51
|
Laksmi FA, Nirwantono R, Nuryana I, Agustriana E. Expression and characterization of thermostable D-allulose 3-epimerase from Arthrobacter psychrolactophilus (Ap DAEase) with potential catalytic activity for bioconversion of D-allulose from d-fructose. Int J Biol Macromol 2022; 214:426-438. [PMID: 35750099 DOI: 10.1016/j.ijbiomac.2022.06.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 01/14/2023]
Abstract
A novel D-allulose 3-epimerase (DAEase) from Arthrobacter psychrolactophilus (Ap DAEase) was first characterized in this study. The enzyme catalyzes the epimerization of d-fructose into a functional rare sugar, D-allulose. Ap DAEase was the first record of DAEase identified as a homotrimer with the molecular weight of its subunit at approximately 34 kDa. It had an optimum activity at pH 8.5 and 70 °C in the presence of 1 mM Mg2+. Ap DAEase was found to be an excellent thermostable enzyme. The half-life value at 70 °C was 128.4 min. The kcat and catalytic efficiency of the enzyme toward d-fructose were 2920.00 s-1 and 3.953 mM-1 s-1, respectively. To the best of our knowledge, Ap DAEase possesses the highest kcat among the previously reported DAEases. The conversion ratio of 500 and 100 mg L-1d-fructose to D-allulose was approximately 27 % in 15 and 90 min, respectively. These research findings suggest that Ap DAEase is a promising candidate for the industrial production of D-allulose.
Collapse
Affiliation(s)
- Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia.
| | - Rudi Nirwantono
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia; School of Chemistry and Molecular Bioscience, University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane, QLD 4072, Australia
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia
| | - Eva Agustriana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia.
| |
Collapse
|
52
|
Parıldı E, Kola O, Özcan BD, Akkaya MR, Dikkaya E. Recombinant D‐tagatose 3‐epimerase production and converting fructose into allulose. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erva Parıldı
- Department of Food Engineering, Faculty of Engineering Adana Alparslan Türkeş Science and Technology University Sarıçam Turkey
| | - Osman Kola
- Department of Food Engineering, Faculty of Engineering Adana Alparslan Türkeş Science and Technology University Sarıçam Turkey
| | - Bahri Devrim Özcan
- Department of Animal Science, Faculty of Agriculture Çukurova University Sarıçam Turkey
| | - Murat Reis Akkaya
- Department of Food Engineering, Faculty of Engineering Adana Alparslan Türkeş Science and Technology University Sarıçam Turkey
| | - Elif Dikkaya
- Department of Animal Science, Faculty of Agriculture Çukurova University Sarıçam Turkey
| |
Collapse
|
53
|
Chen Z, Gao XD, Li Z. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol 2022; 13:881037. [PMID: 35495640 PMCID: PMC9048046 DOI: 10.3389/fmicb.2022.881037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Abstract
D-Allulose, a generally regarded as safe (GRAS) sugar, is rare in nature. It is among the most promising sweeteners for future use due to its low caloric content, sucrose-like taste, and unique functions. D-Allulose has many physiological effects, such as antiobesity, antihyperglycemia, antidiabetes, anti-inflammatory, antioxidant, and neuroprotective effects. Therefore, D-allulose has important application value in the food, pharmaceutical, and healthcare industries. However, the high cost of D-allulose production limits its large-scale application. Currently, biotransformation is very attractive for D-allulose synthesis, with the two main methods of biosynthesis being the Izumoring strategy and the DHAP-dependent aldolase strategy. This article reviews recent advances regarding the physiological functions and biosynthesis of D-allulose. In addition, future perspectives on the production of D-allulose are presented.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
54
|
Tsuzuki T, Suzuki R, Kajun R, Yamada T, Iida T, Liu B, Koike T, Toyoda Y, Negishi T, Yukawa K. Combined effects of exercise training and D-allulose intake on endurance capacity in mice. Physiol Rep 2022; 10:e15297. [PMID: 35546434 PMCID: PMC9095992 DOI: 10.14814/phy2.15297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 04/15/2023] Open
Abstract
This study investigated the combined effects of exercise training and D-allulose intake on endurance capacity in mice. Male C57BL/6J mice were fed either a control diet (Con) or a 3% D-allulose diet (Allu) and further divided into the sedentary (Sed) or exercise training (Ex) groups (Con-Sed, Con-Ex, Allu-Sed, Allu-Ex, respectively; n = 6-7/group). The mice in the Ex groups were trained on a motor-driven treadmill 5 days/week for 4 weeks (15-18 m/min, 60 min). After the exercise training period, all mice underwent an exhaustive running test to assess their endurance capacity. At 48 h after the running test, the mice in the Ex groups were subjected to run at 18 m/min for 60 min again. Then the gastrocnemius muscle and liver were sampled immediately after the exercise bout. The running time until exhaustion tended to be higher in the Allu-Ex than in the Con-Ex group (p = 0.08). The muscle glycogen content was significantly lower in the Con-Ex than in the Con-Sed group and was significantly higher in the Allu-Ex than in the Con-Ex group (p < 0.05). Moreover, exercise training increased the phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) in the muscle and liver. The phosphorylation levels of acetyl coenzyme A carboxylase (ACC), a downstream of AMPK, in the muscle and liver were significantly higher in the Allu-Ex than in the Con-Sed group (p < 0.05), suggesting that the combination of exercise training and D-allulose might have activated the AMPK-ACC signaling pathway, which is associated with fatty acid oxidation in the muscle and liver. Taken together, our data suggested the combination of exercise training and D-allulose intake as an effective strategy to upregulate endurance capacity in mice. This may be associated with sparing glycogen content and enhancing activation of AMPK-ACC signaling in the skeletal muscle.
