51
|
Lam D, Clark S, Stirzaker C, Pidsley R. Advances in Prognostic Methylation Biomarkers for Prostate Cancer. Cancers (Basel) 2020; 12:E2993. [PMID: 33076494 PMCID: PMC7602626 DOI: 10.3390/cancers12102993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
There is a major clinical need for accurate biomarkers for prostate cancer prognosis, to better inform treatment strategies and disease monitoring. Current clinically recognised prognostic factors, including prostate-specific antigen (PSA) levels, lack sensitivity and specificity in distinguishing aggressive from indolent disease, particularly in patients with localised intermediate grade prostate cancer. There has therefore been a major focus on identifying molecular biomarkers that can add prognostic value to existing markers, including investigation of DNA methylation, which has a known role in tumorigenesis. In this review, we will provide a comprehensive overview of the current state of DNA methylation biomarker studies in prostate cancer prognosis, and highlight the advances that have been made in this field. We cover the numerous studies into well-established candidate genes, and explore the technological transition that has enabled hypothesis-free genome-wide studies and the subsequent discovery of novel prognostic genes.
Collapse
Affiliation(s)
- Dilys Lam
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
| | - Susan Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
52
|
A CRAF/glutathione-S-transferase P1 complex sustains autocrine growth of cancers with KRAS and BRAF mutations. Proc Natl Acad Sci U S A 2020; 117:19435-19445. [PMID: 32719131 PMCID: PMC7430992 DOI: 10.1073/pnas.2000361117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A strategy to overcome therapeutic obstacles of mKRAS and mBRAF cancers is devised based on the finding, here, that the RAF/MEK/ERK cascade is by-passed by an autocrine signal loop established by interaction of CRAF with GSTP1. The interaction evokes stabilization of CRAF from proteosomal degradation and facilitation of RAF-dimer formation. Thus, blocking CRAF/GSTP1 interactions should generate additive antiproliferative effects. The Ras/RAF/MEK/ERK pathway is an essential signaling cascade for various refractory cancers, such as those with mutant KRAS (mKRAS) and BRAF (mBRAF). However, there are unsolved ambiguities underlying mechanisms for this growth signaling thereby creating therapeutic complications. This study shows that a vital component of the pathway CRAF is directly impacted by an end product of the cascade, glutathione transferases (GST) P1 (GSTP1), driving a previously unrecognized autocrine cycle that sustains proliferation of mKRAS and mBRAF cancer cells, independent of oncogenic stimuli. The CRAF interaction with GSTP1 occurs at its N-terminal regulatory domain, CR1 motif, resulting in its stabilization, enhanced dimerization, and augmented catalytic activity. Consistent with the autocrine cycle scheme, silencing GSTP1 brought about significant suppression of proliferation of mKRAS and mBRAF cells in vitro and suppressed tumorigenesis of the xenografted mKRAS tumor in vivo. GSTP1 knockout mice showed significantly impaired carcinogenesis of mKRAS colon cancer. Consequently, hindering the autocrine loop by targeting CRAF/GSTP1 interactions should provide innovative therapeutic modalities for these cancers.
Collapse
|
53
|
Abstract
Multidrug resistance (MDR) is a vital issue in cancer treatment. Drug resistance can be developed through a variety of mechanisms, including increased drug efflux, activation of detoxifying systems and DNA repair mechanisms, and escape of drug-induced apoptosis. Identifying the exact mechanism related in a particular case is a difficult task. Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. In recent years, comparative proteomic methods have been performed to analyze MDR mechanisms in drug-selected model cancer cell lines. In this paper, we review the recent developments and progresses by comparative proteomic approaches to identify potential MDR mechanisms in drug-selected model cancer cell lines, which may help understand and design chemical sensitizers.
Collapse
|
54
|
Singh RR, Mohammad J, Orr M, Reindl KM. Glutathione S-Transferase pi-1 Knockdown Reduces Pancreatic Ductal Adenocarcinoma Growth by Activating Oxidative Stress Response Pathways. Cancers (Basel) 2020; 12:E1501. [PMID: 32526885 PMCID: PMC7352757 DOI: 10.3390/cancers12061501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Glutathione S-transferase pi-1 (GSTP1) plays an important role in regulating oxidative stress by conjugating glutathione to electrophiles. GSTP1 is overexpressed in breast, colon, lung, and prostate tumors, where it contributes to tumor progression and drug resistance; however, the role of GSTP1 in pancreatic ductal adenocarcinoma (PDAC) is not well understood. Using shRNA, we knocked down GSTP1 expression in three different PDAC cell lines and determined the effect on cell proliferation, cell cycle progression, and reactive oxygen species (ROS) levels. Our results show GSTP1 knockdown reduces PDAC cell growth, prolongs the G0/G1 phase, and elevates ROS in PDAC cells. Furthermore, GSTP1 knockdown results in the increased phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun and the decreased phosphorylation of extracellular signal-regulated kinase (ERK), p65, the reduced expression of specificity protein 1 (Sp1), and the increased expression of apoptosis-promoting genes. The addition of the antioxidant glutathione restored cell viability and returned protein expression levels to those found in control cells. Collectively, these data support the working hypothesis that the loss of GSTP1 elevates oxidative stress, which alters mitogen-activated protein (MAP) kinases and NF-κB signaling, and induces apoptosis. In support of these in vitro data, nude mice bearing orthotopically implanted GSTP1-knockdown PDAC cells showed an impressive reduction in the size and weight of tumors compared to the controls. Additionally, we observed reduced levels of Ki-67 and increased expression of cleaved caspase-3 in GSTP1-knockdown tumors, suggesting GSTP1 knockdown impedes proliferation and upregulates apoptosis in PDAC cells. Together, these results indicate that GSTP1 plays a significant role in PDAC cell growth and provides support for the pursuit of GSTP1 inhibitors as therapeutic agents for PDAC.
Collapse
Affiliation(s)
- Rahul R. Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| | - Jiyan Mohammad
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND 58108, USA;
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| |
Collapse
|
55
|
Chen L, Guo X, Hu Y, Li L, Liang G, Zhang G. Epigallocatechin-3-gallate sensitises multidrug-resistant oral carcinoma xenografts to vincristine sulfate. FEBS Open Bio 2020; 10:1403-1413. [PMID: 32475087 PMCID: PMC7327922 DOI: 10.1002/2211-5463.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a very aggressive malignancy, and 50% of patients who receive curative treatment die from the disease or related complications within 5 years. Epigallocatechin‐3‐gallate (EGCG) is the most abundant bioactive ingredient of tea polyphenols in green tea and has anticancer properties. Here, we evaluated the preclinical efficacy of EGCG combined with vincristine sulfate (VCR) on the growth, angiogenic activity and vascular endothelial growth factor (VEGF) expression in xenograft nude mice inoculated with KBV200 cells. Compared with VCR alone, the combined use of EGCG and VCR strongly inhibited tumour growth and angiogenesis (P < 0.01). VEGF mRNA and protein levels were lower in the KBV200 xenograft group treated with the combined regime (P < 0.01) than those in the VCR alone group. EGCG sensitises multidrug‐resistant OSCC to VCR, and this may occur through the inhibition of angiogenesis via VEGF down‐regulation.
