differentiation in mesenchymal stem cells (MSCs) by microRNAs. The aim of this study was to evaluate the specific effect of let-7 microRNAs in particular let-7b in hepatic commitment of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). The dynamic expression profile of let-7a, b, c microRNAs and two liver-enriched transcription factors (LETFs) HNF4a and HNF6 was studied during in vitro hepatic differentiation of hAT-MSCs. Let-7b was used for transient overexpression and knockdown investigations. It was shown that the expression of LETFs is inversely correlated with those of let-7 miRNAs during differentiation progress (p < 0.05). Inhibition of let-7b caused upregulation of LETFs, an increase in the expression of miR-122 (p < 0.01) emulating the features of functional hepatocytes, and accumulation of hAT-MSCs in the G0 /G1 phase of cell cycle, triggering initiation of hepatic commitment. In conclusion, transient inhibition of let-7b activates hepatic differentiation of hAT-MSCs. The findings of this work might help optimization of in vitro hepatogenic differentiation utilizing microRNAs and hAT-MSCs that could be used for therapeutic purposes.
Collapse
Affiliation(s)
- Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
72
|
Pourrajab F, Babaei Zarch M, BaghiYazdi M, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation. Int J Biochem Cell Biol 2014; 55:318-28. [PMID: 25150833 DOI: 10.1016/j.biocel.2014.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 12/26/2022]
Abstract
Stem cells (SCs) have self-renew ability and give rise to committed progenitors of a single or multiple lineages. Elucidating the genetic circuits that govern SCs to self-renew and to differentiate is essential to understand the roles of SCs and promise of these cells in regenerative medicine. MicroRNAs are widespread agents playing critical roles in regulatory networks of transcriptional expression and have been strongly linked with SCs for simultaneous maintenance of pluripotency properties such as self-renewal. This review aims to provide state-of-the-art presentations on microRNA-dependent molecular mechanisms contribute to the maintenance of pluripotency. Understanding the microRNA signature interactions, in conjunction with cell signaling, is critical for development of improved strategies to reprogram differentiated cells or direct differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Mohammad BaghiYazdi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | |
Collapse
|
73
|
Guo L, Zhou Y, Wang S, Wu Y. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med 2014; 18:2009-19. [PMID: 25090911 PMCID: PMC4244016 DOI: 10.1111/jcmm.12336] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 04/28/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold profound promise in tissue repair/regeneration. However, MSCs undergo remarkable spontaneous differentiation and aging during monolayer culture expansion. In this study, we found that 2-3 days of three-dimensional (3D) spheroid culture of human MSCs (hMSCs) that had been expanded in monolayer for six passages increased their clonogenicity and differentiation potency to neuronal cells. Moreover, in accordance with these changes, the expression levels of miRNA which were involved in stem cell potency were changed and levels of histone H3 acetylation in K9 in promoter regions of Oct4, Sox2 and Nanog were elevated. Our results indicate that spheroid culture increases their multi-potency and changes the epigenetic status of pluripotent genes in hMSCs.
Collapse
Affiliation(s)
- Ling Guo
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | | | | | | |
Collapse
|
74
|
Davoodian N, Lotfi AS, Soleimani M, Mowla SJ. MicroRNA-122 Overexpression Promotes Hepatic Differentiation of Human Adipose Tissue-Derived Stem Cells. J Cell Biochem 2014; 115:1582-93. [DOI: 10.1002/jcb.24822] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Nahid Davoodian
- Department of Clinical Biochemistry, Faculty of Medical Science; Tarbiat Modares University; Tehran Iran
| | - Abbas S. Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Science; Tarbiat Modares University; Tehran Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
75
|
Cheung KSC, Sposito N, Stumpf PS, Wilson DI, Sanchez-Elsner T, Oreffo ROC. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS One 2014; 9:e98063. [PMID: 24892945 PMCID: PMC4043645 DOI: 10.1371/journal.pone.0098063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRs) play a pivotal role in a variety of biological processes including stem cell differentiation and function. Human foetal femur derived skeletal stem cells (SSCs) display enhanced proliferation and multipotential capacity indicating excellent potential as candidates for tissue engineering applications. This study has examined the expression and role of miRs in human foetal femur derived SSC differentiation along chondrogenic and osteogenic lineages. Cells isolated from the epiphyseal region of the foetal femur expressed higher levels of genes associated with chondrogenesis while cells from the foetal femur diaphyseal region expressed higher levels of genes associated with osteogenic differentiation. In addition to the difference in osteogenic and chondrogenic gene expression, epiphyseal and diaphyseal cells displayed distinct miRs expression profiles. miR-146a was found to be expressed by human foetal femur diaphyseal cells at a significantly enhanced level compared to epiphyseal populations and was predicted to target various components of the TGF-β pathway. Examination of miR-146a function in foetal femur cells confirmed regulation of protein translation of SMAD2 and SMAD3, important TGF-β and activin ligands signal transducers following transient overexpression in epiphyseal cells. The down-regulation of SMAD2 and SMAD3 following overexpression of miR-146a resulted in an up-regulation of the osteogenesis related gene RUNX2 and down-regulation of the chondrogenesis related gene SOX9. The current findings indicate miR-146a plays an important role in skeletogenesis through attenuation of SMAD2 and SMAD3 function and provide further insight into the role of miRs in human skeletal stem cell differentiation modulation with implications therein for bone reparation.
