51
|
Li N, Li S. Epigenetic inactivation of SOX1 promotes cell migration in lung cancer. Tumour Biol 2015; 36:4603-10. [DOI: 10.1007/s13277-015-3107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/14/2015] [Indexed: 11/28/2022] Open
|
52
|
Marcos S, González-Lázaro M, Beccari L, Carramolino L, Martin-Bermejo MJ, Amarie O, Martín DMS, Torroja C, Bogdanović O, Doohan R, Puk O, de Angelis MH, Graw J, Gomez-Skarmeta JL, Casares F, Torres M, Bovolenta P. Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 2015; 142:3009-20. [DOI: 10.1242/dev.122176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to Meis1 preferential association with Hox-Pbx binding sites in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components the Notch signalling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1−/− embryos boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations.
Collapse
Affiliation(s)
- Séverine Marcos
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Monica González-Lázaro
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Leonardo Beccari
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Laura Carramolino
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Maria Jesus Martin-Bermejo
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Oana Amarie
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Daniel Mateos-San Martín
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Ozren Bogdanović
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
- ARC Center of Excellence in Plant Energy Biology, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Roisin Doohan
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Oliver Puk
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | | | - Jochen Graw
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| |
Collapse
|
53
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
54
|
Guan Z, Zhang J, Wang J, Wang H, Zheng F, Peng J, Xu Y, Yan M, Liu B, Cui B, Huang Y, Liu Q. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma. Mol Cancer 2014; 13:257. [PMID: 25427424 PMCID: PMC4326525 DOI: 10.1186/1476-4598-13-257] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022] Open
Abstract
Background Aberrant activation of the Wnt/β-catenin signaling pathway is an important factor in the development of nasopharyngeal carcinoma (NPC). Previous studies have demonstrated that the developmental gene sex-determining region Y (SRY)-box 1 (SOX1) inhibits cervical and liver tumorigenesis by interfering with the Wnt/β-catenin signaling pathway. However, the role of SOX1 in NPC remains unclear. This study investigates the function of SOX1 in NPC pathogenesis. Results Down-regulation of SOX1 was detected in NPC cell lines and tissues. Besides, quantitative methylation-specific polymerase chain reaction revealed that SOX1 promoter was hypermethylated in NPC cell lines. Ectopic expression of SOX1 in NPC cells suppressed colony formation, proliferation and migration in vitro and impaired tumor growth in nude mice. Restoration of SOX1 expression significantly reduced epithelial-mesenchymal transition, enhanced cell differentiation and induced cellular senescence. Conversely, transient knockdown of SOX1 by siRNA in these cells partially restored cell proliferation and colony formation. Notably, SOX1 was found to physically interact with β-catenin and reduce its expression independent of proteasomal activity, leading to inhibition of Wnt/β-catenin signaling and decreased expression of downstream target genes. Conclusions SOX1 decreases the expression of β-catenin in a proteasome-independent manner and reverses the malignant phenotype in NPC cells. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-257) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
55
|
Kuipers SD, Schroeder JE, Trentani A. Changes in hippocampal neurogenesis throughout early development. Neurobiol Aging 2014; 36:365-79. [PMID: 25172123 DOI: 10.1016/j.neurobiolaging.2014.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis drastically diminishes with age but the underlying mechanisms remain unclear. Here, age-related influences on the hippocampal early neuroprogenitor cell (NPC) pool was examined by quantifying changes in Sox1-expressing cells in the dentate gyrus subgranular zone from early adulthood (3 months) to middle age (12 months). Proliferation of distinct NPC subpopulations (Sox1+, Nestin+, and Doublecortin+) and newborn cell survival were also investigated. Examination of total 5-bromodeoxyuridine (BrdU)+ and Doublecortin (DCX)± cells revealed an early and dramatic age-dependent decline of hippocampal neurogenesis. Increasing age from 3 to 12 months was primarily associated with reduced total proliferation, in vivo (-79% of BrdU+ cells) but not in vitro, and DCX+ cell numbers (-89%). When proliferative rates of individual NPC subpopulations were examined, a different picture emerged as proliferating Nestin+ neuroprogenitors (-95% at 9 months) and BrdU+/DCX+ neuroblasts and/or immature neurons (-83% at 12 months) declined the most, whereas proliferating Sox1+ NPCs only dropped by 53%. Remarkably, despite greatly reduced proliferative rates and recent reports of Nestin+ neuroprogenitor loss, total numbers of early Sox1+ NPCs were unaffected by age (at least up to middle age), and newborn cell survival within the dentate gyrus was increased. Neuronal differentiation was concomitantly reduced; however, thus suggesting age-associated changes in fate-choice determination.