Collapse
Affiliation(s)
- Li Chen
- New Drug Research & Development Center, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Pharmacy School of Guangxi Medical University, Nanning, China
| | - Xianwen Guo
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ye Hu
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Guangxi Medical University, Nanning, China
| | - Li Li
- Pharmacy School of Guangxi Medical University, Nanning, China
| | - Gang Liang
- Pharmacy School of Guangxi Medical University, Nanning, China
| | - Guo Zhang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
56
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
57
|
Shi Y, Wang X, Wang N, Li FF, You YL, Wang SQ. The effect of polysaccharides from Cibotium barometz on enhancing temozolomide-induced glutathione exhausted in human glioblastoma U87 cells, as revealed by 1H NMR metabolomics analysis. Int J Biol Macromol 2020; 156:471-484. [PMID: 32243933 DOI: 10.1016/j.ijbiomac.2020.03.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most malignant central nervous system tumor, with poor prognosis. Temozolomide (TMZ) has been used as a first-line drug for the treatment of GBM for over a decade, but its treatment benefits are limited by acquired resistance. Polysaccharides from Cibotium barometz (CBPs) are polysaccharides purified from the root of Cibotium barometz (L.) J. Sm., possessing sensitizing activity. The purpose of this study was to investigate the anti-cancer effect of CBP from different processing methods on U87 cells using a 1H NMR-based metabolic approach, complemented with qRT-PCR and flow cytometry, to identify potential markers and discover the targets to explore the underlying mechanism. Cibotium barometz is usually processed under sand heating in clinical applications. Polysaccharides from both the processed (PCBP) and raw (RCBP) C. barometz were prepared, and the effect on enhancing the sensitivity to TMZ was investigated in vitro. CBP can significantly increase the toxicity of TMZ to the U87 cell line, promote apoptosis, enhance cell cycle changes, and arrest cells in S phase, and RCBP demonstrated better activity. Multivariate statistical analyses, such as principal component analysis (PCA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA), were used to identify metabolic biomarkers, and 12 metabolites in the cell extract samples were clearly identified as altered after RCBP exposure. NMR-based cell metabolomics provided a holistic method for the identification of CBP's apoptosis-enhancing mechanisms and the exploration of its potential applications in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ning Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fei-Fei Li
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yu-Lin You
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shu-Qi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
58
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
59
|
Zhao J, Wang M, He P, Chen Y, Wang X, Zhang M. Identification of glutathione S-transferase π 1 as a prognostic proteomic biomarker for multiple myeloma using proteomic profiling. Oncol Lett 2020; 19:2153-2162. [PMID: 32194713 PMCID: PMC7038923 DOI: 10.3892/ol.2020.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/12/2019] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell hematological malignancy with monoclonal plasma cell proliferation in the bone marrow. Early diagnosis of MM remains difficult due to the lack of specific symptoms and biomarkers. In the present study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the ClinProt system was used to detect potential biomarkers for MM from the bone marrow samples of 30 patients and 30 healthy controls. A total of 10 of the most significantly differentiated peaks between the patients and controls were identified. When patients with MM were compared with controls, 6 peaks with m/z values of 1,779.24, 1,866.32, 2,022.36, 2,878.9, 4,417.76 and 7,155.38 were upregulated, and 4 peaks with m/z values of 1,466.54, 1,520.02, 1,546.53 and 2,991.05 were downregulated. Of these 10 peaks, 4 peaks (pk 8, 1,866.32 Da; pk 15, 2,878.90 Da; pk 17, 2,991.05 Da; and pk 3, 1,520.02 Da) were further sequenced and identified using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Furthermore, the expression of fibronectin 1 and glutathione S-transferase π 1 (GSTP1) were validated in patients with MM via ELISAs. Clinical data and statistical analysis indicated that GSTP1 expression was closely associated with the clinical stage of patients with MM. High GSTP1 levels were an independent risk factor for worse prognosis in patients with MM. These results demonstrate that GSTP1 may be a novel biomarker for early diagnosis, prognosis and monitoring of minimal residual disease in MM.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meihua Wang
- Department of Hematology, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
60
|
Pljesa-Ercegovac M, Savic-Radojevic A, Coric V, Radic T, Simic T. Glutathione transferase genotypes may serve as determinants of risk and prognosis in renal cell carcinoma. Biofactors 2020; 46:229-238. [PMID: 31483924 DOI: 10.1002/biof.1560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022]
Abstract
Renal cell carcinoma (RCC) represents a group of histologically similar neoplasms with significant intratumor and intertumor genetic heterogeneity. Recognized risk factors for RCC development include smoking, hypertension, obesity, as well as von Hippel-Lindau (VHL) disease. Inactivation of VHL, deregulated nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, and altered redox homeostasis, together with changes in glutathione transferase (GST) profile, are considered as important contributing factors in RCC development and progression. Although the available results of both gene-gene and gene-environment analysis are quite heterogeneous, they clearly indicate that certain GST genotypes may play a role as risk modifiers, either individually or in combination with other Phase I or Phase II gene polymorphisms, as well as in subjects exposed to relevant substrates. Seemingly, GST genotyping could identify individuals with impaired detoxification in renal parenchyma that are at higher risk of developing RCC. In addition to well established roles of GSTs in conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival. Indeed, there are evidence in favor of GST significance, not only in terms of risk for RCC development, but also with respect to progression and prognosis. So far, GSTM1-active genotype was confirmed to be an independent predictor of higher risk of overall mortality. Therefore, it is reasonable to assume that certain GST variants may assist in individual RCC risk assessment, as well as postoperative prognosis. Even more, GST profiling might contribute to development of personalized targeted therapy in RCC patients.
Collapse
Affiliation(s)
- Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tanja Radic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
61
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
62
|
Dobritzsch D, Grancharov K, Hermsen C, Krauss GJ, Schaumlöffel D. Inhibitory effect of metals on animal and plant glutathione transferases. J Trace Elem Med Biol 2020; 57:48-56. [PMID: 31561169 DOI: 10.1016/j.jtemb.2019.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
Glutathione transferases (GSTs) represent a widespread enzyme superfamily in eukaryotes and prokaryotes catalyzing different reactions with endogenous and xenobiotic substrates such as organic pollutants. The latter are often found together with metal contamination in the environment. Besides performing of essential functions, GSTs protect cells by conjugation of glutathione with various reactive electrophiles. The interference of toxic metals with this functionality of GSTs may have unpredictable toxicological consequences for the organisms. In this review results from the recent literature are summarized and discussed describing the ability of metals to inhibit intracellular detoxification processes in animals and plants.
Collapse
Affiliation(s)
- Dirk Dobritzsch
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Konstantin Grancharov
- Institute of Molecular Biology, Dept. Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Corinna Hermsen
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Gerd-Joachim Krauss
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS / Université de Pau et des Pays de l'Adour / E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| |
Collapse
|
63
|
Behrens KA, Jania LA, Snouwaert JN, Nguyen M, Moy SS, Tikunov AP, Macdonald JM, Koller BH. Beyond detoxification: Pleiotropic functions of multiple glutathione S-transferase isoforms protect mice against a toxic electrophile. PLoS One 2019; 14:e0225449. [PMID: 31747445 PMCID: PMC6867637 DOI: 10.1371/journal.pone.0225449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Environmental and endogenous electrophiles cause tissue damage through their high reactivity with endogenous nucleophiles such as DNA, proteins, and lipids. Protection against damage is mediated by glutathione (GSH) conjugation, which can occur spontaneously or be facilitated by the glutathione S-transferase (GST) enzymes. To determine the role of GST enzymes in protection against electrophiles as well as the role of specific GST families in mediating this protection, we exposed mutant mouse lines lacking the GSTP, GSTM, and/or GSTT enzyme families to the model electrophile acrylamide, a ubiquitous dietary contaminant known to cause adverse effects in humans. An analysis of urinary metabolites after acute acrylamide exposure identified the GSTM family as the primary mediator of GSH conjugation to acrylamide. However, surprisingly, mice lacking only this enzyme family did not show increased toxicity after an acute acrylamide exposure. Therefore, GSH conjugation is not the sole mechanism by which GSTs protect against the toxicity of this substrate. Given the prevalence of null GST polymorphisms in the human population (approximately 50% for GSTM1 and 20–50% for GSTT1), a substantial portion of the population may also have impaired acrylamide metabolism. However, our study also defines a role for GSTP and/or GSTT in protection against acrylamide mediated toxicity. Thus, while the canonical detoxification function of GSTs may be impaired in GSTM null individuals, disease risk secondary to acrylamide exposure may be mitigated through non-canonical pathways involving members of the GSTP and/or GSTT families.
Collapse
Affiliation(s)
- Kelsey A. Behrens
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John N. Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sheryl S. Moy
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrey P. Tikunov
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey M. Macdonald
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
64
|
Glutathione S-Transferase Pi 1 (GSTP1) Gene 313 A/G (rs1695) polymorphism is associated with the risk of urinary bladder cancer: Evidence from a systematic review and meta-analysis based on 34 case-control studies. Gene 2019; 719:144077. [DOI: 10.1016/j.gene.2019.144077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
|
65
|
Albarakati N, Khayyat D, Dallol A, Al-Maghrabi J, Nedjadi T. The prognostic impact of GSTM1/GSTP1 genetic variants in bladder Cancer. BMC Cancer 2019; 19:991. [PMID: 31646988 PMCID: PMC6813104 DOI: 10.1186/s12885-019-6244-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background The glutathione S-transferases (GSTs) are a superfamily of phase II detoxifying enzymes that inactivates a wide variety of potential carcinogens through glutathione conjugation. Polymorphic changes in the GST genes have been reported to be associated with increased susceptibility to cancer development and anticancer drug resistance. In this study, we investigated the association between genetic variants in GSTM1 and GSTP1 and patients’ clinicopathological parameters. The prognostic values of such associations were evaluated among bladder cancer patients. Methods Genotyping of GSTM1 and GSTP1 in bladder cancer patients was assessed using polymerase chain reaction followed by DNA sequencing. Overall survival was estimated using the Kaplan-Meier method and multiple logistic regression and correlation analysis were performed. Results The GSTM1 null genotype was significantly associated with poor overall survival compared with the wild-type GSTM1 genotype. There was a trend towards better overall survival in patients with wild-type GSTP1 allele (AA) compared with GSTP1 (AG/GG) genotype. Interestingly, Kaplan-meier survival curve for GSTM1 null patients adjusted for sub-cohort with amplified HER2 gene showed poor survival compared with the GSTM1 null/ non-amplified HER2 gene. Also the same population when adjusted with HER2 protein expression, data showed poor survival for patients harboring GSTM1 null/high HER2 protein expression compared with low protein expression. Conclusion This study focuses on the impact of GSTM1 null genotype on bladder cancer patients’ outcome. Further investigations are required to delineate the underlying mechanisms of combined GSTM−/− and HER2 status in bladder cancer.
