51
|
Zahn KE, Averill AM, Aller P, Wood RD, Doublié S. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 2015; 22:304-11. [PMID: 25775267 PMCID: PMC4385486 DOI: 10.1038/nsmb.2993] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/13/2015] [Indexed: 01/14/2023]
Abstract
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break-inducing agents, including ionizing radiation. Reported here are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contacts to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. These observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | - Richard D Wood
- Department of Epigenetics &Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
52
|
Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MIR, O'Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, Yusufzai T, D'Andrea AD. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 2015; 518:258-62. [PMID: 25642963 PMCID: PMC4415602 DOI: 10.1038/nature14184] [Citation(s) in RCA: 668] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Large-scale genomic studies have shown that half of epithelial ovarian cancers (EOCs) have alterations in genes regulating homologous recombination (HR) repair. Loss of HR accounts for the genomic instability of EOCs and for their cellular hyper-dependence on alternative poly-ADP ribose polymerase (PARP)-mediated DNA repair mechanisms. Previous studies have implicated the DNA polymerase θ (Polθ also known as POLQ, encoded by POLQ) in a pathway required for the repair of DNA double-strand breaks, referred to as the error-prone microhomology-mediated end-joining (MMEJ) pathway. Whether Polθ interacts with canonical DNA repair pathways to prevent genomic instability remains unknown. Here we report an inverse correlation between HR activity and Polθ expression in EOCs. Knockdown of Polθ in HR-proficient cells upregulates HR activity and RAD51 nucleofilament assembly, while knockdown of Polθ in HR-deficient EOCs enhances cell death. Consistent with these results, genetic inactivation of an HR gene (Fancd2) and Polq in mice results in embryonic lethality. Moreover, Polθ contains RAD51 binding motifs and it blocks RAD51-mediated recombination. Our results reveal a synthetic lethal relationship between the HR pathway and Polθ-mediated repair in EOCs, and identify Polθ as a novel druggable target for cancer therapy.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jessica C Liu
- 1] Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Biological Chemistry &Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA [3] Department of Molecular &Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ravindra Amunugama
- Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Ildiko Hajdu
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | - Benjamin Primack
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Mark I R Petalcorin
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK
| | - Kevin W O'Connor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stephen J Elledge
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | - Simon J Boulton
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK
| | - Timur Yusufzai
- 1] Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Biological Chemistry &Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
53
|
Hirota K, Yoshikiyo K, Guilbaud G, Tsurimoto T, Murai J, Tsuda M, Phillips LG, Narita T, Nishihara K, Kobayashi K, Yamada K, Nakamura J, Pommier Y, Lehmann A, Sale JE, Takeda S. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ. Nucleic Acids Res 2015; 43:1671-83. [PMID: 25628356 PMCID: PMC4330384 DOI: 10.1093/nar/gkv023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Department of Chemistry, GraduateSchool of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo 192-0397, Japan
| | - Kazunori Yoshikiyo
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Junko Murai
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lara G Phillips
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kana Nishihara
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kaori Kobayashi
- Department of Chemistry, GraduateSchool of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo 192-0397, Japan
| | - Kouich Yamada
- Division of Genetic Biochemistry, National Institute of Health and Nutrition, Tokyo 162-8636, Japan
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yves Pommier
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
54
|
Family L, Bensen JT, Troester MA, Wu MC, Anders CK, Olshan AF. Single-nucleotide polymorphisms in DNA bypass polymerase genes and association with breast cancer and breast cancer subtypes among African Americans and Whites. Breast Cancer Res Treat 2015; 149:181-90. [PMID: 25417172 PMCID: PMC4498665 DOI: 10.1007/s10549-014-3203-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/09/2014] [Indexed: 01/18/2023]
Abstract
DNA damage recognition and repair is a complex system of genes focused on maintaining genomic stability. Recently, there has been a focus on how breast cancer susceptibility relates to genetic variation in the DNA bypass polymerases pathway. Race-stratified and subtype-specific logistic regression models were used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for the association between 22 single-nucleotide polymorphisms (SNPs) in seven bypass polymerase genes and breast cancer risk in the Carolina Breast Cancer Study, a population-based, case-control study (1,972 cases and 1,776 controls). We used SNP-set kernel association test (SKAT) to evaluate the multi-gene, multi-locus (combined) SNP effects within bypass polymerase genes. We found similar ORs for breast cancer with three POLQ SNPs (rs487848 AG/AA vs. GG; OR = 1.31, 95 % CI 1.03-1.68 for Whites and OR = 1.22, 95 % CI 1.00-1.49 for African Americans), (rs532411 CT/TT vs. CC; OR = 1.31, 95 % CI 1.02-1.66 for Whites and OR = 1.22, 95 % CI 1.00-1.48 for African Americans), and (rs3218634 CG/CC vs. GG; OR = 1.29, 95 % CI 1.02-1.65 for Whites). These three SNPs are in high linkage disequilibrium in both races. Tumor subtype analysis showed the same SNPs to be associated with increased risk of Luminal breast cancer. SKAT analysis showed no significant combined SNP effects. These results suggest that variants in the POLQ gene may be associated with the risk of Luminal breast cancer.
Collapse
Affiliation(s)
- Leila Family
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA,
| | | | | | | | | | | |
Collapse
|
55
|
Brandalize APC, Schüler-Faccini L, Hoffmann JS, Caleffi M, Cazaux C, Ashton-Prolla P. A DNA repair variant in POLQ (c.-1060A > G) is associated to hereditary breast cancer patients: a case-control study. BMC Cancer 2014; 14:850. [PMID: 25409685 PMCID: PMC4246548 DOI: 10.1186/1471-2407-14-850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND One of the hallmarks of cancer is the occurrence of high levels of chromosomal rearrangements as a result of inaccurate repair of double-strand breaks (DSB). Germline mutations in BRCA and RAD51 genes, involved in DSB repair, are strongly associated with hereditary breast cancer. Pol θ, a translesional DNA polymerase specialized in the replication of damaged DNA, has been also shown to contribute to DNA synthesis associated to DSB repair. It is noteworthy that POLQ is highly expressed in breast tumors and this expression is able to predict patient outcome. The objective of this study was to analyze genetic variants related to POLQ as new population biomarkers of risk in hereditary (HBC) and sporadic (SBC) breast cancer. METHODS We analyzed through case-control study nine SNPs of POLQ in hereditary (HBC) and sporadic (SBC) breast cancer patients using Taqman Real Time PCR assays. Polymorphisms were systematically identified through the NCBI database and are located within exons or promoter regions. We recruited 204 breast cancer patients (101 SBC and 103 HBC) and 212 unaffected controls residing in Southern Brazil. RESULTS The rs581553 SNP located in the promoter region was strongly associated with HBC (c.-1060A > G; HBC GG = 15, Control TT = 8; OR = 5.67, CI95% = 2.26-14.20; p < 0.0001). Interestingly, 11 of 15 homozygotes for this polymorphism fulfilled criteria for Hereditary Breast and Ovarian Cancer (HBOC) syndrome. Furthermore, 12 of them developed bilateral breast cancer and one had a familial history of bilateral breast cancer. This polymorphism was also associated with bilateral breast cancer in 67 patients (OR = 9.86, CI95% = 3.81-25.54). There was no statistically significant difference of age at breast cancer diagnosis between SNP carriers and non-carriers. CONCLUSIONS Considering that Pol θ is involved in DBS repair, our results suggest that this polymorphism may contribute to the etiology of HBC, particularly in patients with bilateral breast cancer.
