51
|
Chung KP, Cheng CN, Chen YJ, Hsu CL, Huang YL, Hsieh MS, Kuo HC, Lin YT, Juan YH, Nakahira K, Chen YF, Liu WL, Ruan SY, Chien JY, Plataki M, Cloonan SM, Carmeliet P, Choi AMK, Kuo CH, Yu CJ. Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation. Nat Commun 2024; 15:7241. [PMID: 39174557 PMCID: PMC11341863 DOI: 10.1038/s41467-024-51683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Type 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid β-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.
Collapse
Grants
- K08 HL157728 NHLBI NIH HHS
- 109-O04, 110-O07, 110-S4872, 111-S0075, 113-S0079 National Taiwan University Hospital (NTUH)
- NTUCDP-112L7745, NTUCDP-112L7746, 110T099, NTU-NFG-110L7422 National Taiwan University (NTU)
- National Science and Technology Council (Taiwan) (MOST-108-2628-B-002-017 [K.P.C.], MOST-109-2628-B-002-044 [K.P.C.], MOST-110-2628-B-002-029 [K.P.C.], MOST-110-2628-B-002-045-MY3 [K.P.C.], MOST-111-2628-B-002-030-MY3 [K.P.C.])
- National Science and Technology Council (Taiwan), MOST 107-2314-B-002-235-MY3
- National Science and Technology Council (Taiwan), MOST 110-2314-B-002-262
- National Taiwan University School of Pharmacy Endowment Fund in support of the Platform for Clinical Mass Spectrometry and NMR Structure Elucidation
- Research funding provided by Mr. Barry Lam, the chairman of Quanta Computer Inc
Collapse
Affiliation(s)
- Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
52
|
Kozlov M. The surprising cause of fasting's regenerative powers. Nature 2024:10.1038/d41586-024-02700-2. [PMID: 39169140 DOI: 10.1038/d41586-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|
53
|
Yang D, Sun Y, Wen P, Chen Y, Cao J, Sun X, Dong Y. Chronic Stress-induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis. Int J Biol Sci 2024; 20:4476-4495. [PMID: 39247815 PMCID: PMC11380450 DOI: 10.7150/ijbs.97275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, P.R. China
| | - Pei Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Xuelin Sun
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
54
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
55
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
56
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
57
|
Vemuri K, Kumar S, Chen L, Verzi MP. Dynamic RNA polymerase II occupancy drives differentiation of the intestine under the direction of HNF4. Cell Rep 2024; 43:114242. [PMID: 38768033 PMCID: PMC11264335 DOI: 10.1016/j.celrep.2024.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
58
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
59
|
Kang EJ, Kim JH, Kim YE, Lee H, Jung KB, Chang DH, Lee Y, Park S, Lee EY, Lee EJ, Kang HB, Rhyoo MY, Seo S, Park S, Huh Y, Go J, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Kim KS, Hwang JH, Jeong JS, Kwon HJ, Yoo HM, Son MY, Kim YG, Lee DH, Kim TY, Kwon HJ, Kim MH, Kim BC, Kim YH, Kang D, Lee CH. The secreted protein Amuc_1409 from Akkermansia muciniphila improves gut health through intestinal stem cell regulation. Nat Commun 2024; 15:2983. [PMID: 38582860 PMCID: PMC10998920 DOI: 10.1038/s41467-024-47275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/β-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/β-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.
Collapse
Affiliation(s)
- Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Livestock Products Analysis Division, Division of Animal health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon, 34146, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hana Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ho Bum Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Moon-Young Rhyoo
- Laboratory Animal Resource Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sohee Park
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yubin Huh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Ji-Seon Jeong
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Applied Biological Engineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- HealthBiome Inc., Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
60
|
Li L, Liu Y, Zhi N, Ji Y, Xu J, Mao G, Wang Y, Ma J, Wang Y. Hypoxic preconditioning accelerates the healing of ischemic intestinal injury by activating HIF-1α/PPARα pathway-mediated fatty acid oxidation. Cell Death Discov 2024; 10:164. [PMID: 38575595 PMCID: PMC10994932 DOI: 10.1038/s41420-024-01937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Hypoxic preconditioning (HPC) has been shown to improve organ tolerance to subsequent severe hypoxia or ischemia. However, its impact on intestinal ischemic injury has not been well studied. In this study, we evaluated the effects of HPC on intestinal ischemia in rats. Intestinal rehabilitation, levels of fatty acid oxidation (FAO) by-products, intestinal stem cells (ISCs), levels of hypoxia-inducible factor 1 subunit α (HIF-1α) and its downstream genes such as peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyltransferase 1a (CPT1A) were assessed at distinct time intervals following intestinal ischemia with or without the interference of HIF-1α. Our data showed that HPC facilitates the restoration of the intestinal structure and enhances the FAO, by boosting intestinal stem cells. Additionally, HIF-1α, PPARα, and CPT1A mRNA and their protein levels were generally up-regulated in the small intestine of HPC rats as compared to the control group. Our vitro experiment also shows low-oxygen induces highly levels of HIF-1α and its downstream genes, with a concurrent increase in FAO products in IEC-6 cells. Furthermore, the above phenomenon could be reversed by silencing HIF-1α. In conclusion, we hypothesize that HPC can stimulate the activation of intestinal stem cells via HIF-1α/PPARα pathway-mediated FAO, thereby accelerating the healing process post ischemic intestinal injury.
Collapse
Affiliation(s)
- Linxia Li
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China
| | - Yanqi Liu
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China
| | - Na Zhi
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China
| | - Yaoxuan Ji
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China
| | - Jialing Xu
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China
| | - Guoyun Mao
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, Air Force Medical University, 710032, Xi'an, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China.
| | - Yunying Wang
- Department of Aerospace Medicine, Air Force Medical University, 710032, Xi'an, China.
| |
Collapse
|
61
|
Ramos-León J, Valencia C, Gutiérrez-Mariscal M, Rivera-Miranda DA, García-Meléndrez C, Covarrubias L. The loss of antioxidant activities impairs intestinal epithelium homeostasis by altering lipid metabolism. Exp Cell Res 2024; 437:113965. [PMID: 38378126 DOI: 10.1016/j.yexcr.2024.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Reactive oxygens species (ROS) are common byproducts of metabolic reactions and could be at the origin of many diseases of the elderly. Here we investigated the role of ROS in the renewal of the intestinal epithelium in mice lacking catalase (CAT) and/or nicotinamide nucleotide transhydrogenase (NNT) activities. Cat-/- mice have delayed intestinal epithelium renewal and were prone to develop necrotizing enterocolitis upon starvation. Interestingly, crypts lacking CAT showed fewer intestinal stem cells (ISC) and lower stem cell activity than wild-type. In contrast, crypts lacking NNT showed a similar number of ISCs as wild-type but increased stem cell activity, which was also impaired by the loss of CAT. No alteration in the number of Paneth cells (PCs) was observed in crypts of either Cat-/- or Nnt-/- mice, but they showed an evident decline in the amount of lysozyme. Cat deficiency caused fat accumulation in crypts, and a fall in the remarkable high amount of adipose triglyceride lipase (ATGL) in PCs. Notably, the low levels of ATGL in the intestine of Cat -/- mice increased after a treatment with the antioxidant N-acetyl-L-cysteine. Supporting a role of ATGL in the regulation of ISC activity, its inhibition halt intestinal organoid development. These data suggest that the reduction in the renewal capacity of intestine originates from fatty acid metabolic alterations caused by peroxisomal ROS.