Collapse
Affiliation(s)
- Nada Albarakati
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard - Health Affairs, Jeddah, Kingdom of Saudi Arabia
| | - Dareen Khayyat
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asharf Dallol
- Centre of Excellence in Genomic Medicine Research and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia.,King Faisal Specialist Hospital & Research Center, Jeddah, Saudi Arabia
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard - Health Affairs, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
66
|
Rice A, Del Rio Hernandez A. The Mutational Landscape of Pancreatic and Liver Cancers, as Represented by Circulating Tumor DNA. Front Oncol 2019; 9:952. [PMID: 31608239 PMCID: PMC6769086 DOI: 10.3389/fonc.2019.00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.
Collapse
Affiliation(s)
- Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
67
|
Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019; 11:nu11081741. [PMID: 31357662 PMCID: PMC6723968 DOI: 10.3390/nu11081741] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferase P1-1 (GSTP1-1) is expressed in some human tissues and is abundant in mammalian erythrocytes (here termed e-GST). This enzyme is able to detoxify the cell from endogenous and exogenous toxic compounds by using glutathione (GSH) or by acting as a ligandin. This review collects studies that propose GSTP1-1 as a useful biomarker in different fields of application. The most relevant studies are focused on GSTP1-1 as a biosensor to detect blood toxicity in patients affected by kidney diseases. In fact, this detoxifying enzyme is over-expressed in erythrocytes when unusual amounts of toxins are present in the body. Here we review articles concerning the level of GST in chronic kidney disease patients, in maintenance hemodialysis patients and to assess dialysis adequacy. GST is also over-expressed in autoimmune disease like scleroderma, and in kidney transplant patients and it may be used to check the efficiency of transplanted kidneys. The involvement of GSTP in the oxidative stress and in other human pathologies like cancer, liver and neurodegenerative diseases, and psychiatric disorders is also reported. Promising applications of e-GST discussed in the present review are its use for monitoring human subjects living in polluted areas and mammals for veterinary purpose.
Collapse
|
68
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
69
|
Li J, Ye T, Liu Y, Kong L, Sun Z, Liu D, Wang J, Xing HR. Transcriptional Activation of Gstp1 by MEK/ERK Signaling Confers Chemo-Resistance to Cisplatin in Lung Cancer Stem Cells. Front Oncol 2019; 9:476. [PMID: 31263672 PMCID: PMC6584806 DOI: 10.3389/fonc.2019.00476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Lung cancer management remains a challenge due to its asymptomatic and late presentation when it is metastatic. The clinical response to the first-line platinum-based chemotherapy in patients with advanced lung cancer is disappointing due to the development of chemoresistance. Chemoresistance is a complex phenomenon. Mechanistic research using experimental models has yielded limited clinical results to help increase understanding for overcoming resistance. While the role of lung CSCs in conferring multidrug resistance has been postulated, experimental evidence remains associative and lacks in depth mechanistic inquisition. In the present study, using mouse and human lung adenocarcinoma cell lines and their respective paired CSC derivative cell lines that we generated, we identified cancer stem cell component of lung adenocarcinoma as the source that confers multidrug resistance phenotype. Mechanistically, Gstp1 confers cisplatin resistance in mouse and human lung CSC models, both in vitro and in vivo. Further, transcriptional activation of Gstp1 expression by MEK/ERK signaling underlies cisplatin resistance in lung CSC cells. Moreover, we show that GSTP1 expression is a poor diagnostic and prognostic marker for human lung adenocarcinoma, thus is of high clinical relevance. Taken together, we have provided mechanistic understanding of the lung CSC in mediating chemoresistance.
Collapse
Affiliation(s)
- Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University and the Ministry of Science and Technology, Chongqing, China
| |
Collapse
|
70
|
Glutathione Transferase P1 Polymorphism Might Be a Risk Determinant in Heart Failure. DISEASE MARKERS 2019; 2019:6984845. [PMID: 31275451 PMCID: PMC6589253 DOI: 10.1155/2019/6984845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 12/27/2022]
Abstract
Disturbed redox balance in heart failure (HF) might contribute to impairment of cardiac function, by oxidative damage, or by regulation of cell signaling. The role of polymorphism in glutathione transferases (GSTs), involved both in antioxidant defense and in regulation of apoptotic signaling pathways in HF, has been proposed. We aimed to determine whether GST genotypes exhibit differential risk effects between coronary artery disease (CAD) and idiopathic dilated cardiomyopathy (IDC) in HF patients. GSTA1, GSTM1, GSTP1, and GSTT1 genotypes were determined in 194 HF patients (109 CAD, 85 IDC) and 274 age- and gender-matched controls. No significant association was found for GSTA1, GSTM1, and GSTT1 genotypes with HF occurrence due to either CAD or IDC. However, carriers of at least one variant GSTP1∗Val (rs1695) allele were at 1.7-fold increased HF risk than GSTP1∗Ile/Ile carriers (p = 0.031), which was higher when combined with the variant GSTA1∗B allele (OR = 2.2, p = 0.034). In HF patients stratified based on the underlying cause of disease, an even stronger association was observed in HF patients due to CAD, who were carriers of a combined GSTP1(rs1695)/GSTA1 "risk-associated" genotype (OR = 2.8, p = 0.033) or a combined GSTP1∗Ile/Val+Val/Val (rs1695)/GSTP1∗AlaVal+∗ValVal (rs1138272) genotype (OR = 2.1, p = 0.056). Moreover, these patients exhibited significantly decreased left ventricular end-systolic diameter compared to GSTA1∗AA/GSTP1∗IleIle carriers (p = 0.021). Higher values of ICAM-1 were found in carriers of the GSTP1∗IleVal+∗ValVal (rs1695) (p = 0.041) genotype, whereas higher TNFα was determined in carriers of the GSTP1∗AlaVal+∗ValVal genotype (rs1138272) (p = 0.041). In conclusion, GSTP1 polymorphic variants may determine individual susceptibility to oxidative stress, inflammation, and endothelial dysfunction in HF.
Collapse
|
71
|
Interaction network analysis of YBX1 for identification of therapeutic targets in adenocarcinomas. J Biosci 2019. [DOI: 10.1007/s12038-019-9848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
72
|
Murugesan SN, Yadav BS, Maurya PK, Chaudhary A, Singh S, Mani A. Interaction network analysis of YBX1 for identification of therapeutic targets in adenocarcinomas. J Biosci 2019; 44:27. [PMID: 31180040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human Y-box binding protein-1 (YBX1) is a member of highly conserved cold-shock domain protein family, which is involved in transcriptional as well as translational regulation of many genes. Nuclear localization of YBX1 has been observed in various cancer types and it's overexpression has been linked to adverse clinical outcome and poor therapy response, but no diagnostic or therapeutic correlation has been established so far. This study aimed to identify differentially expressed novel genes among the interactors of YBX1 in different cancer types. Analysis of RNA-Seq data for colorectal, lung, prostate and stomach adenocarcinoma identified 39 unique genes, which are differentially expressed in the four adenocarcinoma types. Gene-enrichment analysis for the differentially expressed genes from individual adenocarcinoma with focus on unique genes resulted in a total of 57 gene sets specific to each adenocarcinoma. Gene ontology for commonly expressed genes suggested the pathways and possible mechanisms through which they affect each adenocarcinoma type considered in the study. Gene regulatory network constructed for the common genes and network topology was analyzed for the central nodes. Here 12 genes were found to play important roles in the network formation; among them, two genes FOXM1 and TOP2A were found to be in central network formation, which makes them a common target for therapeutics. Furthermore, five common differentially expressed genes in all adenocarcinomas were also identified.