Collapse
Affiliation(s)
- Ana Paula Carneiro Brandalize
- />Laboratory of Medical Genomics, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- />Laboratory of Genomics, Proteomics and DNA Repair, University of Caxias do Sul, Caxias do Sul, Brazil
- />Instituto Nacional de Genética Médica Populacional, INAGEMP, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- />Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- />Instituto Nacional de Genética Médica Populacional, INAGEMP, Porto Alegre, Brazil
| | - Jean-Sébastien Hoffmann
- />Equipe « Labellisée Ligue contre le Cancer 2013 » INSERM Unit 1037; CNRS ERL 5294, CRCT (Cancer Research Center of Toulouse), Toulouse Oncopole, France
- />University of Toulouse; UPS, F-31077 Toulouse, France
| | | | - Christophe Cazaux
- />Equipe « Labellisée Ligue contre le Cancer 2013 » INSERM Unit 1037; CNRS ERL 5294, CRCT (Cancer Research Center of Toulouse), Toulouse Oncopole, France
- />University of Toulouse; UPS, F-31077 Toulouse, France
| | - Patricia Ashton-Prolla
- />Laboratory of Medical Genomics, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- />Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- />Instituto Nacional de Genética Médica Populacional, INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
56
|
Yousefzadeh MJ, Wyatt DW, Takata KI, Mu Y, Hensley SC, Tomida J, Bylund GO, Doublié S, Johansson E, Ramsden DA, McBride KM, Wood RD. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 2014; 10:e1004654. [PMID: 25275444 PMCID: PMC4183433 DOI: 10.1371/journal.pgen.1004654] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3' single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - David W. Wyatt
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kei-ichi Takata
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Yunxiang Mu
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Sean C. Hensley
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Junya Tomida
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Göran O. Bylund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Dale A. Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin M. McBride
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Richard D. Wood
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| |
Collapse
|
57
|
Fernandez-Vidal A, Guitton-Sert L, Cadoret JC, Drac M, Schwob E, Baldacci G, Cazaux C, Hoffmann JS. A role for DNA polymerase θ in the timing of DNA replication. Nat Commun 2014; 5:4285. [PMID: 24989122 DOI: 10.1038/ncomms5285] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/03/2014] [Indexed: 01/01/2023] Open
Abstract
Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1, interacts with the Orc2 and Orc4 components of the Origin recognition complex and that the association of Mcm proteins with chromatin is enhanced in G1 when Pol θ is downregulated. Pol θ-depleted cells exhibit a normal density of activated origins in S phase, but early-to-late and late-to-early shifts are observed at a number of replication domains. Pol θ overexpression, on the other hand, causes delayed replication. Our results therefore suggest that Pol θ functions during the earliest steps of DNA replication and influences the timing of replication initiation.
Collapse
Affiliation(s)
- Anne Fernandez-Vidal
- 1] Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan, Toulouse 31024, France [2] Université Paul Sabatier, University of Toulouse III, Toulouse F-31062, France [3]
| | - Laure Guitton-Sert
- 1] Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan, Toulouse 31024, France [2] Université Paul Sabatier, University of Toulouse III, Toulouse F-31062, France [3]
| | - Jean-Charles Cadoret
- 1] Institut Jacques Monod, UMR7592, CNRS and University Paris-Diderot, 15 Rue Hélène Brion, Paris, Cedex 13 75205, France [2]
| | - Marjorie Drac
- Institut of Molecular Genetics, CNRS UMR5535 and University of Montpellier, Montpellier 34293, France
| | - Etienne Schwob
- Institut of Molecular Genetics, CNRS UMR5535 and University of Montpellier, Montpellier 34293, France
| | - Giuseppe Baldacci
- Institut Jacques Monod, UMR7592, CNRS and University Paris-Diderot, 15 Rue Hélène Brion, Paris, Cedex 13 75205, France
| | - Christophe Cazaux
- 1] Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan, Toulouse 31024, France [2] Université Paul Sabatier, University of Toulouse III, Toulouse F-31062, France
| | - Jean-Sébastien Hoffmann
- 1] Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan, Toulouse 31024, France [2] Université Paul Sabatier, University of Toulouse III, Toulouse F-31062, France
| |
Collapse
|
58
|
The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression. Genetics 2013; 196:443-53. [PMID: 24336747 DOI: 10.1534/genetics.113.159541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.
Collapse
|
59
|
Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG, Shima N. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res 2013; 41:10283-97. [PMID: 24005041 PMCID: PMC3905894 DOI: 10.1093/nar/gkt676] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
HELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive. Here, we investigated this question in mice using the Helqgt and Fancc− strains. Compared with Fancc−/− mice lacking FANCC, a component of the FA core complex, Helqgt/gt mice exhibited a mild of form of FA-like phenotypes including hypogonadism and cellular sensitivity to the crosslinker mitomycin C. However, unlike Fancc−/− primary fibroblasts, Helqgt/gt cells had intact FANCD2 mono-ubiquitination and focus formation. Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helqgt/gt;Fancc−/− double mutants displayed significantly worsened phenotypes than either single mutant. Importantly, this was most noticeable for the suppression of spontaneous chromosome instability such as micronuclei and 53BP1 nuclear bodies, known consequences of persistently stalled replication forks. These findings suggest that mammalian HELQ contributes to genome stability in unchallenged conditions through a mechanism distinct from the function of FANCC.
Collapse
Affiliation(s)
- Spencer W Luebben
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA, Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA, Masonic Cancer Center, Minneapolis, MN 55455, USA and College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Mohiuddin, Keka IS, Evans TJ, Hirota K, Shimizu H, Kono K, Takeda S, Hirano S. A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Arch Toxicol 2013; 88:145-60. [PMID: 23963510 DOI: 10.1007/s00204-013-1084-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
Although carbon nanotubes (CNTs) are promising nanomaterials, their potential carcinogenicity is a major concern. We previously established a genetic method of analyzing genotoxicity of chemical compounds, where we evaluated their cytotoxic effect on the DT40 lymphoid cell line comparing DNA-repair-deficient isogenic clones with parental wild-type cells. However, application of our DT40 system for the cytotoxic and genotoxic evaluation of nanomaterials seemed to be difficult, because DT40 cells only poorly internalized nanoparticles. To solve this problem, we have constructed a chimeric gene encoding a trans-membrane receptor consisting of the 5' region of the transferrin receptor (TR) gene (to facilitate internalization of nanoparticles) and the 3' region of the macrophage receptor with collagenous structure (MARCO) gene (which is a receptor for environmental particles). We expressed the resulting MARCO-TR chimeric receptor on DNA-repair-proficient wild-type cells and mutants deficient in base excision repair (FEN1 (-/-)) and translesion DNA synthesis (REV3 (-/-)). We demonstrated that the chimera mediates uptake of particles such as fluorescence-tagged polystyrene particles and multi-walled carbon nanotubes (MWCNTs), with very poor uptake of those particles by DT40 cells not expressing the chimera. MWCNTs were cytotoxic and this effect was greater in FEN1 (-/-)and REV3 (-/-) cells than in wild-type cells. Furthermore, MWCNTs induced greater oxidative damage (measured as 8-OH-dG formation) and a larger number of mitotic chromosomal aberrations in repair-deficient cells compared to repair-proficient cells. Taken together, our novel assay system using the chimeric receptor-expressing DT40 cells provides a sensitive method to screen for genotoxicity of CNTs and possibly other nanomaterials.