Collapse
Affiliation(s)
- Kelvin S. C. Cheung
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Nunzia Sposito
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Patrick S. Stumpf
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - David I. Wilson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
76
|
Abstract
Adipocyte differentiation, termed adipogenesis, is a complicated process in which pluripotent mesenchymal stem cells differentiate into mature adipocytes. The process of adipocyte differentiation is tightly regulated by a number of transcription factors, hormones and signaling pathway molecules. Recent studies have demonstrated that microRNAs, which belong to small noncoding RNA species, are also involved in adipocyte differentiation. In vivo and in vitro studies have revealed that various microRNAs affect adipogenesis by targeting several adipogenic transcription factors and key signaling molecules. In this review, we will summarize the roles of microRNAs in adipogenesis and their target genes associated with each stage of adipocyte differentiation.
Collapse
Affiliation(s)
- You Hwa Son
- Seoul National University School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sojeong Ka
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - A Young Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jae Bum Kim
- Seoul National University School of Biological Sciences, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| |
Collapse
|
77
|
van der Eerden BCJ. MicroRNAs in the skeleton: cell-restricted or potent intercellular communicators? Arch Biochem Biophys 2014; 561:46-55. [PMID: 24832391 DOI: 10.1016/j.abb.2014.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in cell proliferation, differentiation and apoptosis and have been associated with many diseases and physiological states. Within the skeleton, both the bone forming cells, osteoblasts, and the bone degrading cells, osteoclasts, are mostly being stimulated by miRNAs through downregulation of inhibitors of bone cell differentiation. Besides miRNAs affecting master genes of bone cell differentiation and function in a cell-restricted manner, evidence is gathering that miRNAs are excreted into the local environment but also into the circulation, implicating a role for miRNAs in nearby or even distant target cells. In this review, the most recent novel miRNAs implicated in bone cell differentiation regulation will be described but also their potential paracrine or endocrine role, thus reinforcing the concept that miRNAs may function as powerful communicators between cell types or tissues.
Collapse
|
78
|
Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. Int J Biol Macromol 2014; 66:194-202. [DOI: 10.1016/j.ijbiomac.2014.02.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023]
|
79
|
Yu IW, Espinoza DA, McAlexander MA, Witwer KW. OpenArray profiling reveals no differential modulation of miRNA by positive and negative CD4+ T cell immunoselection. Exp Hematol 2014; 42:11-3. [PMID: 24096121 PMCID: PMC4136421 DOI: 10.1016/j.exphem.2013.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Ian W Yu
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Diego A Espinoza
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa A McAlexander
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
80
|
Greco SJ, Rameshwar P. Analysis of the transfer of circulating microRNA between cells mediated by gap junction. Methods Mol Biol 2013; 1024:87-96. [PMID: 23719944 DOI: 10.1007/978-1-62703-453-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
A significant breakthrough in the field of research was the identification of microRNAs (miRNAs), which are small molecule, single-stranded nucleic acids. MiRNAs have diverse roles in cellular biology with the ability for translation in different areas of medicine. The size of miRNAs provides them for passage through gap junction. Recent studies have demonstrated the passage of miRNAs through gap junctional intercellular communication (GJIC) among cancer cells and between breast cancer cells and bone marrow stroma. The transfer of miRNAs has been implicated in the etiology of breast cancer dormancy. To this end, we have developed a miRNA reporter assay to assess the ability of miRNAs to be transferred between stem and breast cancer cells and target a specific recognition sequence.