Collapse
|
73
|
Manupati K, Debnath S, Goswami K, Bhoj PS, Chandak HS, Bahekar SP, Das A. Glutathione S-transferase omega 1 inhibition activates JNK-mediated apoptotic response in breast cancer stem cells. FEBS J 2019; 286:2167-2192. [PMID: 30873742 DOI: 10.1111/febs.14813] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/13/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Glutathione S-transferase omega 1 (GSTO1) contributes to the inactivation of a wide range of drug compounds via conjugation to glutathione during phase reactions. Chemotherapy-induced GSTO1 expression in breast cancer cells leads to chemoresistance and promotes metastasis. In search of novel GSTO1 inhibitors, we identified S2E, a thia-Michael adduct of sulfonamide chalcone with low LC50 (3.75 ± 0.73 μm) that binds to the active site of GSTO1, as revealed by molecular docking (glide score: -8.1), cellular thermal shift assay and fluorescence quenching assay (Kb ≈ 10 × 105 mol·L-1 ). Docking studies confirmed molecular interactions between GSTO1 and S2E, and identified the hydrogen bond donor Val-72 (2.14 Å) and hydrogen bond acceptor Ser-86 (2.77 Å). Best pharmacophore hypotheses could effectively map S2E and identified the 4-methyl group of the benzene sulfonamide ring as crucial to its anti-cancer activity. Lack of a thiophenyl group in another analog, 2e, reduced its efficacy as observed by cytotoxicity and pharmacophore matching. Furthermore, GSTO1 inhibition by S2E, along with tamoxifen, led to a significant increase in apoptosis and decreased migration of aggressive MDA-MB-231 cells, as well as significantly decreased migration, invasion and mammosphere formation in sorted breast cancer stem cells (CSCs, CD24- /CD44+ ). GSTO1 silencing in breast CSCs also significantly increased apoptosis and decreased migration. Mechanistically, GSTO1 inhibition activated the c-Jun N-terminal kinase stress kinase, inducing a mitochondrial apoptosis signaling pathway in breast CSCs via the pro-apoptotic proteins BAX, cytochrome c and cleaved caspase 3. Our study elucidated the role of the GSTO1 inhibitor S2E as a potential therapeutic strategy for preventing chemotherapy-induced breast CSC-mediated cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Science and Innovative Research, New Delhi, India
| | - Sudhan Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Priyanka S Bhoj
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Hemant S Chandak
- Department of Chemistry, G. S. Science, Arts & Commerce College, Khamgaon, India
| | - Sandeep P Bahekar
- Department of Chemistry, G. S. Science, Arts & Commerce College, Khamgaon, India
| | - Amitava Das
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Science and Innovative Research, New Delhi, India
| |
Collapse
|
74
|
Dong X, Yang Y, Zhou Y, Bi X, Zhao N, Zhang Z, Li L, Hang Q, Zhang R, Chen D, Cao P, Yin Z, Luo L. Glutathione S-transferases P1 protects breast cancer cell from adriamycin-induced cell death through promoting autophagy. Cell Death Differ 2019; 26:2086-2099. [PMID: 30683915 DOI: 10.1038/s41418-019-0276-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Glutathione S-transferases P1 (GSTP1) is a phase II detoxifying enzyme and increased expression of GSTP1 has been linked with acquired resistance to anti-cancer drugs. However, most anticancer drugs are not good substrates for GSTP1, suggesting that the contribution of GSTP1 to drug resistances might not be dependent on its capacity to detoxify chemicals or drugs. In the current study, we found a novel mechanism by which GSTP1 protects human breast cancer cells from adriamycin (ADR)-induced cell death and contributes to the drug resistance. GSTP1 protein level is very low in human breast cancer cell line MCF-7 but is high in ADR-resistant MCF-7/ADR cells. Under ADR treatment, MCF-7/ADR cells showed a higher autophagy level than MCF-7 cells. Overexpression of GSTP1 in MCF-7 cells by using the DNA transfection vector enhanced autophagy and down-regulation of GSTP1 through RNA interference in MCF-7/ADR cells decreased autophagy. When autophagy was prevented, GSTP1-induced ADR resistance reduced. We found that GSTP1 enhanced autophagy level in MCF-7 cells through interacting with p110α subunit of phosphatidylinositol-3-kinase (PI3K) and then inhibited PI3K/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) activity. Proline123, leucine160, and glutamine163, which located in C terminal of GSTP1, are essential for GSTP1 to interact with p110α, and the following autophagy and drug resistance regulation. Taken together, our findings demonstrate that high level of GSTP1 maintains resistance of breast cancer cells to ADR through promoting autophagy. These new molecular insights provide an important contribution to our better understanding the effect of GSTP1 on the resistance of tumors to chemotherapy.
Collapse
Affiliation(s)
- Xiaoliang Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Ningwei Zhao
- Shimadzu Biomedical Research Laboratory, Shanghai, 200233, China.,Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhengping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Jiangsu Simovay Pharmaceutical Co., Ltd., Nanjing, 210042, China
| | - Ling Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiyun Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ruhui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
75
|
Bartolini D, Torquato P, Piroddi M, Galli F. Targeting glutathione S-transferase P and its interactome with selenium compounds in cancer therapy. Biochim Biophys Acta Gen Subj 2019; 1863:130-143. [DOI: 10.1016/j.bbagen.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
|
76
|
Scheuermann MJ, Forbes CR, Zondlo NJ. Redox-Responsive Protein Design: Design of a Small Protein Motif Dependent on Glutathionylation. Biochemistry 2018; 57:6956-6963. [PMID: 30511831 DOI: 10.1021/acs.biochem.8b00973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cysteine S-glutathionylation is a protein post-translational modification that promotes cellular responses to changes in oxidative conditions. The design of protein motifs that directly depend on defined changes to protein side chains provides new methods for probing diverse protein post-translational modifications. A canonical, 12-residue EF-hand motif was redesigned to be responsive to cysteine glutathionylation. The key design principle was the replacement of the metal-binding Glu12 carboxylate of an EF-hand with a motif capable of metal binding via a free carboxylate in the glutathione-conjugated peptide. In the optimized peptide (DKDADGWCG), metal binding and terbium luminescence were dependent on glutathionylation, with weaker metal binding in the presence of reduced cysteine but increased metal affinity and a 3.5-fold increase in terbium luminescence at 544 nm when cysteine was glutathionylated. Nuclear magnetic resonance spectroscopy indicated that the structure at all residues of the glutathionylated peptide changed in the presence of metal, with chemical shift changes consistent with the adoption of an EF-hand-like structure in the metal-bound glutathionylated peptide. This small protein motif consists of canonical amino acids and is thus genetically encodable, for its potential use as a localized tag to probe protein glutathionylation.
Collapse
Affiliation(s)
- Michael J Scheuermann
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Christina R Forbes
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
77
|
Ghanbarian M, Afgar A, Yadegarazari R, Najafi R, Teimoori-Toolabi L. Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomed Pharmacother 2018; 108:1070-1080. [PMID: 30372807 DOI: 10.1016/j.biopha.2018.09.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin as a component of (Neo-) adjuvant chemotherapeutic regimens is administered to colorectal cancer patients. Unfortunately, the acquisition of resistance to this drug in nearly 90% of metastatic patients rendered it as an ineffective drug. Therefore, resistance mechanisms to this drug should be elucidated. There are different genes like GSTP1 and ABCB1 which are responsible for oxaliplatin resistance. We hypothesized that miR-129-5p, miR-302c-5p, miR-3664-5p, mir-3714 and miR-513a-3p are targeting ABCB1 gene, while GSTP1 was predicted to be the potential target of miR-3664-5p, mir-3714 and miR-513a-3p. In order to study this hypothesis, resistant colorectal cell lines were generated through intermittent exposure of HCT116, SW480 and HT29 to the increasing doses of oxaliplatin. MTT assays validated this resistance induction. Expression of ABCB1 and GSTP1 in addition to their targeting miRNAs in different cell lines were studied by quantitative real time PCR in the cell lines. Even though in comparison with HCT116 and SW480 cell lines, GSTP1 expression was reduced in resistant cells, ABCB1 expression was upregulated in these cell lines. On the other hand, HT-29 resistant cells showed elevated GSTP1 and unchanged ABCB1 levels. While miR-302c-5p level was downregulated in resistant cell lines, miR-129-5p and miR-3664-5p level showed different pattern of reduction in the resistant SW480 and HCT116 cell lines. GSTP1 level was correlated directly with miR-513a-3p and miR-3664-5p in all SW480 and HCT116 derived cell lines, however in HT-29-OXR1, GSTP1 level was correlated inversely with miR-3664-5p. In conclusion, upregulation of ABCB1 can be considered as the crucial component of poor response to oxaliplatin which is likely controlled by miR-302c-5p.
