51
|
Lv Z, Zhang C, Shao C, Liu B, Liu E, Yuan D, Zhou Y, Shen C. Research progress on the response of tea catechins to drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5305-5313. [PMID: 34031895 DOI: 10.1002/jsfa.11330] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Drought stress (DS) is the most important abiotic stress affecting yield and quality of tea worldwide. DS causes oxidative stress to cells due to the accumulation of reactive oxygen species (ROS). As non-enzymatic antioxidants, tea catechins can scavenge excess ROS in response to DS. Further, catechin accumulation contributes to the formation of oxidative polymerization products (e.g. theaflavins and thearubigins) that improve the quality of black tea. However, there are no systematic reports on the response of tea catechins to DS. First, we reviewed the available literature on the response of tea plants to DS. Second, we summarized the current knowledge of ROS production in tea leaves under DS and typical antioxidant response mechanisms. Third, we conducted a detailed review of the changes in catechin levels in tea under different drought conditions. We found that the total amounts of catechin and o-quinone increased under DS conditions. We propose that the possible mechanisms underlying tea catechin accumulation under DS conditions include (i) autotrophic formation of o-quinone, (ii) polymerization of proanthocyanidins that directly scavenge excess ROS, and (iii) formation of metal ion complexes and by influencing the antioxidant systems that indirectly eliminate excess ROS. Finally, we discuss ways of potentially improving black tea quality using drought before picking in the summer/fall dry season. In summary, we mainly discuss the antioxidant mechanisms of tea catechins under DS and the possibility of using drought to improve black tea quality. Our review provides a theoretical basis for the production of high-quality black tea under DS conditions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Danni Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yuebing Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
52
|
Wolski GJ, Sadowska B, Fol M, Podsędek A, Kajszczak D, Kobylińska A. Cytotoxicity, antimicrobial and antioxidant activities of mosses obtained from open habitats. PLoS One 2021; 16:e0257479. [PMID: 34543304 PMCID: PMC8452054 DOI: 10.1371/journal.pone.0257479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Mosses are mainly the object of ecological and taxonomic research. This group of plants are still underestimated by scientists in other aspects of research. Recent research has shown that these plants contain remarkable and unique substances with high biological activity. Five species of mosses from a large urban ecosystem were identified for present study. In order to determine their biological potential, multifaceted studies were carried out, including: total phenolics content, antioxidant activity, antimicrobial and antifungal study, cytotoxicity evaluation, and scratch assay to assess pro-regenerative effect in the context of their possible use as the ingredients of biologically active cosmetics. Additionally, determination of individual phenolic compounds in selected extracts of the tested mosses was made. Research showed that Ceratodon purpureus and Dryptodon pulvinatus extracts had the greatest potential as antioxidants and antimicrobial activity. The cytotoxicity assessment indicated that the extracts from Dryptodon pulvinatus and Rhytidiadelphus squarossus exerted the strongest negative effect on mouse fibroblast line L929 viability at higher concentrations. While, the extract from Tortulla muralis best stimulated human foreskin fibroblast line HFF-1 proliferation and wound healing. The research on individual phenolic compounds content in the extracts tested indicated over 20 peaks on UPLC chromatograms. The conducted study has shown that mosses, especially so far unexplored species of open ecosystems, and e.g. epilytic habitats, may be a valuable source of biologically active substances and thus may constitute important medical and cosmetic possibilities.
Collapse
Affiliation(s)
- Grzegorz J. Wolski
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Agnieszka Kobylińska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
53
|
The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Appl Microbiol Biotechnol 2021; 105:7201-7213. [PMID: 34519854 DOI: 10.1007/s00253-021-11552-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Due to their interesting properties for human health, medicinal plants are of worldwide interest, including Iran. More has yet to be investigated and analyzed on the use of methods affecting medicinal plant growth and biochemical properties under stress. The important question about medicinal plants is the purpose of their plantation, determining their growth conditions. The present review article is about the effects of salinity stress on the growth and production of secondary metabolites (SM) in medicinal plants. In stressful conditions including salinity, while the growth of medicinal plants decreases, the production of secondary metabolites (SM) may increase significantly affecting plant medicinal properties. SMs are self-protective substances that medicinal plants quickly accumulate to resist changes in the external environment. Although previous research has indicated the effects of salt stress on the growth and yield of medicinal plants, more has yet to be indicated on how the use of biological methods including plant growth regulators (PGR) and soil microbes (mycorrhizal fungi and plant growth-promoting rhizobacteria, PGPR) may affect the physiology of medicinal plants and the subsequent production of SM in salt stress conditions. The use of modern omics has become significantly important for the identification and characterization of new SM, transcriptomics, genomics, and proteomics of medicinal plants, as well as for the high production of plant-derived medicines. Accordingly, the possible biological mechanisms, which may affect such properties, have been presented. Future research perspectives for the production of medicinal plants in saline fields, using biological methods, have been suggested. KEY POINTS: • The important question about medicinal plants is the purpose of their plantation. • Secondary metabolites (SM) may significantly increase under salinity stress. • Biological methods, affecting the production of SM by stressed medicinal plants.
Collapse
|
54
|
Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:10-19. [PMID: 34087741 DOI: 10.1016/j.plaphy.2021.05.023] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is aspecial subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin's role in increasing several physiological and biochemical processes under stress and non-stress environments. Additionally, this review briefly assesses quercetin's role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin's role in plant signaling are also discussed.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 1J Ciolkowskiego St., 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
55
|
Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, Tian Z, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. PHYSIOLOGIA PLANTARUM 2021; 172:1966-1982. [PMID: 33774830 DOI: 10.1111/ppl.13407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
Flavonoids with great medicinal value play an important role in plant individual growth and stress resistance. Flavonol synthetase (FLS) is one of the key enzymes to synthesize flavonoids. However, the role of the FLS gene in flavonoid accumulation and tolerance to abiotic stresses, as well as its mechanism has not yet been investigated systematically in plants. The aim of this research is to evaluate the effect of FLS overexpression on the accumulation of active ingredients and stress resistance in Euphorbia kansui Liou. The results showed that when the EkFLS gene was overexpressed in Arabidopsis thaliana, the accumulation of flavonoids was improved. In addition, when the wild-type and EkFLS overexpressed Arabidopsis plants were treated with ABA and MeJA, compared with WT Arabidopsis, EkFLS overexpressed Arabidopsis promoted stomatal aperture to influence photosynthesis of the plants, which in turn can promote stress resistance. Meanwhile, under MeJA, NaCl, and PEG treatment, EkFLS overexpressed in Arabidopsis induced higher accumulation of flavonoids, which significantly enhanced peroxidase (POD) and superoxide dismutase (SOD) activities that can scavenge reactive oxygen species in cells to protect the plant. These results indicated that EkFLS overexpression is strongly correlated to the increase of flavonoid synthesis and therefore the tolerance to abiotic stresses in plants, providing a theoretical basis for further improving the quality of medicinal plants and their resistance to abiotic stresses simultaneously.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
56
|
He Y, Pan L, Yang T, Wang W, Li C, Chen B, Shen Y. Metabolomic and Confocal Laser Scanning Microscopy (CLSM) Analyses Reveal the Important Function of Flavonoids in Amygdalus pedunculata Pall Leaves With Temporal Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:648277. [PMID: 34093611 PMCID: PMC8170035 DOI: 10.3389/fpls.2021.648277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Amygdalus pedunculata Pall [Rosaceae, Prunus, Prunus pedunculata (Pall.) Maxim.] belongs to the Rosaceae family and is resistant to cold and drought. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomics were used to track the changes in bioactive metabolites during several stages of Amygdalus pedunculata Pall growth. A total of 827 different metabolites were detected, including 169 flavonoids, 68 organic acids, 35 terpenoids and 2 tannins. Flavonoid biosynthesis and flavone and flavonol biosynthesis were the main synthetic sources of flavonoids. Quercetin, isoquercitrin, and epicatechin as biomarkers related to growth and development were found. Quercetin connects the biosynthesis of flavonoids and the biosynthesis of flavones and flavonols. The contents of isoquercitrin and epicatechin increased uniformly during the whole growth process from the flowering stage to the fruit ripening stage, indicating that play key roles in the fruit growth and ripening stages of this plant. The tissue location and quantitative analysis of flavonoids in leaves at different stages were performed by confocal laser scanning microscopy. The flavonoids were mainly distributed in the palisade tissue and spongy tissue, indicating the need for protection of these sensitive tissues in particular. Through comprehensive and systematic analysis, the temporal distribution of flavonoids in the process of their leaves growth was determined. These results clarify the important role of flavonoids in the developmental process of Amygdalus pedunculata Pall.
Collapse
Affiliation(s)
- Yueyue He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Lei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Tao Yang
- Shaanxi Academy of Forestry, Xi’an, China
- Technology Research Center of Amygdalus pedunculata of State Forestry and Grassland Administration, Yulin, China
| | - Wei Wang
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| |
Collapse
|
57
|
Al-Zahrani HS, Alharby HF, Hakeem KR, Rehman RU. Exogenous Application of Zinc to Mitigate the Salt Stress in Vigna radiata (L.) Wilczek-Evaluation of Physiological and Biochemical Processes. PLANTS (BASEL, SWITZERLAND) 2021; 10:1005. [PMID: 34069971 PMCID: PMC8157868 DOI: 10.3390/plants10051005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Salt stress adversely affects the growth and productivity of crops. However, reports suggest that the application of various micronutrients could help the plant to cope with this stress. Hence, the objective of the study was to examine the effect of exogenous application of Zinc (Zn) on salt tolerance in Vigna radiata (L.) Wilczek (mungbean). Mungbean is considered to be an economically important crop and possess a strategic position in Southeast Asian countries for sustainable crop production. It is rich in quality proteins, minerals and vitamins. Three weeks old grown seedlings were subjected to NaCl (150 mM and 200 mM) alone or with Zn (250 µM). After 21 days of treatment, plants were harvested for investigating morphological, physiological and biochemical changes. We found that the Zn application mitigates the negative effect upon plant growth to a variable extent. This may be attributed to the increased shoot and root length, improved chlorophyll and carotenoid contents, enhanced total soluble sugar (TSS), total soluble protein (TSP) and proline accumulation, decreased H2O2 content and increased enzymatic antioxidant activities. Zn's application improved the performance of the enzymes such as phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) of the secondary metabolism, which resulted in the improvement of total phenol and flavonoids. The antioxidant activities such as 1,1diphenyl 2-picryl hydrazine (DPPH) and ferrous reducing antioxidant power assay (FRAP) of the plants also showed improved results in their salt only treatments. Furthermore, hydrogen peroxide (H2O2) and superoxide radical (SOD) scavenging activity were also improved upon the application of 250 µM zinc. Thus, Zn application in low doses offers promising potential for recovering plants suffering from salinity stress. In conclusion, we assume that zinc application improved salt tolerance in mungbean through the improvement of various physiological and photochemical processes which could prove to be useful in nutrient mediated management for crop improvement.