Collapse
Affiliation(s)
| | - Ryo Suzuki
- Faculty of PharmacyMeijo UniversityNagoyaAichiJapan
| | - Risa Kajun
- Faculty of PharmacyMeijo UniversityNagoyaAichiJapan
| | - Takako Yamada
- Research and DevelopmentMatsutani Chemical Industry Co., LtdItamiHyogoJapan
| | - Tetsuo Iida
- Research and DevelopmentMatsutani Chemical Industry Co., LtdItamiHyogoJapan
| | - Bingyang Liu
- Department of Sports MedicineGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Teruhiko Koike
- Department of Sports MedicineGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
- Research Center of Health, Physical Fitness and SportsNagoya UniversityNagoyaAichiJapan
| | | | | | | |
Collapse
|
55
|
Jeong SH, Kwon M, Kim SW. Advanced Whole-cell Conversion for D-allulose Production Using an Engineered Corynebacterium glutamicum. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0057-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
56
|
Suzuki Y, Hashimoto T, Hayashita T. Ratiometric fluorescence sensing of d-allulose using an inclusion complex of γ-cyclodextrin with a benzoxaborole-based probe. RSC Adv 2022; 12:12145-12151. [PMID: 35481078 PMCID: PMC9021936 DOI: 10.1039/d2ra00749e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Because d-allulose has been attracting attention as a zero-calorie sugar, the selective sensing of d-allulose is desired to investigate its health benefits. We report herein a novel fluorescence chemosensor that is based on an inclusion complex of γ-cyclodextrin (γ-CyD) with a benzoxaborole-based probe. Two inclusion complexes, 1/γCyD and 2/γCyD, were prepared by mixing γ-CyD with their corresponding probes in a water-rich solvent, where γ-CyD encapsulates two molecules of the probes inside its cavity to form a pyrene dimer. Both 1/γCyD and 2/γCyD exhibit monomeric and dimeric fluorescence from the pyrene moieties. By the reaction of 1/γCyD with saccharides, the intensities of monomeric and dimeric fluorescence remained unchanged and decreased, respectively. We have demonstrated that 1/γCyD has much higher affinity for d-allulose than for the other saccharides (d-fructose, d-glucose, and d-galactose). The conditional equilibrium constants for the reaction systems were determined to be 498 ± 35 M-1 for d-fructose, 48.4 ± 25.3 M-1 for d-glucose, 15.0 ± 3.3 M-1 for d-galactose, and (8.05 ± 0.59) × 103 M-1 for d-allulose. These features of 1/γCyD enable ratiometric fluorescence sensing with high sensitivity and selectivity for d-allulose. The limits of detection and quantification of 1/γCyD for d-allulose at pH 8.0 were determined to be 6.9 and 21 μM, respectively. Induced circular dichroism spectral study has shown that the reaction of 1/γCyD with d-allulose causes the monomerisation of the dimer of probe 1 that is encapsulated by γ-CyD, which leads to the diminishment of the dimeric fluorescence.
Collapse
Affiliation(s)
- Yota Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1, Kioi-cho Chiyoda-ku Tokyo 102-8554 Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1, Kioi-cho Chiyoda-ku Tokyo 102-8554 Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1, Kioi-cho Chiyoda-ku Tokyo 102-8554 Japan
| |
Collapse
|
57
|
Feng Y, Pu Z, Zhu L, Wu M, Yang L, Yu H, Lin J. Enhancing the thermostability of D-allulose 3-epimerase from Clostridium cellulolyticum H10 via a dual-enzyme screening system. Enzyme Microb Technol 2022; 159:110054. [DOI: 10.1016/j.enzmictec.2022.110054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
|
58
|
Chen J, Chen D, Chen Q, Xu W, Zhang W, Mu W. Computer-Aided Targeted Mutagenesis of Thermoclostridium caenicola d-Allulose 3-Epimerase for Improved Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1943-1951. [PMID: 35107285 DOI: 10.1021/acs.jafc.1c07256] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
d-Allulose 3-epimerase (DAEase) is a key enzyme in d-allulose bioproduction. DAEase from Thermoclostridium caenicola suffers from poor thermostability, hampering its large-scale applications in industry. In this study, mutants A70P, G107P, F155Y, and D162T with increased melting point temperature (Tm) were obtained by targeted mutagenesis based on the calculation of the free energy of folding. The optimal single-point mutant G107P showed 11.08 h, 5, and 5.70 °C increases in the values of half-life (t1/2) at 60 °C, the optimum temperature (Topt), and Tm, respectively. Beneficial mutations were combined by ordered recombination mutagenesis, and the combinational mutant Var3 (G107P/F155Y/D162T/A70P) was generated with ΔTopt of 10 °C and ΔTm of 12.25 °C. Its t1/2 value at 65 °C was more than 140 times higher than that of the wild-type enzyme. Molecular dynamics simulations and homology modeling analysis indicated that the enhanced overall rigidity, increased hydrogen bonds between subunits, and redistributed surface electrostatic charges might be responsible for the improved thermostability of the mutant Var3.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
59
|
Arumugam SM, Singh D, Mahala S, Devi B, Kumar S, Jakhu S, Elumalai S. MgO/CaO Nanocomposite Facilitates Economical Production of d-Fructose and d-Allulose Using Glucose and Its Response Prediction Using a DNN Model. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Senthil M. Arumugam
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| | - Dalwinder Singh
- Computational Biology Division, DBT-National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Sangeeta Mahala
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| | - Bhawana Devi
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| | - Sandeep Kumar
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| | - Sunaina Jakhu
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| |
Collapse
|
60
|
Liu B, Gou Y, Tsuzuki T, Yamada T, Iida T, Wang S, Banno R, Toyoda Y, Koike T. d-Allulose Improves Endurance and Recovery from Exhaustion in Male C57BL/6J Mice. Nutrients 2022; 14:nu14030404. [PMID: 35276765 PMCID: PMC8838150 DOI: 10.3390/nu14030404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/07/2023] Open
Abstract
d-Allulose, a rare sugar, improves glucose metabolism and has been proposed as a candidate calorie restriction mimetic. This study aimed to investigate the effects of d-allulose on aerobic performance and recovery from exhaustion and compared them with the effects of exercise training. Male C57BL/6J mice were subjected to exercise and allowed to run freely on a wheel. Aerobic performance was evaluated using a treadmill. Glucose metabolism was analyzed by an intraperitoneal glucose tolerance test (ipGTT). Skeletal muscle intracellular signaling was analyzed by Western blotting. Four weeks of daily oral administration of 3% d-allulose increased running distance and shortened recovery time as assessed by an endurance test. d-Allulose administration also increased the maximal aerobic speed (MAS), which was observed following treatment for >3 or 7 days. The improved performance was associated with lower blood lactate levels and increased liver glycogen levels. Although d-allulose did not change the overall glucose levels as determined by ipGTT, it decreased plasma insulin levels, indicating enhanced insulin sensitivity. Finally, d-allulose enhanced the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase and the expression of peroxisome proliferator-activated receptor γ coactivator 1α. Our results indicate that d-allulose administration enhances endurance ability, reduces fatigue, and improves insulin sensitivity similarly to exercise training. d-Allulose administration may be a potential treatment option to alleviate obesity and enhance aerobic exercise performance.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan; (B.L.); (Y.G.); (S.W.); (R.B.)
| | - Yang Gou
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan; (B.L.); (Y.G.); (S.W.); (R.B.)
| | - Takamasa Tsuzuki
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (T.T.); (Y.T.)
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Co. Ltd., Itami 664-8508, Japan; (T.Y.); (T.I.)
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co. Ltd., Itami 664-8508, Japan; (T.Y.); (T.I.)
| | - Sixian Wang
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan; (B.L.); (Y.G.); (S.W.); (R.B.)
| | - Ryoichi Banno
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan; (B.L.); (Y.G.); (S.W.); (R.B.)
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Yukiyasu Toyoda
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (T.T.); (Y.T.)
| | - Teruhiko Koike
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan; (B.L.); (Y.G.); (S.W.); (R.B.)