Collapse
Affiliation(s)
- Marzieh Ghanbarian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Yadegarazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | |
Collapse
|
78
|
Glutathione Transferases: Potential Targets to Overcome Chemoresistance in Solid Tumors. Int J Mol Sci 2018; 19:ijms19123785. [PMID: 30487385 PMCID: PMC6321424 DOI: 10.3390/ijms19123785] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022] Open
Abstract
Multifunctional enzymes glutathione transferases (GSTs) are involved in the development of chemoresistance, thus representing a promising target for a novel approach in cancer treatment. This superfamily of polymorphic enzymes exhibits extraordinary substrate promiscuity responsible for detoxification of numerous conventional chemotherapeutics, at the same time regulating signaling pathways involved in cell proliferation and apoptosis. In addition to upregulated GST expression, different cancer cell types have a unique GST signature, enabling targeted selectivity for isoenzyme specific inhibitors and pro-drugs. As a result of extensive research, certain GST inhibitors are already tested in clinical trials. Catalytic properties of GST isoenzymes are also exploited in bio-activation of specific pro-drugs, enabling their targeted accumulation in cancer cells with upregulated expression of the appropriate GST isoenzyme. Moreover, the latest approach to increase specificity in treatment of solid tumors is development of GST pro-drugs that are derivatives of conventional anti-cancer drugs. A future perspective is based on the design of new drugs, which would selectively target GST overexpressing cancers more prone to developing chemoresistance, while decreasing side effects in off-target cells.
Collapse
|
79
|
Zhao F, Olkhov-Mitsel E, Kamdar S, Jeyapala R, Garcia J, Hurst R, Hanna MY, Mills R, Tuzova AV, O'Reilly E, Kelly S, Cooper C, Brewer D, Perry AS, Clark J, Fleshner N, Bapat B. A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clin Epigenetics 2018; 10:147. [PMID: 30470249 PMCID: PMC6260648 DOI: 10.1186/s13148-018-0575-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Background Prevention of unnecessary biopsies and overtreatment of indolent disease remains a challenge in the management of prostate cancer. Novel non-invasive tests that can identify clinically significant (intermediate-risk and high-risk) diseases are needed to improve risk stratification and monitoring of prostate cancer patients. Here, we investigated a panel of six DNA methylation biomarkers in urine samples collected post-digital rectal exam from patients undergoing prostate biopsy, for their utility to guide decision making for diagnostic biopsy and early detection of aggressive prostate cancer. Results We recruited 408 patients in risk categories ranging from benign to low-, intermediate-, and high-risk prostate cancer from three international cohorts. Patients were separated into 2/3 training and 1/3 validation cohorts. Methylation biomarkers were analyzed in post-digital rectal exam urinary sediment DNA by quantitative MethyLight assay and investigated for their association with any or aggressive prostate cancers. We developed a Prostate Cancer Urinary Epigenetic (ProCUrE) assay based on an optimal two-gene (HOXD3 and GSTP1) LASSO model, derived from methylation values in the training cohort, and assessed ProCUrE’s diagnostic and prognostic ability for prostate cancer in both the training and validation cohorts. ProCUrE demonstrated improved prostate cancer diagnosis and identification of patients with clinically significant disease in both the training and validation cohorts. Using three different risk stratification criteria (Gleason score, D’Amico criteria, and CAPRA score), we found that the positive predictive value for ProCUrE was higher (59.4–78%) than prostate specific antigen (PSA) (38.2–72.1%) for all risk category comparisons. ProCUrE also demonstrated additive value to PSA in identifying GS ≥ 7 PCa compared to PSA alone (DeLong’s test p = 0.039), as well as additive value to the PCPT risk calculator for identifying any PCa and GS ≥ 7 PCa (DeLong’s test p = 0.011 and 0.022, respectively). Conclusions ProCUrE is a promising non-invasive urinary methylation assay for the early detection and prognostication of prostate cancer. ProCUrE has the potential to supplement PSA testing to identify patients with clinically significant prostate cancer. Electronic supplementary material The online version of this article (10.1186/s13148-018-0575-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Zhao
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Ekaterina Olkhov-Mitsel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Shivani Kamdar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Renu Jeyapala
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Julia Garcia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Rachel Hurst
- Schools of Medicine and Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | | | - Robert Mills
- Schools of Medicine and Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Alexandra V Tuzova
- Cancer Biology and Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eve O'Reilly
- Cancer Biology and Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sarah Kelly
- Cancer Biology and Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Colin Cooper
- Schools of Medicine and Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | | | - Daniel Brewer
- Schools of Medicine and Biological Sciences, University of East Anglia, Norwich, Norfolk, UK.,The Earlham Institute, Norwich, Norfolk, UK
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jeremy Clark
- Schools of Medicine and Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Neil Fleshner
- Division of Urology, University Health Network, University of Toronto, Toronto, Canada
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. .,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada. .,Division of Urology, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
80
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
81
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
82
|
Rodrigues-Fleming GH, Fernandes GMDM, Russo A, Biselli-Chicote PM, Netinho JG, Pavarino ÉC, Goloni-Bertollo EM. Molecular evaluation of glutathione S transferase family genes in patients with sporadic colorectal cancer. World J Gastroenterol 2018; 24:4462-4471. [PMID: 30356976 PMCID: PMC6196337 DOI: 10.3748/wjg.v24.i39.4462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/27/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the association between polymorphisms in glutathione S transferases (GSTs) and the risk of sporadic colorectal cancer (SCRC), tumor progression and the survival of patients.
METHODS A case-control study of 970 individuals from the Brazilian population was conducted (232 individuals from the case group with colorectal cancer and 738 individuals from the control group without a history of cancer). PCR multiplex and PCR-RFLP techniques were used to genotype the GST polymorphisms. The tumors were categorized according to the TNM classification: tumor extension (T), affected lymph nodes (N), and presence of metastasis (M). Logistic regression, multiple logistic regression and survival analysis were used to analyze the data. The results are presented in terms of odds ratio (OR) and 95% confidence interval (CI). The level of significance was set at 5% (P ≤ 0.05).
RESULTS Age equal to or over 62 years (OR = 8.79; 95%CI: 5.90-13.09, P < 0.01) and female gender (OR = 2.91; 95%CI: 1.74-4.37; P < 0.01) were associated with increased risk of SCRC. Analysis of the polymorphisms revealed an association between the GSTM1 polymorphisms and a risk of SCRC (OR = 1.45; 95%CI: 1.06-2.00; P = 0.02), as well as between GSTT1 and a reduced risk of the disease (OR = 0.65; 95%CI: 0.43-0.98; P = 0.04). An interaction between the presence of the wild-type allele of GSTP1 Ile105Val polymorphism and tobacco consumption on risk of SCRC (OR = 2.33; 95%CI: 1.34-4.05; P = 0.05) was observed. There was an association between the GSTM1 null genotype and the presence of advanced tumors (OR = 2.33; 95%CI: 1.23-4.41; P = 0.009), as well as increased risk of SCRC in the presence of a combination of GSTT1 non-null/GSTM1 null genotypes (OR = 1.50; 95%CI: 1.03-2.19; P = 0.03) and GSTT1 non-null/GSTM1 null/GSTP1 Val* (OR = 1.85; 95%CI: 1.01-3.36, P = 0.04). Combined GSTT1 non-null/GSTM1 null genotypes (OR = 2.40; 95%CI: 1.19-4.85; P = 0.01) and GSTT1 non-null/GSTM1 null/GSTP1 Val* (OR = 2.92; 95%CI: 1.05-8.12; P = 0.04) were associated with tumor progression. Polymorphisms were not associated with the survival of patients with SCRC.
CONCLUSION Females aged 62 years or older are more susceptible to SCRC. Polymorphisms of GSTT1 and GSTM1 null genotypes modulated the susceptibility to SCRC in the population studied.