Collapse
Affiliation(s)
- Steven J Greco
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | | |
Collapse
|
81
|
Trohatou O, Zagoura D, Bitsika V, Pappa KI, Antsaklis A, Anagnou NP, Roubelakis MG. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med 2013; 3:54-68. [PMID: 24307698 DOI: 10.5966/sctm.2013-0081] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have recently been shown to act as regulatory signals for maintaining stemness and for determining the fate of adult and fetal stem cells, such as human mesenchymal stem cells (hMSCs). hMSCs constitute a population of multipotent stem cells that can be expanded easily in culture and are able to differentiate into many lineages. We have isolated two subpopulations of fetal mesenchymal stem cells (MSCs) from amniotic fluid (AF) known as spindle-shaped (SS) and round-shaped (RS) cells and characterized them on the basis of their phenotypes, pluripotency, proliferation rates, and differentiation potentials. In this study, we analyzed the miRNA profile of MSCs derived from AF, bone marrow (BM), and umbilical cord blood (UCB). We initially identified 67 different miRNAs that were expressed in all three types of MSCs but at different levels, depending on the source. A more detailed analysis revealed that miR-21 was expressed at higher levels in RS-AF-MSCs and BM-MSCs compared with SS-AF-MSCs. We further demonstrated for the first time a direct interaction between miR-21 and the pluripotency marker Sox2. The induction of miR-21 strongly inhibited Sox2 expression in SS-AF-MSCs, resulting in reduced clonogenic and proliferative potential and cell cycle arrest. Strikingly, the opposite effect was observed upon miR-21 inhibition in RS-AF-MSCs and BM-MSCs, which led to an enhanced proliferation rate. Finally, miR-21 induction accelerated osteogenesis and impaired adipogenesis and chondrogenesis in SS-AF-MSCs. Therefore, these findings suggest that miR-21 might specifically function by regulating Sox2 expression in human MSCs and might also act as a key molecule determining MSC proliferation and differentiation.
Collapse
Affiliation(s)
- Ourania Trohatou
- Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece; Cell and Gene Therapy Laboratory, Center of Basic Research II, and Biotechnology Laboratory, Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; First Department of Obstetrics and Gynecology, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
82
|
MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol Cell Biochem 2013; 387:151-8. [DOI: 10.1007/s11010-013-1880-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/18/2013] [Indexed: 01/15/2023]
|
83
|
Weber M, Sotoca AM, Kupfer P, Guthke R, van Zoelen EJ. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation. BMC SYSTEMS BIOLOGY 2013; 7:124. [PMID: 24219887 PMCID: PMC4225824 DOI: 10.1186/1752-0509-7-124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/30/2013] [Indexed: 01/12/2023]
Abstract
Background Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Results Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Conclusions Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.
Collapse
Affiliation(s)
- Michael Weber
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr, 11a, 07745 Jena, Germany.
| | | | | | | | | |
Collapse
|
84
|
MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells. Mol Cell Biochem 2013; 387:227-39. [PMID: 24218084 DOI: 10.1007/s11010-013-1888-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/05/2013] [Indexed: 01/27/2023]
Abstract
Satb2 acts as a potent transcription factor to promote osteoblast differentiation and bone regeneration. Recently, microRNAs (miRNA) have been identified as critical regulators of osteogenic differentiation. This study aimed to identify specific miRNAs and their regulatory roles in the process of Satb2-induced osteogenic differentiation. We studied the differentially expressed miRNAs by Satb2 overexpression in murine bone marrow stromal cells using miRNA microarray. Ten down-regulated miRNAs including miR-27a, miR-125a-5p, and miR-466f-3p, and 18 up-regulated miRNAs including miR-17, miR-20a and miR-210 were found to be differentially expressed and their expression were verified by quantitative real time PCR. The differentially expressed miRNAs were further subjected to gene ontology and KEGG analysis. The highly enriched GOs and KEGG pathway showed target genes of these miRNAs were significantly involved in multiple biological processes (mesenchymal cell differentiation, bone formation, and skeletal development), and several osteogenic pathways (TGF-β/BMP, MAPK, and Wnt signaling pathway). Finally, miR-27a was selected for target verification and function analysis. BMP2, BMPR1A, and Smad9, members of the TGF-β/BMP superfamily, which were predicted to be target genes of miR-27a, were confirmed to be significantly up-regulated in Satb2-overexpressing cells by quantitative real time PCR. Overexpression of miR-27a significantly inhibited osteogenesis and repressed BMP2, BMPR1A, and Smad9 expression. In this study, we identified that a number of differentially regulated miRNAs, whose target genes involved in the TGF-β/BMP signaling pathway, play an important role in the early stage of Satb2-induced osteogenic differentiation.