Collapse
Affiliation(s)
- Hassan S. Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.F.A.)
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.F.A.)
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.F.A.)
| | - Reiaz Ul Rehman
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India;
| |
Collapse
|
58
|
Dias MC, Pinto DCGA, Figueiredo C, Santos C, Silva AMS. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. PHYTOCHEMISTRY 2021; 185:112695. [PMID: 33581598 DOI: 10.1016/j.phytochem.2021.112695] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The frequency of combined stress events is increasing due to climate change and represents a new threat to olive (Olea europaea) culture. How olive plants modulate their profile of metabolites under multiple stressing agents remains to unveil, although several metabolites affect plants' resilience, and olive production and quality. Young olive plants were exposed to a water deficit (WD) for 30 days and then exposed to a shock of heat and high UVB-radiation (WDHS+UVB treatment) for 2 days. Then, plants were re-watered and grown under optimal conditions (recovery) for 30 days. Leaves were collected after stress and recovery, analysed by liquid and gas chromatography, and the lipophilic and phenolic profiles were characterized. Except for the oleuropein derivatives, the qualitative metabolite profile was similar during stress and recovery. Metabolite increases or decreases in response to stress were stronger when WD was followed by WDHS+UVB treatment. Phenolic compounds (luteolin-7-O-glucoside, quercetin-3-O-rutinoside, apigenin-7-O-glucoside, chrysoeriol-7-O-glucoside, kaempferol derivatives, oleuropein, and lucidumoside C) were the most involved after WD and WDHS+UVB, possibly acting as reactive oxygen species (ROS) scavengers. Lipophilic compounds were more relevant during the recovery period. The catabolism of fatty acids and carbohydrates may provide the necessary energy for plant performance reestablishment, and sterols, long-chain alkanes, and terpenes metabolic pathways may be shifted for the production of compounds with a more important stress protection role. This work highlights for the first time that tolerance mechanisms activated by WD in olive plants are related to metabolite changes, that are adjusted when other stressors are overlapped (WDHS+UVB), and also help the plants recover. This metabolites' plasticity represents an essential contribution to understanding how dry-farming olive orchards may deal with drought combined with high UV-B or heat.
Collapse
Affiliation(s)
- Maria Celeste Dias
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Diana C G A Pinto
- LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina Figueiredo
- LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Conceição Santos
- IB2, Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Artur M S Silva
- LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
59
|
Wang M, Ren T, Huang R, Li Y, Zhang C, Xu Z. Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:667-676. [PMID: 33780740 DOI: 10.1016/j.plaphy.2021.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/16/2021] [Indexed: 05/27/2023]
Abstract
Soil salinity is a major limiting factor for agricultural production, threatening food security worldwide. A thorough understanding of the mechanisms underlying plant responses is required to effectively counter its deleterious effects on crop productivity. Total flavonoid accumulation reportedly improves salinity tolerance in many crops. Therefore, we isolated the full-length cDNA of a flavonol synthetase (FLS) gene from Apocynum venetum (AvFLS). The gene contained a 1008-bp open reading frame encoding a protein composed of 335 amino acid residues. Multiple sequence alignment showed that the AvFLS protein was highly homologous to FLSs from other plants. AvFLS was expressed in leaves, stems, roots, flowers, and germinated seeds. Expression pattern analysis revealed that AvFLS was significantly induced by salinity stress. AvFLS overexpression in tobacco positively affected the development and growth of transgenic plants under salinity stress: root and seedling growth were inhibited to a lesser extent, while seed germination rate increased. Additionally, the overexpression of AvFLS under salinity stress resulted in an increase in total flavonoid content (1.63 mg g-1 in wild-type samples and 4.63 mg g-1 on average in transgenic samples), which accompanied the increase in the activity of antioxidant enzymes and inhibited the production of reactive oxygen species. Further, AvFLS-overexpressing transgenic tobacco plants absorbed more K+ than wild type plants, leading to an increased K+/Na+ ratio, which in turn contributed to the maintenance of Na+/K+ homeostasis. These findings suggest that an AvFLS-induced increase in total flavonoid content enhanced plant salinity tolerance, implying the importance of AvFLS gene responses to salinity stress.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tingting Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ruihuan Huang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; China Tobacco Guangxi Industrial Co., Ltd., Nanming, 530000, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
60
|
Araújo M, Prada J, Mariz-Ponte N, Santos C, Pereira JA, Pinto DCGA, Silva AMS, Dias MC. Antioxidant Adjustments of Olive Trees ( Olea Europaea) under Field Stress Conditions. PLANTS 2021; 10:plants10040684. [PMID: 33916326 PMCID: PMC8066335 DOI: 10.3390/plants10040684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Extreme climate events are increasingly frequent, and the 2017 summer was particularly critical in the Mediterranean region. Olive is one of the most important species of this region, and these climatic events represent a threat to this culture. However, it remains unclear how olive trees adjust the antioxidant enzymatic system and modulate the metabolite profile under field stress conditions. Leaves from two distinct adjacent areas of an olive orchard, one dry and the other hydrated, were harvested. Tree water status, oxidative stress, antioxidant enzymes, and phenolic and lipophilic metabolite profiles were analyzed. The environmental conditions of the 2017 summer caused a water deficit in olive trees of the dry area, and this low leaf water availability was correlated with the reduction of long-chain alkanes and fatty acids. Hydrogen peroxide (H2O2) and superoxide radical (O2•–) levels increased in the trees collected from the dry area, but lipid peroxidation did not augment. The antioxidant response was predominantly marked by guaiacol peroxidase (GPOX) activity that regulates the H2O2 harmful effect and by the action of flavonoids (luteolin-7-O-glucuronide) that may act as reactive oxygen species scavengers. Secoiridoids adjustments may also contribute to stress regulation. This work highlights for the first time the protective role of some metabolite in olive trees under field drought conditions.
Collapse
Affiliation(s)
- Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - João Prada
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Nuno Mariz-Ponte
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| |
Collapse
|
61
|
Yoon HI, Kim HY, Kim J, Oh MM, Son JE. Quantitative Analysis of UV-B Radiation Interception in 3D Plant Structures and Intraindividual Distribution of Phenolic Contents. Int J Mol Sci 2021; 22:2701. [PMID: 33800078 PMCID: PMC7962183 DOI: 10.3390/ijms22052701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju 28644, Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
62
|
Maher M, Ahmad H, Nishawy E, Li Y, Luo J. Novel Transcriptome Study and Detection of Metabolic Variations in UV-B-Treated Date Palm ( Phoenix dactylifera cv. Khalas). Int J Mol Sci 2021; 22:2564. [PMID: 33806362 PMCID: PMC7961990 DOI: 10.3390/ijms22052564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Date palm (Phoenix dactylifera) is one of the most widespread fruit crop species and can tolerate drastic environmental conditions that may not be suitable for other fruit species. Excess UV-B stress is one of the greatest concerns for date palm trees and can cause genotoxic effects. Date palm responds to UV-B irradiation through increased DEG expression levels and elaborates upon regulatory metabolic mechanisms that assist the plants in adjusting to this exertion. Sixty-day-old Khalas date palm seedlings (first true-leaf stage) were treated with UV-B (wavelength, 253.7 nm; intensity, 75 μW cm-2 for 72 h (16 h of UV light and 8 h of darkness). Transcriptome analysis revealed 10,249 and 12,426 genes whose expressions were upregulated and downregulated, respectively, compared to the genes in the control. Furthermore, the differentially expressed genes included transcription factor-encoding genes and chloroplast- and photosystem-related genes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect metabolite variations. Fifty metabolites, including amino acids and flavonoids, showed changes in levels after UV-B excess. Amino acid metabolism was changed by UV-B irradiation, and some amino acids interacted with precursors of different pathways that were used to synthesize secondary metabolites, i.e., flavonoids and phenylpropanoids. The metabolite content response to UV-B irradiation according to hierarchical clustering analysis showed changes in amino acids and flavonoids compared with those of the control. Amino acids might increase the function of scavengers of reactive oxygen species by synthesizing flavonoids that increase in response to UV-B treatment. This study enriches the annotated date palm unigene sequences and enhances the understanding of the mechanisms underlying UV-B stress through genetic manipulation. Moreover, this study provides a sequence resource for genetic, genomic and metabolic studies of date palm.
Collapse
Affiliation(s)
- Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Department of Biochemistry, College of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Elsayed Nishawy
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo 11735, Egypt
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou 570288, China
| |
Collapse
|
63
|
Böttner L, Grabe V, Gablenz S, Böhme N, Appenroth KJ, Gershenzon J, Huber M. Differential localization of flavonoid glucosides in an aquatic plant implicates different functions under abiotic stress. PLANT, CELL & ENVIRONMENT 2021; 44:900-914. [PMID: 33300188 DOI: 10.1111/pce.13974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 05/24/2023]
Abstract
Flavonoids may mediate UV protection in plants either by screening of harmful radiation or by minimizing the resulting oxidative stress. To help distinguish between these alternatives, more precise knowledge of flavonoid distribution is needed. We used confocal laser scanning microscopy (cLSM) with the "emission fingerprinting" feature to study the cellular and subcellular distribution of flavonoid glucosides in the giant duckweed (Spirodela polyrhiza), and investigated the fitness effects of these compounds under natural UV radiation and copper sulphate addition (oxidative stress) using common garden experiments indoors and outdoors. cLSM "emission fingerprinting" allowed us to individually visualize the major dihydroxylated B-ring-substituted flavonoids, luteolin 7-O-glucoside and luteolin 8-C-glucoside, in cross-sections of the photosynthetic organs. While luteolin 8-C-glucoside accumulated mostly in the vacuoles and chloroplasts of mesophyll cells, luteolin 7-O-glucoside was predominantly found in the vacuoles of epidermal cells. In congruence with its cellular distribution, the mesophyll-associated luteolin 8-C-glucoside increased plant fitness under copper sulphate addition but not under natural UV light treatment, whereas the epidermis-associated luteolin 7-O-glucoside tended to increase fitness under both stresses across chemically diverse genotypes. Taken together, we demonstrate that individual flavonoid glucosides have distinct cellular and subcellular locations and promote duckweed fitness under different abiotic stresses.