Collapse
Affiliation(s)
| | | | - Andrea Trentani
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Department of Molecular Neurobiology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
56
|
Thu KL, Becker-Santos DD, Radulovich N, Pikor LA, Lam WL, Tsao MS. SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types. Oncoscience 2014; 1:326-35. [PMID: 25594027 PMCID: PMC4278306 DOI: 10.18632/oncoscience.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022] Open
Abstract
SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.
Collapse
Affiliation(s)
- Kelsie L Thu
- BC Cancer Research Centre, Vancouver, B.C., Canada
| | | | | | | | - Wan L Lam
- BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Ming-Sound Tsao
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network at the University of Toronto
| |
Collapse
|
57
|
Radial Glia, the Keystone of the Development of the Hippocampal Dentate Gyrus. Mol Neurobiol 2014; 51:131-41. [DOI: 10.1007/s12035-014-8692-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
|
58
|
Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proc Natl Acad Sci U S A 2014; 111:E1383-92. [PMID: 24706903 DOI: 10.1073/pnas.1402898111] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deafness caused by the terminal loss of inner ear hair cells is one of the most common sensory diseases. However, nonmammalian animals (e.g., birds, amphibians, and fish) regenerate damaged hair cells. To understand better the reasons underpinning such disparities in regeneration among vertebrates, we set out to define at high resolution the changes in gene expression associated with the regeneration of hair cells in the zebrafish lateral line. We performed RNA-Seq analyses on regenerating support cells purified by FACS. The resulting expression data were subjected to pathway enrichment analyses, and the differentially expressed genes were validated in vivo via whole-mount in situ hybridizations. We discovered that cell cycle regulators are expressed hours before the activation of Wnt/β-catenin signaling following hair cell death. We propose that Wnt/β-catenin signaling is not involved in regulating the onset of proliferation but governs proliferation at later stages of regeneration. In addition, and in marked contrast to mammals, our data clearly indicate that the Notch pathway is significantly down-regulated shortly after injury, thus uncovering a key difference between the zebrafish and mammalian responses to hair cell injury. Taken together, our findings lay the foundation for identifying differences in signaling pathway regulation that could be exploited as potential therapeutic targets to promote either sensory epithelium or hair cell regeneration in mammals.
Collapse
|
59
|
Popovic J, Stanisavljevic D, Schwirtlich M, Klajn A, Marjanovic J, Stevanovic M. Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One 2014; 9:e91852. [PMID: 24637840 PMCID: PMC3956720 DOI: 10.1371/journal.pone.0091852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/17/2014] [Indexed: 12/01/2022] Open
Abstract
SOX14 is a member of the SOXB2 subgroup of transcription factors implicated in neural development. Although the first SOX14 gene in vertebrates was cloned and characterized more than a decade ago and its expression profile during development was revealed in various animal model systems, the role of this gene during neural development is largely unknown. In the present study we analyzed the expression of SOX14 in human NT2/D1 and mouse P19 pluripotent embryonal carcinoma cells. We demonstrated that it is expressed in both cell lines and upregulated during retinoic acid induced neural differentiation. We showed that SOX14 was expressed in both neuronal and non-neuronal differentiated derivatives, as revealed by immunocytochemistry. Since it was previously proposed that increased SOXB2 proteins level interfere with the activity of SOXB1 counteracting partners, we compared expression patterns of SOXB members during retinoic acid induction of embryonal carcinoma cells. We revealed that upregulation of SOX14 expression is accompanied by alterations in the expression patterns of SOXB1 members. In order to analyze the potential cross-talk between them, we generated SOX14 expression construct. The ectopic expression of SOX14 was demonstrated at the mRNA level in NT2/D1, P19 and HeLa cells, while an increased level of SOX14 protein was detected in HeLa cells only. By transient transfection experiments in HeLa cells we showed for the first time that ectopic expression of SOX14 repressed SOX1 expression, whereas no significant effect on SOX2, SOX3 and SOX21 was observed. Data presented here provide an insight into SOX14 expression during in vitro neural differentiation of embryonal carcinoma cells and demonstrate the effect of its ectopic expression on protein levels of SOXB members in HeLa cells. Obtained results contribute to better understanding the role of one of the most conserved SOX proteins.