Collapse
|
85
|
Xu S, Cecilia Santini G, De Veirman K, Vande Broek I, Leleu X, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One 2013; 8:e79752. [PMID: 24223191 PMCID: PMC3819242 DOI: 10.1371/journal.pone.0079752] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Previous studies have demonstrated that mesenchymal stem cells from multiple myeloma (MM) patients (MM-hMSCs) display a distinctive gene expression profile, an enhanced production of cytokines and an impaired osteogenic differentiation ability compared to normal donors (ND-hMSCs). However, the underlying molecular mechanisms are unclear. In the present study, we observed that MM-hMSCs exhibited an abnormal upregulation of miR-135b, showing meanwhile an impaired osteogenic differentiation and a decrease of SMAD5 expression, which is the target of miR-135b involved in osteogenesis. By gain and loss of function studies we confirmed that miR-135b negatively regulated hMSCs osteogenesis. We also found that MM cell-produced factors stimulated ND-hMSCs to upregulate the expression of miR-135b. Importantly, treatment with a miR-135b inhibitor promoted osteogenic differentiation in MM-hMSCs. Finally, we observed that MM cell-derived soluble factors could induce an upregulation of miR-135b expression in ND-hMSCs in an indirect coculture system and the miR-135b expression turned to normal level after the removal of MM cells. Collectively, we provide evidence that miR-135b is involved in the impaired osteogenic differentiation of MSCs derived from MM patients and might therefore be a promising target for controlling bone disease.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P.R.China
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Gaia Cecilia Santini
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kim De Veirman
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Isabelle Vande Broek
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Xavier Leleu
- Service d'Hématologie, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Ann De Becker
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ben Van Camp
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| |
Collapse
|
86
|
Shang J, Liu H, Zhou Y. Roles of microRNAs in prenatal chondrogenesis, postnatal chondrogenesis and cartilage-related diseases. J Cell Mol Med 2013; 17:1515-24. [PMID: 24373548 PMCID: PMC3914653 DOI: 10.1111/jcmm.12161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Abstract
Cartilage has limited repair and regeneration capacity, thus damage of cartilage often results in its dysfunction and even chronic diseases like osteoarthritis (OA). Chondrogenesis induced by tissue-engineering methods is essential to treating cartilage-related diseases. MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNAs which exert their biological effects by binding to the target messenger RNAs (mRNAs), resulting in decay or translation suppression of target mRNAs. There are emerging evidence indicating that miRNAs may play important roles in regulating both prenatal and postnatal chondrogenesis. During embryonic skeletal development, prenatal chondrogenesis is thought to be a precondition for formation of cartilage in developing limbs. Plenty of studies on different types of stem cells have undoubtedly proven their capacity of differentiating into chondrocytes. MiRNAs are found to comprehensively modulate these processes by establishing an interaction network with target genes, transcription factors and cytokines et al. In addition, translational application of miRNA technology has also been explored. In this review, we focus on the up-dated progress on regulatory mechanisms of miRNAs in prenatal and postnatal chondrogenesis. In addition, several miRNA target genes and roles of miRNAs in cartilage-related diseases are also discussed. This will contribute to studies of chondrogenesis mechanisms and development of new treating methods.
Collapse
Affiliation(s)
- Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
87
|
Choi E, Choi E, Hwang KC. MicroRNAs as novel regulators of stem cell fate. World J Stem Cells 2013; 5:172-187. [PMID: 24179605 PMCID: PMC3812521 DOI: 10.4252/wjsc.v5.i4.172] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/13/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted.