Collapse
Affiliation(s)
- Laura Böttner
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Saskia Gablenz
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Niklas Böhme
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Klaus J Appenroth
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Meret Huber
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
64
|
Variation in Phenolic Chemistry in Zostera marina Seagrass Along Environmental Gradients. PLANTS 2021; 10:plants10020334. [PMID: 33572371 PMCID: PMC7916139 DOI: 10.3390/plants10020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Chemical ecology has been suggested as a less time-consuming and more cost-efficient monitoring tool of seagrass ecosystems than traditional methods. Phenolic chemistry in Zostera marina samples was analyzed against latitude, sea depth, sample position within a seagrass meadow (periphery or center) and wave exposure. Multivariate data analysis showed that rosmarinic acid correlated moderately positively with depth, while the flavonoids had an overall strong negative correlation with increasing depth—possibly reflecting lack of stress-induced conditions with increasing depth, rather than a different response to light conditions. At a molecular level, the flavonoids were separated into two groups; one group is well described by the variables of depth and wave exposure, and the other group that was not well described by these variables—the latter may reflect biosynthetic dependencies or other unrevealed factors. A higher flavonoid/rosmarinic acid ratio was seen in the periphery of a seagrass meadow, while the contrary ratio was seen in the center. This may reflect higher plant stress in the periphery of a meadow, and the flavonoid/rosmarinic acid ratio may provide a possible molecular index of seagrass ecosystem health. Further studies are needed before the full potential of using variation in phenolic chemistry as a seagrass ecosystem monitoring tool is established.
Collapse
|
65
|
Neugart S, Bumke-Vogt C. Flavonoid Glycosides in Brassica Species Respond to UV-B Depending on Exposure Time and Adaptation Time. Molecules 2021; 26:molecules26020494. [PMID: 33477705 PMCID: PMC7831952 DOI: 10.3390/molecules26020494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany
- Correspondence: ; Tel.: +49-0551-39-27958
| | - Christiane Bumke-Vogt
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany;
| |
Collapse
|
66
|
Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. PLANTS (BASEL, SWITZERLAND) 2021; 10:118. [PMID: 33430128 PMCID: PMC7827553 DOI: 10.3390/plants10010118] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/15/2023]
Abstract
Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.
Collapse
Affiliation(s)
- Dunja Šamec
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33–35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.Š.); (V.V.B.)
| | - Valerija Vujčić Bok
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.Š.); (V.V.B.)
| | | |
Collapse
|
67
|
Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran LSP. Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches. Cells 2020; 9:E2492. [PMID: 33212751 PMCID: PMC7697626 DOI: 10.3390/cells9112492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Plants grow on soils that not only provide support for root anchorage but also act as a reservoir of water and nutrients important for plant growth and development. However, environmental factors, such as high salinity, hinder the uptake of nutrients and water from the soil and reduce the quality and productivity of plants. Under high salinity, plants attempt to maintain cellular homeostasis through the production of numerous stress-associated endogenous metabolites that can help mitigate the stress. Both primary and secondary metabolites can significantly contribute to survival and the maintenance of growth and development of plants on saline soils. Existing studies have suggested that seed/plant-priming with exogenous metabolites is a promising approach to increase crop tolerance to salt stress without manipulation of the genome. Recent advancements have also been made in genetic engineering of various metabolic genes involved in regulation of plant responses and protection of the cells during salinity, which have therefore resulted in many more basic and applied studies in both model and crop plants. In this review, we discuss the recent findings of metabolic reprogramming, exogenous treatments with metabolites and genetic engineering of metabolic genes for the improvement of plant salt tolerance.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China;
- Joint International Laboratory for Multi-Omics Research, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - David J. Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand;
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
68
|
Masike K, de Villiers A, Hoffman EW, Stander MA. Application of Metabolomics Tools to Determine Possible Biomarker Metabolites Linked to Leaf Blackening in Protea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12595-12605. [PMID: 32936621 DOI: 10.1021/acs.jafc.0c03607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The postharvesting disorder leaf blackening is the main cause of product rejection in Protea during export. In this study, we report an investigation into metabolites associated with leaf blackening in Protea species. Methanol extracts of leaf and involucral bract tissue were analyzed by liquid chromatography hyphenated to photodiode array and high-resolution mass spectrometry (LC-PDA-HRMS), where 116 features were annotated. Analytical data obtained from 37 Protea species, selections, and hybrids were investigated using metabolomics tools, which showed that stems susceptible to leaf blackening cluster together and contained features identified as benzenetriol- and/or hydroquinone-derived metabolites. On the other hand, species, selections, and cultivars not prone to blackening were linked to metabolites with known protective properties against biotic and abiotic stressors. During the browning process, susceptible cultivars also produce these protective metabolites, yet at innately low levels, which may render these species and cultivars more vulnerable to blackening. Metabolites that were found to be correlated to the instigation of the browning process, all comprising benzenetriol- and hydroquinone-glycoside derivatives, are highlighted to provide preliminary insights to guide the development of new Protea cultivars not susceptible to leaf blackening.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Eleanor W Hoffman
- Department of Horticultural Science, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
- School of Agriculture and Food Science, University of Queensland, St. Lucia 4072, Australia
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| |
Collapse
|
69
|
Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants (Basel) 2020; 9:E1098. [PMID: 33182252 PMCID: PMC7695271 DOI: 10.3390/antiox9111098] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Whether flavonoids play significant antioxidant roles in plants challenged by photooxidative stress of different origin has been largely debated over the last few decades. A critical review of the pertinent literature and our experimentation as well, based on a free-of-scale approach, support an important antioxidant function served by flavonoids in plants exposed to a wide range of environmental stressors, the significance of which increases with the severity of stress. On the other side, some questions need conclusive answers when the putative antioxidant functions of plant flavonoids are examined at the level of both the whole-cell and cellular organelles. This partly depends upon a conclusive, robust, and unbiased definition of "a plant antioxidant", which is still missing, and the need of considering the subcellular re-organization that occurs in plant cells in response to severe stress conditions. This likely makes our deterministic-based approach unsuitable to unveil the relevance of flavonoids as antioxidants in extremely complex biological systems, such as a plant cell exposed to an ever-changing stressful environment. This still poses open questions about how to measure the occurred antioxidant action of flavonoids. Our reasoning also evidences the need of contemporarily evaluating the changes in key primary and secondary components of the antioxidant defense network imposed by stress events of increasing severity to properly estimate the relevance of the antioxidant functions of flavonoids in an in planta situation. In turn, this calls for an in-depth analysis of the sub-cellular distribution of primary and secondary antioxidants to solve this still intricate matter.
Collapse
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy;
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| | - Alessio Fini
- Department of Agriculural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, I-20133 Milan, Italy;
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy;
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; (L.G.); (M.L.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; (L.G.); (M.L.)
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| |
Collapse
|
70
|
Cen W, Zhao W, Ma M, Lu S, Liu J, Cao Y, Zeng Z, Wei H, Wang S, Li R, Luo J. The Wild Rice Locus CTS-12 Mediates ABA-Dependent Stomatal Opening Modulation to Limit Water Loss Under Severe Chilling Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:575699. [PMID: 33193516 PMCID: PMC7661758 DOI: 10.3389/fpls.2020.575699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/12/2020] [Indexed: 05/30/2023]
Abstract
A near-isogenic line (NIL) DC90 which was generated by introgressing a wild rice (Oryza rufipogon Griff.) locus CTS-12 into the 9311(Oryza sativa L. ssp. indica) background confers chilling tolerance phenotype. Here, our pilot trials showed that chilling tolerance was positively correlated with abscisic acid (ABA) biosynthesis. To understand how CTS-12 mediated the ABA-dependent multi-levels of regulation, the integration of transcriptomic and metabolomic profiling using the two-way orthogonal projections to latent structures (O2PLS) and discriminant analysis (OPLS-DA) modeling was performed to investigate the mechanisms underlying chilling tolerance. Our results revealed that metabolic shifts, including the activation of stachyose biosynthesis, amino acid metabolism pathways, phenylpropanoid/flavonoid biosynthesis, ABA biosynthesis, and perturbation of glycolysis, occurred under chilling treatment; in the recovery period, glutamate-related pathways, β-alanine biosynthesis and degradation, and serotonin biosynthesis pathways were differentiated between 9311 and DC90. Particularly, the differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs), including galactinol, β-alanine, glutamate, naringenin, serotonin, ABA, and LOC_Os03g44380 (9-cis-epoxycarotenoid dioxygenase 3, OsNCED3), might be involved in the chilling tolerance variation of 9311 and DC90. CRISPR/Cas9-edited OsNCED3 resulted in chilling sensitive of japonica rice ZH11, demonstrating the involvement of ABA pathway in chilling stress response. In addition, chilling tolerance of rice was associated with the balance of water uptake and loss that was modulated by stomatal movement under chilling stress. Therefore, we speculated that the CTS-12-mediated ABA signaling pathway leads to transcriptional regulation of chilling-responsive genes and, in turn, triggers metabolic shifts to coordinately regulate the stomatal movement of guard cells. The results of this study improve our understanding of the multilevel regulation of wild rice in response to chilling stress.
Collapse
Affiliation(s)
- Weijian Cen
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Wenlong Zhao
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Mingqing Ma
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Siyuan Lu
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jianbin Liu
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yaqi Cao
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhenhua Zeng
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Hanxing Wei
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shaokui Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rongbai Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Jijing Luo
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
71
|
Dudek B, Schneider B, Hilger HH, Stavenga DG, Martínez-Harms J. Highly different flavonol content explains geographic variations in the UV reflecting properties of flowers of the corn poppy, Papaver rhoeas (Papaveraceae). PHYTOCHEMISTRY 2020; 178:112457. [PMID: 32692661 DOI: 10.1016/j.phytochem.2020.112457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
Papaver rhoeas, the corn poppy, is a very common weed in cereal fields all over the world. Its flowers generally display a bright red coloration, but their reflectance in the ultraviolet (UV) wavelength range varies geographically. Whereas the UV reflectance of East Mediterranean flowers is minor, that of Central European ones is substantial. By comparing the pigmentation of the differently reflecting flowers, we found that only East Mediterranean flower petals contain high amounts of UV absorbing flavonol glycosides. The most abundant compounds were isolated by solid phase extraction and preparative HPLC, and their structures were elucidated by NMR and HRESI-MS, yielding seven kaempferol and quercetin glycosides, mostly unknown in P. rhoeas petals. Additionally, reflectance and transmittance measurements revealed that wavelength-selective scattering effects do not contribute to the flower color differences observed within this species. Possible abiotic and biotic factors influencing the UV reflecting properties of East Mediterranean and Central European poppies are discussed.