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
- Correspondence: ; Tel.: +81-52-789-3963
| |
Collapse
|
61
|
Haas MJ, Parekh S, Kalidas P, Richter A, Warda F, Wong NCW, Tokuda M, Mooradian AD. Insulin mimetic effect of D-allulose on apolipoprotein A-I gene. J Food Biochem 2022; 46:e14064. [PMID: 34984676 DOI: 10.1111/jfbc.14064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/07/2022]
Abstract
Several nutrients modulate the transcriptional activity of the apolipoprotein A-I (apo A-I) gene. To determine the influence of rare sugars on apo A-I expression in hepatic (HepG2) and intestinal derived (Caco-2) cell lines, apo A-I, albumin, and SP1 were quantified with enzyme immunoassay and Western blots while mRNA levels were quantified with real-time polymerase chain reaction. The promoter activity was measured using transient transfection assays with plasmids containing various segments and mutations in the promoter. D-allulose and D-tagatose, increased apo A-I concentration in culture media while D-sorbose and D-allose did not have any measurable effects. D-allulose did not increase apo A-I levels in Caco-2 cells. These changes paralleled the increased mRNA levels and promoter activity. D-allulose-response was mapped at the insulin response core element (IRCE). Mutation of the IRCE decreased the ability of D-allulose and insulin to activate the promoter. Treatment of HepG2 cells, but not Caco-2 cells, with D-alluose and insulin increased SP1 expression relative to control cells. D-allulose augmented the expression and IRCE binding of SP1, an essential transcription factor for the insulin on apo A-I promoter activity. D-allulose can modulate some insulin-responsive genes and may have anti-atherogenic properties, in part due to increasing apo A-I production. PRACTICAL APPLICATIONS: Coronary artery disease (CAD) is the number one cause of mortality in industrialized countries. A risk factor associated with CAD is low high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apo A-I) concentrations in plasma. Thus, novel therapeutic agents or nutrients that upregulate apo A-I production should be identified. D-allulose and D-tagatose are used as sweeteners and may have favorable effects on insulin resistance and diabetes. This study shows that D-allulose and D-tagatose increases apo A-I production through increased transcription factor SP1-binding to insulin response element of the promoter. These sweeteners modulate some insulin responsive genes, increase the production of apo-A-I, and therefore may have anti-atherogenic properties.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Shrina Parekh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Poonam Kalidas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Angela Richter
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Firas Warda
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | | | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
62
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
63
|
d-Allulose Ameliorates Skeletal Muscle Insulin Resistance in High-Fat Diet-Fed Rats. Molecules 2021; 26:molecules26206310. [PMID: 34684891 PMCID: PMC8539500 DOI: 10.3390/molecules26206310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND d-Allulose is a rare sugar with antiobesity and antidiabetic activities. However, its direct effect on insulin sensitivity and the underlying mechanism involved are unknown. OBJECTIVE This study aimed to investigate the effect of d-allulose on high-fat diet (HFD)-induced insulin resistance using the hyperinsulinemic-euglycemic (HE)-clamp method and intramuscular signaling analysis. METHODS Wistar rats were randomly divided into three dietary groups: chow diet, HFD with 5% cellulose (HFC), and HFD with 5% d-allulose (HFA). After four weeks of feeding, the insulin tolerance test (ITT), intraperitoneal glucose tolerance test (IPGTT), and HE-clamp study were performed. The levels of plasma leptin, adiponectin, and tumor necrosis factor (TNF)-α were measured using the enzyme-linked immunosorbent assay. We analyzed the levels of cell signaling pathway components in the skeletal muscle using Western blotting. RESULTS d-allulose alleviated the increase in HFD-induced body weight and visceral fat and reduced the area under the curve as per ITT and IPGTT. d-Allulose increased the glucose infusion rate in the two-step HE-clamp test. Consistently, the insulin-induced phosphorylation of serine 307 in the insulin receptor substrate-1 and Akt and expression of glucose transporter 4 (Glut-4) in the muscle were higher in the HFA group than HFC group. Furthermore, d-allulose decreased plasma TNF-α concentration and insulin-induced phosphorylation of stress-activated protein kinase/Jun N-terminal kinase in the muscle and inhibited adiponectin secretion in HFD-fed rats. CONCLUSIONS d-allulose improved HFD-induced insulin resistance in Wistar rats. The reduction of the proinflammatory cytokine production, amelioration of adiponectin secretion, and increase in insulin signaling and Glut-4 expression in the muscle contributed to this effect.
Collapse
|
64
|
Adachi S, Miyagawa Y, Khuwijitjaru P, Kobayashi T. Isomerization of maltose to maltulose in a pressurized hot phosphate buffer. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
Investigation of d-allulose effects on high-sucrose diet-induced insulin resistance via hyperinsulinemic-euglycemic clamps in rats. Heliyon 2021; 7:e08013. [PMID: 34589631 PMCID: PMC8461346 DOI: 10.1016/j.heliyon.2021.e08013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
d-Allulose, a C-3 epimer of d-fructose, is a rare sugar that has no calories. Although d-allulose has been reported to have several health benefits, such as anti-obesity and anti-diabetic effects, there have been no reports evaluating the effects of d-allulose on insulin resistance using a hyperinsulinemic-euglycemic clamp (HE-clamp). Therefore, we investigated the effects of d-allulose on a high-sucrose diet (HSD)-induced insulin resistance model. Wistar rats were randomly divided into three dietary groups: HSD containing 5% cellulose (HSC), 5% d-allulose (HSA), and a commercial diet. The insulin tolerance test (ITT) and HE-clamp were performed after administration of the diets for 4 and 7 weeks. After 7 weeks, the muscle and adipose tissues of rats were obtained to analyze Akt signaling via western blotting, and plasma adipocytokine levels were measured. ITT revealed that d-allulose ameliorated systemic insulin resistance. Furthermore, the results of the 2-step HE-clamp procedure indicated that d-allulose reversed systemic and muscular insulin resistance. d-Allulose reversed the insulin-induced suppression of Akt phosphorylation in the soleus muscle and epididymal fat tissues and reduced plasma TNF-α levels. This study is the first to show that d-allulose improves systemic and muscle insulin sensitivity in conscious rats.
Collapse
|
66
|
Enhanced Thermostability of D-Psicose 3-Epimerase from Clostridium bolteae through Rational Design and Engineering of New Disulfide Bridges. Int J Mol Sci 2021; 22:ijms221810007. [PMID: 34576170 PMCID: PMC8464696 DOI: 10.3390/ijms221810007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
D-psicose 3-epimerase (DPEase) catalyzes the isomerization of D-fructose to D-psicose (aka D-allulose, a low-calorie sweetener), but its industrial application has been restricted by the poor thermostability of the naturally available enzymes. Computational rational design of disulfide bridges was used to select potential sites in the protein structure of DPEase from Clostridium bolteae to engineer new disulfide bridges. Three mutants were engineered successfully with new disulfide bridges in different locations, increasing their optimum catalytic temperature from 55 to 65 °C, greatly improving their thermal stability and extending their half-lives (t1/2) at 55 °C from 0.37 h to 4−4.5 h, thereby greatly enhancing their potential for industrial application. Molecular dynamics simulation and spatial configuration analysis revealed that introduction of a disulfide bridge modified the protein hydrogen–bond network, rigidified both the local and overall structures of the mutants and decreased the entropy of unfolded protein, thereby enhancing the thermostability of DPEase.