Collapse
|
88
|
Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013; 5:136-148. [PMID: 24179602 PMCID: PMC3812518 DOI: 10.4252/wjsc.v5.i4.136] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic tissue that is constantly renewed by the coordinated action of two cell types, i.e., the bone-resorbing osteoclasts and the bone-forming osteoblasts. However, in some circumstances, bone regeneration exceeds bone self repair capacities. This is notably often the case after bone fractures, osteolytic bone tumor surgery, or osteonecrosis. In this regard, bone tissue engineering with autologous or allogenic mesenchymal stem cells (MSCs) is been widely developed. MSCs can be isolated from bone marrow or other tissues such as adipose tissue or umbilical cord, and can be implanted in bone defects with or without prior amplification and stimulation. However, the outcome of most pre-clinical studies remains relatively disappointing. A better understanding of the successive steps and molecular mechanisms involved in MSC-osteoblastic differentiation appears to be crucial to optimize MSC-bone therapy. In this review, we first present the important growth factors that stimulate osteoblastogenesis. Then we review the main transcription factors that modulate osteoblast differentiation, and the microRNAs (miRs) that inhibit their expression. Finally, we also discuss articles dealing with the use of these factors and miRs in the development of new bone MSC therapy strategies. We particularly focus on the studies using human MSCs, since significant differences exist between osteoblast differentiation mechanisms in humans and mice for instance.
Collapse
|
89
|
He X, Zhang W, Liao L, Fu X, Yu Q, Jin Y. Identification and characterization of microRNAs by high through-put sequencing in mesenchymal stem cells and bone tissue from mice of age-related osteoporosis. PLoS One 2013; 8:e71895. [PMID: 23991002 PMCID: PMC3749187 DOI: 10.1371/journal.pone.0071895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/04/2013] [Indexed: 01/08/2023] Open
Abstract
The functional deficiencies of bone marrow-derived mesenchymal stem cells (MSCs) may contribute to the aging process and age-related diseases, such as osteoporosis. Although it has been reported that microRNAs (miRNAs) played an important role in mechanisms of gene regulation of aging, and their expression profiles in MSCs osteogenic differentiation were established in recent years, but it is still elusive for the dynamic patterns of miRNAs in aging process. Importantly, the miRNAs in aged bone tissue had not been yet reported so far. Here, we combined high through-put sequencing with computational techniques to detect miRNAs dynamics in MSCs and bone tissue of age-related osteoporosis. Among the detected miRNAs, 59 identified miRNAs in MSCs and 159 in bone showed significantly differential expressions. And more importantly, there existed 8 up-regulated and 30 down-regulated miRNAs in both MSCs and bone during the aging process, with the majority having a trend of down-regulation. Furthermore, after target prediction and KEGG pathway analysis, we found that their targeted genes were significantly enriched in pathways in cancer, which are complex genetic networks, comprise of a number of age-related pathways. These results strongly suggest that these analyzed miRNAs may be negatively involved in age-related osteoporosis, given that most of them showed a decreased expression, which could lay a good foundation for further functional analysis of these miRNAs in age-related osteoporosis.
Collapse
Affiliation(s)
- Xiaoning He
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Engineering technology center for tissue engineering of Xi’an, Shaanxi, China
- Department of Oral Histopathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenkai Zhang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Engineering technology center for tissue engineering of Xi’an, Shaanxi, China
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Li Liao
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Engineering technology center for tissue engineering of Xi’an, Shaanxi, China
- Department of Oral Histopathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Fu
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Engineering technology center for tissue engineering of Xi’an, Shaanxi, China
- Department of Oral Histopathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Yu
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Engineering technology center for tissue engineering of Xi’an, Shaanxi, China
- Department of Oral Histopathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
90
|
Ragni E, Montemurro T, Montelatici E, Lavazza C, Viganò M, Rebulla P, Giordano R, Lazzari L. Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Exp Cell Res 2013; 319:1562-74. [DOI: 10.1016/j.yexcr.2013.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/14/2013] [Accepted: 04/01/2013] [Indexed: 01/20/2023]
|
91
|
Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells. PLoS One 2013; 8:e62491. [PMID: 23671604 PMCID: PMC3650021 DOI: 10.1371/journal.pone.0062491] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/22/2013] [Indexed: 12/19/2022] Open
Abstract
The glycoprotein YKL-40 (CHI3L1) is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs) can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and trans-differentiated phenotypes.