Collapse
Affiliation(s)
- Bettina Dudek
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Hartmut H Hilger
- Department of Biology, Chemistry, Pharmacy, Institute of Biology - Botany, Freie Universität Berlin, Altensteinstr 6, D-14195, Berlin, Germany
| | - Doekele G Stavenga
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747, AG Groningen, the Netherlands
| | - Jaime Martínez-Harms
- INIA La Cruz, Instituto de Investigaciones Agropecuarias, Chorrillos 86, 2280454, La Cruz, Chile.
| |
Collapse
|
72
|
Cai Z, He F, Feng X, Liang T, Wang H, Ding S, Tian X. Transcriptomic Analysis Reveals Important Roles of Lignin and Flavonoid Biosynthetic Pathways in Rice Thermotolerance During Reproductive Stage. Front Genet 2020; 11:562937. [PMID: 33110421 PMCID: PMC7522568 DOI: 10.3389/fgene.2020.562937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Rice is one of the major staple cereals in the world, but heat stress is increasingly threatening its yield. Analyzing the thermotolerance mechanism from new thermotolerant germplasms is very important for rice improvement. Here, physiological and transcriptome analyses were used to characterize the difference between two germplasms, heat-sensitive MH101 and heat-tolerant SDWG005. Two genotypes exhibited diverse heat responses in pollen viability, pollination characteristics, and antioxidant enzymatic activity in leaves and spikelets. Through cluster analysis, the global transcriptomic changes indicated that the ability of SDWG005 to maintain a steady-state balance of metabolic processes played an important role in thermotolerance. After analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that the thermotolerance mechanism in SDWG00 was associated with reprogramming the cellular activities, such as response to abiotic stress and metabolic reorganization. In contrast, the down-regulated genes in MH101 that appeared to be involved in DNA replication and DNA repair proofreading, could cause serious injury to reproductive development when exposed to high temperature during meiosis. Furthermore, we identified 77 and 11 differentially expressed genes (DEGs) involved in lignin and flavonoids biosynthetic pathways, respectively. Moreover, we found that more lignin deposition and flavonoids accumulation happened in SDWG005 than in MH101 under heat stress. The results indicated that lignin and flavonoid biosynthetic pathways might play important roles in rice heat resistance during meiosis.
Collapse
Affiliation(s)
- Zhenzhen Cai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Fengyu He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Xin Feng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Tong Liang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Hongwei Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| | - Shuangcheng Ding
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| | - Xiaohai Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| |
Collapse
|
73
|
Xu Z, Zhou J, Ren T, Du H, Liu H, Li Y, Zhang C. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:813-821. [PMID: 32378758 DOI: 10.1111/plb.13128] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 05/06/2023]
Abstract
Apocynum venetum L. is a traditional Chinese medicinal herb with great potential to treat angiocardiopathy. Its major medicinal constituents are flavonoids. However, the natural habitats of A. venetum are typically affected by salt stress, which can modify both biomass and accumulation of medicinal compounds. In this study, the effects of salt stress on growth and development of A. venetum, accumulation of flavonoids and expression patterns of genes involved in flavonoid biosynthesis were evaluated. In general, the growth and development of seedlings (seedling height, root length, leaf length, leaf width and seed germination) were inhibited by salt stress. Unlike typical halophytes, there was no optimal NaCl concentration range that promoted growth and development, but seedlings had an elevated DW/FW ratio under salt stress (induced by irrigation with 50, 100, 200 or 400 mm NaCl). Furthermore, quercetin and kaempferol were significantly accumulated in A. venetum seedlings under salt stress, resulting in a balanced content and reduced FW. Moreover, the expression of AvCHS, AvCHI and AvF3GT was inhibited by salt stress; however, AvF3'H, AvF3H and AvFLS, which are involved in the flavonol synthesis pathway, were up-regulated under salt stress, consistent with a decrease in total flavonoids and an increase of flavonols (quercetin and kaempferol). In summary, cultivation of A. venetum in saline soils appeared to be feasible and improved the medicinal quality of A. venetum (quercetin and kaempferol accumulation under salt stress), thus this species can effectively utilize saline soil resources.
Collapse
Affiliation(s)
- Z Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - J Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pharmic Department, Qingdao University, Medical College, Qingdao, China
| | - T Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - H Du
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - H Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Y Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - C Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
74
|
Wang L, Lam PY, Lui ACW, Zhu FY, Chen MX, Liu H, Zhang J, Lo C. Flavonoids are indispensable for complete male fertility in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4715-4728. [PMID: 32386058 DOI: 10.1093/jxb/eraa204] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 05/23/2023]
Abstract
Flavonoids are essential for male fertility in some but not all plant species. In rice (Oryza sativa), the chalcone synthase mutant oschs1 produces flavonoid-depleted pollen and is male sterile. The mutant pollen grains are viable with normal structure, but they display reduced germination rate and pollen-tube length. Analysis of oschs1/+ heterozygous lines shows that pollen flavonoid deposition is a paternal effect and fertility is independent of the haploid genotypes (OsCHS1 or oschs1). To understand which classes of flavonoids are involved in male fertility, we conducted detailed analysis of rice mutants for branch-point enzymes of the downstream flavonoid pathways, including flavanone 3-hydroxylase (OsF3H; flavonol pathway entry enzyme), flavone synthase II (CYP93G1; flavone pathway entry enzyme), and flavanone 2-hydroxylase (CYP93G2; flavone C-glycoside pathway entry enzyme). Rice osf3h and cyp93g1 cyp93g2 CRISPR/Cas9 mutants, and cyp93g1 and cyp93g2 T-DNA insertion mutants showed altered flavonoid profiles in anthers, but only the osf3h and cyp93g1 cyp93g2 mutants displayed reduction in seed yield. Our findings indicate that flavonoids are essential for complete male fertility in rice and a combination of different classes (flavanones, flavonols, flavones, and flavone C-glycosides) appears to be important, as opposed to the essential role played primarily by flavonols that has been previously reported in several plant species.
Collapse
Affiliation(s)
- Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
75
|
Zhang F, Guo H, Huang J, Yang C, Li Y, Wang X, Qu L, Liu X, Luo J. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1037-1052. [PMID: 32112268 DOI: 10.1007/s11427-019-1604-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
Although natural variations in rice flavonoids exist, and biochemical characterization of a few flavonoid glycosyltransferases has been reported, few studies focused on natural variations in tricin-lignan-glycosides and their underlying genetic basis. In this study, we carried out metabolic profiling of tricin-lignan-glycosides and identified a major quantitative gene annotated as a UDP-dependent glycosyltransferase OsUGT706C2 by metabolite-based genome-wide association analysis. The putative flavonoid glycosyltransferase OsUGT706C2 was characterized as a flavonoid 7-O-glycosyltransferas in vitro and in vivo. Although the in vitro enzyme activity of OsUGT706C2 was similar to that of OsUGT706D1, the expression pattern and induced expression profile of OsUGT706C2 were very different from those of OsUGT706D1. Besides, OsUGT706C2 was specifically induced by UV-B. Constitutive expression of OsUGT706C2 in rice may modulate phenylpropanoid metabolism at both the transcript and metabolite levels. Furthermore, overexpressing OsUGT706C2 can enhance UV-B tolerance by promoting ROS scavenging in rice. Our findings might make it possible to use the glycosyltransferase OsUGT706C2 for crop improvement with respect to UV-B adaptation and/or flavonoid accumulation, which may contribute to stable yield.
Collapse
Affiliation(s)
- Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Guo
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, 570288, China
| | - Jiacheng Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianqing Liu
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, 570288, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, 570288, China.
| |
Collapse
|
76
|
Dourado NS, Souza CDS, de Almeida MMA, Bispo da Silva A, Dos Santos BL, Silva VDA, De Assis AM, da Silva JS, Souza DO, Costa MDFD, Butt AM, Costa SL. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated With Alzheimer's Disease. Front Aging Neurosci 2020; 12:119. [PMID: 32499693 PMCID: PMC7243840 DOI: 10.3389/fnagi.2020.00119] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative disorders (ND) are characterized by the progressive and irreversible loss of neurons. Alzheimer’s Disease (AD) is the most incident age-related ND, in which the presence of a chronic inflammatory compound seems to be related to its pathogenesis. Different stimuli in the central nervous system (CNS) can induce activation, proliferation, and changes in phenotype and glial function, which can be modulated by anti-inflammatory agents. Apigenin (4,5,7–trihydroxyflavone) is a flavonoid found in abundance in many fruits and vegetables, that has shown important effects upon controlling the inflammatory response. This study evaluated the neuroprotective and neuroimmunomodulatory potential of apigenin using in vitro models of neuroinflammation associated with AD. Co-cultures of neurons and glial cells were obtained from the cortex of newborn and embryonic Wistar rats. After 26 days in vitro, cultures were exposed to lipopolysaccharide (LPS; 1 μg/ml), or IL-1β (10 ng/ml) for 24 h, or to Aβ oligomers (500 nM) for 4 h, and then treated with apigenin (1 μM) for further 24 h. It was observed that the treatment with apigenin preserved neurons and astrocytes integrity, determined by Rosenfeld’s staining and immunocytochemistry for β-tubulin III and GFAP, respectively. Moreover, it was observed by Fluoro-Jade-B and caspase-3 immunostaining that apigenin was not neurotoxic and has a neuroprotective effect against inflammatory damage. Additionally, apigenin reduced microglial activation, characterized by inhibition of proliferation (BrdU+ cells) and modulation of microglia morphology (Iba-1 + cells), and decreased the expression of the M1 inflammatory marker CD68. Moreover, as determined by RT-qPCR, inflammatory stimuli induced by IL-1β increased the mRNA expression of IL-6, IL-1β, and CCL5, and decreased the mRNA expression of IL-10. Contrary, after treatment with apigenin in inflammatory stimuli (IL-1β or LPS) there was a modulation of the mRNA expression of inflammatory cytokines, and reduced expression of OX42, IL-6 and gp130. Moreover, apigenin alone and after an inflammatory stimulus with IL-1β also induced the increase in the expression of brain-derived neurotrophic factor (BDNF), an effect that may be associated with anti-inflammatory and neuroprotective effects. Together these data demonstrate that apigenin presents neuroprotective and anti-inflammatory effects in vitro and might represent an important neuroimmunomodulatory agent for the treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Naiara Silva Dourado
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Cleide Dos Santos Souza
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,Sheffield Institute of Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Monique Marylin Alves de Almeida
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Alessandra Bispo da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,College of Nursing, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Victor Diogenes Amaral Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil
| | - Adriano Martimbianco De Assis
- INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil.,Postgraduate in Health and Behavior, Catholic University of Pelotas (UCPEL), Pelotas, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jussemara Souza da Silva
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria de Fatima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT)-Translational Neuroscience (INCT-TN, BR), Porto Alegre, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT)-Translational Neuroscience (INCT-TN, BR), Porto Alegre, Brazil
| |
Collapse
|
77
|
Sun YQ, Zhao W, Xu CQ, Xu Y, El-Kassaby YA, De La Torre AR, Mao JF. Genetic Variation Related to High Elevation Adaptation Revealed by Common Garden Experiments in Pinus yunnanensis. Front Genet 2020; 10:1405. [PMID: 32117429 PMCID: PMC7027398 DOI: 10.3389/fgene.2019.01405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Local adaptation, adaptation to specialized niches and environmental clines have been extensively reported for forest trees. Investigation of the adaptive genetic variation is crucial for forest resource management and breeding, especially in the context of global climate change. Here, we utilized a Pinus yunnanensis common garden experiments established at high and low elevation sites to assess the differences in growth and survival among populations and between the two common garden sites. The studied traits showed significant variation between the two test sites and among populations, suggesting adaptive divergence. To detect genetic variation related to environment, we captured 103,608 high quality SNPs based on RNA sequencing, and used them to assess the genetic diversity and population structure. We identified 321 outlier SNPs from 131 genes showing significant divergence in allelic frequency between survival populations of two sites. Functional categories associated with adaptation to high elevation were found to be related to flavonoid biosynthesis, response to UV, DNA repair, response to reactive oxygen species, and membrane lipid metabolic process. Further investigation of the outlier genes showed overrepresentation of the flavonoid biosynthesis pathway, suggesting that this pathway may play a key role in P. yunnanensis adaptation to high elevation environments. The outlier genes identified, and their variants, provide a basic reference for advanced investigations.