Collapse
Affiliation(s)
- Gabriela Helena Rodrigues-Fleming
- Genetics and Molecular Biology Research Unit - UPGEM, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit - UPGEM, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| | - Anelise Russo
- Genetics and Molecular Biology Research Unit - UPGEM, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| | - Patrícia Matos Biselli-Chicote
- Genetics and Molecular Biology Research Unit - UPGEM, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| | - João Gomes Netinho
- Department of Surgery and Coloproctology, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| | - Érika Cristina Pavarino
- Genetics and Molecular Biology Research Unit - UPGEM, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit - UPGEM, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, SP 15090-000, Brazil
| |
Collapse
|
83
|
Malik A, Khan JM, Alamery SF, Fouad D, Labrou NE, Daoud MS, Abdelkader MO, Ataya FS. Monomeric Camelus dromedarius GSTM1 at low pH is structurally more thermostable than its native dimeric form. PLoS One 2018; 13:e0205274. [PMID: 30303997 PMCID: PMC6179282 DOI: 10.1371/journal.pone.0205274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Glutathione S‒transferases (GSTs) are multifunctional enzymes that play an important role in detoxification, cellular signalling, and the stress response. Camelus dromedarius is well-adapted to survive in extreme desert climate and it has GSTs, for which limited information is available. This study investigated the structure-function and thermodynamic properties of a mu-class camel GST (CdGSTM1) at different pH. Recombinant CdGSTM1 (25.7 kDa) was expressed in E. coli and purified to homogeneity. Dimeric CdGSTM1 dissociated into stable but inactive monomeric subunits at low pH. Conformational and thermodynamic changes during the thermal unfolding pathway of dimeric and monomeric CdGSTM1 were characterised via a thermal shift assay and dynamic multimode spectroscopy (DMS). The thermal shift assay based on intrinsic tryptophan fluorescence revealed that CdGSTM1 underwent a two-state unfolding pathway at pH 1.0-10.0. Its Tm value varied with varying pH. Another orthogonal technique based on far-UV CD also exhibited two-state unfolding in the dimeric and monomeric states. Generally, proteins tend to lose structural integrity and stability at low pH; however, monomeric CdGSTM1 at pH 2.0 was thermally more stable and unfolded with lower van't Hoff enthalpy. The present findings provide essential information regarding the structural, functional, and thermodynamic properties of CdGSTM1 at pH 1.0-10.0.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed M. Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ein Helwan, Cairo, Egypt
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Mohamed S. Daoud
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
- King Fahd Unit Laboratory, Department of Clinical and Chemical Pathology, Kasr Al-Ainy University Hospital, Cairo University, El-Manial, Cairo, Egypt
| | - Mohamed O. Abdelkader
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid S. Ataya
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
- Molecular Biology Department, Genetic Engineering Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
84
|
Shin YJ, Kim KA, Kim ES, Kim JH, Kim HS, Ha M, Bae ON. Identification of aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) as novel renal damage biomarkers following exposure to mercury. Hum Exp Toxicol 2018; 37:1025-1036. [PMID: 29298499 DOI: 10.1177/0960327117751234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The kidney is one of the main targets for toxicity induced by xenobiotics. Sensitive detection of early impairment is critical to assess chemical-associated renal toxicity. The aim of this study was to identify potential nephrotoxic biomarkers in rat kidney tissues after exposure to mercury (Hg), a representative nephrotoxicant, and to evaluate these new biomarkers employing in vivo and in vitro systems. Mercuric chloride was administered orally to Sprague-Dawley rats for 2 weeks. Proteomic analysis revealed that aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) were significantly elevated in kidney after Hg exposure. While the levels of conventional nephrotoxic clinical markers including blood urea nitrogen and serum creatinine were not elevated, the mRNA and protein levels of AKR7A1 and GSTP1 were increased upon Hg exposure in a dose-dependent manner. The increases in AKR7A1 and GSTP1 were also observed in rat kidneys after an extended exposure for 6 weeks to low-dose Hg. In in vitro rat kidney proximal tubular cells, changes in AKR7A1 and GSTP1 levels correlated well with the extent of cytotoxicity induced by Hg, cadmium, or cisplatin. AKR7A1 and GSTP1 were identified as new candidates for Hg-induced nephrotoxicity, suggesting that these biomarkers have potential for evaluating or predicting nephrotoxicity.
Collapse
Affiliation(s)
- Y-J Shin
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - K-A Kim
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - E-S Kim
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - J-H Kim
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - H-S Kim
- 2 College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - M Ha
- 3 Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - O-N Bae
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
85
|
Hadami K, Dakka N, Bensaid M, El Ahanidi H, Ameur A, Chahdi H, Oukabli M, Al Bouzidi A, Attaleb M, El Mzibri M. Evaluation of glutathione S-transferase pi 1 expression and gene promoter methylation in Moroccan patients with urothelial bladder cancer. Mol Genet Genomic Med 2018; 6:819-827. [PMID: 30043549 PMCID: PMC6160697 DOI: 10.1002/mgg3.449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glutathione S-transferase pi 1 (GSTP1) is a cytosolic detoxifying enzyme that protects cells against deleterious effects of oxidative stress. Deregulated expression of GSTP1 protein and aberrant promoter methylation of GSTP1 gene were reported in various human tumors and were shown to be involved in the molecular pathway for cancer development. AIMS AND METHODS In this study, we aimed to determine the expression status of GSTP1 in relation to its gene promoter methylation in Moroccan population of 30 bladder cancer (BC) patients and in two noncancerous bladder tissues used as controls. GSTP1 expression was assessed by immunohistochemistry and GSTP1 gene promoter methylation status was studied by methylation-specific PCR (MS-PCR). RESULTS Glutathione S-transferase pi 1 was expressed in the two normal tissues. In BC cases, GSTP1 expression was strong in 23.33% (7/30), moderate in 60% (18/30), and weak in 13.33% (4/30) of cases, while GSTP1 was not expressed in one cancer case (3.33%). Variability of GSTP1 expression does not correlate with high-grade cancer or invasive-stage (p > 0.05). No GSTP1 gene promoter methylation was detected in all control and cancer cases. CONCLUSION Our data suggest that GSTP1 expression is not associated with BC development, limiting its use as a biomarker for BC management in Morocco. Moreover, difference in GSTP1 expression among BC cases is not due to GSTP1 promoter methylation.
Collapse
Affiliation(s)
- Khaoula Hadami
- Biology and Medical Research UnitCNESTENRabatMorocco
- Biology of Human Pathologies LaboratoryFaculty of SciencesMohammed V UniversityRabatMorocco
| | - Nadia Dakka
- Biology of Human Pathologies LaboratoryFaculty of SciencesMohammed V UniversityRabatMorocco
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Chan JCY, Soh ACK, Kioh DYQ, Li J, Verma C, Koh SK, Beuerman RW, Zhou L, Chan ECY. Reactive Metabolite-induced Protein Glutathionylation: A Potentially Novel Mechanism Underlying Acetaminophen Hepatotoxicity. Mol Cell Proteomics 2018; 17:2034-2050. [PMID: 30006487 DOI: 10.1074/mcp.ra118.000875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Although covalent protein binding is established as the pivotal event underpinning acetaminophen (APAP) toxicity, its mechanistic details remain unclear. In this study, we demonstrated that APAP induces widespread protein glutathionylation in a time-, dose- and bioactivation-dependent manner in HepaRG cells. Proteo-metabonomic mapping provided evidence that APAP-induced glutathionylation resulted in functional deficits in energy metabolism, elevations in oxidative stress and cytosolic calcium, as well as mitochondrial dysfunction that correlate strongly with the well-established toxicity features of APAP. We also provide novel evidence that APAP-induced glutathionylation of carnitine O-palmitoyltransferase 1 (CPT1) and voltage-dependent anion-selective channel protein 1 are respectively involved in inhibition of fatty acid β-oxidation and opening of the mitochondrial permeability transition pore. Importantly, we show that the inhibitory effect of CPT1 glutathionylation can be mitigated by PPARα induction, which provides a mechanistic explanation for the prophylactic effect of fibrates, which are PPARα ligands, against APAP toxicity. Finally, we propose that APAP-induced protein glutathionylation likely occurs secondary to covalent binding, which is a previously unknown mechanism of glutathionylation, suggesting that this post-translational modification could be functionally implicated in drug-induced toxicity.
Collapse
Affiliation(s)
- James Chun Yip Chan
- From the ‡Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Alex Cheow Khoon Soh
- §School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Dorinda Yan Qin Kioh
- From the ‡Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Jianguo Li
- ¶Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856
| | - Chandra Verma
- ¶Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,**Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558.,‡‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siew Kwan Koh
- ‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856
| | - Roger Wilmer Beuerman
- ‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856.,§§Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228.,¶¶Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Lei Zhou
- ‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856; .,§§Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228.,¶¶Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Eric Chun Yong Chan
- From the ‡Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543; .,‖‖Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609
| |
Collapse
|
87
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
88
|
The multifaceted role of glutathione S-transferases in cancer. Cancer Lett 2018; 433:33-42. [PMID: 29959055 DOI: 10.1016/j.canlet.2018.06.028] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Glutathione S-transferases (GSTs) are phase II detoxifying enzymes involved in the maintenance of cell integrity, oxidative stress and protection against DNA damage by catalyzing the conjugation of glutathione to a wide variety of electrophilic substrates. Though enzymes of the glutathione synthesis and salvage pathways have been well characterized in the past, there is still a lack of comprehensive understanding of their independent and coordinate regulatory mechanisms in carcinogenesis. The present review discusses implication of GST in cancer development and progression, gene polymorphism, drug resistance, signaling and epigenetic regulation involving their role in cancer. It is anticipated that GST especially the GSTP1 class can be developed as a biomarker either used alone or in combination with other biomarkers for early cancer detection and/or diagnosis as well as for future targeted preventive and therapeutic interventions with dietary agents.