Collapse
|
67
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
68
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
69
|
Li Y, Tang Y, Shi S, Gao S, Wang Y, Xiao D, Chen T, He Q, Zhang J, Lin Y. Tetrahedral Framework Nucleic Acids Ameliorate Insulin Resistance in Type 2 Diabetes Mellitus via the PI3K/Akt Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40354-40364. [PMID: 34410099 DOI: 10.1021/acsami.1c11468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance (IR) is one of the essential conditions in the development of type 2 diabetes mellitus (T2DM). IR occurs in hepatic cells when the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is downregulated; thus, activating this pathway can significantly improve insulin sensitivity and ameliorate T2DM. Tetrahedral framework nucleic acids (tFNAs), a DNA nanomaterial, are synthesized from four single-stranded DNA molecules. tFNAs possess excellent biocompatibility and good water solubility and stability. tFNAs can promote cell proliferation, cell autophagy, wound healing, and nerve regeneration by activating the PI3K/Akt pathway. Herein, we explore the effects and underlying mechanisms of tFNAs on IR. The results displayed that tFNAs could increase glucose uptake and ameliorate IR by activating the IRS-1/PI3K/Akt pathway in glucosamine (GlcN)-stimulated HepG2 cells. By employing a PI3K inhibitor, we confirmed that tFNAs reduce IR through the PI3K/Akt pathway. Moreover, tFNAs can promote hepatic cell proliferation and inhibit GlcN-induced cell apoptosis. In a T2DM mouse model, tFNAs reduce blood glucose levels and ameliorate hepatic IR via the PI3K/Akt pathway. Taken together, tFNAs can improve hepatic IR and alleviate T2DM through the PI3K/Akt pathway, making contribution to the potential application of tFNAs in T2DM.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Department of Prosthodontics, Tianjin Medical University School of Stomatology, Tianjin 300070, P. R. China
| | - Yuanlin Tang
- West China Medical Center, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tianyu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qing He
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, P. R. China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School of Stomatology, Tianjin 300070, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- West China Medical Center, Sichuan University, Chengdu 610041, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
70
|
Ingram DK, Roth GS. Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics. GeroScience 2021; 43:1159-1169. [PMID: 33184758 PMCID: PMC8190254 DOI: 10.1007/s11357-020-00298-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Calorie restriction mimetics encompass a growing research field directed toward developing treatments that mimic the anti-aging effects of long-term calorie restriction without requiring a change in eating habits. A wide range of approaches have been identified that include (1) intestinal inhibitors of fat and carbohydrate metabolism; (2) inhibitors of intracellular glycolysis; (3) stimulators of the AMPK pathway; (4) sirtuin activators; (5) inhibitors of the mTOR pathway, and (6) polyamines. Several biotech companies have been formed to pursue several of these strategies. The objective of this review is to describe the approaches directed toward glycolytic inhibition. This upstream strategy is considered an effective means to invoke a wide range of anti-aging mechanisms induced by CR. Anti-cancer and anti-obesity effects are important considerations in early development efforts. Although many dozens of candidates could be discussed, the compounds selected to be reviewed are the following: 2-deoxyglucose, 3-bromopyruvate, chrysin, genistein, astragalin, resveratrol, glucosamine, mannoheptulose, and D-allulose. Some candidates have been investigated extensively with both positive and negative results, while others are only beginning to be studied.
Collapse
Affiliation(s)
- Donald K. Ingram
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70809 USA
| | - George S. Roth
- GeroScience, Inc., 1124 Ridge Road, Pylesville, MD 21132 USA
| |
Collapse
|
71
|
Li Y, Shi T, Han P, You C. Thermodynamics-Driven Production of Value-Added d-Allulose from Inexpensive Starch by an In Vitro Enzymatic Synthetic Biosystem. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05718] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Pingping Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| |
Collapse
|
72
|
Chen J, Wei H, Guo Y, Li Q, Wang H, Liu J. Chaperone-mediated protein folding enhanced D-psicose 3-epimerase expression in engineered Bacillus subtilis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
73
|
Microwave glycation of soy protein isolate with rare sugar (D-allulose), fructose and glucose. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
74
|
Mijailovic N, Nesler A, Perazzolli M, Aït Barka E, Aziz A. Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules 2021; 26:molecules26061720. [PMID: 33808719 PMCID: PMC8003523 DOI: 10.3390/molecules26061720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.
Collapse
Affiliation(s)
- Nikola Mijailovic
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Bi-PA nv, Londerzee l1840, Belgium;
| | | | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, Italy
| | - Essaid Aït Barka
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Correspondence: ; Tel.: +33-326-918-525
| |
Collapse
|
75
|
Ogawa M, Hayakawa S. Application of the Rare Sugar D-Psicose to Food Processing. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Shigeru Hayakawa
- General Incorporated Association Rare Sugar Promotion Association
| |
Collapse
|
76
|
Mora MR, Dando R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 2021; 20:1554-1583. [PMID: 33580569 DOI: 10.1111/1541-4337.12703] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption.
Collapse
Affiliation(s)
- Margaux R Mora
- Department of Food Science, Cornell University, Ithaca, New York
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, New York
| |
Collapse
|
77
|
Cristófalo AE, Uhrig ML. Synthetic Studies on the Incorporation of N-Acetylallosamine in Hyaluronic Acid-Inspired Thiodisaccharides. Molecules 2021; 26:E180. [PMID: 33401465 PMCID: PMC7796257 DOI: 10.3390/molecules26010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Two approaches for the synthesis of the thiodisaccharide β-S-GlcA(1→3)β-S-AllNAc are described here. The target disaccharide was a C-3 epimer and thio-analogue of the hyaluronic acid repetitive unit, tuned with a thiopropargyl anomeric group for further click conjugation. Thus, we analysed and tested two convenient sequences, combining the two key steps required to introduce the thioglycosidic bonds and consequently reach the target molecule: the SN2 substitution of a good leaving group (triflate) present at C-3 of a GlcNAc derivative and the introduction of the anomeric thiopropargyl substituent. The use of a 2-azido precursor showed to be a convenient substrate for the SN2 step. Nevertheless, further protecting group manipulation and the introduction of the thiopropargyl anomeric residue were then required. This approach showed to provide access to a variety of thiodisaccharide derivatives as interesting building blocks for the construction of neoglycoconjugates.