Collapse
Affiliation(s)
- Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yulan Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | | | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
78
|
Dias MC, Pinto DCGA, Freitas H, Santos C, Silva AMS. The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids. PHYTOCHEMISTRY 2020; 170:112199. [PMID: 31759269 DOI: 10.1016/j.phytochem.2019.112199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 05/08/2023]
Abstract
The Mediterranean crop Olea europaea is often exposed to high UV-B irradiation conditions. To understand how this species modulates its enzymatic and non-enzymatic antioxidant system under high UV-B radiation, young O. europaea plants (cultivar "Galega Vulgar") were exposed, for five days, to UV-B radiation (6.5 kJ m-2 d-1 and 12.4 kJ m-2 d-1). Our data indicate that UV-doses slightly differ in the modulation of the antioxidant protective mechanisms. Particularly, superoxide dismutase (SOD), guaiacol peroxidase (GPox) and catalase (CAT) activities increased contributing to H2O2 homeostasis, being more solicited by higher UV-B doses. Also, glutathione reductase (Gr) activity, ascorbate (AsA) and reduced glutathione (GSH) pools increased particularly under the highest dose, suggesting a higher mobilization of the antioxidant system in this dose. The leaf metabolites' profile of this cultivar was analysed by UHPLC-MS. Interestingly, high levels of verbascoside were found, followed by oleuropein and luteolin-7-O-glucoside. Both UV-B treatments affected mostly less abundant flavonoids (decreasing 4'-methoxy luteolin and 4' or 3'-methoxy luteolin glucoside) and hydroxycinnamic acid derivatives (HCAds, increasing β-hydroxyverbascoside). These changes show not only different mobilization with the UV-intensity, but also reinforce for the first time the protective roles of these minor compounds against UV-B, as reactive oxygen species (ROS) scavengers and UV-B shields, in complement with other antioxidant systems (e.g. AsA/GSH cycle), particularly for high UV-B doses. Secoiridoids also standout in the response to both UV-B doses, with decreases of oleuropein and increases 2''-methoxyoleuropein. Being oleuropein an abundant compound, data suggest that secoiridoids play a more important role than flavonoids and HCAds, in O. europaea protection against UV-B, possibly by acting as signalling molecules and ROS scavengers. This is the first report on the influence of UV-B radiation on the secoiridoid oleuropein, and provides a novel insight to the role of this compound in the O. europaea antioxidant defence mechanisms.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Freitas
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Conceição Santos
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
79
|
Effect of UV Radiation and Salt Stress on the Accumulation of Economically Relevant Secondary Metabolites in Bell Pepper Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10010142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The green biomass of horticultural plants contains valuable secondary metabolites (SM), which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4–5 W/m2; UVB 10–14 W/m2 for 3 h per day), or a combination of both stressors. Plant age during the trials was 32–48 days. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents of secondary metabolites were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on above ground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights into the ontogenetical effects at the leaf level and temporal development of SM contents. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: r2 = 0.46–0.66; Graveobioside A: r2 = 0.51–0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress should be considered as a tool for enriching plant leaves with valuable SM. Effects on the performance of plants throughout a complete production cycle should be evaluated in future trials. All data is available online.
Collapse
|
80
|
Xu H, Li Z, Tong Z, He F, Li X. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC PLANT BIOLOGY 2020; 20:15. [PMID: 31914920 PMCID: PMC6950855 DOI: 10.1186/s12870-019-2233-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/30/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Alfalfa is a high-quality forage cultivated widely in northern China. Recently, the failure of alfalfa plants to survive the winter has caused substantial economic losses. Water management has attracted considerable attention as a method for the potential improvement of winter survival. The aim of this study was to determine whether and how changes in the water regime affect the freezing tolerance of alfalfa. RESULTS The alfalfa variety WL353LH was cultivated under water regimes of 80 and 25% of water-holding capacity, and all the plants were subjected to low temperatures at 4/0 °C (light/dark) and then - 2/- 6 °C (light/dark). The semi-lethal temperatures were lower for water-stressed than well-watered alfalfa. The pool sizes of total soluble sugars, total amino acids, and proline changed substantially under water-deficit and low-temperature conditions. Metabolomics analyses revealed 72 subclasses of differential metabolites, among which lipid and lipid-like molecules (e.g., fatty acids, unsaturated fatty acids, and glycerophospholipids) and amino acids, peptides, and analogues (e.g., proline betaine) were upregulated under water-deficit conditions. Some carbohydrates (e.g., D-maltose and raffinose) and flavonoids were also upregulated at low temperatures. Finally, Kyoto Encyclopedia of Genes and Genomes analyses revealed 18 significantly enriched pathways involved in the biosynthesis and metabolism of carbohydrates, unsaturated fatty acids, amino acids, and glycerophospholipids. CONCLUSIONS Water deficit significantly enhanced the alfalfa' freezing tolerance, and this was correlated with increased soluble sugar, amino acid, and lipid and lipid-like molecule contents. These substances are involved in osmotic regulation, cryoprotection, and the synthesis, fluidity, and stability of the cellular membrane. Our study provides a reference for improving alfalfa' winter survival through water management.
Collapse
Affiliation(s)
- Hongyu Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhenyi Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Zongyong Tong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Feng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xianglin Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
81
|
Shamala LF, Zhou HC, Han ZX, Wei S. UV-B Induces Distinct Transcriptional Re-programing in UVR8-Signal Transduction, Flavonoid, and Terpenoids Pathways in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2020; 11:234. [PMID: 32194607 PMCID: PMC7062797 DOI: 10.3389/fpls.2020.00234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants are known to respond to Ultraviolet-B radiation (UV-B: 280-320 nm) by generating phenolic metabolites which absorbs UV-B light. Phenolics are extraordinarily abundant in Camellia sinensis leaves and are considered, together with pleasant volatile terpenoids, as primary flavor determinants in tea beverages. In this study, we focused on the effects of UV-B exposure (at 35 μW cm-2 for 0, 0.5, 2, and 8 h) on tea transcriptional and metabolic alterations, specifically related to tea flavor metabolite production. Out of 34,737 unigenes, a total of 18,081 differentially expressed genes (DEGs) due to UV-B treatments were identified. Additionally, the phenylpropanoid pathway was found as one of the most significantly UV-B affected top 20 KEGG pathways while flavonoid and monoterpenoid pathway-related genes were enhanced at 0.5 h. In the UVR8-signal transduction pathway, UVR8 was suppressed at both short and long exposure of UV-B with genes downstream differentially expressed. Divergent expression of MYB4 at different treatments could have differentially altered structural and regulatory genes upstream of flavonoid biosynthesis pathways. Suppression of MYB4-1&3 at 0.5 h could have led to the up-regulation of structural CCOAOMT-1&2, HST-1&2, DFR-4, ANR-2, and LAR-1&3 genes resulting in accumulation of specialized metabolites at a shorter duration of UV-B exposure. Specialized metabolite profiling revealed the correlated alterations in the abundances of catechins and some volatile terpenoids in all the treatments with significant accumulation of specialized metabolites at 0.5 h treatment. A significant increase in specialized metabolites at 0.5 h treatment and no significant alteration observed at longer UVB treatment suggested that shorter exposure to UV-B led to different display in gene expression and accumulation of specialized metabolites in tea shoots in response to UV-B stress. Taken together, our results indicated that the UV-B treatment applied in this study differentially altered the UVR8-signal transduction, flavonoid and terpenoid pathways at transcriptional and metabolic levels in tea plants. Our results show strong potential for UV-B application in flavor improvement in tea at the industrial level.
Collapse
Affiliation(s)
- Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han-Chen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Zhuo-Xiao Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Shu Wei, ;
| |
Collapse
|
82
|
Pi E, Xu J, Li H, Fan W, Zhu C, Zhang T, Jiang J, He L, Lu H, Wang H, Poovaiah BW, Du L. Enhanced Salt Tolerance of Rhizobia-inoculated Soybean Correlates with Decreased Phosphorylation of the Transcription Factor GmMYB183 and Altered Flavonoid Biosynthesis. Mol Cell Proteomics 2019; 18:2225-2243. [PMID: 31467032 PMCID: PMC6823849 DOI: 10.1074/mcp.ra119.001704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 01/15/2023] Open
Abstract
Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but soybean production is limited by abiotic stresses especially salinity. We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed. Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt. Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors. We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots. Using data mining, ChIP and EMSA, we found that GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase which contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid that negatively regulates soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation; overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots; plants deficient in GmMYB183 function are more tolerant to salt stress as compared with wild-type soybean plants, these results correlate with the transcriptional induction of GmCYP81E11 by GmMYB183 and the subsequent accumulation of ononin. Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.
Collapse
Affiliation(s)
- Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| | - Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Huihui Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Wei Fan
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Chengmin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Tongyao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Jiachen Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Litao He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Hongfei Lu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| |
Collapse
|
83
|
Ahanger MA, Qin C, Maodong Q, Dong XX, Ahmad P, Abd Allah EF, Zhang L. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:1-13. [PMID: 31542655 DOI: 10.1016/j.plaphy.2019.09.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 05/28/2023]
Abstract
Influence of exogenously applied spermine (Spm) on growth and salinity stress tolerance in tomato was investigated. Salinity reduced growth, chlorophyll synthesis and mineral uptake leading to significant reduction in photosynthesis, however Spm application proved beneficial in alleviating the decline to considerable extent. Applied Spm improved nitrate reductase activity, δ-amino levulinic acid content and gas exchange parameters more apparently at 100 μM than 50 μM concentrations. Spm application enhanced the accumulation of compatible osmolytes including proline, glycine betaine and sugars leading to greater tissue water content and photosynthesis. Salinity stress induced oxidative effects were mitigated by Spm treatment reflected interms of reduced accumulation of reactive oxygen species and the activities of protease and lipoxygenase, hence leading to membrane strengthening and protection of their function. Differential influence of exogenous Spm was evident on the functioning of antioxidant system with SOD, GR and APX activities much higher in Spm treated seedlings than CAT and DHAR. Increased synthesis of GSH, AsA and tocopherol in Spm treated seedlings was obvious thereby helping in maintaining the redox homeostasis and the enzymatic antioxidant functioning. Interestingly Spm application maintained the nitric oxide levels higher than control under normal condition while as lowered its concentrations in salinity stressed seedlings depicting existence of probable interaction. Activities of polyamine metabolizing enzymes was up-regulated and the accumulation of secondary metabolites including phenols and flavonoids also increased due to Spm application. Further studies are required to understand the mechanisms clearly.