Collapse
Affiliation(s)
- Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
62
|
Abstract
The structural features that enable replicative DNA polymerases to synthesize DNA rapidly and accurately also limit their ability to copy damaged DNA. Direct replication of DNA damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to mammals and executed by an array of specialized DNA polymerases. This chapter examines how these translesion polymerases replicate damaged DNA and how they are regulated to balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hypermutation and the contribution it makes to the mutations that sculpt the genome of cancer cells.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
63
|
Yousefzadeh MJ, Wood RD. DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair (Amst) 2013; 12:1-9. [PMID: 23219161 PMCID: PMC3534860 DOI: 10.1016/j.dnarep.2012.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
In mammalian cells, POLQ (pol θ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. POLQ has been implicated by different experiments to play a role in resistance to ionizing radiation and defense against genomic instability, in base excision repair, and in immunological diversification. The protein is formed by an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which functions in resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in multicellular eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies defective in Mus308 are sensitive to DNA interstrand crosslinking agents, while mammalian cells defective in POLQ are primarily sensitive to DNA double-strand breaking agents. Cells from Polq(-/-) mice are hypersensitive to radiation and peripheral blood cells display increased spontaneous and ionizing radiation-induced levels of micronuclei (a hallmark of gross chromosomal aberrations), though mice apparently develop normally. Loss of POLQ in human and mouse cells causes sensitivity to ionizing radiation and other double strand breaking agents and increased DNA damage signaling. Retrospective studies of clinical samples show that higher levels of POLQ gene expression in breast and colorectal cancer are correlated with poorer outcomes for patients. A clear understanding of the mechanism of action and physiologic function of POLQ in the cell is likely to bear clinical relevance.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA
| | | |
Collapse
|
64
|
Sharma S, Canman CE. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:725-40. [PMID: 23065650 PMCID: PMC5543726 DOI: 10.1002/em.21736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 05/06/2023]
Abstract
DNA interstrand crosslinks (ICLs) are covalent linkages between two strands of DNA, and their presence interferes with essential metabolic processes such as transcription and replication. These lesions are extremely toxic, and their repair is essential for genome stability and cell survival. In this review, we will discuss how the removal of ICLs requires interplay between multiple genome maintenance pathways and can occur in the absence of replication (replication-independent ICL repair) or during S phase (replication-coupled ICL repair), the latter being the predominant pathway used in mammalian cells. It is now well recognized that translesion DNA synthesis (TLS), especially through the activities of REV1 and DNA polymerase zeta (Polζ), is necessary for both ICL repair pathways operating throughout the cell cycle. Recent studies suggest that the convergence of two replication forks upon an ICL initiates a cascade of events including unhooking of the lesion through the actions of structure-specific endonucleases, thereby creating a DNA double-stranded break (DSB). TLS across the unhooked lesion is necessary for restoring the sister chromatid before homologous recombination repair. Biochemical and genetic studies implicate REV1 and Polζ as being essential for performing lesion bypass across the unhooked crosslink, and this step appears to be important for subsequent events to repair the intermediate DSB. The potential role of Fanconi anemia pathway in the regulation of REV1 and Polζ-dependent TLS and the involvement of additional polymerases, including DNA polymerases kappa, nu, and theta, in the repair of ICLs is also discussed in this review.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
65
|
Hunter SE, Gustafson MA, Margillo KM, Lee SA, Ryde IT, Meyer JN. In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient Caenorhabditis elegans. DNA Repair (Amst) 2012; 11:857-63. [PMID: 22959841 DOI: 10.1016/j.dnarep.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/04/2012] [Accepted: 08/06/2012] [Indexed: 12/28/2022]
Abstract
Base excision repair (BER) is an evolutionarily conserved DNA repair pathway that is critical for repair of many of the most common types of DNA damage generated both by endogenous metabolic pathways and exposure to exogenous stressors such as pollutants. Caenorhabditis elegans is an increasingly important model organism for the study of DNA damage-related processes including DNA repair, genotoxicity, and apoptosis, but BER is not well understood in this organism, and has not previously been measured in vivo. We report robust BER in the nuclear genome and slightly slower damage removal from the mitochondrial genome; in both cases the removal rates are comparable to those observed in mammals. However we could detect no deficiency in BER in the nth-1 strain, which carries a deletion in the only glycosylase yet described in C. elegans that repairs oxidative DNA damage. We also failed to detect increased lethality or growth inhibition in nth-1 nematodes after exposure to oxidative or alkylating damage, suggesting the existence of at least one additional as-yet undetected glycosylase.
Collapse
Affiliation(s)
- Senyene E Hunter
- Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708-0328, USA
| | | | | | | | | | | |
Collapse
|
66
|
Hu J, Nakamura J, Richardson SD, Aitken MD. Evaluating the effects of bioremediation on genotoxicity of polycyclic aromatic hydrocarbon-contaminated soil using genetically engineered, higher eukaryotic cell lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4607-13. [PMID: 22443351 PMCID: PMC3348858 DOI: 10.1021/es300020e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system and a continuous-flow column system. Toxicity and genotoxicity of the residues from solvent extracts of the soil were determined by the chicken DT40 B-lymphocyte isogenic cell line and its DNA-repair-deficient mutants. Although both bioremediation processes significantly removed PAHs from the contaminated soil (bioreactor 69% removal, column 84% removal), bioreactor treatment resulted in an increase in toxicity and genotoxicity over the course of a treatment cycle, whereas long-term column treatment resulted in a decrease in toxicity and genotoxicity. However, when screening with a battery of DT40 mutants for genotoxicity profiling, we found that column treatment induced DNA damage types that were not observed in untreated soil. Toxicity and genotoxicity bioassays can supplement chemical analysis-based risk assessment for contaminated soil when evaluating the efficacy of bioremediation.
Collapse
Affiliation(s)
| | - Jun Nakamura
- Corresponding authors: Jun Nakamura (T: 1-919-966-6140; F: 1-919-966-6123; ); Michael D. Aitken (T: 1-919-966-1024; F: 1-919-966-7911; ). Address: Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, U.S.A
| | | | - Michael D. Aitken
- Corresponding authors: Jun Nakamura (T: 1-919-966-6140; F: 1-919-966-6123; ); Michael D. Aitken (T: 1-919-966-1024; F: 1-919-966-7911; ). Address: Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, U.S.A
| |
Collapse
|
67
|
Hogg M, Sauer-Eriksson AE, Johansson E. Promiscuous DNA synthesis by human DNA polymerase θ. Nucleic Acids Res 2012; 40:2611-22. [PMID: 22135286 PMCID: PMC3315306 DOI: 10.1093/nar/gkr1102] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 12/15/2022] Open
Abstract
The biological role of human DNA polymerase θ (POLQ) is not yet clearly defined, but it has been proposed to participate in several cellular processes based on its translesion synthesis capabilities. POLQ is a low-fidelity polymerase capable of efficient bypass of blocking lesions such as abasic sites and thymine glycols as well as extension of mismatched primer termini. Here, we show that POLQ possesses a DNA polymerase activity that appears to be template independent and allows efficient extension of single-stranded DNA as well as duplex DNA with either protruding or multiply mismatched 3'-OH termini. We hypothesize that this DNA synthesis activity is related to the proposed role for POLQ in the repair or tolerance of double-strand breaks.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - A. Elisabeth Sauer-Eriksson
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
68
|
Schamber-Reis BLF, Nardelli S, Régis-Silva CG, Campos PC, Cerqueira PG, Lima SA, Franco GR, Macedo AM, Pena SDJ, Cazaux C, Hoffmann JS, Motta MCM, Schenkman S, Teixeira SMR, Machado CR. DNA polymerase beta from Trypanosoma cruzi is involved in kinetoplast DNA replication and repair of oxidative lesions. Mol Biochem Parasitol 2012; 183:122-31. [PMID: 22369885 DOI: 10.1016/j.molbiopara.2012.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 12/18/2022]
Abstract
Specific DNA repair pathways from Trypanosoma cruzi are believed to protect genomic DNA and kinetoplast DNA (kDNA) from mutations. Particular pathways are supposed to operate in order to repair nucleotides oxidized by reactive oxygen species (ROS) during parasite infection, being 7,8-dihydro-8-oxoguanine (8oxoG) a frequent and highly mutagenic base alteration. If unrepaired, 8oxoG can lead to cytotoxic base transversions during DNA replication. In mammals, DNA polymerase beta (Polβ) is mainly involved in base excision repair (BER) of oxidative damage. However its biological role in T. cruzi is still unknown. We show, by immunofluorescence localization, that T. cruzi DNA polymerase beta (Tcpolβ) is restricted to the antipodal sites of kDNA in replicative epimastigote and amastigote developmental stages, being strictly localized to kDNA antipodal sites between G1/S and early G2 phase in replicative epimastigotes. Nevertheless, this polymerase was detected inside the mitochondrial matrix of trypomastigote forms, which are not able to replicate in culture. Parasites over expressing Tcpolβ showed reduced levels of 8oxoG in kDNA and an increased survival after treatment with hydrogen peroxide when compared to control cells. However, this resistance was lost after treating Tcpolβ overexpressors with methoxiamine, a potent BER inhibitor. Curiously, a presumed DNA repair focus containing Tcpolβ was identified in the vicinity of kDNA of cultured wild type epimastigotes after treatment with hydrogen peroxide. Taken together our data suggest participation of Tcpolβ during kDNA replication and repair of oxidative DNA damage induced by genotoxic stress in this organelle.