Collapse
|
89
|
Zhang J, Ye ZW, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 2018; 120:204-216. [PMID: 29578070 PMCID: PMC5940525 DOI: 10.1016/j.freeradbiomed.2018.03.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Shweta Singh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States.
| |
Collapse
|
90
|
Eckstein M, Aulestia FJ, Nurbaeva MK, Lacruz RS. Altered Ca 2+ signaling in enamelopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1778-1785. [PMID: 29750989 DOI: 10.1016/j.bbamcr.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Biomineralization requires the controlled movement of ions across cell barriers to reach the sites of crystal growth. Mineral precipitation occurs in aqueous phases as fluids become supersaturated with specific ionic compositions. In the biological world, biomineralization is dominated by the presence of calcium (Ca2+) in crystal lattices. Ca2+ channels are intrinsic modulators of this process, facilitating the availability of Ca2+ within cells in a tightly regulated manner in time and space. Unequivocally, the most mineralized tissue produced by vertebrates, past and present, is dental enamel. With some of the longest carbonated hydroxyapatite (Hap) crystals known, dental enamel formation is fully coordinated by specialized epithelial cells of ectodermal origin known as ameloblasts. These cells form enamel in two main developmental stages: a) secretory; and b) maturation. The secretory stage is marked by volumetric growth of the tissue with limited mineralization, and the opposite is found in the maturation stage, as enamel crystals expand in width concomitant with increased ion transport. Disruptions in the formation and/or mineralization stages result, in most cases, in permanent alterations in the crystal assembly. This introduces weaknesses in the material properties affecting enamel's hardness and durability, thus limiting its efficacy as a biting, chewing tool and increasing the possibility of pathology. Here, we briefly review enamel development and discuss key properties of ameloblasts and their Ca2+-handling machinery, and how alterations in this toolkit result in enamelopathies.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States.
| |
Collapse
|
91
|
Tétard‐Jones C, Sabbadin F, Moss S, Hull R, Neve P, Edwards R. Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:709-720. [PMID: 29575327 PMCID: PMC5969246 DOI: 10.1111/tpj.13892] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 05/02/2023]
Abstract
Herbicide resistance in grass weeds is now one of the greatest threats to sustainable cereal production in Northern Europe. Multiple-herbicide resistance (MHR), a poorly understood multigenic and quantitative trait, is particularly problematic as it provides tolerance to most classes of chemistries currently used for post-emergence weed control. Using a combination of transcriptomics and proteomics, the evolution of MHR in populations of the weed blackgrass (Alopecurus myosuroides) has been investigated. While over 4500 genes showed perturbation in their expression in MHR versus herbicide sensitive (HS) plants, only a small group of proteins showed >2-fold changes in abundance, with a mere eight proteins consistently associated with this class of resistance. Of the eight, orthologues of three of these proteins are also known to be associated with multiple drug resistance (MDR) in humans, suggesting a cross-phyla conservation in evolved tolerance to chemical agents. Proteomics revealed that MHR could be classified into three sub-types based on the association with resistance to herbicides with differing modes of action (MoA), being either global, specific to diverse chemistries acting on one MoA, or herbicide specific. Furthermore, the proteome of MHR plants were distinct from that of HS plants exposed to a range of biotic (insect feeding, plant-microbe interaction) and abiotic (N-limitation, osmotic, heat, herbicide safening) challenges commonly encountered in the field. It was concluded that MHR in blackgrass is a uniquely evolving trait(s), associated with changes in the proteome that are distinct from responses to conventional plant stresses, but sharing common features with MDR in humans.
Collapse
Affiliation(s)
- Catherine Tétard‐Jones
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| | | | - Stephen Moss
- Stephen Moss Consulting7 Alzey GardensHarpendenHertfordshireAL5 5SZUK
| | - Richard Hull
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Paul Neve
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| |
Collapse
|
92
|
Lindström H, Peer SM, Ing NH, Mannervik B. Characterization of equine GST A3-3 as a steroid isomerase. J Steroid Biochem Mol Biol 2018; 178:117-126. [PMID: 29180167 DOI: 10.1016/j.jsbmb.2017.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/12/2023]
Abstract
Glutathione transferases (GSTs) comprise a superfamily of enzymes prominently involved in detoxication by making toxic electrophiles more polar and therefore more easily excretable. However some GSTs have developed alternative functions. Thus, a member of the Alpha class GSTs in pig and human tissues is involved in steroid hormone biosynthesis, catalyzing the obligatory double-bond isomerization of Δ5-androstene-3,17-dione to Δ4-androstene-3,17-dione and of Δ5-pregnene-3,20-dione to Δ4-pregnene-3,20-dione on the biosynthetic pathways to testosterone and progesterone. The human GST A3-3 is the most efficient steroid double-bond isomerase known so far in mammals. The current work extends discoveries of GST enzymes that act in the steroidogenic pathways in large mammals. The mRNA encoding the steroid isomerase GST A3-3 was cloned from testis of the horse (Equus ferus caballus). The concentrations of GSTA3 mRNA were highest in hormone-producing organs such as ovary, testis and adrenal gland. EcaGST A3-3 produced in E. coli has been characterized and shown to have highly efficient steroid double-bond isomerase activity, exceeding its activities with conventional GST substrates. The enzyme now ranks as one of the most efficient steroid isomerases known in mammals and approaches the activity of the bacterial ketosteroid isomerase, one of the most efficient enzymes of all categories known today. The high efficiency and the tissue distribution of EcaGST A3-3 support the view that the enzyme plays a physiologically significant role in the biosynthesis of steroid hormones.
Collapse
Affiliation(s)
- Helena Lindström
- Department of Neurochemistry, Stockholm University, Arrhenius Laboratories, SE-10691 Stockholm, Sweden
| | - Shawna M Peer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Nancy H Ing
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA.
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, Arrhenius Laboratories, SE-10691 Stockholm, Sweden.
| |
Collapse
|
93
|
Silva M, Carvalho MDG. Detoxification enzymes: cellular metabolism and susceptibility to various diseases. Rev Assoc Med Bras (1992) 2018; 64:307-310. [DOI: 10.1590/1806-9282.64.04.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/24/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marcelo Silva
- Hospital Universitário Clementino Fraga Filho, Brazil
| | | |
Collapse
|
94
|
Abstract
Changes in the intracellular thiol-disulfide balance are considered major determinants in the redox status/signaling of the cell. Cellular signaling is very sensitive to both exogenous and intracellular redox status and respond to many exogenous pro-oxidative or oxidative stresses. Redox status has dual effects on upstream signaling systems and downstream transcription factors. Redox signaling pathways use reactive oxygen species (ROS) to transfer signals from different sources to the nucleus to regulate such functions as growth, differentiation, proliferation, and apoptosis. Mitogen-activated protein kinases are activated by numerous cellular stresses and ligand-receptor bindings. An imbalance in the oxidant/antioxidant system, either resulting from excessive ROS/reactive nitrogen species production and/or antioxidant system impairment, leads to oxidative stress. Glutathione (GSH) is known to play a critical role in the cellular defense against unregulated oxidative stress in mammalian cells and involvement of large molecular antioxidants include classical antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Cadmium (Cd), a potent toxic heavy metal, is a widespread environmental contaminant. It is known to cause renal dysfunction, hepatic toxicity, genotoxicity, and apoptotic effects depending on the dose, route, and duration of exposure. This review examines the signaling pathways and mechanisms of activation of transcription factors by Cd-induced oxidative stress thus representing an important basis for understanding the mechanisms of Cd effect on the cells.