Collapse
Affiliation(s)
- Alejandro E. Cristófalo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
78
|
Consumption of Dairy Products in Relation to Type 2 Diabetes Mellitus in Chinese People: The Henan Rural Cohort Study and an Updated Meta-Analysis. Nutrients 2020; 12:nu12123827. [PMID: 33333780 PMCID: PMC7765212 DOI: 10.3390/nu12123827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 01/15/2023] Open
Abstract
Recent studies on whether dairy consumption is associated with type 2 diabetes mellitus (T2DM) have yielded inconsistent results, so we explored the relationship between dairy consumption and T2DM through a large-sample, cross-sectional study and a meta-analysis. In the meta-analysis, summary relative risks (RRs) of 23 articles were compiled with a random effects model, and a restricted cubic spline regression model was used to explore whether there is a nonlinear relationship between dairy intake and T2DM risk. This cross-sectional study used baseline data from 38,735 participants of the Henan Rural Cohort study and the association between dairy consumption and T2DM was analyzed by a logistic regression model. The meta-analysis revealed a borderline negative significant association between total dairy intake and risk of T2DM, the RR and 95% confidence interval (CI) was 0.94; (0.89, 1.00), and the risk was lowest at 270 g daily dairy intake. In the cross-sectional study, there were 3654 T2DM patients and 68.3 percent of the respondents had no dairy intake. The average intake of dairy in the total population was 12 g per day. Fully adjusted analyses suggested positive associations, with an odds ratio (OR) comparing the highest with the zero intake of 1.34 (95% CI: 1.22, 1.48) for all participants, which was unaffected by sex. Dairy intake in rural areas of Henan province is low, and we found, in the context of overall low dairy intake, that a high intake was positively associated with T2DM, which is inconsistent with the meta-analysis results suggesting that dairy has marginal protective effects against T2DM.
Collapse
|
79
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
80
|
Braunstein CR, Noronha JC, Khan TA, Mejia SB, Wolever TMS, Josse RG, Kendall CWC, Sievenpiper JL. Effect of fructose and its epimers on postprandial carbohydrate metabolism: A systematic review and meta-analysis. Clin Nutr 2020; 39:3308-3318. [DOI: 10.1016/j.clnu.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/25/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022]
|
81
|
Surono IS, Wardana AA, Waspodo P, Saksono B, Verhoeven J, Venema K. Effect of functional food ingredients on gut microbiota in a rodent diabetes model. Nutr Metab (Lond) 2020; 17:77. [PMID: 32968426 PMCID: PMC7501656 DOI: 10.1186/s12986-020-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
Background The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes. The aim of the present study was to test the effect of 4-week functional food ingredient feeding, alone or in combination, on the gut microbiota composition in diabetic rats. Methods Streptozotocin (STZ)-induced diabetic rats were treated for 4 weeks with (1) native taro starch, (2) modified taro-starch, (3) beet juice, (4) psicose, (5) the probiotic L. plantarum IS-10506, (6) native starch combined with beet juice, (7) native starch to which beet juice was adsorbed, (8) modified starch combined with beet juice or (9) modified starch to which beet juice was adsorbed, to modulate the composition of the gut microbiota. This composition was evaluated by sequencing the PCR amplified V3–V4 region of the 16S rRNA gene. Results The next-generation sequencing showed beneficial effects particularly of taro-starch feeding. Operational taxonomic units (OTUs) related to health (e.g. correlating with low BMI, OTUs producing butyrate) were increased in relative abundance, while OTUs generally correlated with disease (e.g. Proteobacteria) were decreased by feeding taro-starch. Conclusion The results of study show that a 4-week intervention with functional food ingredients, particularly taro-derived starch, leads to a more healthy gut microbiota in rats that were induced to be diabetic by induction with STZ.
Collapse
Affiliation(s)
- Ingrid S Surono
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, 11480 Jakarta, Indonesia
| | - Ata Aditya Wardana
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, 11480 Jakarta, Indonesia
| | - Priyo Waspodo
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, 11480 Jakarta, Indonesia
| | - Budi Saksono
- Research Center for Biotechnology, Lembaga Ilmu Pengetahuan Indonesia, Jalan Raya Bogor Km 46, Cibinong, 16911 Indonesia
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| |
Collapse
|
82
|
Lee EJ, Moon Y, Kweon M. Processing suitability of healthful carbohydrates for potential sucrose replacement to produce muffins with staling retardation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
83
|
Lee D, Han Y, Kwon EY, Choi MS. d-allulose Ameliorates Metabolic Dysfunction in C57BL/KsJ-db/db Mice. Molecules 2020; 25:E3656. [PMID: 32796637 PMCID: PMC7465492 DOI: 10.3390/molecules25163656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023] Open
Abstract
d-allulose is an uncommon sugar that provides almost no calories when consumed. Its sweetness is 70% that of sucrose. d-allulose is a metabolic regulator of glucose and lipid metabolism. However, few reports concerning its effect on diabetes and related metabolic disturbances in db/db mice are available. In this study, we evaluated d-allulose's effect on hyperglycemia, hyperinsulinemia, diabetes and inflammatory responses in C57BL/KsJ-db/db mice. Mice were divided into normal diet, erythritol supplemented (5% w/w), and d-allulose supplemented (5% w/w) groups. Blood glucose and plasma glucagon levels and homeostatic model assessment (HOMA-IR) were significantly lower in the d-allulose group than in the normal diet group, and plasma insulin level was significantly increased. Further, d-allulose supplement significantly increased hepatic glucokinase activity and decreased hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activity. Expression of glucose transporter 4, insulin receptor substrate 1, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha and AKT serine/threonine kinase 2 were also upregulated by d-allulose supplement in adipocyte and muscle. Finally, d-allulose effectively lowered plasma and hepatic triglyceride and free fatty acid levels, and simultaneously reduced hepatic fatty acid oxidation and carnitine palmitoyl transferase activity. These changes are likely attributable to suppression of hepatic fatty acid synthase and glucose-6-phosphate dehydrogenase activity. Notably, d-allulose also reduced pro-inflammatory adipokine and cytokine levels in plasma. Our results indicate that d-allulose is an effective sugar substitute for improving lipid and glucose metabolism.
Collapse
Affiliation(s)
- Dayoun Lee
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (D.L.); (Y.H.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (D.L.); (Y.H.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (D.L.); (Y.H.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (D.L.); (Y.H.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| |
Collapse
|
84
|
Mochizuki S, Fukumoto T, Ohara T, Ohtani K, Yoshihara A, Shigematsu Y, Tanaka K, Ebihara K, Tajima S, Gomi K, Ichimura K, Izumori K, Akimitsu K. The rare sugar D-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun Biol 2020; 3:423. [PMID: 32759958 PMCID: PMC7406649 DOI: 10.1038/s42003-020-01133-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
The rare sugar D-tagatose is a safe natural product used as a commercial food ingredient. Here, we show that D-tagatose controls a wide range of plant diseases and focus on downy mildews to analyze its mode of action. It likely acts directly on the pathogen, rather than as a plant defense activator. Synthesis of mannan and related products of D-mannose metabolism are essential for development of fungi and oomycetes; D-tagatose inhibits the first step of mannose metabolism, the phosphorylation of D-fructose to D-fructose 6-phosphate by fructokinase, and also produces D-tagatose 6-phosphate. D-Tagatose 6-phosphate sequentially inhibits phosphomannose isomerase, causing a reduction in D-glucose 6-phosphate and D-fructose 6-phosphate, common substrates for glycolysis, and in D-mannose 6-phosphate, needed to synthesize mannan and related products. These chain-inhibitory effects on metabolic steps are significant enough to block initial infection and structural development needed for reproduction such as conidiophore and conidiospore formation of downy mildew.