Collapse
Affiliation(s)
- Bruno Luiz Fonseca Schamber-Reis
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Asagoshi K, Lehmann W, Braithwaite EK, Santana-Santos L, Prasad R, Freedman JH, Van Houten B, Wilson SH. Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase β. Nucleic Acids Res 2012; 40:670-81. [PMID: 21917855 PMCID: PMC3258131 DOI: 10.1093/nar/gkr727] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022] Open
Abstract
The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase.
Collapse
Affiliation(s)
- Kenjiro Asagoshi
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Wade Lehmann
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Elena K. Braithwaite
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lucas Santana-Santos
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Rajendra Prasad
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jonathan H. Freedman
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
70
|
Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011; 11:39. [PMID: 22047021 PMCID: PMC3224763 DOI: 10.1186/1475-2867-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.
Collapse
Affiliation(s)
- Philip A Knobel
- Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zürich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | |
Collapse
|
71
|
Garner E, Smogorzewska A. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett 2011; 585:2853-60. [PMID: 21605559 PMCID: PMC3858975 DOI: 10.1016/j.febslet.2011.04.078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.
Collapse
Affiliation(s)
- Elizabeth Garner
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
72
|
Li Y, Gao X, Wang JY. Comparison of two POLQ mutants reveals that a polymerase-inactive POLQ retains significant function in tolerance to etoposide and γ-irradiation in mouse B cells. Genes Cells 2011; 16:973-83. [PMID: 21883722 DOI: 10.1111/j.1365-2443.2011.01550.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA polymerase θ (POLQ) is a family A polymerase that contains an intrinsic helicase domain. POLQ has been implicated in tolerance to DNA damage but whether this depends solely on its polymerase domain remains unknown. In this study, we generated POLQ-null CH12F3 B cells by gene targeting and compared their sensitivity to DNA-damaging agents with previously established POLQ-inactive CH12F3 cells in which only the polymerase core domain was deleted. Compared with WT cells, POLQ-null and POLQ-inactive cells exhibited similarly increased sensitivity to mitomycin C, cisplatin, and ultraviolet radiation, suggesting that tolerance to these DNA-damaging agents depends largely on POLQ polymerase activity. Intriguingly, POLQ-null cells exhibited higher sensitivity than did POLQ-inactive cells to etoposide and γ-irradiation, both of which induce double-strand breaks (DSBs). This observation indicates that the polymerase-deleted POLQ, expressed in POLQ-inactive cells, retains significant function in tolerance to these agents. Class switch recombination of immunoglobulin genes, which involves repair of activation-induced cytidine deaminase (AID)-triggered DSBs, however, was unaffected in both POLQ-null and POLQ-inactive cells. These results suggest that the polymerase and other functional domains of POLQ both play important roles in tolerance to etoposide and γ-irradiation but are dispensable for AID-mediated class switch recombination.
Collapse
Affiliation(s)
- Yingqian Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, China
| | | | | |
Collapse
|
73
|
Production of recombinant human DNA polymerase delta in a Bombyx mori bioreactor. PLoS One 2011; 6:e22224. [PMID: 21789240 PMCID: PMC3137619 DOI: 10.1371/journal.pone.0022224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/21/2011] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic DNA polymerase δ (pol δ) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol δ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol δ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are much lower. To address these deficiencies, we have constructed recombinant BmNPV baculoviruses using MultiBac system. This method makes the generation of recombinant forms of pol δ containing mutations in any one of the subunits or combinations thereof extremely facile. From about 350 infected larvae, we obtained as much as 4 mg of pol δ four-subunit complex. Highly purified enzyme behaved like the one of native form by rigorous characterization and comparison of its activities on poly(dA)/oligo(dT) template-primer and singly primed M13 DNA, and its homogeneity on FPLC gel filtration. In vitro base excision repair (BER) assays showed that pol δ plays a significant role in uracil-intiated BER and is more likely to mediate LP BER, while the trimer lacking p12 is more likely to mediate SN BER. It seems likely that loss of p12 modulates the rate of SN BER and LP BER during the repair process. Thus, this work provides a simple, fast, reliable and economic way for the large-scale production of human DNA polymerase δ with a high activity and purity, setting up a new platform for our further research on the biochemical properties of pol δ, its regulation and the integration of its functions, and how alterations in pol δ function could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability.
Collapse
|
74
|
The epistatic relationship between BRCA2 and the other RAD51 mediators in homologous recombination. PLoS Genet 2011; 7:e1002148. [PMID: 21779174 PMCID: PMC3136442 DOI: 10.1371/journal.pgen.1002148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 05/02/2011] [Indexed: 02/06/2023] Open
Abstract
RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs) where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA–damage site. Mutations in BRCA1 and BRCA2 predispose hereditary breast and ovarian cancer. Such mutations sensitize to chemotherapeutic agents, including camptothecin, cisplatin, and poly(ADP-ribose) polymerase (PARP) inhibitor, since RAD51 mediators including both BRCA proteins promote repair of DNA lesions induced by these drugs. Little is known of the functional relationships among RAD51, BRCA2, and other RAD51 mediators, because no brca2-null cells were available. Furthermore, the phenotype of sws1 mutants has not been documented. We here disrupted every known RAD51 mediator and analyzed the phenotype of the resulting mutants in both BRCA2-deficient and -proficient backgrounds. The understanding of the function of individual RAD51 mediators and their functional interactions will contribute to the accurate prediction of anti-cancer therapy efficacy.
Collapse
|
75
|
Ji K, Choi K, Giesy JP, Musarrat J, Takeda S. Genotoxicity of several polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs, and their mechanisms of toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5003-5008. [PMID: 21545137 DOI: 10.1021/es104344e] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been extensively utilized as flame retardants, and recently there has been concern about potential adverse effects in humans and wildlife. Their hydroxylated analogs (OH-BDEs) have received increasing attention due to their potential for endocrine and neurological toxicities. However, the potentials and mechanisms of genotoxicity of these brominated compounds have scarcely been investigated. In the present study, genotoxicity of tetra-BDEs, penta BDE, octa-BDE, deca-BDE, and tetra-OH-BDEs were investigated by use of chicken DT40 cell lines including wild-type cells and a panel of mutant cell lines deficient in DNA repair pathways. Tetra-BDEs have greater genotoxic potential than do the other BDEs tested. OH-tetra-BDEs were more genotoxic than tetra-BDEs. DT40 cells, deficient in base excision repair (Polβ(-/-)) and translesion DNA synthesis (REV3(-/-)) pathways, were hypersensitive to the genotoxic effects of tetra-BDEs and OH-tetra-BDEs. The observation of chromosomal aberrations and gamma-H2AX assay confirmed that the studied brominated compounds caused double strand breaks. Pretreatment with N-acetyl-l-cysteine (NAC) significantly rescued the Polβ(-/-) and REV3(-/-) mutants, which is consistent with the hypothesis that PBDEs and OH-BDEs cause DNA damage mediated through reactive oxygen species (ROS). Some tetra-BDEs and OH-tetra-BDEs caused base damage through ROS leading to replication blockage and subsequent chromosomal breaks.
Collapse
Affiliation(s)
- Kyunghee Ji
- School of Public Health, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
76
|
Tafel AA, Wu L, McHugh PJ. Human HEL308 localizes to damaged replication forks and unwinds lagging strand structures. J Biol Chem 2011; 286:15832-40. [PMID: 21398521 PMCID: PMC3091193 DOI: 10.1074/jbc.m111.228189] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.