Collapse
Affiliation(s)
- Javier Ramos-León
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Concepción Valencia
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Mariana Gutiérrez-Mariscal
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - David-Alejandro Rivera-Miranda
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Celina García-Meléndrez
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Luis Covarrubias
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico.
| |
Collapse
|
62
|
Chang HW, Lee EM, Wang Y, Zhou C, Pruss KM, Henrissat S, Chen RY, Kao C, Hibberd MC, Lynn HM, Webber DM, Crane M, Cheng J, Rodionov DA, Arzamasov AA, Castillo JJ, Couture G, Chen Y, Balcazo NP, Lebrilla CB, Terrapon N, Henrissat B, Ilkayeva O, Muehlbauer MJ, Newgard CB, Mostafa I, Das S, Mahfuz M, Osterman AL, Barratt MJ, Ahmed T, Gordon JI. Prevotella copri and microbiota members mediate the beneficial effects of a therapeutic food for malnutrition. Nat Microbiol 2024; 9:922-937. [PMID: 38503977 PMCID: PMC10994852 DOI: 10.1038/s41564-024-01628-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains. To test this correlation, here we use gnotobiotic mice colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains, with or without P. copri isolates closely matching the metagenome-assembled genomes. Combining gut metagenomics and metatranscriptomics with host single-nucleus RNA sequencing and gut metabolomic analyses, we identify a key role of P. copri in metabolizing MDCF-2 glycans and uncover its interactions with other microbes including Bifidobacterium infantis. P. copri-containing consortia mediated weight gain and modulated energy metabolism within intestinal epithelial cells. Our results reveal structure-function relationships between MDCF-2 and members of the gut microbiota of malnourished children with potential implications for future therapies.
Collapse
Affiliation(s)
- Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan M Lee
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kali M Pruss
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Clara Kao
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah M Lynn
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marie Crane
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA, USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, University of California, Davis, CA, USA
| | - Nikita P Balcazo
- Department of Chemistry, University of California, Davis, CA, USA
| | | | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
63
|
Eskiocak O, Chowdhury S, Shah V, Nnuji-John E, Chung C, Boyer JA, Harris AS, Habel J, Sadelain M, Beyaz S, Amor C. Senolytic CAR T cells reverse aging-associated defects in intestinal regeneration and fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585779. [PMID: 38529506 PMCID: PMC10962734 DOI: 10.1101/2024.03.19.585779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Intestinal stem cells (ISCs) drive the rapid regeneration of the gut epithelium to maintain organismal homeostasis. Aging, however, significantly reduces intestinal regenerative capacity. While cellular senescence is a key feature of the aging process, little is known about the in vivo effects of senescent cells on intestinal fitness. Here, we identify the accumulation of senescent cells in the aging gut and, by harnessing senolytic CAR T cells to eliminate them, we uncover their detrimental impact on epithelial integrity and overall intestinal homeostasis in natural aging, injury and colitis. Ablation of intestinal senescent cells with senolytic CAR T cells in vivo or in vitro is sufficient to promote the regenerative potential of aged ISCs. This intervention improves epithelial integrity and mucosal immune function. Overall, these results highlight the ability of senolytic CAR T cells to rejuvenate the intestinal niche and demonstrate the potential of targeted cell therapies to promote tissue regeneration in aging organisms.
Collapse
Affiliation(s)
- Onur Eskiocak
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- Graduate Program in Genetics, Stony Brook University; NY, USA
| | | | - Vyom Shah
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Emmanuella Nnuji-John
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Jacob A. Boyer
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University; Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Corina Amor
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| |
Collapse
|
64
|
Sekera ER, Akkaya-Colak KB, Lopez A, Mihaylova MM, Hummon AB. Mass Spectrometry Imaging and Histology for the Analysis of Budding Intestinal Organoids. Anal Chem 2024; 96:4251-4258. [PMID: 38427328 PMCID: PMC10955551 DOI: 10.1021/acs.analchem.3c05725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Three-dimensional (3D) organoids have been at the forefront of regenerative medicine and cancer biology fields for the past decade. However, the fragile nature of organoids makes their spatial analysis challenging due to their budding structures and composition of single layer of cells. The standard sample preparation approaches can collapse the organoid morphology. Therefore, in this study, we evaluated several approaches to optimize a method compatible with both mass spectrometry imaging (MSI) and immunohistological techniques. Murine intestinal organoids were used to evaluate embedding in gelatin, carboxymethylcellulose (CMC)-gelatin-CMC-sucrose, or hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) solutions. Organoids were assessed with and without aldehyde fixation and analyzed for lipid distributions by MSI coupled with hematoxylin and eosin (H&E) staining and immunofluorescence (IF) in consecutive sections from the same sample. While chemical fixation preserves morphology for better histological outcomes, it can lead to suppression of the matrix-assisted laser desorption/ionization (MALDI) lipid signal. By contrast, leaving organoid samples unfixed enhanced MALDI lipid signal. The method that performed best for both MALDI and histological analysis was embedding unfixed samples in HPMC and PVP. This approach allowed assessment of cell proliferation by Ki67 while also identifying putative phosphatidylethanolamine (PE(18:0/18:1)), which was confirmed further by tandem MS approaches. Overall, these protocols will be amenable to multiplexing imaging mass spectrometry analysis with several histological assessments and help advance our understanding of the biological processes that take place in district subsets of cells in budding organoid structures.