Collapse
Affiliation(s)
- Susumu Mochizuki
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Takeshi Fukumoto
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Toshiaki Ohara
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Kouhei Ohtani
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Yoshio Shigematsu
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Keiji Tanaka
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Koichi Ebihara
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Shigeyuki Tajima
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Ichimura
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Akimitsu
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
85
|
Han Y, Kwon EY, Choi MS. Anti-Diabetic Effects of Allulose in Diet-Induced Obese Mice via Regulation of mRNA Expression and Alteration of the Microbiome Composition. Nutrients 2020; 12:nu12072113. [PMID: 32708827 PMCID: PMC7400868 DOI: 10.3390/nu12072113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Allulose has been reported to serve as an anti-obesity and anti-diabetic food component; however, its molecular mechanism is not yet completely understood. This study aims to elucidate the mechanisms of action for allulose in obesity-induced type 2 diabetes mellitus (T2DM), by analyzing the transcriptional and microbial populations of diet-induced obese mice. Thirty-six C57BL/6J mice were divided into four groups, fed with a normal diet (ND), a high-fat diet (HFD), a HFD supplemented with 5% erythritol, or a HFD supplemented with 5% allulose for 16 weeks, in a pair-fed manner. The allulose supplement reduced obesity and comorbidities, including inflammation and hepatic steatosis, and changed the microbial community in HFD-induced obese mice. Allulose attenuated obesity-mediated inflammation, by downregulating mRNA levels of inflammatory response components in the liver, leads to decreased plasma pro-inflammatory marker levels. Allulose suppressed glucose and lipid metabolism-regulating enzyme activities, ameliorating hepatic steatosis and improving dyslipidemia. Allulose improved fasting blood glucose (FBG), plasma glucose, homeostatic model assessment of insulin resistance (HOMA-IR), and the area under the curve (AUC) for the intraperitoneal glucose tolerance test (IPGTT), as well as hepatic lipid levels. Our findings suggested that allulose reduced HFD-induced obesity and improved T2DM by altering mRNA expression and the microbiome community.
Collapse
Affiliation(s)
- Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (Y.H.); (E.-Y.K.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (Y.H.); (E.-Y.K.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea; (Y.H.); (E.-Y.K.)
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 702-701, Korea
- Correspondence: ; Tel.: +82-53-950-7936
| |
Collapse
|
86
|
Zhang J, Xu C, Chen X, Ruan X, Zhang Y, Xu H, Guo Y, Xu J, Lv P, Wang Z. Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Enzyme Microb Technol 2020; 136:109531. [DOI: 10.1016/j.enzmictec.2020.109531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
|
87
|
Structure-Dependent Activity of Plant-Derived Sweeteners. Molecules 2020; 25:molecules25081946. [PMID: 32331403 PMCID: PMC7221985 DOI: 10.3390/molecules25081946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
Human sensation for sweet tastes and the thus resulting over-consumption of sugar in recent decades has led to an increasing number of people suffering from caries, diabetes, and obesity. Therefore, a demand for sugar substitutes has arisen, which increasingly has turned towards natural sweeteners over the last 20 years. In the same period, thanks to advances in bioinformatics and structural biology, understanding of the sweet taste receptor and its different binding sites has made significant progress, thus explaining the various chemical structures found for sweet tasting molecules. The present review summarizes the data on natural sweeteners and their most important (semi-synthetic) derivatives until the end of 2019 and discusses their structure–activity relationships, with an emphasis on small-molecule high-intensity sweeteners.
Collapse
|
88
|
Mack CI, Ferrario PG, Weinert CH, Egert B, Hoefle AS, Lee YM, Skurk T, Kulling SE, Daniel H. Exploring the Diversity of Sugar Compounds in Healthy, Prediabetic, and Diabetic Volunteers. Mol Nutr Food Res 2020; 64:e1901190. [PMID: 32170825 DOI: 10.1002/mnfr.201901190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/31/2020] [Indexed: 01/10/2023]
Abstract
SCOPE Diabetes is thought to primarily represent a disturbance of carbohydrate metabolism; however, population studies employing metabolomics have mainly identified plasma amino acids and lipids, or their products, as biomarkers. In this pilot study, the aim is to analyze a wide spectrum of sugar compounds in the fasting state and during an oral glucose tolerance test (OGTT) in healthy, prediabetic, and type 2 diabetic volunteers. METHODS AND RESULTS The three volunteer groups underwent a standard OGTT. Plasma samples obtained in the fasting state, 30 and 90 min after the OGTT, are subjected to a semitargeted GC-MS (gas chromatography-mass spectrometry) sugar profiling. Overall, 40 sugars are detected in plasma, of which some are yet unknown to change during an OGTT. Several sugars (e.g., trehalose) reveal significant differences between the volunteer groups both in fasting plasma and in distinct time courses after the OGTT. This suggests an endogenous production from orally absorbed glucose and/or an insulin-dependent production/removal from plasma. CONCLUSION It is demonstrated that more sugars than expected can be found in human plasma. Since some of these show characteristic differences depending on health status, it may be worthwhile to assess their usability as biomarkers for diagnosing early-stage insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Carina I Mack
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Paola G Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Anja S Hoefle
- Department of Food and Nutrition, Technical University of Munich, Gregor-Mendel-Strasse 2, Freising-Weihenstephan, 85354, Germany
| | - Yu-Mi Lee
- Department of Food and Nutrition, Technical University of Munich, Gregor-Mendel-Strasse 2, Freising-Weihenstephan, 85354, Germany
| | - Thomas Skurk
- Core Facility Human Studies, ZIEL Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Strasse 2, Freising-Weihenstephan, 85354, Germany.,Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Strasse 2, Freising-Weihenstephan, 85354, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Hannelore Daniel
- Department of Food and Nutrition, Technical University of Munich, Gregor-Mendel-Strasse 2, Freising-Weihenstephan, 85354, Germany
| |
Collapse
|
89
|
Van Laar ADE, Grootaert C, Van Camp J. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr 2020; 61:713-741. [PMID: 32212974 DOI: 10.1080/10408398.2020.1743966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are major health problems affecting hundreds of millions of people. Caloric overfeeding with calorie-dense food ingredients like sugars may contribute to these chronic diseases. Sugar research has also identified mechanisms via which conventional sugars like sucrose and fructose can adversely influence metabolic health. To replace these sugars, numerous sugar replacers including artificial sweeteners and sugar alcohols have been developed. Rare sugars became new candidates to replace conventional sugars and their health effects are already reported in individual studies, but overviews and critical appraisals of their health effects are missing. This is the first paper to provide a detailed review of the metabolic health effects of rare sugars as a group. Especially allulose has a wide range of health effects. Tagatose and isomaltulose have several health effects as well, while other rare sugars mainly provide health benefits in mechanistic studies. Hardly any health claims have been approved for rare sugars due to a lack of evidence from human trials. Human trials with direct measures for disease risk factors are needed to allow a final appraisal of promising rare sugars. Mechanistic cell culture studies and animal models are required to enlarge our knowledge on understudied rare sugars.