Collapse
Affiliation(s)
- Agnieszka A Tafel
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
77
|
Ridpath JR, Takeda S, Swenberg JA, Nakamura J. Convenient, multi-well plate-based DNA damage response analysis using DT40 mutants is applicable to a high-throughput genotoxicity assay with characterization of modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:153-60. [PMID: 20839229 PMCID: PMC3280086 DOI: 10.1002/em.20595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chemists continually synthesize myriad new chemicals (∼2,000/year), some of which make their way into the environment or otherwise pose possible threats to humans who potentially become exposed to the compounds. Regulators must determine whether these, along with the glut (∼80,000) of existing, chemicals are toxic and at what exposure levels. An important component of this determination is to ascertain the mode of action (MOA) of each compound as it relates to the pathway the compound uses to induce genotoxicity. Several assays have traditionally been used to reveal these effects to the genome: the Ames test, tests with yeast and mammalian cell lines, and animal studies. Previously, we described a new multi-well plate-based method which makes use of the DT40 isogenic cell line and its dozens of available mutants knocked out in DNA repair and cell cycle pathways and we now provide a detailed protocol of the further improvement of the assay. Although the DT40 line has existed for some time and has been used in numerous studies of DNA repair pathways, little use has been made of this valuable resource for toxicological investigations. Our method introduces the 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide dye scheme determination of cell survival in a manner that greatly increases throughput and reduces cost while maintaining reasonable sensitivity. Although this new genotoxicity assay requires validation with many more mutagens before becoming an established, regulatory decision-making analysis tool, we believe that this method will be very advantageous if eventually added to the repertoire of those investigating MOAs of potentially genotoxic substances.
Collapse
Affiliation(s)
- John R. Ridpath
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shunichi Takeda
- Department of Radiation Genetics Graduate School of Medicine, Kyoto, Japan
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
78
|
Abstract
There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Richard D. Wood
- Correspondence to: 1808 Park Road 1C, P.O. Box 389, Smithville, TX, USA, 78957 Tel: (512) 237-9431 Fax: (512) 237-6532
| |
Collapse
|
79
|
Hogg M, Seki M, Wood RD, Doublié S, Wallace SS. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J Mol Biol 2011; 405:642-52. [PMID: 21050863 PMCID: PMC3025778 DOI: 10.1016/j.jmb.2010.10.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT, 05405, USA
| | - Mineaki Seki
- Department of Carcinogenesis, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | - Richard D. Wood
- Department of Carcinogenesis, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT, 05405, USA
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
80
|
Brown JA, Pack LR, Sanman LE, Suo Z. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis. DNA Repair (Amst) 2011; 10:24-33. [PMID: 20961817 PMCID: PMC3065367 DOI: 10.1016/j.dnarep.2010.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/31/2022]
Abstract
The base excision repair (BER) pathway coordinates the replacement of 1-10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1-10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5'-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER.
Collapse
Affiliation(s)
- Jessica A. Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Lindsey R. Pack
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Laura E. Sanman
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular & Developmental Biology Program, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
81
|
Luke AM, Chastain PD, Pachkowski BF, Afonin V, Takeda S, Kaufman DG, Swenberg JA, Nakamura J. Accumulation of true single strand breaks and AP sites in base excision repair deficient cells. Mutat Res 2010; 694:65-71. [PMID: 20851134 PMCID: PMC2992575 DOI: 10.1016/j.mrfmmm.2010.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 12/29/2022]
Abstract
Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays.
Collapse
Affiliation(s)
- April M. Luke
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
| | - Paul D. Chastain
- Department of Pathology and Lab Medicine, University of North Carolina, Chapel Hill, USA
| | - Brian F. Pachkowski
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Valeriy Afonin
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Shunichi Takeda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David G. Kaufman
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
- Department of Pathology and Lab Medicine, University of North Carolina, Chapel Hill, USA
| | - James A. Swenberg
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
- Department of Pathology and Lab Medicine, University of North Carolina, Chapel Hill, USA
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
82
|
Abstract
Trinucleotide expansion underlies several human diseases. Expansion occurs during multiple stages of human development in different cell types, and is sensitive to the gender of the parent who transmits the repeats. Repair and replication models for expansions have been described, but we do not know whether the pathway involved is the same under all conditions and for all repeat tract lengths, which differ among diseases. Currently, researchers rely on bacteria, yeast and mice to study expansion, but these models differ substantially from humans. We need now to connect the dots among human genetics, pathway biochemistry and the appropriate model systems to understand the mechanism of expansion as it occurs in human disease.
Collapse
Affiliation(s)
- Cynthia T McMurray
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Rd, 83R0101, Berkeley, California 94720, USA.
| |
Collapse
|
83
|
Hoffmann JS, Cazaux C. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer. Semin Cancer Biol 2010; 20:312-9. [PMID: 20934518 DOI: 10.1016/j.semcancer.2010.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/01/2010] [Indexed: 12/22/2022]
Abstract
The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.
Collapse
Affiliation(s)
- Jean-Sébastien Hoffmann
- CNRS, IPBS (Institute of Pharmacology and Structural Biology), 205, route de Narbonne, University of Toulouse, UPS, 31077 Toulouse, France.
| | | |
Collapse
|
84
|
Lemée F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire MJ, Bieth A, Gentil C, Baker L, Martin AL, Leduc C, Lam E, Magdeleine E, Filleron T, Oumouhou N, Kaina B, Seki M, Grimal F, Lacroix-Triki M, Thompson A, Roché H, Bourdon JC, Wood RD, Hoffmann JS, Cazaux C. DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc Natl Acad Sci U S A 2010; 107:13390-5. [PMID: 20624954 PMCID: PMC2922118 DOI: 10.1073/pnas.0910759107] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
"Replicative stress" is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France, n=206; United Kingdom, n=117) of patients with previously untreated primary breast cancers. We report here that among the 13 human nuclear DNA polymerase genes, DNA Polymerase (POLQ) is the only one significantly up-regulated in breast cancer compared with normal breast tissues. Importantly, POLQ up-regulation significantly correlates with poor clinical outcome (4.3-fold increased risk of death in patients with high POLQ expression), and this correlation is independent of Cyclin E expression or the number of positive nodes, which are currently considered as markers for poor outcome. POLQ expression provides thus an additional indicator for the survival outcome of patients with high Cyclin E tumor expression or high number of positive lymph nodes. Furthermore, to decipher the molecular consequences of POLQ up-regulation in breast cancer, we generated human MRC5-SV cell lines that stably overexpress POLQ. Strong POLQ expression was directly associated with defective DNA replication fork progression and chromosomal damage. Therefore, POLQ overexpression may be a promising genetic instability and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Fanny Lemée
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Valérie Bergoglio
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Anne Fernandez-Vidal
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Alice Machado-Silva
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
- European Associated Laboratory, University of Dundee, Institut National de la Santé et de la Recherche Médicale U858, Dundee DD1 9SY, United Kingdom
| | - Marie-Jeanne Pillaire
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Anne Bieth
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Catherine Gentil
- Service d’ Epidémiologie, Institut National de la Santé et de la Recherche Médicale U558, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Université Paul Sabatier, 31073 Toulouse, France
| | - Lee Baker
- Department of Surgery and Molecular Oncology, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Anne-Laure Martin
- Fédération des Centres de Lutte Contre le Cancer, 75654 Paris, France
| | - Claire Leduc
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Elena Lam
- Department of Toxicology, University of Mainz, D-55131 Mainz, Germany
| | - Eddy Magdeleine
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Thomas Filleron
- Institut Claudius Régaud, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France
| | - Naïma Oumouhou
- Service d’ Epidémiologie, Institut National de la Santé et de la Recherche Médicale U558, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Université Paul Sabatier, 31073 Toulouse, France
| | - Bernd Kaina
- Department of Toxicology, University of Mainz, D-55131 Mainz, Germany
| | - Mineaki Seki
- Laboratories for Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Fanny Grimal
- Département d’ Oncogenèse et de Signalisation des Cellules Hématopoïétiques, Institut National de la Santé et de la Recherche Médicale U563, Université de Toulouse, Université Paul Sabatier, 31059 Toulouse, France; and
| | - Magali Lacroix-Triki
- Institut Claudius Régaud, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France
| | - Alastair Thompson
- Department of Surgery and Molecular Oncology, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Henri Roché
- Institut Claudius Régaud, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France
| | - Jean-Christophe Bourdon
- European Associated Laboratory, University of Dundee, Institut National de la Santé et de la Recherche Médicale U858, Dundee DD1 9SY, United Kingdom
| | - Richard D. Wood
- Science Park–Research Division, University of Texas Graduate School of Biomedical Sciences at Houston, M. D. Anderson Cancer Center, Smithville, TX 78957
| | - Jean-Sébastien Hoffmann
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Christophe Cazaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| |
Collapse
|
85
|
Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiácovo MP, Elledge SJ. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 2010; 39:36-47. [PMID: 20603073 PMCID: PMC2919743 DOI: 10.1016/j.molcel.2010.06.023] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/13/2023]
Abstract
The Fanconi anemia (FA) pathway is responsible for interstrand crosslink repair. At the heart of this pathway is the FANCI-FAND2 (ID) complex, which, upon ubiquitination by the FA core complex, travels to sites of damage to coordinate repair that includes nucleolytic modification of the DNA surrounding the lesion and translesion synthesis. How the ID complex regulates these events is unknown. Here we describe a shRNA screen that led to the identification of two nucleases necessary for crosslink repair, FAN1 (KIAA1018) and EXDL2. FAN1 colocalizes at sites of DNA damage with the ID complex in a manner dependent on FAN1's ubiquitin-binding domain (UBZ), the ID complex, and monoubiquitination of FANCD2. FAN1 possesses intrinsic 5'-3' exonuclease activity and endonuclease activity that cleaves nicked and branched structures. We propose that FAN1 is a repair nuclease that is recruited to sites of crosslink damage in part through binding the ubiquitinated ID complex through its UBZ domain.