Collapse
Affiliation(s)
- Saïd Nemmiche
- LSTPA Laboratory, Department of Biology, Faculty of SNV, University of Mostaganem, Mostaganem 27000, Algeria
| |
Collapse
|
95
|
Phuthong S, Settheetham-Ishida W, Natphopsuk S, Ishida T. Genetic Polymorphism of the Glutathione S-transferase
Pi 1 (GSTP1) and Susceptibility to Cervical Cancer in Human
Papilloma Virus Infected Northeastern Thai Women. Asian Pac J Cancer Prev 2018; 19:381-385. [PMID: 29479986 PMCID: PMC5980923 DOI: 10.22034/apjcp.2018.19.2.381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: We aimed to investigate any association between a genetic polymorphism of the detoxification GSTP1 gene and risk of cervical cancer in northeastern Thailand. Materials and Methods: Genotyping of GSTP1 was performed for 198 squamous cell cervical cancer (SCCA) patients and 198 age-matched healthy controls with the PCR-RFLP method. Results: The respective frequencies of the G allele were 0.33 and 0.26 in the controls and cases, the difference being significant (OR = 0.69 [95% CI: 0.50-0.95, p=0.0192]). Among women infected with high-risk types of HPV, being a heterozygous carrier was associated with a reduced risk of cervical cancer (adjusted OR = 0.32 [95% CI: 0.12-0.91, p=0.031]). Similarly, a decreased risk was observed in heterozygous women with a non-smoking partner (adjusted OR = 0.27 [95% CI: 0.09-0.83, p=0.023]). Conclusions: GSTP1 polymorphism could influence susceptibility to cervical cancer among northeast Thai women; either as a independent factor or in combination with high-risk HPV infection. Dual-testing of HPV and the GSTP1 might prove an effective screening tool for cervical cancer.
Collapse
Affiliation(s)
- Sophida Phuthong
- Department of Physiology, Khon Kaen University, Khon Kaen, Thailand.
| | | | | | | |
Collapse
|
96
|
Hamza AA, Heeba GH, Elwy HM, Murali C, El-Awady R, Amin A. Molecular characterization of the grape seeds extract's effect against chemically induced liver cancer: In vivo and in vitro analyses. Sci Rep 2018; 8:1270. [PMID: 29352129 PMCID: PMC5775207 DOI: 10.1038/s41598-018-19492-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to investigate the anti-cancer property of grape seed extract (GSE) during early stages of developing liver cancer using a two-stage carcinogenic model combining diethylnitrosamine (DEN) and 2-Acetyl Aminofluorene (2-AAF). Administration of GSE at doses 25, 50 and 100 mg/kg per day started at the beginning of promotion periods and continued for 14 weeks. GSE dramatically inhibited pre-neoplastic foci formation as well as significantly decreased the number and the area of placental glutathione-S-transferase in livers of DEN-2AAF-treated rats by approximately 4 & 10 fold deductions, respectively. GSE's effects were associated with induced apoptosis, reduced cell proliferation, decreased oxidative stress and down regulation of histone deacetylase activity and inflammation makers, such as cyclooxygenase 2, inducible nitric oxide synthase, nuclear factor-kappa B-p65 and p- phosphorylated tumor necrosis factor receptor expressions in liver. GSE treatment also decreased the viability of HepG2 cells and induced early and late apoptosis through activating caspase-3 and Bax. Furthermore, GSE induced G2/M and G1/S cell cycle arrest. The present study provides evidence that the GSE's anticancer effect is mediated through the inhibition of cell proliferation, induction of apoptosis, modulating oxidative damage and suppressing inflammatory response.
Collapse
Affiliation(s)
- Alaaeldin Ahmed Hamza
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt.
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | | | | | - Raafat El-Awady
- Department of Pharmacy Practice & Pharmacotherapeutics and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Amr Amin
- Biology Department, UAE University, Al-Ain, UAE.
- Zoology Department, Cairo University, Giza, Egypt.
| |
Collapse
|
97
|
Merlos Rodrigo MA, Dostalova S, Buchtelova H, Strmiska V, Michalek P, Krizkova S, Vicha A, Jencova P, Eckschlager T, Stiborova M, Heger Z, Adam V. Comparative gene expression profiling of human metallothionein-3 up-regulation in neuroblastoma cells and its impact on susceptibility to cisplatin. Oncotarget 2017; 9:4427-4439. [PMID: 29435113 PMCID: PMC5796984 DOI: 10.18632/oncotarget.23333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Human metallothionein-3 (hMT-3), also known as growth inhibitory factor, is predominantly expressed in the central nervous system. hMT-3 is presumed to participate in the processes of heavy metal detoxification, regulation of metabolism and protection against oxidative damage of free radicals in the central nervous system; thus, it could play important neuromodulatory and neuroprotective roles. However, the primary functions of hMT-3 and the mechanism underlying its multiple functions in neuroblastoma have not been elucidated so far. First, we confirmed relatively high expression of hMT-3 encoding mRNA in biopsies (n = 23) from high-risk neuroblastoma subjects. Therefore, we focused on investigation of the impact of hMT-3 up-regulation in N-Myc amplifying neuroblastoma cells. The differentially up-regulated genes involved in biological pathways related to cellular senescence and cell cycle were identified using electrochemical microarray with consequent bioinformatic processing. Further, as experimental verification of microarray data, the cytotoxicity of the cisplatin (CDDP) was examined in hMT-3 and mock cells by MTT and clonogenic assays. Overall, our data strongly suggest that up-regulation of hMT-3 positively correlates with the genes involved in oncogene-induced senescence (CDKN2B and ANAPC5) or apoptosis (CASP4). Moreover, we identified a significant increase in chemoresistance to cisplatin (CDDP) due to hMT-3 up-regulation (24IC50: 7.5 vs. 19.8 μg/ml), indicating its multipurpose biological significance.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Pavla Jencova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, CZ-128 40 Prague 2, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
98
|
Zhu Z, Du S, Du Y, Ren J, Ying G, Yan Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J Neurochem 2017; 144:93-104. [PMID: 29105080 DOI: 10.1111/jnc.14250] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023]
Abstract
Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment.
Collapse
Affiliation(s)
- Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuangshuang Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yibo Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jing Ren
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
99
|
Hua Y, Yao W, Ji P, Wei Y. Integrated metabonomic-proteomic studies on blood enrichment effects of Angelica sinensis on a blood deficiency mice model. PHARMACEUTICAL BIOLOGY 2017; 55:853-863. [PMID: 28140733 PMCID: PMC6130503 DOI: 10.1080/13880209.2017.1281969] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 05/18/2023]
Abstract
CONTEXT Angelica sinensis (Oliv.) Diels (Umbelliferae) (AS) is a well-known Traditional Chinese Medicine (TCM) that enriches and regulates the blood. OBJECTIVE An integrated metabonomic and proteomic method was developed and applied to study the blood enrichment effects and mechanisms of AS on blood deficiency (BD) mouse model. MATERIALS AND METHODS Forty mice were randomly divided into the control, BD, High-dose of AS (ASH), Middle-dose of AS (ASM), and Low-dose of AS (ASL) groups. BD model mice were established by injecting N-acetylphenylhydrazine (APH) and cyclophosphamide (CTX) (ip). The aqueous extract of AS was administered at three dose of 20, 10, or 5 g/kg b. wt. orally for 7 consecutive days before/after APH and CTX administration. Gas chromatography-mass spectrometry (GC-MS) combined with pattern recognition method and 2D gel electrophoresis (2-DE) proteomics were performed in this study to discover the underlying hematopoietic regulation mechanisms of AS on BD mouse model. RESULTS Unlike in the control group, the HSP90 and arginase levels increased significantly (p < 0.05) in the BD group, but the levels of carbonic anhydrase, GAPDH, catalase, fibrinogen, GSTP, carboxylesterase and hem binding protein in the BD group decreased significantly (p < 0.05). Unlike the levels in the BD group, the levels of these biomarkers were regulated to a normal state near the control group in the ASM group. Unlike in the control group, l-alanine, arachidonic acid, l-valine, octadecanoic acid, glycine, hexadecanoic acid, l-threonine, butanoic acid, malic acid, l-proline and propanoic acid levels increased significantly (p < 0.05) in the BD group, the levels of d-fructose in the BD group decreased significantly (p < 0.05). The relative concentrations of 12 endogenous metabolites were also significantly affected by the ASL, ASM, and ASH treatments. Notably, most of the altered BD-related metabolites were restored to normal state after ASM administration. CONCLUSION AS can promote hematopoietic activities, inhibit production of reactive oxygen species, regulate energy metabolism, increase antiapoptosis, and potentially contribute to the blood enrichment effects of AS against APH- and CTX-induced BD mice.
Collapse
Affiliation(s)
- Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Wangling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
- CONTACT Yanming WeiCollege of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province730070, People’s Republic of China
| |
Collapse
|
100
|
Association of Glutathione S-Transferase P-1 (GSTP-1) rs1695 polymorphism with overall survival in glioblastoma patients treated with combined radio-chemotherapy. Invest New Drugs 2017; 36:340-345. [DOI: 10.1007/s10637-017-0516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023]
|