Collapse
Affiliation(s)
- Amar D E Van Laar
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - John Van Camp
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
90
|
Jiang S, Xiao W, Zhu X, Yang P, Zheng Z, Lu S, Jiang S, Zhang G, Liu J. Review on D-Allulose: In vivo Metabolism, Catalytic Mechanism, Engineering Strain Construction, Bio-Production Technology. Front Bioeng Biotechnol 2020; 8:26. [PMID: 32117915 PMCID: PMC7008614 DOI: 10.3389/fbioe.2020.00026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/13/2020] [Indexed: 01/23/2023] Open
Abstract
Rare sugar D-allulose as a substitute sweetener is produced through the isomerization of D-fructose by D-tagatose 3-epimerases (DTEases) or D-allulose 3-epimerases (DAEases). D-Allulose is a kind of low energy monosaccharide sugar naturally existing in some fruits in very small quantities. D-Allulose not only possesses high value as a food ingredient and dietary supplement, but also exhibits a variety of physiological functions serving as improving insulin resistance, antioxidant enhancement, and hypoglycemic controls, and so forth. Thus, D-allulose has an important development value as an alternative to high-energy sugars. This review provided a systematic analysis of D-allulose characters, application, enzymatic characteristics and molecular modification, engineered strain construction, and processing technologies. The existing problems and its proposed solutions for D-allulose production are also discussed. More importantly, a green and recycling process technology for D-allulose production is proposed for low waste formation, low energy consumption, and high sugar yield.
Collapse
Affiliation(s)
- Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, Hefei, China
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingxing Zhu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guochang Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Jingjing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
91
|
Alteration of Microbiome Profile by D-Allulose in Amelioration of High-Fat-Diet-Induced Obesity in Mice. Nutrients 2020; 12:nu12020352. [PMID: 32013116 PMCID: PMC7071329 DOI: 10.3390/nu12020352] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Recently, there has been a global shift in diet towards an increased intake of energy-dense foods that are high in sugars. D-allulose has received attention as a sugar substitute and has been reported as one of the anti-obesity food components; however, its correlation with the intestinal microbial community is not yet completely understood. Thirty-six C57BL/6J mice were divided in to four dietary groups and fed a normal diet (ND), a high-fat diet (HFD, 20% fat, 1% cholesterol, w/w), and a HFD with 5% erythritol (ERY) and D-allulose (ALL) supplement for 16 weeks. A pair-feeding approach was used so that all groups receiving the high-fat diet would have the same calorie intake. As a result, body weight and body fat mass in the ALL group were significantly decreased toward the level of the normal group with a simultaneous decrease in plasma leptin and resistin. Fecal short-chain fatty acid (SCFA) production analysis revealed that ALL induced elevated total SCFA production compared to the other groups. Also, ALL supplement induced the change in the microbial community that could be responsible for improving the obesity based on 16S rRNA gene sequence analysis, and ALL significantly increased the energy expenditure in Day(6a.m to 6pm). Taken together, our findings suggest that 5% dietary ALL led to an improvement in HFD-induced obesity by altering the microbiome community.
Collapse
|
92
|
Armetta J, Berthome R, Cros A, Pophillat C, Colombo BM, Pandi A, Grigoras I. Biosensor-based enzyme engineering approach applied to psicose biosynthesis. Synth Biol (Oxf) 2019; 4:ysz028. [PMID: 32995548 PMCID: PMC7445875 DOI: 10.1093/synbio/ysz028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
Bioproduction of chemical compounds is of great interest for modern industries, as it reduces their production costs and ecological impact. With the use of synthetic biology, metabolic engineering and enzyme engineering tools, the yield of production can be improved to reach mass production and cost-effectiveness expectations. In this study, we explore the bioproduction of D-psicose, also known as D-allulose, a rare non-toxic sugar and a sweetener present in nature in low amounts. D-psicose has interesting properties and seemingly the ability to fight against obesity and type 2 diabetes. We developed a biosensor-based enzyme screening approach as a tool for enzyme selection that we benchmarked with the Clostridium cellulolyticum D-psicose 3-epimerase for the production of D-psicose from D-fructose. For this purpose, we constructed and characterized seven psicose responsive biosensors based on previously uncharacterized transcription factors and either their predicted promoters or an engineered promoter. In order to standardize our system, we created the Universal Biosensor Chassis, a construct with a highly modular architecture that allows rapid engineering of any transcription factor-based biosensor. Among the seven biosensors, we chose the one displaying the most linear behavior and the highest increase in fluorescence fold change. Next, we generated a library of D-psicose 3-epimerase mutants by error-prone PCR and screened it using the biosensor to select gain of function enzyme mutants, thus demonstrating the framework's efficiency.
Collapse
Affiliation(s)
- Jeremy Armetta
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Rose Berthome
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Antonin Cros
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Celine Pophillat
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Bruno Maria Colombo
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Amir Pandi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Ioana Grigoras
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| |
Collapse
|
93
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
94
|
Maeng HJ, Yoon JH, Chun KH, Kim ST, Jang DJ, Park JE, Kim YH, Kim SB, Kim YC. Metabolic Stability of D-Allulose in Biorelevant Media and Hepatocytes: Comparison with Fructose and Erythritol. Foods 2019; 8:foods8100448. [PMID: 31581594 PMCID: PMC6835332 DOI: 10.3390/foods8100448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/19/2023] Open
Abstract
D-allulose, a C-3 epimer of D-fructose, is a rare monosaccharide used as a food ingredient or a sweetener. In the present study, the in vitro metabolic stability of D-allulose was examined in biorelevant media, that is, simulated gastric fluid (SGF) and fasted state simulated intestinal fluid (FaSSIF) containing digestive enzymes, and in cryopreserved human and rat hepatocytes. The hepatocyte metabolic stabilities of D-allulose were also investigated and compared with those of fructose and erythritol (a sugar-alcohol with no calorific value). D-allulose was highly stable in SGF (97.8% remained after 60 min) and in FaSSIF (101.3% remained after 240 min), indicating it is neither pH-labile nor degraded in the gastrointestinal tract. D-allulose also exhibited high levels of stability in human and rat hepatocytes (94.5–96.8% remained after 240 min), whereas fructose was rapidly metabolized (43.1–52.6% remained), which suggested these two epimers are metabolized in completely different ways in the liver. The effects of D-allulose on glucose and fructose levels were negligible in hepatocytes. Erythritol was stable in human and rat hepatocytes (102.1–102.9% remained after 240 min). Intravenous pharmacokinetic studies in rats showed D-allulose was eliminated with a mean half-life of 72.2 min and a systemic clearance of 15.8 mL/min/kg. Taken together, our results indicate that D-allulose is not metabolized in the liver, and thus, unlikely to contribute to hepatic energy production.