Collapse
Affiliation(s)
- Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, Ohio 43210, United States
| | - Kubra B Akkaya-Colak
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd, Columbus, Ohio 43210, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, 410 W 12th Ave, Columbus, Ohio 43210, United States
| | - Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, Ohio 43210, United States
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd, Columbus, Ohio 43210, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, 410 W 12th Ave, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, 410 W 12th Ave, Columbus, Ohio 43210, United States
| |
Collapse
|
65
|
Ma L, Chen C, Zhao C, Li T, Ma L, Jiang J, Duan Z, Si Q, Chuang TH, Xiang R, Luo Y. Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer. Signal Transduct Target Ther 2024; 9:64. [PMID: 38453925 PMCID: PMC10920667 DOI: 10.1038/s41392-024-01772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Despite the successful application of immune checkpoint therapy, no response or recurrence is typical in lung cancer. Cancer stem cells (CSCs) have been identified as a crucial player in immunotherapy-related resistance. Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is highly regulated by cellular metabolism remolding and has been shown to have synergistic effects when combined with immunotherapy. Metabolic adaption of CSCs drives tumor resistance, yet the mechanisms of their ferroptosis defense in tumor immune evasion remain elusive. Here, through metabolomics, transcriptomics, a lung epithelial-specific Cpt1a-knockout mouse model, and clinical analysis, we demonstrate that CPT1A, a key rate-limiting enzyme of fatty acid oxidation, acts with L-carnitine, derived from tumor-associated macrophages to drive ferroptosis-resistance and CD8+ T cells inactivation in lung cancer. Mechanistically, CPT1A restrains ubiquitination and degradation of c-Myc, while c-Myc transcriptionally activates CPT1A expression. The CPT1A/c-Myc positive feedback loop further enhances the cellular antioxidant capacity by activating the NRF2/GPX4 system and reduces the amount of phospholipid polyunsaturated fatty acids through ACSL4 downregulating, thereby suppressing ferroptosis in CSCs. Significantly, targeting CPT1A enhances immune checkpoint blockade-induced anti-tumor immunity and tumoral ferroptosis in tumor-bearing mice. The results illustrate the potential of a mechanism-guided therapeutic strategy by targeting a metabolic vulnerability in the ferroptosis of CSCs to improve the efficacy of lung cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Chunxing Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Lingyu Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiayu Jiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Rong Xiang
- Department of Immunology, Nankai University, Tianjin, 300071, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
66
|
Wei W, Liu Y, Hou Y, Cao S, Chen Z, Zhang Y, Cai X, Yan Q, Li Z, Yuan Y, Wang G, Zheng X, Hao H. Psychological stress-induced microbial metabolite indole-3-acetate disrupts intestinal cell lineage commitment. Cell Metab 2024; 36:466-483.e7. [PMID: 38266651 DOI: 10.1016/j.cmet.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The brain and gut are intricately connected and respond to various stimuli. Stress-induced brain-gut communication is implicated in the pathogenesis and relapse of gut disorders. The mechanism that relays psychological stress to the intestinal epithelium, resulting in maladaptation, remains poorly understood. Here, we describe a stress-responsive brain-to-gut metabolic axis that impairs intestinal stem cell (ISC) lineage commitment. Psychological stress-triggered sympathetic output enriches gut commensal Lactobacillus murinus, increasing the production of indole-3-acetate (IAA), which contributes to a transferrable loss of intestinal secretory cells. Bacterial IAA disrupts ISC mitochondrial bioenergetics and thereby prevents secretory lineage commitment in a cell-intrinsic manner. Oral α-ketoglutarate supplementation bolsters ISC differentiation and confers resilience to stress-triggered intestinal epithelial injury. We confirm that fecal IAA is higher in patients with mental distress and is correlated with gut dysfunction. These findings uncover a microbe-mediated brain-gut pathway that could be therapeutically targeted for stress-driven gut-brain comorbidities.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen 518005, China
| | - Shuqi Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ziguang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
67
|
Yuliyanasari N, Rejeki PS, Hidayati HB, Subsomwong P, Miftahussurur M. The effect of intermittent fasting on preventing obesity-related early aging from a molecular and cellular perspective. J Med Life 2024; 17:261-272. [PMID: 39044934 PMCID: PMC11262604 DOI: 10.25122/jml-2023-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/30/2023] [Indexed: 07/25/2024] Open
Abstract
Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.
Collapse
Key Words
- ADF, alternate-day fasting
- ADMF, alternate-day modified fasting
- AMPK, AMP-activated protein kinase
- BMI, body mass index
- FOXO, fork head box O
- IF, intermittent fasting
- IIS, insulin/insulin-like growth factor signaling
- PF, periodic fasting
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- PI3K, phosphatidylinositol 3-kinase
- TRE, time-restricted eating
- aging
- human health
- intermittent fasting
- mTOR, mammalian target of rapamycin
- obesity
- β-HB, β-hydroxy butyric acid
Collapse
Affiliation(s)
- Nurma Yuliyanasari
- Doctoral Program of Medical Science, Faculty Of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
68
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
69
|
Alkurd R, Mahrous L, Zeb F, Khan MAB, Alhaj H, Khraiwesh HM, Faris ME. Effect of Calorie Restriction and Intermittent Fasting Regimens on Brain-Derived Neurotrophic Factor Levels and Cognitive Function in Humans: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:191. [PMID: 38276070 PMCID: PMC10819730 DOI: 10.3390/medicina60010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Background: The potential positive interaction between intermittent fasting (IF) and brain-derived neurotrophic factor (BDNF) on cognitive function has been widely discussed. This systematic review tried to assess the efficacy of interventions with different IF regimens on BDNF levels and their association with cognitive functions in humans. Interventions with different forms of IF such as caloric restriction (CR), alternate-day fasting (ADF), time-restricted eating (TRE), and the Ramadan model of intermittent fasting (RIF) were targeted. Methods: A systematic review was conducted for experimental and observational studies on healthy people and patients with diseases published in EMBASE, Scopus, PubMed, and Google Scholar databases from January 2000 to December 2023. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statements (PRISMA) for writing this review. Results: Sixteen research works conducted on healthy people and patients with metabolic disorders met the inclusion criteria for this systematic review. Five studies showed a significant increase in BDNF after the intervention, while five studies reported a significant decrease in BDNF levels, and the other six studies showed no significant changes in BDNF levels due to IF regimens. Moreover, five studies examined the RIF protocol, of which, three studies showed a significant reduction, while two showed a significant increase in BDNF levels, along with an improvement in cognitive function after RIF. Conclusions: The current findings suggest that IF has varying effects on BDNF levels and cognitive functions in healthy, overweight/obese individuals and patients with metabolic conditions. However, few human studies have shown that IF increases BDNF levels, with controversial results. In humans, IF has yet to be fully investigated in terms of its long-term effect on BDNF and cognitive functions. Large-scale, well-controlled studies with high-quality data are warranted to elucidate the impact of the IF regimens on BDNF levels and cognitive functions.