Collapse
|
92
|
Wu R, Wang N, Li M, Zang W, Xu Y. Experimental study on the facilitative effects of miR-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells. Cell Biol Int 2013; 37:812-9. [DOI: 10.1002/cbin.10103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 03/09/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Na Wang
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Min Li
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Wenqiao Zang
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Yuming Xu
- Department of Neurology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou; 450052; P.R.; China
| |
Collapse
|
93
|
Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol 2013; 87:6037-43. [PMID: 23468503 DOI: 10.1128/jvi.00153-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses (HPVs) modulate expression of host microRNAs. Our deep-sequencing analysis of organotypic raft cultures identified microRNA 145 (miR-145) as a differentiation-dependent microRNA that has functionally active target sequences in the HPV-31 E1 and E2 open reading frames. Overexpression of miR-145 in HPV-positive cells resulted in reduced genome amplification and late gene expression, along with decreased levels of cellular transcription factor KLF-4. Our studies show that HPV modulates miR-145 expression to control its own life cycle.
Collapse
|
94
|
Katsman D, Stackpole EJ, Domin DR, Farber DB. Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina. PLoS One 2012; 7:e50417. [PMID: 23226281 PMCID: PMC3511553 DOI: 10.1371/journal.pone.0050417] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
Cell-derived microvesicles (MVs), recognized as important components of cell-cell communication, contain mRNAs, miRNAs, proteins and lipids and transfer their bioactive contents from parent cells to cells of other origins. We have studied the effect that MVs released from embryonic stem cells (ESMVs) have on retinal progenitor Müller cells. Cultured human Müller cells were exposed to mouse ESMVs every 48 hours for a total of 9 treatments. Morphological changes were observed by light microscopy in the treated cells, which grew as individual heterogeneous cells, compared to the uniform, spindle-like adherent cellular sheets of untreated cells. ESMVs transferred to Müller cells embryonic stem cell (ESC) mRNAs involved in the maintenance of pluripotency, including Oct4 and Sox2, and the miRNAs of the 290 cluster, important regulators of the ESC-specific cell cycle. Moreover, ESMV exposure induced up-regulation of the basal levels of endogenous human Oct4 mRNA in Müller cells. mRNA and miRNA microarrays of ESMV-treated vs. untreated Müller cells revealed the up-regulation of genes and miRNAs involved in the induction of pluripotency, cellular proliferation, early ocular genes and genes important for retinal protection and remodeling, as well as the down-regulation of inhibitory and scar-related genes and miRNAs involved in differentiation and cell cycle arrest. To further characterize the heterogeneous cell population of ESMV-treated Müller cells, their expression of retinal cell markers was compared to that in untreated control cells by immunocytochemistry. Markers for amacrine, ganglion and rod photoreceptors were present in treated but not in control Müller cells. Together, our findings indicate that ESMs induce de-differentiation and pluripotency in their target Müller cells, which may turn on an early retinogenic program of differentiation.
Collapse
Affiliation(s)
- Diana Katsman
- Jules Stein Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Emma J. Stackpole
- Jules Stein Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel R. Domin
- Jules Stein Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Debora B. Farber
- Jules Stein Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
95
|
Benoit DSW, Boutin ME. Controlling mesenchymal stem cell gene expression using polymer-mediated delivery of siRNA. Biomacromolecules 2012; 13:3841-9. [PMID: 23020123 DOI: 10.1021/bm301294n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
siRNA treatment has great promise to specifically control gene expression and select cell behaviors but has delivery challenges limiting its use. Particularly for applications in regenerative medicine, uniform and consistent delivery of siRNA to control gene expression and subsequent stem cell functions, such as differentiation, is paramount. Therefore, a diblock copolymer was examined for its ability to effectively deliver siRNA to mesenchymal stem cells (MSCs). The diblock copolymers, which are composed of cationic blocks for siRNA complexation, protection, and uptake and pH-responsive blocks for endosomal escape, were shown to facilitate nearly 100% MSC uptake of siRNA. This is vastly superior to a commercially available control, DharmaFECT, which resulted in only ~60% siRNA positive MSCs. Moreover, the diblock copolymer, at conditions that result in excellent knockdown (down to ~10% of control gene expression), was cytocompatible, causing no negative effects on MSC survivability. In contrast, DharmaFECT/siRNA treatment resulted in only ~60% survivability of MSCs. Longitudinal knockdown after siRNA treatment was examined and protein knockdown persists for ~6 days regardless of delivery system (diblock copolymer or DharmaFECT). Finally, MSC phenotype and differentiation capacity was examined after treatment with control siRNA. There was no statistically significant differences on cell surface markers of diblock copolymer/siRNA or DharmaFECT/siRNA-treated or cells measured 2 weeks after siRNA delivery compared to untreated cells. Upon differentiation with typical media/culture conditions to adipogenic, chondrogenic, and osteogenic lineages and examination of histological staining markers, there was no discernible differences between treated and untreated cells, regardless of delivery mechanism. Thus, diblock copolymers examined herein facilitated uniform siRNA treatment of MSCs, inducing siRNA-specific gene and protein knockdown without adversely affecting MSC survival or differentiation capacity and therefore show great promise for use within regenerative medicine applications.