Collapse
Affiliation(s)
- Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Danijela Stanisavljevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
60
|
Cheng WS, Chiang JH. CGPredictor: a systematic integrated analytic tool for mining and examining genome-scale cancer independent prognostic epigenetic marker panels. BMC SYSTEMS BIOLOGY 2014; 7 Suppl 6:S10. [PMID: 24565108 PMCID: PMC4029265 DOI: 10.1186/1752-0509-7-s6-s10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Tumor biomarkers are potentially useful in several ways such as the identification of individuals at increased risk of developing cancer, in screening for early malignancies and in aiding cancer diagnoses; tumor biomarkers may also be used for determining prognosis, predicting therapeutic response, patient tracking following curative surgery for cancer and for monitoring therapy. Epigenetic alterations, especially aberrant DNA methylation, are recognized as common molecular alterations in a variety of tumors and also occur during the development of tumors. The Cancer Grade Predictor (CGPredictor) is an extendable package with functions designed to facilitate systematic integrated and rapid analysis of high-throughput methylation through the use of most self-similarity subgroups of patients supported by various validating examinations with regarded to survival outcome to obtain the identity of the target predictor. Results We used high-grade serous ovarian cancer (HGSOC) and invasive breast carcinoma (BRCA) to demonstrate the usefulness of the CGPredictor package. The clustering results and the identity predictors worked well and efficiently in producing significant results after various tests were used to validate the usefulness of CGPredictor package. Also, some of the markers for either the HGSOC or BRCA marker panel have been previously reported to reveal significant results. Even when performed using a different platform with an independent large population BRCA dataset for validation, the identity predictor provided an accurate assessment of patient conditions and produced significant results. Conclusions CGPredictor package is not a customized analysis tool designed specifically for the identification of only one or a few specific types of cancer but can be applied more broadly; moreover, the results indicate that the extracted predictors may worthy of consideration for further clinical testing to identify their potential usefulness for clinical molecular diagnosis and targeted treatments of patients with HGSOC and BRCA. So, the use of CGPredictor is feasible for examining the statistical significance of specific markers of interest and shows great potential for use with other types of cancers for cancer biomarker mining.
Collapse
|
61
|
|
62
|
Karnavas T, Mandalos N, Malas S, Remboutsika E. SoxB, cell cycle and neurogenesis. Front Physiol 2013; 4:298. [PMID: 24146653 PMCID: PMC3797971 DOI: 10.3389/fphys.2013.00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/29/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theodoros Karnavas
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | | | | | | |
Collapse
|
63
|
Lin YW, Tsao CM, Yu PN, Shih YL, Lin CH, Yan MD. SOX1 suppresses cell growth and invasion in cervical cancer. Gynecol Oncol 2013; 131:174-81. [DOI: 10.1016/j.ygyno.2013.07.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/20/2013] [Accepted: 07/27/2013] [Indexed: 12/19/2022]
|
64
|
Sridharan I, Kim T, Strakova Z, Wang R. Matrix-specified differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 2013; 437:489-95. [PMID: 23850689 DOI: 10.1016/j.bbrc.2013.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 01/19/2023]
Abstract
To create suitable biological scaffolds for tissue engineering and cell therapeutics, it is essential to understand the matrix-mediated specification of stem cell differentiation. To this end, we studied the effect of collagen type I on stem cell lineage specification. We altered the properties of collagen type I by incorporating carbon nanotubes (CNT). The collagen-CNT composite material was stiffer with thicker fibers and longer D-period. Human decidua parietalis stem cells (hdpPSC) were found to differentiate exclusively and rapidly towards neural cells on the collagen-CNT matrix. We attribute this accelerated neural differentiation to the enhanced structural and mechanical properties of collagen-CNT material. Strikingly, the collagen-CNT matrix, unlike collagen, imposes the neural fate by an alternate mechanism that may be independent of beta-1 integrin and beta-catenin. The study demonstrates the sensitivity of stem cells to subtle changes in the matrix and the utilization of a novel biocomposite material for efficient and directed differentiation of stem cells.