Collapse
Affiliation(s)
- Refat Alkurd
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Lana Mahrous
- Department of Health Sciences/Track of Clinical Nutrition, College of Health and Rehabilitation, Princess Nourah Bint Abdulrahman University, Riyadh 12461, Saudi Arabia;
| | - Falak Zeb
- Nutrition and Food Research Group, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Moien AB Khan
- Health and Wellness Research Group, Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Hamid Alhaj
- Family and Community Medicine and Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Husam M. Khraiwesh
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, Salt 19117, Jordan;
| | - MoezAlIslam E. Faris
- Nutrition and Food Research Group, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Healthy Aging, Longevity and Sustainability Research Group, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
70
|
Kruglov V, Jang IH, Camell CD. Inflammaging and fatty acid oxidation in monocytes and macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00038. [PMID: 38249577 PMCID: PMC10798594 DOI: 10.1097/in9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Fatty acid oxidation (FAO), primarily known as β-oxidation, plays a crucial role in breaking down fatty acids within mitochondria and peroxisomes to produce cellular energy and preventing metabolic dysfunction. Myeloid cells, including macrophages, microglia, and monocytes, rely on FAO to perform essential cellular functions and uphold tissue homeostasis. As individuals age, these cells show signs of inflammaging, a condition that includes a chronic onset of low-grade inflammation and a decline in metabolic function. These lead to changes in fatty acid metabolism and a decline in FAO pathways. Recent studies have shed light on metabolic shifts occurring in macrophages and monocytes during aging, correlating with an altered tissue environment and the onset of inflammaging. This review aims to provide insights into the connection of inflammatory pathways and altered FAO in macrophages and monocytes from older organisms. We describe a model in which there is an extended activation of receptor for advanced glycation end products, nuclear factor-κB (NF-κB) and the nod-like receptor family pyrin domain containing 3 inflammasome within macrophages and monocytes. This leads to an increased level of glycolysis, and also promotes pro-inflammatory cytokine production and signaling. As a result, FAO-related enzymes such as 5' AMP-activated protein kinase and peroxisome proliferator-activated receptor-α are reduced, adding to the escalation of inflammation, accumulation of lipids, and heightened cellular stress. We examine the existing body of literature focused on changes in FAO signaling within macrophages and monocytes and their contribution to the process of inflammaging.
Collapse
Affiliation(s)
- Victor Kruglov
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
71
|
Chang HW, Lee EM, Wang Y, Zhou C, Pruss KM, Henrissat S, Chen RY, Kao C, Hibberd MC, Lynn HM, Webber DM, Crane M, Cheng J, Rodionov DA, Arzamasov AA, Castillo JJ, Couture G, Chen Y, Balcazo NP, Lebrilla CB, Terrapon N, Henrissat B, Ilkayeva O, Muehlbauer MJ, Newgard CB, Mostafa I, Das S, Mahfuz M, Osterman AL, Barratt MJ, Ahmed T, Gordon JI. Prevotella copri-related effects of a therapeutic food for malnutrition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553030. [PMID: 37645712 PMCID: PMC10461977 DOI: 10.1101/2023.08.11.553030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes1-5. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period5. Bangladeshi children with moderate acute malnutrition (MAM) participating in a previously reported 3-month-long randomized controlled clinical study of one such formulation, MDCF-2, exhibited significantly improved weight gain compared to a commonly used nutritional intervention despite the lower caloric density of the MDCF6. Characterizing the 'metagenome assembled genomes' (MAGs) of bacterial strains present in the microbiomes of study participants revealed a significant correlation between accelerated ponderal growth and the expression by two Prevotella copri MAGs of metabolic pathways involved in processing of MDCF-2 glycans1. To provide a direct test of these relationships, we have now performed 'reverse translation' experiments using a gnotobiotic mouse model of mother-to-offspring microbiome transmission. Mice were colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains cultured from Bangladeshi infants/children in the study population, with or without P. copri isolates resembling the MAGs. By combining analyses of microbial community assembly, gene expression and processing of glycan constituents of MDCF-2 with single nucleus RNA-Seq and mass spectrometric analyses of the intestine, we establish a principal role for P. copri in mediating metabolism of MDCF-2 glycans, characterize its interactions with other consortium members including Bifidobacterium longum subsp. infantis, and demonstrate the effects of P. copri-containing consortia in mediating weight gain and modulating the activities of metabolic pathways involved in lipid, amino acid, carbohydrate plus other facets of energy metabolism within epithelial cells positioned at different locations in intestinal crypts and villi. Together, the results provide insights into structure/function relationships between MDCF-2 and members of the gut communities of malnourished children; they also have implications for developing future prebiotic, probiotic and/or synbiotic therapeutics for microbiome restoration in children with already manifest malnutrition, or who are at risk for this pervasive health challenge.
Collapse
Affiliation(s)
- Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Evan M. Lee
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kali M. Pruss
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Robert Y. Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Clara Kao
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Matthew C. Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Hannah M. Lynn
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Daniel M. Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Marie Crane
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Juan J. Castillo
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Nikita P. Balcazo
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | | | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710 USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710 USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710 USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710 USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710 USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710 USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710 USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710 USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Michael J. Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
72
|
Funk MC, Gleixner JG, Heigwer F, Vonficht D, Valentini E, Aydin Z, Tonin E, Del Prete S, Mahara S, Throm Y, Hetzer J, Heide D, Stegle O, Odom DT, Feldmann A, Haas S, Heikenwalder M, Boutros M. Aged intestinal stem cells propagate cell-intrinsic sources of inflammaging in mice. Dev Cell 2023; 58:2914-2929.e7. [PMID: 38113852 DOI: 10.1016/j.devcel.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/03/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Low-grade chronic inflammation is a hallmark of ageing, associated with impaired tissue function and disease development. However, how cell-intrinsic and -extrinsic factors collectively establish this phenotype, termed inflammaging, remains poorly understood. We addressed this question in the mouse intestinal epithelium, using mouse organoid cultures to dissect stem cell-intrinsic and -extrinsic sources of inflammaging. At the single-cell level, we found that inflammaging is established differently along the crypt-villus axis, with aged intestinal stem cells (ISCs) strongly upregulating major histocompatibility complex class II (MHC-II) genes. Importantly, the inflammaging phenotype was stably propagated by aged ISCs in organoid cultures and associated with increased chromatin accessibility at inflammation-associated loci in vivo and ex vivo, indicating cell-intrinsic inflammatory memory. Mechanistically, we show that the expression of inflammatory genes is dependent on STAT1 signaling. Together, our data identify that intestinal inflammaging in mice is promoted by a cell-intrinsic mechanism, stably propagated by ISCs, and associated with a disbalance in immune homeostasis.