Collapse
Affiliation(s)
- Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester Medical Center, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
96
|
Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem 2012; 113:1460-9. [PMID: 22213121 DOI: 10.1002/jcb.24046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is currently great interest in the use of mesenchymal stem/stromal cells (MSCs) for the therapy of many diseases of animals and humans. However, we are still left with the serious challenges in explaining the beneficial effects of the cells. Hence, it is essential to work backward from dramatic results obtained in vivo to the cellular and molecular explanations in order to discover the secrets of MSCs. This review will focus on recent data that have changed the paradigms for understanding the therapeutic potentials of MSCs.
Collapse
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502, USA.
| | | |
Collapse
|
97
|
Hass R, Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 2012; 10:26. [PMID: 22943670 PMCID: PMC3444900 DOI: 10.1186/1478-811x-10-26] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSC) represent a heterogeneous population exhibiting stem cell-like properties which are distributed almost ubiquitously among perivascular niches of various human tissues and organs. Organismal requirements such as tissue damage determine interdisciplinary functions of resident MSC including self-renewal, migration and differentiation, whereby MSC support local tissue repair, angiogenesis and concomitant immunomodulation. However, growth of tumor cells and invasion also causes local tissue damage and injury which subsequently activates repair mechanisms and consequently, attracts MSC. Thereby, MSC exhibit a tissue-specific functional biodiversity which is mediated by direct cell-to-cell communication via adhesion molecule signaling and by a tightly regulated exchange of a multifactorial panel of cytokines, exosomes, and micro RNAs. Such interactions determine either tumor-promoting or tumor-inhibitory support by MSC. Moreover, fusion with necrotic/apoptotic tumor cell bodies contributes to re-program MSC into an aberrant phenotype also suggesting that tumor tissue in general represents different types of neoplastic cell populations including tumor-associated stem cell-like cells. The present work summarizes some functional characteristics and biodiversity of MSC and highlights certain controversial interactions with normal and tumorigenic cell populations, including associated modulations within the MSC microenvironment.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology (OE 6410), Medical University Hannover, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
98
|
Liu JL, Jiang L, Lin QX, Deng CY, Mai LP, Zhu JN, Li XH, Yu XY, Lin SG, Shan ZX. MicroRNA 16 enhances differentiation of human bone marrow mesenchymal stem cells in a cardiac niche toward myogenic phenotypes in vitro. Life Sci 2012; 90:1020-6. [PMID: 22677435 DOI: 10.1016/j.lfs.2012.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/04/2012] [Accepted: 05/19/2012] [Indexed: 02/01/2023]
Abstract
AIM Upregulation of microRNA 16 (miR-16) contributed to the differentiation of human bone marrow mesenchymal stem cells (hMSCs) toward myogenic phenotypes in a cardiac niche, the present study aimed to determine the role of miR-16 in this process. MAIN METHODS hMSCs and neonatal rat ventricular myocytes were co-cultured indirectly in two chambers to set up a cardiac microenvironment (niche). miRNA expression profile in cardiac-niche-induced hMSCs was detected by miRNA microarray. Cardiac marker expression and cell cycle analysis were determined in different treatment hMSCs. Quantitative real-time PCR and Western blot were used to identify the expression of mRNA, mature miRNA and protein of interest. KEY FINDINGS miRNA dysregulation was shown in hMSCs after cardiac niche induction. miR-16 was upregulated in cardiac-niche-induced hMSCs. Overexpression of miR-16 significantly increased G1-phase arrest of the cell cycle in hMSCs and enhanced the expression of cardiac marker genes, including GATA4, NK2-5, MEF2C and TNNI3. Differentiation-inducing factor 3 (DIF-3), a G0/G1 cell cycle arrest compound, was used to induce G1 phase arrest in cardiac-niche-induced hMSCs, and the expression of cardiac marker genes was up-regulated in DIF-3-treated hMSCs. The expression of CCND1, CCND2 and CDK6 was suppressed by miR-16 in hMSCs. CDK6, CCND1 or CCND2 knockdown resulted in G1 phase arrest in hMSCs and upregulation of cardiac marker gene expression in hMSCs in a cardiac niche. SIGNIFICANCE miR-16 enhances G1 phase arrest in hMSCs, contributing to the differentiation of hMSCs toward myogenic phenotypes when in a cardiac niche. This mechanism provides a novel strategy for pre-modification of hMSCs before hMSC-based transplantation therapy for severe heart diseases.