Collapse
Affiliation(s)
- Indumathi Sridharan
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, Chicago, IL 60616, United States
| | | | | | | |
Collapse
|
65
|
Munnamalai V, Fekete DM. Wnt signaling during cochlear development. Semin Cell Dev Biol 2013; 24:480-9. [PMID: 23548730 DOI: 10.1016/j.semcdb.2013.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is a hallmark of all embryonic development with multiple roles at multiple developmental time points. Wnt signaling is also important in the development of several organs, one of which is the inner ear, where it participates in otic specification, the formation of vestibular structures, and the development of the cochlea. In particular, we focus on Wnt signaling in the auditory organ, the cochlea. Attempting to dissect the multiple Wnt signaling pathways in the mammalian cochlea is a challenging task due to limited expression data, particularly at proliferating stages. To offer predictions about Wnt activity, we compare cochlear development with that of other biological systems such as Xenopus retina, brain, cancer cells and osteoblasts. Wnts are likely to regulate development through crosstalk with other signaling pathways, particularly Notch and FGF, leading to changes in the expression of Sox2 and proneural (pro-hair cell) genes. In this review we have consolidated the known signaling pathways in the cochlea with known developmental roles of Wnts from other systems to generate a potential timeline of cochlear development.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | | |
Collapse
|
66
|
Sehgal P, Chaturvedi P, Kumaran RI, Kumar S, Parnaik VK. Lamin A/C haploinsufficiency modulates the differentiation potential of mouse embryonic stem cells. PLoS One 2013; 8:e57891. [PMID: 23451281 PMCID: PMC3581495 DOI: 10.1371/journal.pone.0057891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/28/2013] [Indexed: 02/06/2023] Open
Abstract
Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development.
Collapse
Affiliation(s)
- Poonam Sehgal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - R. Ileng Kumaran
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Satish Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Veena K. Parnaik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail:
| |
Collapse
|
67
|
Shen SP, Aleksic J, Russell S. Identifying targets of the Sox domain protein Dichaete in the Drosophila CNS via targeted expression of dominant negative proteins. BMC DEVELOPMENTAL BIOLOGY 2013; 13:1. [PMID: 23289785 PMCID: PMC3541953 DOI: 10.1186/1471-213x-13-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/03/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Group B Sox domain transcription factors play important roles in metazoan central nervous system development. They are, however, difficult to study as mutations often have pleiotropic effects and other Sox family members can mask phenotypes due to functional compensation. In Drosophila melanogaster, the Sox gene Dichaete is dynamically expressed in the embryonic CNS, where it is known to have functional roles in neuroblasts and the ventral midline. In this study, we use inducible dominant negative proteins in combination with ChIP, immunohistochemistry and genome-wide expression profiling to further dissect the role of Dichaete in these two tissues. RESULTS We generated two dominant negative Dichaete constructs, one lacking a DNA binding domain and the other fused to the Engrailed transcriptional repressor domain. We expressed these tissue-specifically in the midline and in neuroblasts using the UAS/GAL4 system, validating their use at the phenotypic level and with known target genes. Using ChIP and immunohistochemistry, we identified two new likely direct Dichaete target genes, commisureless in the midline and asense in the neuroectoderm. We performed genome-wide expression profiling in stage 8-9 embryos, identifying almost a thousand potential tissue-specific Dichaete targets, with half of these genes showing evidence of Dichaete binding in vivo. These include a number of genes with known roles in CNS development, including several components of the Notch, Wnt and EGFR signalling pathways. CONCLUSIONS As well as identifying commisureless as a target, our data indicate that Dichaete helps establish its expression during early midline development but has less effect on its established later expression, highlighting Dichaete action on tissue specific enhancers. An analysis of the broader range of candidate Dichaete targets indicates that Dichaete plays diverse roles in CNS development, with the 500 or so Dichaete-bound putative targets including a number of transcription factors, signalling pathway components and terminal differentiation genes. In the early neurectoderm we implicate Dichaete in the lateral inhibition pathway and show that Dichaete acts to repress the proneural gene asense. Our analysis also reveals that dominant negatives cause off-target effects, highlighting the need to use other experimental data for validating findings from dominant negative studies.