Collapse
Affiliation(s)
- Maja C Funk
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Jan G Gleixner
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany; Department of Life Sciences and Engineering, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Dominik Vonficht
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine, (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Zeynep Aydin
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Elena Tonin
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Stefania Del Prete
- German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Sylvia Mahara
- German Cancer Research Center (DKFZ), Junior Research Group Mechanisms of Genome Control, 69120 Heidelberg, Germany
| | - Yannick Throm
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Angelika Feldmann
- German Cancer Research Center (DKFZ), Junior Research Group Mechanisms of Genome Control, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany; M3 Research Center, Medical Faculty Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
73
|
Farhadipour M, Arnauts K, Clarysse M, Thijs T, Liszt K, Van der Schueren B, Ceulemans LJ, Deleus E, Lannoo M, Ferrante M, Depoortere I. SCFAs switch stem cell fate through HDAC inhibition to improve barrier integrity in 3D intestinal organoids from patients with obesity. iScience 2023; 26:108517. [PMID: 38125020 PMCID: PMC10730380 DOI: 10.1016/j.isci.2023.108517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Stem cells are a keystone of intestinal homeostasis, but their function could be shifted during energy imbalance or by crosstalk with microbial metabolites in the stem cell niche. This study reports the effect of obesity and microbiota-derived short-chain fatty acids (SCFAs) on intestinal stem cell (ISC) fate in human crypt-derived intestinal organoids (enteroids). ISC fate decision was impaired in obesity, resulting in smaller enteroids with less outward protruding crypts. Our key finding is that SCFAs switch ISC commitment to the absorptive enterocytes, resulting in reduced intestinal permeability in obese enteroids. Mechanistically, SCFAs act as HDAC inhibitors in stem cells to enhance Notch signaling, resulting in transcriptional activation of the Notch target gene HES1 to promote enterocyte differentiation. In summary, targeted reprogramming of ISC fate, using HDAC inhibitors, may represent a potential, robust therapeutic strategy to improve gut integrity in obesity.
Collapse
Affiliation(s)
- Mona Farhadipour
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Kaline Arnauts
- Inflammatory Bowel Disease, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Mathias Clarysse
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Kathrin Liszt
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | | | - Laurens J. Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marc Ferrante
- Inflammatory Bowel Disease, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
74
|
Bekebrede AF, de Boer VCJ, Gerrits WJJ, Keijer J. Functional and molecular profiling of fasted piglets reveals decreased energy metabolic function and cell proliferation in the small intestine. Am J Physiol Gastrointest Liver Physiol 2023; 325:G539-G555. [PMID: 37847725 PMCID: PMC10894671 DOI: 10.1152/ajpgi.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The small intestine requires energy to exert its important role in nutrient uptake and barrier function. Pigs are an important source of food and a model for humans. Young piglets and infants can suffer from periods of insufficient food intake. Whether this functionally affects the small intestinal epithelial cell (IEC) metabolic capacity and how this may be associated with an increased vulnerability to intestinal disease is unknown. We therefore performed a 48-h fasting intervention in young piglets. After feeding a standard weaning diet for 2 wk, 6-wk-old piglets (n = 16/group) were fasted for 48 h, and midjejunal IECs were collected upon euthanasia. Functional metabolism of isolated IECs was analyzed with the Seahorse XF analyzer and gene expression was assessed using RNA-sequencing. Fasting decreased the mitochondrial and glycolytic function of the IECs by 50% and 45%, respectively (P < 0.0001), signifying that overall metabolic function was decreased. The RNA-sequencing results corroborated our functional metabolic measurements, showing that particularly pathways related to mitochondrial energy production were decreased. Besides oxidative metabolic pathways, decreased cell-cycle progression pathways were most regulated in the fasted piglets, which were confirmed by 43% reduction of Ki67-stained cells (P < 0.05). Finally, the expression of barrier function genes was reduced upon fasting. In conclusion, we found that the decreased IEC energy metabolic function in response to fasting is supported by a decreased gene expression of mitochondrial pathways and is likely linked to the observed decreased intestinal cell proliferation and barrier function, providing insight into the vulnerability of piglets, and infants, to decreased food intake.NEW & NOTEWORTHY Fasting is identified as one of the underlying causes potentiating diarrhea development, both in piglets and humans. With this study, we demonstrate that fasting decreases the metabolism of intestinal epithelial cells, on a functional and transcriptional level. Transcriptional and histological data also show decreased intestinal cell proliferation. As such, fasting-induced intestinal energy shortage could contribute to intestinal dysfunction upon fasting.
Collapse
Affiliation(s)
- Anna F Bekebrede
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
75
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
76
|
Burclaff J. Transcriptional regulation of metabolism in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2023; 325:G501-G507. [PMID: 37786942 PMCID: PMC10894668 DOI: 10.1152/ajpgi.00147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Epithelial metabolism in the intestine is increasingly known to be important for stem cell maintenance and activity while also affecting weight gain and diseases. This review compiles studies from recent years which describe major transcription factors controlling metabolic activity across the intestinal epithelium as well as transcriptional and epigenetic networks controlling the factors themselves. Recent studies show that transcriptional regulators serve as the link between signals from the microbiota and diet and epithelial metabolism. Studies have advanced this paradigm to identify druggable targets to block weight gain or disease progression in mice. As such, there is great potential that a better understanding of these regulatory networks will improve our knowledge of intestinal physiology and promote discoveries to benefit human health.