Collapse
Affiliation(s)
- Ju-Li Liu
- Research Center of Guangdong General Hospital, Guangdong Provincial Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Zhang LL, Liu JJ, Liu F, Liu WH, Wang YS, Zhu B, Yu B. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2012; 420:875-81. [PMID: 22465011 DOI: 10.1016/j.bbrc.2012.03.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To test the hypothesis that over-expressing miR-499 in rat bone marrow-derived mesenchymal stem cells (BM-MSCs) induces them to differentiate into cardiomyocyte-like cells through the wnt/β-catenin signaling pathway. METHODS Rat BM-MSCs were infected with lentiviral vectors bearing miR-499. The expression of cardiac-specific markers, NKx2.5, GATA4, MEF2C, and cTnI in these cells were examined by rtPCR or Western blot analysis and the activity of the wnt/β-catenin signaling pathway was evaluated by measuring the phosphorylation status of β-catenin. RESULTS Over-expression of miR-499 in rat BM-MSCs increased the expression of cardiac-specific genes, such as NKx2.5, GATA4, MEF2C, and cTnI and decreased the ratio of phosphorylated/dephosphorylated β-catenin in the wnt/β-catenin signaling pathway, thus activating the pathway. Knocking down the expression of Dvl, an adaptor molecule in the wnt/β-catenin signaling, partially blocked the role of the miR-499 and decreased those cardiac-specific genes. CONCLUSION Over-expression of miR-499 in rat BM-MSCs induces them toward cardiac differentiation through the activating the wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Lu-lu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment (Harbin Medical University), Ministry of Education, Baojian Road, Harbin, Heilongjiang Province 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
100
|
Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 2012; 8:212-27. [PMID: 22290358 PMCID: PMC3589914 DOI: 10.1038/nrendo.2011.234] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) repress cellular protein levels to provide a sophisticated parameter of gene regulation that coordinates a broad spectrum of biological processes. Bone organogenesis is a complex process involving the differentiation and crosstalk of multiple cell types for formation and remodeling of the skeleton. Inhibition of mRNA translation by miRNAs has emerged as an important regulator of developmental osteogenic signaling pathways, osteoblast growth and differentiation, osteoclast-mediated bone resorption activity and bone homeostasis in the adult skeleton. miRNAs control multiple layers of gene regulation for bone development and postnatal functions, from the initial response of stem/progenitor cells to the structural and metabolic activity of the mature tissue. This Review brings into focus an emerging concept of bone-regulating miRNAs, the evidence for which has been gathered largely from in vivo mouse models and in vitro studies in human and mouse skeletal cell populations. Characterization of miRNAs that operate through tissue-specific transcription factors in osteoblast and osteoclast lineage cells, as well as intricate feedforward and reverse loops, has provided novel insights into the supervision of signaling pathways and regulatory networks controlling normal bone formation and turnover. The current knowledge of miRNAs characteristic of human pathologic disorders of the skeleton is presented with a future goal towards translational studies.
Collapse
Affiliation(s)
- Jane B Lian
- University of Massachusetts Medical School, Department of Cell Biology and Cancer Center, 55 Lake Avenue North, Room S3-326, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|