Collapse
Affiliation(s)
- Agata Smogorzewska
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston MA 02114, USA
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065
| | - Rohini Desetty
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065
| | - Takamune T. Saito
- Department of Genetics, Harvard Medical School, Boston MA 02115, USA
| | - Michael Schlabach
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Francis P. Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065
| | - Mathew E. Sowa
- Department of Pathology, Harvard Medical School, Boston MA 02115, USA
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, Boston MA 02115, USA
| | | | - Stephen J. Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
86
|
Ho TV, Schärer OD. Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:552-566. [PMID: 20658647 DOI: 10.1002/em.20573] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand crosslinks (ICLs) are induced by a number of bifunctional antitumor drugs such as cisplatin, mitomycin C, or the nitrogen mustards as well as endogenous agents formed by lipid peroxidation. The repair of ICLs requires the coordinated interplay of a number of genome maintenance pathways, leading to the removal of ICLs through at least two distinct mechanisms. The major pathway of ICL repair is dependent on replication, homologous recombination, and the Fanconi anemia (FA) pathway, whereas a minor, G0/G1-specific and recombination-independent pathway depends on nucleotide excision repair. A central step in both pathways in vertebrates is translesion synthesis (TLS) and mutants in the TLS polymerases Rev1 and Pol zeta are exquisitely sensitive to crosslinking agents. Here, we review the involvement of Rev1 and Pol zeta as well as additional TLS polymerases, in particular, Pol eta, Pol kappa, Pol iota, and Pol nu, in ICL repair. Biochemical studies suggest that multiple TLS polymerases have the ability to bypass ICLs and that the extent ofbypass depends upon the structure as well as the extent of endo- or exonucleolytic processing of the ICL. As has been observed for lesions that affect only one strand of DNA, TLS polymerases are recruited by ubiquitinated proliferating nuclear antigen (PCNA) to repair ICLs in the G0/G1 pathway. By contrast, this data suggest that a different mechanism involving the FA pathway is operative in coordinating TLS in the context of replication-dependent ICL repair.
Collapse
Affiliation(s)
- The Vinh Ho
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | |
Collapse
|
87
|
Chan SH, Yu AM, McVey M. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 2010; 6:e1001005. [PMID: 20617203 PMCID: PMC2895639 DOI: 10.1371/journal.pgen.1001005] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 05/27/2010] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. DNA double-strand breaks, in which both strands of the DNA double helix are cut, must be recognized and accurately repaired in order to promote cell survival and prevent the accumulation of mutations. However, error-prone repair occasionally occurs, even when accurate repair is possible. We have investigated the genetic requirements of an error-prone break-repair mechanism called alternative end joining. We have previously shown that alternative end joining is frequently used in the fruit fly, Drosophila melanogaster. Here, we demonstrate that a fruit fly protein named DNA polymerase theta is a key player in this inaccurate repair mechanism. Genetic analysis suggests that polymerase theta may be important for two processes associated with alternative end joining: (1) annealing at short, complementary DNA sequences, and (2) DNA synthesis that creates small insertions at break-repair sites. In the absence of polymerase theta, a backup repair mechanism that frequently results in large chromosome deletions is revealed. Because DNA polymerase theta is highly expressed in many types of human cancers, our findings lay the groundwork for further investigations into how polymerase theta is involved in repair processes that may promote the development of cancer.
Collapse
Affiliation(s)
- Sze Ham Chan
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Amy Marie Yu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- Program in Genetics, Tufts Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
88
|
Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 2010; 1:175-84. [PMID: 20700469 PMCID: PMC2917771 DOI: 10.18632/oncotarget.124] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/27/2010] [Indexed: 01/21/2023] Open
Abstract
Depletion of POLQ (DNA polymerase theta) has recently been shown to render tumour cells more sensitive to radiotherapy whilst having little or no effect on normal tissues. This finding led us to investigate whether tumours that overexpress POLQ are associated with an adverse outcome. We therefore correlated the clinical outcomes of two retrospective series of patients with early breast cancer with the expression levels of POLQ, as determined by microarray gene expression analysis. We found that a significant number of tumours overexpressed POLQ and that overexpression was correlated with ER negative disease (p=0.047) and high tumour grade (p=0.004), both of which are associated with poor clinical outcomes. POLQ overexpression was associated with poor relapse free survival rates on both univariate (HR 5.80; 95% CI, 2.220 to 15.159; p<0.001) and multivariate analysis (HR 8.086; 95% CI 2.340 to 27.948 p=0.001). Analysis of other published clinical series confirmed that POLQ overexpression is associated with adverse clinical outcomes. The poor prognosis associated with POLQ is independent of other clinical or pathological features. The mechanism that causes this adverse outcome remains to be elucidated but may in part arise from resistance to adjuvant treatment. These findings, combined with the limited normal tissue expression of POLQ, make it a very appealing target for possible clinical exploitation.