Collapse
Affiliation(s)
- Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States
| |
Collapse
|
77
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
78
|
Vemuri K, Kumar S, Chen L, Verzi MP. Dynamic RNA Polymerase II Recruitment Drives Differentiation of the Intestine under the direction of HNF4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566322. [PMID: 37986803 PMCID: PMC10659318 DOI: 10.1101/2023.11.08.566322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Terminal differentiation requires a massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identified dynamic recruitment of RNA Polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II recruitment and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of- function, ChIP-seq and IP mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II recruitment at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms which drive differentiation gene expression and find pause-release of Pol II and post- transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in a renewing adult tissue.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA
- NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
79
|
Shimizu S, Iba T, Naito H, Rahmawati FN, Konishi H, Jia W, Muramatsu F, Takakura N. Aging impairs the ability of vascular endothelial stem cells to generate endothelial cells in mice. Angiogenesis 2023; 26:567-580. [PMID: 37563497 PMCID: PMC10542733 DOI: 10.1007/s10456-023-09891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Tissue-resident vascular endothelial stem cells (VESCs), marked by expression of CD157, possess long-term repopulating potential and contribute to vascular regeneration and homeostasis in mice. Stem cell exhaustion is regarded as one of the hallmarks of aging and is being extensively studied in several types of tissue-resident stem cells; however, how aging affects VESCs has not been clarified yet. In the present study, we isolated VESCs from young and aged mice to compare their potential to differentiate into endothelial cells in vitro and in vivo. Here, we report that the number of liver endothelial cells (ECs) including VESCs was lower in aged (27-28 month-old) than young (2-3 month-old) mice. In vitro culture of primary VESCs revealed that the potential to generate ECs is impaired in aged VESCs isolated from liver and lung relative to young VESCs. Orthotopic transplantation of VESCs showed that aged VESCs and their progeny expand less efficiently than their young counterparts when transplanted into aged mice, but they are equally functional in young recipients. Gene expression analysis indicated that inflammatory signaling was more activated in aged ECs including VESCs. Using single-cell RNA sequencing data from the Tabula Muris Consortium, we show that T cells and monocyte/macrophage lineage cells including Kupffer cells are enriched in the aged liver. These immune cells produce IL-1β and several chemokines, suggesting the possible involvement of age-associated inflammation in the functional decline of VESCs with age.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Fitriana Nur Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
80
|
Zhong Z, Zhang H, Nan K, Zhong J, Wu Q, Lu L, Yue Y, Zhang Z, Guo M, Wang Z, Xia J, Xing Y, Fu Y, Yu B, Zhou W, Sun X, Shen Y, Chen W, Zhang J, Zhang J, Ma D, Chu Y, Liu R, Miao C. Fasting-Mimicking Diet Drives Antitumor Immunity against Colorectal Cancer by Reducing IgA-Producing Cells. Cancer Res 2023; 83:3529-3543. [PMID: 37602826 PMCID: PMC10618736 DOI: 10.1158/0008-5472.can-23-0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/05/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
As a safe, feasible, and inexpensive dietary intervention, fasting-mimicking diet (FMD) exhibits excellent antitumor efficacy by regulating metabolism and boosting antitumor immunity. A better understanding of the specific mechanisms underlying the immunoregulatory functions of FMD could help improve and expand the clinical application of FMD-mediated immunotherapeutic strategies. In this study, we aimed to elucidate the role of metabolic reprogramming induced by FMD in activation of antitumor immunity against colorectal cancer. Single-cell RNA sequencing analysis of intratumoral immune cells revealed that tumor-infiltrating IgA+ B cells were significantly reduced by FMD treatment, leading to the activation of antitumor immunity and tumor regression in murine colorectal cancer models. Mechanistically, FMD delayed tumor growth by repressing B-cell class switching to IgA. Therefore, FMD-induced reduction of IgA+ B cells overcame the suppression of CD8+ T cells. The immunoregulatory and antitumor effects of FMD intervention were reversed by IgA+ B-cell transfer. Moreover, FMD boosted fatty acid oxidation (FAO) to trigger RUNX3 acetylation, thus inactivating Cα gene transcription and IgA class switching. IgA+ B-cell expansion was also impeded in patients placed on FMD, while B-cell expression of carnitine palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme of FAO, was increased. Furthermore, CPT1A expression was negatively correlated with both IgA+ B cells and IgA secretion within colorectal cancer. Together, these results highlight that FMD holds great promise for treating colorectal cancer. Furthermore, the degree of IgA+ B cell infiltration and FAO-associated metabolic status are potential biomarkers for evaluating FMD efficacy. SIGNIFICANCE Metabolic reprogramming of B cells induced by fasting-mimicking diet suppresses IgA class switching and production to activate antitumor immunity and inhibit tumor growth. See related commentary by Bush and Perry, p. 3493.
Collapse
Affiliation(s)
- Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Lihong Lu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhenyu Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Xia
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Xing
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
81
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
82
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
83
|
Li Y, Chaurasia B, Rahman MM, Kaddai V, Maschek JA, Berg JA, Wilkerson JL, Mahmassani ZS, Cox J, Wei P, Meikle PJ, Atkinson D, Wang L, Poss AM, Playdon MC, Tippetts TS, Mousa EM, Nittayaboon K, Anandh Babu PV, Drummond MJ, Clevers H, Shayman JA, Hirabayashi Y, Holland WL, Rutter J, Edgar BA, Summers SA. Ceramides Increase Fatty Acid Utilization in Intestinal Progenitors to Enhance Stemness and Increase Tumor Risk. Gastroenterology 2023; 165:1136-1150. [PMID: 37541526 PMCID: PMC10592225 DOI: 10.1053/j.gastro.2023.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND & AIMS Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa.
| | - M Mahidur Rahman
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Vincent Kaddai
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Donald Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Liping Wang
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Annelise M Poss
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Trevor S Tippetts
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Esraa M Mousa
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Faculty of Science, Tanta University, Tanta, Egypt
| | - Kesara Nittayaboon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Princess Maxima Center (PMC) for Pediatric Oncology, Utrecht, The Netherlands
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama Japan
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, Salt Lake City, Utah
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
84
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
85
|
Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front Immunol 2023; 14:1277102. [PMID: 37876938 PMCID: PMC10591221 DOI: 10.3389/fimmu.2023.1277102] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The gut is colonized by many commensal microorganisms, and the diversity and metabolic patterns of microorganisms profoundly influence the intestinal health. These microbial imbalances can lead to disorders such as inflammatory bowel disease (IBD). Microorganisms produce byproducts that act as signaling molecules, triggering the immune system in the gut mucosa and controlling inflammation. For example, metabolites like short-chain fatty acids (SCFA) and secondary bile acids can release inflammatory-mediated signals by binding to specific receptors. These metabolites indirectly affect host health and intestinal immunity by interacting with the intestinal epithelial and mucosal immune cells. Moreover, Tryptophan-derived metabolites also play a role in governing the immune response by binding to aromatic hydrocarbon receptors (AHR) located on the intestinal mucosa, enhancing the intestinal epithelial barrier. Dietary-derived indoles, which are synthetic precursors of AHR ligands, work together with SCFA and secondary bile acids to reduce stress on the intestinal epithelium and regulate inflammation. This review highlights the interaction between gut microbial metabolites and the intestinal immune system, as well as the crosstalk of dietary fiber intake in improving the host microbial metabolism and its beneficial effects on the organism.
Collapse
Affiliation(s)
- Yifeng Fu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, the First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
86
|
Yao C, Gou X, Tian C, Zhou L, Hao R, Wan L, Wang Z, Li M, Tong X. Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites. J Genet Genomics 2023; 50:735-746. [PMID: 36566949 DOI: 10.1016/j.jgg.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interactions between diet and the intestinal microbiome play an important role in human health and disease development. It is well known that such interactions, whether direct or indirect, trigger a series of metabolic reactions in the body. Evidence suggests that intestinal stem cells (ISCs), which are phenotypic precursors of various intestinal epithelial cells, play a significant role in the regulation of intestinal barrier function and homeostasis. The advent and evolution of intestinal organoid culture techniques have presented a key opportunity to study the association between the intestinal microenvironment and ISCs. As a result, the effects exerted by dietary factors, intestinal microbiomes, and their metabolites on the metabolic regulation of ISCs and the potential mechanisms underlying such effects are being gradually revealed. This review summarises the effects of different dietary patterns on the behaviour and functioning of ISCs and focuses on the crosstalk between intestinal microbiota, related metabolites, and ISCs, with the aim of fully understanding the relationship between these three factors and providing further insights into the complex mechanisms associated with ISCs in the human body. Gaining an understanding of these mechanisms may lead to the development of novel dietary interventions or drugs conducive to intestinal health.