Collapse
Affiliation(s)
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Maodong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Xue Dong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
84
|
Anthocyanin Accumulation in Black Kernel Mutant Rice and its Contribution to ROS Detoxification in Response to High Temperature at the Filling Stage. Antioxidants (Basel) 2019; 8:antiox8110510. [PMID: 31731425 PMCID: PMC6912731 DOI: 10.3390/antiox8110510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Effect of high temperature (HT) on anthocyanin (ANS) accumulation and its relationship with reactive oxygen species (ROS) generation in color rice kernel was investigated by using a black kernel mutant (9311bk) and its wildtype (WT). 9311bk showed strikingly higher ANS content in the kernel than WT. Just like the starch accumulation in rice kernels, ANS accumulation in the 9311bk kernel increased progressively along with kernel development, with the highest level of ANS at kernel maturity. HT exposure evidently decreased ANS accumulation in 9311bk kernel, but it increased ROS and MDA concentrations. The extent of HT-induced decline in kernel starch accumulation was genotype-dependent, which was much larger for WT than 9311bk. Under HT exposure, 9311bk had a relatively lower increase in ROS and MDA contents than its WT. This occurrence was just opposite to the genotype-dependent alteration in the activities of antioxidant enzymes (SOD, CAT and APX) in response to HT exposure, suggesting more efficiently ROS detoxification and relatively stronger heat tolerance for 9311bk than its WT. Hence, the extent of HT-induced declines in grain weight and kernel starch content was much smaller for 9311bk relative to its WT. HT exposure suppressed the transcripts of OsCHS, OsF3’H, OsDFR and OsANS and impaired the ANS biosynthesis in rice kernel, which was strongly responsible for HT-induced decline in the accumulation of ANS, C3G, and P3G in 9311bk kernels. These results could provide valuable information to cope with global warming and achieving high quality for color rice production.
Collapse
|
85
|
Alam P, Albalawi TH, Altalayan FH, Bakht MA, Ahanger MA, Raja V, Ashraf M, Ahmad P. 24-Epibrassinolide (EBR) Confers Tolerance against NaCl Stress in Soybean Plants by Up-Regulating Antioxidant System, Ascorbate-Glutathione Cycle, and Glyoxalase System. Biomolecules 2019; 9:E640. [PMID: 31652728 PMCID: PMC6920941 DOI: 10.3390/biom9110640] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/24/2023] Open
Abstract
: The present research was performed to assess the effect of 24-epibrassinolide (EBR) on salt-stressed soybean plants. Salt stress suppressed growth, biomass yield, gas exchange parameters, pigment content, and chlorophyll fluorescence, but all these parameters were up-regulated by EBR supply. Moreover, salt stress increased hydrogen peroxide, malondialdehyde, and electrolyte leakage. EBR supplementation reduced the accumulation of oxidative stress biomarkers. The activities of superoxide dismutase and catalase, and the accumulation of proline, glycinebetaine, total phenols, and total flavonoids increased with NaCl stress, but these attributes further increased with EBR supplementation. The activities of enzymes and the levels of non-enzymatic antioxidants involved in the Asc-Glu cycle also increased with NaCl stress, and further enhancement in these attributes was recorded by EBR supplementation. Salinity elevated the methylglyoxal content, but it was decreased by the EBR supplementation accompanying with up-regulation of the glyoxalase cycle (GlyI and GlyII). Salinity enhanced the Na+ uptake in root and shoot coupled with a decrease in uptake of Ca2+, K+, and P. However, EBR supplementation declined Na+ accumulation and promoted the uptake of the aforementioned nutrients. Overall, EBR supplementation regulated the salt tolerance mechanism in soybean plants by modulating osmolytes, activities of key enzymes, and the levels of non-enzymatic antioxidants.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Thamer H Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Fahad H Altalayan
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Md Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | | | - Vaseem Raja
- Department of Botany, Govt. College for women Baramulla-193101, Jammu and Kashmir, India.
| | - Muhammad Ashraf
- University of Agriculture Faisalabad, Faisalabad-38040, Pakistan.
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar 190001, Jammu and Kashmir, India.
| |
Collapse
|
86
|
Soriano G, Del-Castillo-Alonso MÁ, Monforte L, Núñez-Olivera E, Martínez-Abaigar J. Acclimation of Bryophytes to Sun Conditions, in Comparison to Shade Conditions, Is Influenced by Both Photosynthetic and Ultraviolet Radiations. FRONTIERS IN PLANT SCIENCE 2019; 10:998. [PMID: 31428117 PMCID: PMC6689964 DOI: 10.3389/fpls.2019.00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
We studied the acclimation modalities of bryophytes to sun and shade under ambient or close-to-ambient conditions, measuring variables usually influenced by photosynthetically active (PAR) and ultraviolet (UV) radiations. Our aim was to elucidate to what extent the responses to changing radiations were influenced by PAR and UV wavelengths. For this aim, we used three taxonomically and structurally different species: the thalloid liverwort Marchantia polymorpha subsp. polymorpha, the leafy liverwort Jungermannia exsertifolia subsp. cordifolia, and the moss Fontinalis antipyretica. In the field, liverworts were more radiation-responsive than the moss, and the thalloid liverwort was more responsive than the leafy liverwort. Sun plants of M. polymorpha showed, in comparison to shade plants, higher sclerophylly, lower Chl a + b contents, higher Chl a/b ratios, higher (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) ratios (xanthophyll index), lower F v/F m values, higher contents of methanol-soluble vacuolar UV-absorbing compounds (soluble UVACs), higher values of the ratio between the contents of methanol-insoluble cell wall-bound UVACs (insoluble UVACs) and soluble UVACs, higher contents of soluble luteolin and apigenin derivatives and riccionidin A, and higher contents of insoluble p-coumaric and ferulic acids. Overall, these responses reduced light absorption, alleviated overexcitation, increased photoprotection through non-photochemical energy dissipation, increased UV protection through UV screening and antioxidant capacity, and denoted photoinhibition. J. exsertifolia showed moderate differences between sun and shade plants, while responses of F. antipyretica were rather diffuse. The increase in the xanthophyll index was the most consistent response to sun conditions, occurring in the three species studied. The responses of soluble UVACs were generally clearer than those of insoluble UVACs, probably because insoluble UVACs are relatively immobilized in the cell wall. These modalities of radiation acclimation were reliably summarized by principal components analysis. Using the most radiation-responsive species in the field (M. polymorpha), we found, under close-to-ambient greenhouse conditions, that sclerophylly and Chl a + b content were only influenced by PAR, F v/F m, and luteolin and apigenin derivatives were only determined by UV, and xanthophyll index was influenced by both radiation types. Thus, responses of bryophytes to radiation can be better interpreted considering the influence of both PAR and UV radiation.
Collapse
|
87
|
Yellow light promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111550. [DOI: 10.1016/j.jphotobiol.2019.111550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
88
|
Sarabi B, Fresneau C, Ghaderi N, Bolandnazar S, Streb P, Badeck FW, Citerne S, Tangama M, David A, Ghashghaie J. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:1-19. [PMID: 31125807 DOI: 10.1016/j.plaphy.2019.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 05/11/2023]
Abstract
Salinity is one of the most severe environmental stresses limiting agricultural crop production worldwide. Photosynthesis is one of the main biochemical processes getting affected by such stress conditions. Here we investigated the stomatal and non-stomatal factors during photosynthesis in two Iranian melon genotypes "Ghobadlu" and "Suski-e-Sabz", as well as the "Galia" F1 cultivar, with an insight into better understanding the physiological mechanisms involved in the response of melon plants to increasing salinity. After plants were established in the greenhouse, they were supplied with nutrient solutions containing three salinity levels (0, 50, or 100 mM NaCl) for 15 and 30 days. With increasing salinity, almost all of the measured traits (e.g. stomatal conductance, transpiration rate, internal to ambient CO2 concentration ratio (Ci/Ca), Rubisco and nitrate reductase activity, carbon isotope discrimination (Δ13C), chlorophyll content, relative water content (RWC), etc.) significantly decreased after 15 and 30 days of treatments. In contrast, the overall mean of water use efficiency (intrinsic and instantaneous WUE), leaf abscisic acid (ABA) and flavonol contents, as well as osmotic potential (ΨS), all increased remarkably with increasing stress, across all genotypes. In addition, notable correlations were found between Δ13C and leaf gas exchange parameters as well as most of the measured traits (e.g. leaf area, biomass, RWC, ΨS, etc.), encouraging the possibility of using Δ13C as an important proxy for indirect selection of melon genotypes with higher photosynthetic capacity and higher salinity tolerance. The overall results suggest that both stomatal and non-stomatal limitations play an important role in reduced photosynthesis rate in melon genotypes studied under NaCl stress. This conclusion is supported by the concurrently increased resistance to CO2 diffusion, and lower Rubisco activity under NaCl treatments at the two sampling dates, and this was revealed by the appearance of lower Ci/Ca ratios and lower Δ13C in the leaves of salt-treated plants.