Collapse
Affiliation(s)
| | | | - Remko Prevo
- Gray Institute for Radiation Oncology and Biology
| | | | | | | |
Collapse
|
89
|
Kohzaki M, Nishihara K, Hirota K, Sonoda E, Yoshimura M, Ekino S, Butler JE, Watanabe M, Halazonetis TD, Takeda S. DNA polymerases nu and theta are required for efficient immunoglobulin V gene diversification in chicken. J Cell Biol 2010; 189:1117-27. [PMID: 20584917 PMCID: PMC2894443 DOI: 10.1083/jcb.200912012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/26/2010] [Indexed: 01/10/2023] Open
Abstract
The chicken DT40 B lymphocyte line diversifies its immunoglobulin (Ig) V genes through translesion DNA synthesis-dependent point mutations (Ig hypermutation) and homologous recombination (HR)-dependent Ig gene conversion. The error-prone biochemical characteristic of the A family DNA polymerases Polnu and Pol led us to explore the role of these polymerases in Ig gene diversification in DT40 cells. Disruption of both polymerases causes a significant decrease in Ig gene conversion events, although POLN(-/-)/POLQ(-/-) cells exhibit no prominent defect in HR-mediated DNA repair, as indicated by no increase in sensitivity to camptothecin. Poleta has also been previously implicated in Ig gene conversion. We show that a POLH(-/-)/POLN(-/-)/POLQ(-/-) triple mutant displays no Ig gene conversion and reduced Ig hypermutation. Together, these data define a role for Polnu and Pol in recombination and suggest that the DNA synthesis associated with Ig gene conversion is accounted for by three specialized DNA polymerases.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-0494, Japan
- Department of Molecular Biology, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Kana Nishihara
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Food and Nutrition, Kyoto Women’s University, Higashiyama-ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eiichiro Sonoda
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michio Yoshimura
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeo Ekino
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto 860-8556, Japan
| | - John E. Butler
- Department of Microbiology, University of Iowa Medical School, Iowa City, IA 52242
| | - Masami Watanabe
- Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-0494, Japan
| | - Thanos D. Halazonetis
- Department of Molecular Biology, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Shunichi Takeda
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
90
|
Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, Taylor S, Yoshimura M, Hickson ID, Bernhard EJ, McKenna WG. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown. Cancer Res 2010; 70:2984-93. [PMID: 20233878 PMCID: PMC2848966 DOI: 10.1158/0008-5472.can-09-4040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B) and irradiated normal tissue cells (MRC5). Using gammaH2AX foci at 24 hours after IR, we identified several genes, such as BRCA2, Lig IV, and XRCC5, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA polymerase ) as a potential tumor-specific target. Subsequent investigations showed that POLQ knockdown resulted in radiosensitization of a panel of tumor cell lines from different primary sites while having little or no effect on normal tissue cell lines. These findings raise the possibility that POLQ inhibition might be used clinically to cause tumor-specific radiosensitization.
Collapse
Affiliation(s)
- Geoff S Higgins
- Gray Institute for Radiation Oncology and Biology, Oxford University, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Asagoshi K, Tano K, Chastain PD, Adachi N, Sonoda E, Kikuchi K, Koyama H, Nagata K, Kaufman DG, Takeda S, Wilson SH, Watanabe M, Swenberg JA, Nakamura J. FEN1 functions in long patch base excision repair under conditions of oxidative stress in vertebrate cells. Mol Cancer Res 2010; 8:204-15. [PMID: 20145043 PMCID: PMC2824787 DOI: 10.1158/1541-7786.mcr-09-0253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From in vitro studies, flap endonuclease 1 (FEN1) has been proposed to play a role in the long patch (LP) base excision repair (BER) subpathway. Yet the role of FEN1 in BER in the context of the living vertebrate cell has not been thoroughly explored. In the present study, we cloned a DT40 chicken cell line with a deletion in the FEN1 gene and found that these FEN1-deficient cells exhibited hypersensitivity to H(2)O(2). This oxidant produces genotoxic lesions that are repaired by BER, suggesting that the cells have a deficiency in BER affecting survival. In experiments with extracts from the isogenic FEN1 null and wild-type cell lines, the LP-BER activity of FEN1 null cells was deficient, whereas repair by the single-nucleotide BER subpathway was normal. Other consequences of the FEN1 deficiency were also evaluated. These results illustrate that FEN1 plays a role in LP-BER in higher eukaryotes, presumably by processing the flap-containing intermediates of BER.
Collapse
Affiliation(s)
- Kenjiro Asagoshi
- Laboratory of Structural Biology, NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
DNA polymerases (Pols) act as key players in DNA metabolism. These enzymes are the only biological macromolecules able to duplicate the genetic information stored in the DNA and are absolutely required every time this information has to be copied, as during DNA replication or during DNA repair, when lost or damaged DNA sequences have to be replaced with "original" or "correct" copies. In each DNA repair pathway one or more specific Pols are required. A feature of mammalian DNA repair pathways is their redundancy. The failure of one of these pathways can be compensated by another one. However, several DNA lesions require a specific repair pathway for error free repair. In many tumors one or more DNA repair pathways are affected, leading to error prone repair of some kind of lesions by alternatives routes, thus leading to accumulation of mutations and contributing to genomic instability, a common feature of cancer cell. In this chapter, we present the role of each Pol in genome maintenance and highlight the connections between the malfunctioning of these enzymes and cancer progress.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNR, Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy
| | | | | |
Collapse
|
93
|
Zietlow L, Smith LA, Bessho M, Bessho T. Evidence for the involvement of human DNA polymerase N in the repair of DNA interstrand cross-links. Biochemistry 2009; 48:11817-24. [PMID: 19908865 PMCID: PMC2790558 DOI: 10.1021/bi9015346] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human DNA polymerase N (PolN) is an A-family nuclear DNA polymerase whose function is unknown. This study examines the possible role of PolN in DNA repair in human cells treated with PolN-targeted siRNA. HeLa cells with siRNA-mediated knockdown of PolN were more sensitive than control cells to DNA cross-linking agent mitomycin C (MMC) but were not hypersensitive to UV irradiation. The MMC hypersensitivity of PolN knockdown cells was rescued by the overexpression of DNA polymerase-proficient PolN but not by DNA polymerase-deficient PolN. Furthermore, in vitro experiments showed that purified PolN conducts low-efficiency nonmutagenic bypass of a psoralen DNA interstrand cross-link (ICL), whose structure resembles an intermediate in the proposed pathway of ICL repair. These results suggest that PolN might play a role in translesion DNA synthesis during ICL repair in human cells.
Collapse
Affiliation(s)
- Laura Zietlow
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Leigh Anne Smith
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Mika Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| |
Collapse
|
94
|
DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol Cell Biol 2009; 30:1088-96. [PMID: 19995904 DOI: 10.1128/mcb.01124-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells rely on DNA polymerases to duplicate their genetic material and to repair or bypass DNA lesions. In humans, 16 polymerases have been identified, and each bears specific functions in genome maintenance. We identified here the recently discovered polymerase POLN to be involved in repair of DNA cross-links. Such DNA lesions are highly toxic and are believed to be repaired by the sequential activity of nucleotide excision repair, translesion synthesis, and homologous recombination mechanisms. By functionally assaying its role in these processes, we unraveled an unexpected involvement of POLN in homologous recombination. Moreover, we obtained evidence for physical and functional interaction of POLN with factors belonging to the Fanconi anemia pathway, a master regulator of cross-link repair. Finally, we show that POLN interacts and cooperates in DNA repair with the helicase HEL308, which shares a common origin with POLN in the Drosophila mus308 gene. Our data indicate that this novel polymerase-helicase complex participates in homologous recombination repair and is essential for cellular protection against DNA cross-links.
Collapse
|
95
|
Masaoka A, Horton JK, Beard WA, Wilson SH. DNA polymerase beta and PARP activities in base excision repair in living cells. DNA Repair (Amst) 2009; 8:1290-9. [PMID: 19748837 DOI: 10.1016/j.dnarep.2009.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/29/2009] [Accepted: 08/14/2009] [Indexed: 01/08/2023]
Abstract
To examine base excision repair (BER) capacity in the context of living cells, we developed and applied a plasmid-based reporter assay. Non-replicating plasmids containing unique DNA base lesions were designed to express luciferase only after lesion repair had occurred, and luciferase expression in transfected cells was measured continuously during a repair period of 14 h. Two types of DNA lesions were examined: uracil opposite T reflecting repair primarily by the single-nucleotide BER sub-pathway, and the abasic site analogue tetrahydrofuran (THF) opposite C reflecting repair by long-patch BER. We found that the repair capacity for uracil-DNA in wild type mouse fibroblasts was very strong, whereas the repair capacity for THF-DNA, although strong, was slightly weaker. Repair capacity in DNA polymerase beta (Pol beta) null cells for uracil-DNA and THF-DNA was reduced by approximately 15% and 20%, respectively, compared to that in wild type cells. In both cases, the repair deficiency was fully complemented in Pol beta null cells expressing recombinant Pol beta. The effect of inhibition of poly(ADP-ribose) polymerase (PARP) activity on repair capacity was examined by treatment of cells with the inhibitor 4-amino-1,8-naphthalimide (4-AN). PARP inhibition decreased the repair capacity for both lesions in wild type cells, and this reduction was to the same level as that seen in Pol beta null cells. In contrast, 4-AN had no effect on repair in Pol beta null cells. The results highlight that Pol beta and PARP function in the same repair pathway, but also suggest that there is repair independent of both Pol beta and PARP activities. Thus, before the BER capacity of a cell can be predicted or modulated, a better understanding of Pol beta and PARP activity-independent BER pathways is required.