Collapse
Affiliation(s)
- Chensi Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaowen Gou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chuanxi Tian
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Rui Hao
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Wan
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
87
|
Qi Y, He J, Zhang Y, Ge Q, Wang Q, Chen L, Xu J, Wang L, Chen X, Jia D, Lin Y, Xu C, Zhang Y, Hou T, Si J, Chen S, Wang L. Heat-inactivated Bifidobacterium adolescentis ameliorates colon senescence through Paneth-like-cell-mediated stem cell activation. Nat Commun 2023; 14:6121. [PMID: 37777508 PMCID: PMC10542354 DOI: 10.1038/s41467-023-41827-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
Declined numbers and weakened functions of intestinal stem cells (ISCs) impair the integrity of the intestinal epithelium during aging. However, the impact of intestinal microbiota on ISCs in this process is unclear. Here, using premature aging mice (telomerase RNA component knockout, Terc-/-), natural aging mice, and in vitro colonoid models, we explore how heat-inactivated Bifidobacterium adolescentis (B. adolescentis) affects colon senescence. We find that B. adolescentis could mitigate colonic senescence-related changes by enhancing intestinal integrity and stimulating the regeneration of Lgr5+ ISCs via Wnt/β-catenin signaling. Furthermore, we uncover the involvement of Paneth-like cells (PLCs) within the colonic stem-cell-supporting niche in the B. adolescentis-induced ISC regeneration. In addition, we identify soluble polysaccharides (SPS) as potential effective components of B. adolescentis. Overall, our findings reveal the role of heat-inactivated B. adolescentis in maintaining the ISCs regeneration and intestinal barrier, and propose a microbiota target for ameliorating colon senescence.
Collapse
Affiliation(s)
- Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwei Ge
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dingjiacheng Jia
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaochao Xu
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Liangjing Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
88
|
Omrani O, Krepelova A, Rasa SMM, Sirvinskas D, Lu J, Annunziata F, Garside G, Bajwa S, Reinhardt S, Adam L, Käppel S, Ducano N, Donna D, Ori A, Oliviero S, Rudolph KL, Neri F. IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration. Nat Commun 2023; 14:6109. [PMID: 37777550 PMCID: PMC10542816 DOI: 10.1038/s41467-023-41683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
The influence of aging on intestinal stem cells and their niche can explain underlying causes for perturbation in their function observed during aging. Molecular mechanisms for such a decrease in the functionality of intestinal stem cells during aging remain largely undetermined. Using transcriptome-wide approaches, our study demonstrates that aging intestinal stem cells strongly upregulate antigen presenting pathway genes and over-express secretory lineage marker genes resulting in lineage skewed differentiation into the secretory lineage and strong upregulation of MHC class II antigens in the aged intestinal epithelium. Mechanistically, we identified an increase in proinflammatory cells in the lamina propria as the main source of elevated interferon gamma (IFNγ) in the aged intestine, that leads to the induction of Stat1 activity in intestinal stem cells thus priming the aberrant differentiation and elevated antigen presentation in epithelial cells. Of note, systemic inhibition of IFNγ-signaling completely reverses these aging phenotypes and reinstalls regenerative capacity of the aged intestinal epithelium.
Collapse
Affiliation(s)
- Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | | - Dovydas Sirvinskas
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jing Lu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - George Garside
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Seerat Bajwa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Susanne Reinhardt
- Dresden-concept Genome Center, c/o Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lisa Adam
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sandra Käppel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadia Ducano
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center, University of Turin, Torino, Italy.
| |
Collapse
|
89
|
Bao W, You Y, Ni J, Hou H, Lyu J, Feng G, Wang Y, You K, Zhang S, Zhang L, Cao X, Wang X, Li H, Li H, Xu J, Liu C, Luo X, Du P, Chen D, Shen X. Inhibiting sorting nexin 10 promotes mucosal healing through SREBP2-mediated stemness restoration of intestinal stem cells. SCIENCE ADVANCES 2023; 9:eadh5016. [PMID: 37647408 PMCID: PMC10468130 DOI: 10.1126/sciadv.adh5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Intestinal stem cell (ISC) is a promising therapeutic target for inflammatory bowel disease. Cholesterol availability is critical for ISC stemness. Low plasma cholesterol is a typical feature of Crohn's disease (CD); however, its impact on mucosal healing remains unclear. Here, we identified an essential role of sorting nexin 10 (SNX10) in maintaining the stemness of ISCs. SNX10 expression in intestinal tissues positively correlates with the severity of human CD and mouse colitis. Conditional SNX10 knockout in intestinal epithelial cells or ISCs promotes intestinal mucosal repair by maintaining the ISC population associated with increased intracellular cholesterol synthesis. Disassociation of ERLIN2 with SCAP by SNX10 deletion enhances the activation of SREBP2, resulting in increased cholesterol biosynthesis. DC-SX029, a small-molecule inhibitor of SNX10, was used to verify the druggable potential of SNX10 for the treatment of patients with CD. Our study provides a strategy for mucosal healing through SREBP2-mediated stemness restoration of ISCs.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiaren Lyu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
90
|
Andersen OE, Poulsen JV, Farup J, de Morree A. Regulation of adult stem cell function by ketone bodies. Front Cell Dev Biol 2023; 11:1246998. [PMID: 37745291 PMCID: PMC10513036 DOI: 10.3389/fcell.2023.1246998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies. Adult stem cells could therefore potentially be manipulated through dietary regimens or exogenous ketone body supplementation, a possibility with significant implications for regenerative medicine. In this review we discuss recent findings of the mechanisms by which ketone bodies could influence adult stem cells, including ketogenesis in adult stem cells, uptake and transport of circulating ketone bodies, receptor-mediated signaling, and changes to cellular metabolism. We also discuss the potential effects of ketone bodies on intracellular processes such as protein acetylation and post-transcriptional control of gene expression. The exploration of mechanisms underlying the effects of ketone bodies on stem cell function reveals potential therapeutic targets for tissue regeneration and age-related diseases and suggests future research directions in the field of ketone bodies and stem cells.