Collapse
Affiliation(s)
- Behrooz Sarabi
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Chantal Fresneau
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Nasser Ghaderi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Sahebali Bolandnazar
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Peter Streb
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Franz-Werner Badeck
- CREA-GPG, Consiglio per La Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA), Genomics Research Centre (GPG), Fiorenzuola D'Arda, Italy
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Maëva Tangama
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Andoniaina David
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Jaleh Ghashghaie
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
89
|
Zou K, Liu X, Zhang D, Yang Q, Fu S, Meng D, Chang W, Li R, Yin H, Liang Y. Flavonoid Biosynthesis Is Likely More Susceptible to Elevation and Tree Age Than Other Branch Pathways Involved in Phenylpropanoid Biosynthesis in Ginkgo Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:983. [PMID: 31417595 PMCID: PMC6682722 DOI: 10.3389/fpls.2019.00983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/12/2019] [Indexed: 05/22/2023]
Abstract
Ginkgo leaves are always resources for flavonoids pharmaceutical industry. However, the effect of the elevation and tree age changes on flavonoid biosynthesis have not been detailly explored in Ginkgo leaves. In addition, whether these environmental pressures have similar effects on the biosynthesis of other non-flavonoids polyphenolics in phenylpropanoid biosynthesis is not known at present. In this research, de novo transcriptome sequencing of Ginkgo leaves was performed coupled with ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analyses to obtain a comprehensive understanding of the influence of elevation and tree age on phenylpropanoid biosynthesis. A total of 557,659,530 clean reads were assembled into 188,155 unigenes, of which 135,102 (71.80%) were successfully annotated in seven public databases. The putative DFRs, LARs, and ANRs were significantly up-regulated with the increase of elevation in young Ginkgo tree leaves. The relative concentration of flavonoid derivatives with high parent ion intensity was likely to imply that the elevation increase promoted the biosynthesis of flavonoids. Complex gene variations involved in flavonoid biosynthesis were observed with the tree age increase. However, flavonoid derivatives analysis predicted that the rise of tree age was more likely to be detrimental to the flavonoids manufacture. Otherwise, multiple genes implicated in the synthesis of hydroxycinnamates, lignin, and lignan exhibited fluctuations with the elevation increase. Significantly up-regulated CADs and down-regulated PRDs potentially led to the accumulation of p-Coumaryl alcohol, one of the lignin monomers, and might inhibit further lignification. Overall, the putative DFRs seemed to show more considerable variability toward these stress, and appeared to be the main regulatory point in the flavonoid biosynthesis. Light enhancement caused by elevation increase may be the main reason for flavonoids accumulation. Flavonoid biosynthesis exhibited a greater degree of perturbation than that of hydroxycinnamates, lignins and lignans, potentially suggesting that flavonoid biosynthesis might be more susceptible than other branch pathways involved in phenylpropanoid biosynthesis. This research effectively expanded the functional genomic library and provide new insights into phenylpropanoid biosynthesis in Ginkgo.
Collapse
Affiliation(s)
- Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Du Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Qin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Wenqi Chang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing, China
- Zhejiang CONBA Pharmaceutical, Co., Ltd., Hangzhou, China
| | - Rui Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| |
Collapse
|
90
|
Sahay S, Khan E, Gupta M. Nitric oxide and abscisic acid protects against PEG-induced drought stress differentially in Brassica genotypes by combining the role of stress modulators, markers and antioxidants. Nitric Oxide 2019; 89:81-92. [PMID: 31096008 DOI: 10.1016/j.niox.2019.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022]
Abstract
The present study was designed to see the effect of exogenous nitric oxide (NO) and abscisic acid (ABA) and their interaction on physiological and biochemical activities in leaves and roots of two Indian mustard (Brassica juncea) cultivars [cv. Pusa Jagannath (PJN) and Varuna (VAR)] exposed to polyethylene glycol (PEG)-induced drought stress. Seven days old hydroponically grown seedlings were treated with PEG (10%), sodium nitroprusside, a NO donor [NO (100 μM)] and abscisic acid [ABA (10 μM)], using different combinations as: Control, ABA, NO, PEG, PEG + ABA, PEG + NO, and PEG + NO + ABA. Results revealed that in response to PEG-induced drought stress leaf relative water content, chlorophyll, carotenoid and protein content decreased with increased production of O2-●, MDA, H2O2, cysteine content and non-enzymatic antioxidants (including proline, flavonoid, phenolic, anthocyanin, and ascorbic acid), whereas, the enzymatic antioxidants (including SOD, CAT, APX, GR) showed the response range from no effect to increase or decrease in certain enzymes in both Brassica cultivars. The application of NO or/and ABA in PEG-stressed cultivars showed that both enzymatic and non-enzymatic antioxidants responded differently to attenuate oxidative stress in leaves and roots of both cultivars. Overall, PJN had the antioxidant protection mainly through the accumulation of non-enzymatic antioxidants, whereas VAR showed tolerance by the enhancement of both enzymatic and non-enzymatic antioxidant activities. Altogether, the study concluded that the independent NO and its interaction with ABA (PEG + NO and PEG + NO + ABA) were much effective than independent ABA (PEG + ABA) in lowering PEG-drought stress in Brassica cultivars.
Collapse
Affiliation(s)
- Seema Sahay
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ehasanullah Khan
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
91
|
Souid I, Toumi I, Hermosín-Gutiérrez I, Nasri S, Mliki A, Ghorbel A. The effect of salt stress on resveratrol and piceid accumulation in two Vitis vinifera L. cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:625-635. [PMID: 31168228 PMCID: PMC6522566 DOI: 10.1007/s12298-019-00668-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Salinity is one of the most important abiotic stresses, especially in arid regions. Such devastating constraint is converted mainly to oxidative burst. Thus, plants have to develop strategies to scavenge salt-related regenerated oxidant molecules. In the present work, fully aged plants derived from two Vitis vinifera L. cultivars, the Tunisian autochthonous tolerant genotype Razegui and the salt sensitive Syrah, were analyzed regarding their short term response to 100 mM NaCl, in hydroponic cultures. The ratio [ASA/ASA + DHA] was calculated on the basis of the oxidation of ascorbic acid (ASA) into dehydroascorbic acid (DHA) in leaves. Results proved that oxidative stress was generated. This led to the accumulation of malondialdehyde which referred to a lipid peroxidation mainly in the sensitive Syrah. In order to cope with these oxidative disturbances, trans-resveratrol as well as its glucosides trans-piceid and cis-piceid have been de novo synthesized in the sensitive variety. Razegui stilbene concentrations were presented here for the first time and unexpectedly did not show a very important variation during the salt elicitation.
Collapse
Affiliation(s)
- Imen Souid
- Campus for Girls Study, Pre-Medical Department, Sciences Faculty, King Khaled University, Box 3340, Abha, Saudi Arabia
- Central Analytical Laboratory of Animal Feeds, Box 155, Chotrana 1, 2036 Soukra, Tunisia
| | - Imene Toumi
- Department of Biology, University of Crete, P.O. Box 2280, 71409 Heraklion, Greece
| | - Isidro Hermosín-Gutiérrez
- Escuela Universitaría de Ingeniería Técnica Agrícola, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Soumaia Nasri
- Campus for Girls Study, Pre-Medical Department, Sciences Faculty, King Khaled University, Box 3340, Abha, Saudi Arabia
| | - Ahmed Mliki
- Laboratory of Grapevine Molecular Physiology, University of Tunis II, Tunis, Tunisia
| | - Abdelwahed Ghorbel
- Laboratory of Grapevine Molecular Physiology, University of Tunis II, Tunis, Tunisia
| |
Collapse
|
92
|
Tan H, Man C, Xie Y, Yan J, Chu J, Huang J. A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis. MOLECULAR PLANT 2019; 12:521-537. [PMID: 30630075 DOI: 10.1016/j.molp.2018.12.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 05/03/2023]
Abstract
Flavonols have been demonstrated to play many important roles in plant growth, development, and communication with other organisms. Flavonol biosynthesis is spatiotemporally regulated by the subgroup 7 R2R3-MYB (SG7 MYB) transcription factors including MYB11/MYB12/MYB111. However, whether SG7-MYB activity is subject to post-translational regulation remains unclear. Here, we show that gibberellic acid (GA) inhibits flavonol biosynthesis via DELLA proteins in Arabidopsis. Protein-protein interaction analyses revealed that DELLAs (RGA and GAI) interacted with SG7 MYBs (MYB12 and MYB111) both in vitro and in vivo, leading to enhanced affinity of MYB binding to the promoter regions of key genes for flavonol biosynthesis and thus increasing their transcriptional levels. We observed that the level of auxin in the root tip was negatively correlated with root flavonol content. Furthermore, genetic assays showed that loss-of-function mutations in MYB12, which is predominantly expressed in roots, partially rescued the short-root phenotype of the GA-deficient mutant ga1-3 by increasing root meristem size and mature cell size. Consistent with these observations, exogenous application of the flavonol quercetin restored the root meristem size of myb12 ga1-3 to that of ga1-3. Taken together, our data elucidate a molecular mechanism by which GA promotes root growth by directly reducing flavonol biosynthesis.
Collapse
Affiliation(s)
- Huijuan Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Man
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
93
|
Brunetti C, Sebastiani F, Tattini M. Review: ABA, flavonols, and the evolvability of land plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:448-454. [PMID: 30824025 DOI: 10.1016/j.plantsci.2018.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 05/03/2023]
Abstract
There is evidence that the ABA signaling pathway has greatly contributed to increase the complexity of land plants, thereby sustaining their ability to adapt in an ever-changing environment. The regulatory functions of the ABA signaling pathway go well beyond the movements of stomata and the dormancy of seeds. For instance, the ABA signaling regulates the flavonoid biosynthesis, consistent with the high integration of ABA and light signaling pathways, which occurs at the level of key signaling components, such as the bZIP transcription factors HY5 and ABI5. Here we focus on the regulation of 'colorless' (UV-absorbing) flavonol biosynthesis by the ABA signaling and, about how flavonols may regulate, in turn, the ABA signaling network. We discuss very recent findings that quercetin regulates the ABA signaling pathway, and hypothesize this might occur at the level of second messenger and perhaps of primary signaling components as well. We critically review old and recent suggestions of the primary roles played by flavonols, the ancient class of flavonoids already present in bryophytes, in the evolution of terrestrial plants. Our reasoning strongly supports the view that the ABA-flavonol relationship may represent a robust trait of land plants, and might have contributed to their adaptation on land.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Trees and Timber Institute, Via Madonna del Piano 10, Sesto Fiorentino, I-50019, Florence, Italy; Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, I-50019, Florence, Italy
| | - Federico Sebastiani
- National Research Council of Italy, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, Sesto Fiorentino, I-50019, Florence, Italy
| | - Massimiliano Tattini
- National Research Council of Italy, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, Sesto Fiorentino, I-50019, Florence, Italy.
| |
Collapse
|
94
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
95
|
Pandey N, Goswami N, Tripathi D, Rai KK, Rai SK, Singh S, Pandey-Rai S. Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L. PLANTA 2019; 249:497-514. [PMID: 30267151 DOI: 10.1007/s00425-018-3022-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 05/11/2023]
Abstract
UV-B-induced flavonoid biosynthesis is epigenetically regulated by site-specific demethylation of AaMYB1, AaMYC, and AaWRKY TF-binding sites inAaPAL1promoter-causing overexpression ofAaPALgene inArtemisia annua. The present study was undertaken to understand the epigenetic regulation of flavonoid biosynthesis under the influence of ultraviolet-B radiation using Artemisia annua L. as an experimental model. In-vitro propagated and acclimatized plantlets were treated with UV-B radiation (2.8 W m-2; 3 h), which resulted in enhanced accumulation of total flavonoid and phenolics content as well as eleven individual flavonoids measured through HPLC-DAC. Expression of eight genes (phenylanaline ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate: CoA ligase; chalcone synthase, chalcone isomerase, cinnamoyl reductase, flavonoid-3'-hydroxylase, and flavones synthase) from upstream and downstream flavonoid biosynthetic pathways was measured through RT-PCR and RT-Q-PCR and all were variably induced under UV-B irradiation. Among them, AaPAL1 transcript and its protein were most significantly upregulated. Global DNA methylation analysis revealed hypomethylation of genomic DNA in A. annua. Further epigenetic characterization of promoter region of AaPAL1 revealed cytosine demethylation at five sites, which in turn caused epigenetic activation of six transcription factor-binding sites including QELEMENT, EBOXBNNAPA/MYCCONSENSUSAT, MYBCORE, MYBCOREATCYCB1, and GCCCORE. MYB transcription factors are positive regulators of flavonoid biosynthesis. Epigenetic activation of transcription-enhancing cis-regulatory elements in AaPAL1 promoter and subsequent overexpression of AaMYB1 and AaMYC and AaWRKY transcription factors under UV-B irradiation may probably be the reason for higher AaPAL1 expression and hence greater biosynthesis of flavonoids in A. annua L. The present study is the first report that provides mechanistic evidence of epigenetic regulation of flavonoid biosynthesis under UV-B radiation in A. annua L.