Collapse
Affiliation(s)
- Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Jin-Ha Yoon
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Kwang-Hoon Chun
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Korea.
| | - Dong-Jin Jang
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Korea.
| | - Ji-Eun Park
- Food Research Institute, CJ CheilJedang Corp., Suwon 16495, Korea.
| | - Yang Hee Kim
- Food Research Institute, CJ CheilJedang Corp., Suwon 16495, Korea.
| | - Seong-Bo Kim
- Food Research Institute, CJ CheilJedang Corp., Suwon 16495, Korea.
| | - Yu Chul Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
95
|
Ran G, Tan D, Zhao J, Fan F, Zhang Q, Wu X, Fan P, Fang X, Lu X. Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar d-allulose. BIORESOURCE TECHNOLOGY 2019; 289:121673. [PMID: 31260936 DOI: 10.1016/j.biortech.2019.121673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
d-Allulose is a promising low-calorie sweetener especially for diabetes and obesity patients. The functionalized polyhydroxyalkanoate (PHA) nano-beads decorated with d-tagatose 3-epimerase (DTE) was produced in recombinant endotoxin-free ClearColi, whereby the expression, purification, and immobilization of the active DTE were efficiently combined into one step. The immobilized DTE exhibited remarkable enzyme activity of 649.3 U/g beads and extremely high stability at a harsh working condition (pH 7.0-8.0, 65 °C). When DTE-PHA beads were subjected to enzymatic synthesis of d-allulose, a maximum conversion rate of 33% can be achieved at pH 7.0 and 65 °C for 3 h, and DTE-PHA beads retained about 80% of its initial activity after 8 continuous cycles. Moreover, the d-allulose/d-fructose binary mixture can be simply separated by a single cation exchange resin-equipped chromatography. Taken together, DTE-PHA beads are promising and robust nano-biocatalysts that will remarkably simplify the production procedures of d-allulose, contributing to its cost-effective production.
Collapse
Affiliation(s)
- Ganqiao Ran
- Institute of Bio-Agriculture of Shannxi Province, Xi'an 710043, Shaanxi, People's Republic of China; Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Dan Tan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Jiping Zhao
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Fan Fan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Qiang Zhang
- Institute of Bio-Agriculture of Shannxi Province, Xi'an 710043, Shaanxi, People's Republic of China
| | - Xingjuan Wu
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Peiyao Fan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Xinlei Fang
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Xiaoyun Lu
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
96
|
ÖZGÜR M, UÇAR A. Karbonhidrat ve Yağ Metabolizmasında D-alluloz (D-psikoz). DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2019. [DOI: 10.33631/duzcesbed.469828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
97
|
Pandi A, Grigoras I, Borkowski O, Faulon JL. Optimizing Cell-Free Biosensors to Monitor Enzymatic Production. ACS Synth Biol 2019; 8:1952-1957. [PMID: 31335131 DOI: 10.1021/acssynbio.9b00160] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-free systems are promising platforms for rapid and high-throughput prototyping of biological parts in metabolic engineering and synthetic biology. One main limitation of cell-free system applications is the low fold repression of transcriptional repressors. Hence, prokaryotic biosensor development, which mostly relies on repressors, is limited. In this study, we demonstrate how to improve these biosensors in cell-free systems by applying a transcription factor (TF)-doped extract, a preincubation strategy with the TF plasmid, or reinitiation of the cell-free reaction (two-step cell-free reaction). We use the optimized biosensor to sense the enzymatic production of a rare sugar, D-psicose. This work provides a methodology to optimize repressor-based systems in cell-free to further increase the potential of cell-free systems for bioproduction.
Collapse
Affiliation(s)
- Amir Pandi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78352, France
| | - Ioana Grigoras
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| | - Olivier Borkowski
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78352, France
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
- SYNBIOCHEM Center, School of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
98
|
Yoshihara A, Sakoguchi H, Shintani T, Fleet GWJ, Izumori K, Sato M. Growth inhibition by 1-deoxy-d-allulose, a novel bioactive deoxy sugar, screened using Caenorhabditis elegans assay. Bioorg Med Chem Lett 2019; 29:2483-2486. [PMID: 31345631 DOI: 10.1016/j.bmcl.2019.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
The biological activities of deoxy sugars (deoxy monosaccharides) have remained largely unstudied until recently. We compared the growth inhibition by all 1-deoxyketohexoses using the animal model Caenorhabditis elegans. Among the eight stereoisomers, 1-deoxy-d-allulose (1d-d-Alu) showed particularly strong growth inhibition. The 50% inhibition of growth (GI50) concentration by 1d-d-Alu was estimated to be 5.4 mM, which is approximately 10 times lower than that of d-allulose (52.7 mM), and even lower than that of the potent glycolytic inhibitor, 2-deoxy-d-glucose (19.5 mM), implying that 1d-d-Alu has a strong growth inhibition. In contrast, 5-deoxy- and 6-deoxy-d-allulose showed no growth inhibition of C. elegans. The inhibition by 1d-d-Alu was alleviated by the addition of d-ribose or d-fructose. Our findings suggest that 1d-d-Alu-mediated growth inhibition could be induced by the imbalance in d-ribose metabolism. To our knowledge, this is the first report of biological activity of 1d-d-Alu which may be considered as an antimetabolite drug candidate.
Collapse
Affiliation(s)
- Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Hirofumi Sakoguchi
- Kagawa Prefectural Research Institute for Environmental Sciences and Public Health, Takamatsu, Kagawa 760-0065, Japan
| | - Tomoya Shintani
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| |
Collapse
|
99
|
The fermentation characteristics of soy yogurt with different content of d-allulose and sucrose fermented by lactic acid bacteria from Kimchi. Food Sci Biotechnol 2019; 28:1155-1161. [PMID: 31275715 DOI: 10.1007/s10068-019-00560-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 01/12/2023] Open
Abstract
In this study, to understand whether d-allulose, an ultra-low calorie sweetener, was available in soy yogurt fermentation, we isolated Leuconostoc mesenteroides and Lactobacillus plantarum from kimchi and fermented in soymilk at various contents of d-allulose and sucrose. The lactic acid bacteria counts in soy yogurt had the highest range of 9.23-9.49 log CFU/g at 24 h fermentation and then decreased. At 48 h fermentation, the pH showed 4.31 and 4.52 in the samples containing 75% and 100% d-allulose as sweetener. DPPH radical scavenging activity showed a decreasing tendency as the amount of d-allulose increased. Soy yogurt samples containing d-allulose had higher scores in sweet taste, sour taste and overall preference in sensory evaluation. These findings suggest that d-allulose is beneficial for the development of a low calorie soy yogurt.
Collapse
|
100
|
Food Industrial Production of Monosaccharides Using Microbial, Enzymatic, and Chemical Methods. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most monosaccharides in nature are hexoses, which have six carbon atoms; the most well-known hexose is d-glucose. Various hexoses with distinct characteristics can be produced from inexpensive polysaccharides for applications in the food industry. Therefore, identification of the health-related functions of hexose will facilitate the consumption of hexoses in food products to improve quality of life. The hexoses available in foods include N-acetyl glucosamine, d-glucosamine, d-fructose, d-mannose, d-galactose, other d-hexoses, and l-hexoses. Here, an updated overview of food industrial production methods for natural hexoses by microbial, enzymatic, and chemical methods is provided.
Collapse
|