Collapse
Affiliation(s)
- Aya Masaoka
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
96
|
Goff JP, Shields DS, Seki M, Choi S, Epperly MW, Dixon T, Wang H, Bakkenist CJ, Dertinger SD, Torous DK, Wittschieben J, Wood RD, Greenberger JS. Lack of DNA polymerase theta (POLQ) radiosensitizes bone marrow stromal cells in vitro and increases reticulocyte micronuclei after total-body irradiation. Radiat Res 2009; 172:165-74. [PMID: 19630521 PMCID: PMC2742993 DOI: 10.1667/rr1598.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract Mammalian POLQ (pol theta) is a specialized DNA polymerase with an unknown function in vivo. Roles have been proposed in chromosome stability, as a backup enzyme in DNA base excision repair, and in somatic hypermutation of immunoglobulin genes. The purified enzyme can bypass AP sites and thymine glycol. Mice defective in POLQ are viable and have been reported to have elevated spontaneous and radiation-induced frequencies of micronuclei in circulating red blood cells. To examine the potential roles of POLQ in hematopoiesis and in responses to oxidative stress responses, including ionizing radiation, bone marrow cultures and marrow stromal cell lines were established from Polq(+/+) and Polq(-/-) mice. Aging of bone marrow cultures was not altered, but Polq(-/-) cells were more sensitive to gamma radiation than were Polq(+/+) cells. The D(0) was 1.38 +/- 0.06 Gy for Polq(+/+) cells compared to 1.27 +/- 0.16 and 0.98 +/- 0.10 Gy (P = 0.032) for two Polq(-/-) clones. Polq(-/-) cells were moderately more sensitive to bleomycin than Polq(+/+) cells and were not hypersensitive to paraquat or hydrogen peroxide. ATM kinase activation appeared to be normal in gamma-irradiated Polq(-/-) cells. Inhibition of ATM kinase activity increased the radiosensitivity of Polq(+/+) cells slightly but did not affect Polq(-/-) cells. Polq(-/-) mice had more spontaneous and radiation-induced micronucleated reticulocytes than Polq+/+ and (+/-) mice. The sensitivity of POLQ-defective bone marrow stromal cells to ionizing radiation and bleomycin and the increase in micronuclei in red blood cells support a role for this DNA polymerase in cellular tolerance of DNA damage that can lead to double-strand DNA breaks.
Collapse
Affiliation(s)
- Julie P. Goff
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Donna S. Shields
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Mineaki Seki
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Serah Choi
- Medical Scientist Training Program, Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Christopher J. Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | | | | | - John Wittschieben
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Richard D. Wood
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
97
|
DNA 3'-phosphatase activity is critical for rapid global rates of single-strand break repair following oxidative stress. Mol Cell Biol 2009; 29:4653-62. [PMID: 19546231 DOI: 10.1128/mcb.00677-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is a major source of chromosome single-strand breaks (SSBs), and the repair of these lesions is retarded in neurodegenerative disease. The rate of the repair of oxidative SSBs is accelerated by XRCC1, a scaffold protein that is essential for embryonic viability and that interacts with multiple DNA repair proteins. However, the relative importance of the interactions mediated by XRCC1 during oxidative stress in vivo is unknown. We show that mutations that disrupt the XRCC1 interaction with DNA polymerase beta or DNA ligase III fail to slow SSB repair in proliferating CHO cells following oxidative stress. In contrast, mutation of the domain that interacts with polynucleotide kinase/phosphatase (PNK) and Aprataxin retards repair, and truncated XRCC1 encoding this domain fully supports this process. Importantly, the impact of mutating the protein domain in XRCC1 that binds these end-processing factors is circumvented by the overexpression of wild-type PNK but not by the overexpression of PNK harboring a mutated DNA 3'-phosphatase domain. These data suggest that DNA 3'-phosphatase activity is critical for rapid rates of chromosomal SSB repair following oxidative stress, and that the XRCC1-PNK interaction ensures that this activity is not rate limiting in vivo.
Collapse
|
98
|
Prasad R, Longley MJ, Sharief FS, Hou EW, Copeland WC, Wilson SH. Human DNA polymerase theta possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Res 2009; 37:1868-77. [PMID: 19188258 PMCID: PMC2665223 DOI: 10.1093/nar/gkp035] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/26/2008] [Accepted: 01/11/2009] [Indexed: 12/18/2022] Open
Abstract
DNA polymerase theta (Pol theta) is a low-fidelity DNA polymerase that belongs to the family A polymerases and has been proposed to play a role in somatic hypermutation. Pol theta has the ability to conduct translesion DNA synthesis opposite an AP site or thymine glycol, and it was recently proposed to be involved in base excision repair (BER) of DNA damage. Here, we show that Pol theta has intrinsic 5'-deoxyribose phosphate (5'-dRP) lyase activity that is involved in single-nucleotide base excision DNA repair (SN-BER). Full-length human Pol theta is a approximately 300-kDa polypeptide, but we show here that the 98-kDa C-terminal region of Pol theta possesses both DNA polymerase activity and dRP lyase activity and is sufficient to carry out base excision repair in vitro. The 5'-dRP lyase activity is independent of the polymerase activity, in that a polymerase inactive mutant retained full 5'-dRP lyase activity. Domain mapping of the 98-kDa enzyme by limited proteolysis and NaBH(4) cross-linking with a BER intermediate revealed that the dRP lyase active site resides in a 24-kDa domain of Pol theta. These results are consistent with a role of Pol theta in BER.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew J. Longley
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Farida S. Sharief
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Esther W. Hou
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William C. Copeland
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
99
|
Abstract
Hel308 is an SF2 (superfamily 2) helicase with clear homologues in metazoans and archaea, but not in fungi or bacteria. Evidence from biochemistry and genetics implicates Hel308 in remodelling compromised replication forks. In the last 4 years, significant advances have been made in understanding the biochemistry of archaeal Hel308, most recently through atomic structures from cren- and eury-archaea. These are good templates for SF2 helicase function more generally, highlighting co-ordinated actions of accessory domains around RecA folds. We review the emerging molecular biology of Hel308, drawing together ideas of how it may contribute to genome stability through the control of recombination, with reference to paradigms developed in bacteria.
Collapse
|
100
|
Oyama T, Oka H, Mayanagi K, Shirai T, Matoba K, Fujikane R, Ishino Y, Morikawa K. Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm. BMC STRUCTURAL BIOLOGY 2009; 9:2. [PMID: 19159486 PMCID: PMC2636818 DOI: 10.1186/1472-6807-9-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pyrococcus furiosus Hjm (PfuHjm) is a structure-specific DNA helicase that was originally identified by in vitro screening for Holliday junction migration activity. It belongs to helicase superfamily 2, and shares homology with the human DNA polymerase Theta (PolTheta), HEL308, and Drosophila Mus308 proteins, which are involved in DNA repair. Previous biochemical and genetic analyses revealed that PfuHjm preferentially binds to fork-related Y-structured DNAs and unwinds their double-stranded regions, suggesting that this helicase is a functional counterpart of the bacterial RecQ helicase, which is essential for genome maintenance. Elucidation of the DNA unwinding and translocation mechanisms by PfuHjm will require its three-dimensional structure at atomic resolution. RESULTS We determined the crystal structures of PfuHjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0-2.7 A. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of Archaeoglobus fulgidus Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolTheta, indicating the strong conformational conservation between archaea and eukarya. CONCLUSION The detailed comparison between our DNA-free PfuHjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.
Collapse
Affiliation(s)
- Takuji Oyama
- The Takara Bio Endowed Division, Institute for Protein Research, Osaka University, Open Laboratories of Advanced Bioscience and Biotechnology (OLABB), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | |
Collapse
|