Collapse
Affiliation(s)
- Neha Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, CMP Degree College, University of Allahabad, Allahabad, India
| | - Niraj Goswami
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepika Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sanjay Kumar Rai
- Department of Horticulture, Dr. Rajendra Prasad Agricultural University, Pusa, Samastipur, Bihar, India
| | - Shilpi Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Pandey-Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
96
|
Zhang X, Wang X, Wang M, Cao J, Xiao J, Wang Q. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave. PLoS One 2019; 14:e0200174. [PMID: 30601805 PMCID: PMC6314590 DOI: 10.1371/journal.pone.0200174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Flavonoids are secondary metabolites of plants that often have medical applications. The influences of different sample drying pretreatments on flavonoids and antioxidant activity of ferns have not studies. Dryopteris erythrosora leaves used to analyze flavonoid alterations resulting from drying pretreatments. The total flavonoid content of D. erythrosora leaves exposed to different pretreatments was significantly different. The total flavonoid content of samples initially air-dried in shade and then oven-dried at 75°C were the highest (7.6%), while samples initially dried at 75°C had the lowest content (2.17%). Antioxidant activities of D. erythrosora leaves with different pretreatments varied. Group B first air-dried in the shade and then oven-dried at 75°C and group C first air-dried in the sun and then oven-dried at 75°C, both showed relatively stronger antioxidant activity. The best pretreatment for preserving the flavonoids was to first dry the plant material in the shade and then complete the drying process in an oven at 75°C. It was tentatively identified 22 flavonoids among the four different pretreatments by HPLC-ESI-TOF-MS.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xin Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Minglong Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jianbo Xiao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Quanxi Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
97
|
Bai Q, Duan B, Ma J, Fen Y, Sun S, Long Q, Lv J, Wan D. Coexpression of PalbHLH1 and PalMYB90 Genes From Populus alba Enhances Pathogen Resistance in Poplar by Increasing the Flavonoid Content. FRONTIERS IN PLANT SCIENCE 2019; 10:1772. [PMID: 32174927 PMCID: PMC7054340 DOI: 10.3389/fpls.2019.01772] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023]
Abstract
Secondary metabolites of the flavonoid pathway participate in plant defense, and bHLH and MYB transcription factors regulate the synthesis of these metabolites. Here, we define the regulatory mechanisms in response to pathogens. Two transcription factors from Populus alba var. pyramidalis, PalbHLH1 and PalMYB90, were overexpressed together in poplar, and transcriptome analysis revealed differences in response to pathogen infection. The transgenic plants showed elevated levels of several key flavonoid pathway components: total phenols, proanthocyanidins (PAs), and anthocyanins and intermediates quercetin and kaempferol. Furthermore, PalbHLH1 and PalMYB90 overexpression in poplar enhanced antioxidase activities and H2O2 release and also increased resistance to Botrytis cinerea and Dothiorella gregaria infection. Gene expression profile analysis showed most genes involved in the flavonoid biosynthesis pathway or antioxidant response to be upregulated in MYB90/bHLH1-OE poplar, but significant differential expression occurred in response to pathogen infection. Specifically, expression of PalF3H (flavanone 3-hydroxylase), PalDFR (dihydroflavonol 4-seductase), PalANS (anthocyanin synthase), and PalANR (anthocyanin reductase), which function in initial, middle, and final steps of anthocyanin and PA biosynthesis, respectively, was significantly upregulated in D. gregaria-infected MYB90/bHLH1-OE poplar. Our results highlight that PalbHLH1 and PalMYB90 function as transcriptional activators of flavonoid pathway secondary-metabolite synthesis genes, with differential mechanisms in response to bacterial or fungal infection.
Collapse
|
98
|
Ai TN, Naing AH, Yun BW, Lim SH, Kim CK. Overexpression of RsMYB1 Enhances Anthocyanin Accumulation and Heavy Metal Stress Tolerance in Transgenic Petunia. FRONTIERS IN PLANT SCIENCE 2018; 9:1388. [PMID: 30294338 PMCID: PMC6159756 DOI: 10.3389/fpls.2018.01388] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/31/2018] [Indexed: 05/24/2023]
Abstract
The RsMYB1 transcription factor (TF) controls the regulation of anthocyanin in radishes (Raphanus sativus), and its overexpression in tobacco and petunias strongly enhances anthocyanin production. However, there are no data on the involvement of RsMYB1 in the mechanisms underlying abiotic stress tolerance, despite strong sequence similarity with other MYBs that confer such tolerance. In this study, we used the anthocyanin-enriched transgenic petunia lines PM6 and PM2, which overexpress RsMYB1. The tolerance of these lines to heavy metal stress was investigated by examining several physiological and biochemical factors, and the transcript levels of genes related to metal detoxification and antioxidant activity were quantified. Under normal conditions (control conditions), transgenic petunia plants (T2-PM6 and T2-PM2) expressing RsMYB1, as well as wild-type (WT) plants, were able to thrive by producing well-developed broad leaves and regular roots. In contrast, a reduction in plant growth was observed when these plants were exposed to heavy metals (CuSO4, ZnSO4, MnSO4, or K2Cr2O7). However, T2-PM6 and T2-PM2 were found to be more stress tolerant than the WT plants, as indicated by superior results in all analyzed parameters. In addition, RsMYB1 overexpression enhanced the expression of genes related to metal detoxification [glutathione S-transferase (GST) and phytochelatin synthase (PCS)] and antioxidant activity [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)]. These results suggest that enhanced expression levels of the above genes can improve metal detoxification activities and antioxidant activity, which are the main components of defense mechanism included in abiotic stress tolerance of petunia. Our findings demonstrate that RsMYB1 has potential as a dual-function gene that can have an impact on the improvement of anthocyanin production and heavy metal stress tolerance in horticultural crops.
Collapse
Affiliation(s)
- Trinh Ngoc Ai
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- School of Agriculture and Aquaculture, Tra Vinh University, Trà Vinh, Vietnam
| | - Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sun Hyung Lim
- National Institute of Agricultural Science, RDA, Jeonju, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
99
|
Ahmad P, Abd Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KHM. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Sci Rep 2018; 8:13515. [PMID: 30201952 PMCID: PMC6131545 DOI: 10.1038/s41598-018-31917-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
The present study tested the efficacy of 24-epibrassinolide (EBL) and calcium (Ca) for mediating salinity tolerance in tomato. Salinity stress affected the morphological parameters of tomato as well as leaf relative water content (LRWC), photosynthetic and accessory pigments, leaf gas exchange parameters, chlorophyll fluorescence and the uptake of essential macronutrients. The salt (NaCl) treatment induced oxidative stress in the form of increased Na+ ion concentration by 146%, electrolyte leakage (EL) by 61.11%, lipid peroxidation (MDA) 167% and hydrogen peroxide (H2O2) content by 175%. Salt stress also enhanced antioxidant enzyme activities including those in the ascorbate-glutathione cycle. Plants treated with EBL or Ca after salt exposure mitigated the ill effects of salt stress, including oxidative stress, by reducing the uptake of Na+ ions by 52%. The combined dose of EBL + Ca reversed the salt-induced changes through an elevated pool of enzymes in the ascorbate-glutathione cycle, other antioxidants (superoxide dismutase, catalase), and osmoprotectants (proline, glycine betaine). Exogenously applied EBL and Ca help to optimize mineral nutrient status and enable tomato plants to tolerate salt toxicity. The ability of tomato plants to tolerate salt stress when supplemented with EBL and Ca was attributed to modifications to enzymatic and non-enzymatic antioxidants, osmolytes and metabolites.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
100
|
Guo P, Qi YP, Huang WL, Yang LT, Huang ZR, Lai NW, Chen LS. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:213-222. [PMID: 29704792 DOI: 10.1016/j.ecoenv.2018.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Little is known about the physiological and molecular responses of leaves to aluminum (Al)-toxicity. Seedlings of Al-intolerant Citrus grandis and Al-tolerant Citrus sinensis were supplied daily with nutrient solution containing 0 mM (control) and 1.0 mM (Al-toxicity) AlCl3·6H2O for 18 weeks. We found that Al-treatment only decreased CO2 assimilation in C. grandis leaves, and that the Al-induced alterations of gene expression profiles were less in C. sinensis leaves than those in C. grandis leaves, indicating that C. sinensis seedlings were more tolerant to Al-toxicity than C. grandis ones. Al concentration was similar between Al-treated C. sinensis and C. grandis roots, but it was higher in Al-treated C. grandis stems and leaves than that in Al-treated C. sinensis stems and leaves. Al-treated C. sinensis seedlings accumulated relatively more Al in roots and transported relatively little Al to shoots. This might be responsible for the higher Al-tolerance of C. sinensis. Further analysis showed that the following several aspects might account for the higher Al-tolerance of C. sinensis, including: (a) Al-treated C. sinensis leaves had higher capacity to maintain the homeostasis of energy and phosphate, the stability of lipid composition and the integrity of cell wall than did Al-treated C. grandis leaves; (b) Al-triggered production of reactive oxygen species (ROS) and the other cytotoxic compounds was less in Al-treated C. sinensis leaves than that in Al-treated C. grandis leaves, because Al-toxicity decreased CO2 assimilation only in C. grandis leaves; accordingly, more upregulated genes involved in the detoxifications of ROS, aldehydes and methylglyoxal were identified in Al-treated C. grandis leaves; in addition, flavonoid concentration was increased only in Al-treated C. grandis leaves; (c) Al-treated C. sinensis leaves could keep a better balance between protein phosphorylation and dephosphorylation than did Al-treated C. grandis leaves; and (d) both the equilibrium of hormones and hormone-mediated signal transduction were greatly disrupted in Al-treated C. grandis leaves, but less altered in Al-treated C. sinensis leaves. Finally, we discussed the differences in Al-responsive genes between Citrus roots and leaves.
Collapse
Affiliation(s)
- Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|