Collapse
Affiliation(s)
- Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
91
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
92
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
93
|
Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M. Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 2023; 34:446-461. [PMID: 37380501 DOI: 10.1016/j.tem.2023.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Metabolism has emerged as a key regulator of stem cell behavior. Mitochondria are crucial metabolic organelles that are important for differentiated cells, yet considered less so for stem cells. However, recent studies have shown that mitochondria influence stem cell maintenance and fate decisions, inviting a revised look at this topic. In this review, we cover the current literature addressing the role of mitochondrial metabolism in mouse and human neural stem cells (NSCs) in the embryonic and adult brain. We summarize how mitochondria are implicated in fate regulation and how substrate oxidation affects NSC quiescence. We further explore single-cell RNA sequencing (scRNA-seq) data for metabolic signatures of adult NSCs, highlight emerging technologies reporting on metabolic signatures, and discuss mitochondrial metabolism in other stem cells.
Collapse
Affiliation(s)
- Valentina Scandella
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon M G Braun
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
94
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
95
|
Mihaylova MM, Chaix A, Delibegovic M, Ramsey JJ, Bass J, Melkani G, Singh R, Chen Z, Ja WW, Shirasu-Hiza M, Latimer MN, Mattison JA, Thalacker-Mercer AE, Dixit VD, Panda S, Lamming DW. When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy aging. Cell Metab 2023; 35:1114-1131. [PMID: 37392742 PMCID: PMC10528391 DOI: 10.1016/j.cmet.2023.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University, Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Columbus, OH, USA.
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajat Singh
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michele Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Satchidananda Panda
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
96
|
Moraitis I, Guiu J, Rubert J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab 2023:S1043-2760(23)00108-X. [PMID: 37336645 DOI: 10.1016/j.tem.2023.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain.
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, Netherlands; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708, WG, Netherlands.
| |
Collapse
|
97
|
Zhao XH, Zhao P, Deng Z, Yang T, Qi YX, An LY, Sun DL, He HY. Integrative analysis reveals marker genes for intestinal mucosa barrier repairing in clinical patients. iScience 2023; 26:106831. [PMID: 37250791 PMCID: PMC10212979 DOI: 10.1016/j.isci.2023.106831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
This study aims to identify biomarkers of intestinal repair and provide potential therapeutic clues for improving functional recovery and prognostic performance after intestinal inflammation or injury. Here, we conducted a large-scale screening of multiple transcriptomic and scRNA-seq datasets of patients with inflammatory bowel disease (IBD), and identified 10 marker genes that potentially contribute to intestinal barrier repairing: AQP8, SULT1A1, HSD17B2, PADI2, SLC26A2, SELENBP1, FAM162A, TNNC2, ACADS, and TST. Analysis of a published scRNA-seq dataset revealed that expression of these healing markers were specific to absorptive cell types in intestinal epithelium. Furthermore, we conducted a clinical study where 11 patients underwent ileum resection demonstrating that upregulation of post-operative AQP8 and SULT1A1 expression were associated with improved recovery of bowel functions after surgery-induced intestinal injury, making them confident biomarkers of intestinal healing as well as potential prognostic markers and therapeutic targets for patients with impaired intestinal barrier functions.
Collapse
Affiliation(s)
- Xiao-Hu Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Peinan Zhao
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Yu-Xing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Li-Ya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Da-Li Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Hai-Yu He
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| |
Collapse
|
98
|
Chen C, Yan W, Tao M, Fu Y. NAD + Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel) 2023; 12:1230. [PMID: 37371959 DOI: 10.3390/antiox12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. There is a growing recognition of the intricate relationship between inflammatory diseases and NAD+ metabolism. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption. Consequently, therapeutics designed to target the NAD+ pathway are promising for the management of IBD. This review discusses the metabolic and immunoregulatory processes of NAD+ in IBD to examine the molecular biology and pathophysiology of the immune regulation of IBD and to provide evidence and theoretical support for the clinical use of NAD+ in IBD.
Collapse
Affiliation(s)
- Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
99
|
Chae SA, Du M, Son JS, Zhu MJ. Exercise improves homeostasis of the intestinal epithelium by activation of apelin receptor-AMP-activated protein kinase signalling. J Physiol 2023; 601:2371-2389. [PMID: 37154385 PMCID: PMC10280693 DOI: 10.1113/jp284552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Intestinal remodelling is dynamically regulated by energy metabolism. Exercise is beneficial for gut health, but the specific mechanisms remain poorly understood. Intestine-specific apelin receptor (APJ) knockdown (KD) and wild-type male mice were randomly divided into two subgroups, with/without exercise, to obtain four groups: WT, WT with exercise, APJ KD and APJ KD with exercise. Animals in the exercise groups were subjected to daily treadmill exercise for 3 weeks. Duodenum was collected at 48 h after the last bout of exercise. AMP-activated protein kinase (AMPK) α1 KD and wild-type mice were also utilized for investigating the mediatory role of AMPK on exercise-induced duodenal epithelial development. AMPK and peroxisome proliferator-activated receptor γ coactivator-1 α were upregulated by exercise via APJ activation in the intestinal duodenum. Correspondingly, exercise induced permissive histone modifications in the PR domain containing 16 (PRDM16) promoter to activate its expression, which was dependent on APJ activation. In agreement, exercise elevated the expression of mitochondrial oxidative markers. The expression of intestinal epithelial markers was downregulated due to AMPK deficiency, and AMPK signalling facilitated epithelial renewal. These data demonstrate that exercise-induced activation of the APJ-AMPK axis facilitates the homeostasis of the intestinal duodenal epithelium. KEY POINTS: Apelin receptor (APJ) signalling is required for improved epithelial homeostasis of the small intestine in response to exercise. Exercise intervention activates PRDM16 through inducing histone modifications, enhanced mitochondrial biogenesis and fatty acid metabolism in duodenum. The morphological development of duodenal villus and crypt is enhanced by the muscle-derived exerkine apelin through the APJ-AMP-activated protein kinase axis.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
100
|
Amodeo V, Davies T, Martinez-Segura A, Clements MP, Ragdale HS, Bailey A, Dos Santos MS, MacRae JI, Mokochinski J, Kramer H, Garcia-Diaz C, Gould AP, Marguerat S, Parrinello S. Diet suppresses glioblastoma initiation in mice by maintaining quiescence of mutation-bearing neural stem cells. Dev Cell 2023; 58:836-846.e6. [PMID: 37084728 PMCID: PMC10618406 DOI: 10.1016/j.devcel.2023.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 12/09/2021] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.
Collapse
Affiliation(s)
- Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Timothy Davies
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Amalia Martinez-Segura
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | | | - Andrew Bailey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | | | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Alex P Gould
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|