Collapse
Affiliation(s)
- Shih Pei Shen
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
68
|
Tsao CM, Yan MD, Shih YL, Yu PN, Kuo CC, Lin WC, Li HJ, Lin YW. SOX1 functions as a tumor suppressor by antagonizing the WNT/β-catenin signaling pathway in hepatocellular carcinoma. Hepatology 2012; 56:2277-87. [PMID: 22767186 DOI: 10.1002/hep.25933] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/14/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Oncogenic activation of the Wnt/β-catenin signaling pathway is common in hepatocellular carcinoma (HCC). Our recent studies have demonstrated that SRY (sex determining region Y)-box 1 (SOX1) and secreted frizzled-related proteins are concomitantly promoter-hypermethylated, and this might lead to abnormal activation of the Wnt signaling pathway in HCC. SOX1 encodes a transcription factor involved in the regulation of embryonic development and cell fate determination. However, the expression and functional role of SOX1 in HCC remains unclear. In this study, we confirmed via quantitative methylation-specific polymerase chain reaction that SOX1 was frequently downregulated through promoter hypermethylation in HCC cells and tissues. Overexpression of SOX1 by a constitutive or inducible approach could suppress cell proliferation, colony formation, and invasion ability in HCC cell lines, as well as tumor growth in nonobese diabetic/severe combined immunodeficiency mice. Conversely, knockdown of SOX1 by withdrawal of doxycycline could partially restore cell proliferation and colony formation in HCC cells. We used a T cell factor (TCF)-responsive luciferase reporter assay and western blot analysis to prove that SOX1 could regulate TCF-responsive transcriptional activity and inhibit the expression of Wnt downstream genes. Furthermore, we used glutathione S-transferase pull-down, co-immunoprecipitation, and confocal microscopy to demonstrate that SOX1 could interact with β-catenin but not with the β-catenin/TCF complex. Moreover, restoration of the expression of SOX1 induces significant cellular senescence in Hep3B cells. CONCLUSION Our data show that a developmental gene, SOX1, may function as a tumor suppressor by interfering with Wnt/β-catenin signaling in the development of HCC.
Collapse
Affiliation(s)
- Chun-Ming Tsao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Sox21 promotes hippocampal adult neurogenesis via the transcriptional repression of the Hes5 gene. J Neurosci 2012; 32:12543-57. [PMID: 22956844 DOI: 10.1523/jneurosci.5803-11.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite the importance of the production of new neurons in the adult hippocampus, the transcription network governing this process remains poorly understood. The High Mobility Group (HMG)-box transcription factor, Sox2, and the cell surface activated transcriptional regulator, Notch, play important roles in CNS stem cells. Here, we demonstrate that another member of the SoxB (Sox1/Sox2/Sox3) transcription factor family, Sox21, is also a critical regulator of adult neurogenesis in mouse hippocampus. Loss of Sox21 impaired transition of progenitor cells from type 2a to type 2b, thereby reducing subsequent production of new neurons in the adult dentate gyrus. Analysis of the Sox21 binding sites in neural stem/progenitor cells indicated that the Notch-responsive gene, Hes5, was a target of Sox21. Sox21 repressed Hes5 gene expression at the transcriptional level. Simultaneous overexpression of Hes5 and Sox21 revealed that Hes5 was a downstream effector of Sox21 at the point where the Notch and Sox pathways intersect to control the number of neurons in the adult hippocampus. Therefore, Sox21 controls hippocampal adult neurogenesis via transcriptional repression of the Hes5 gene.
Collapse
|
70
|
Venere M, Han YG, Bell R, Song JS, Alvarez-Buylla A, Blelloch R. Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development 2012; 139:3938-49. [PMID: 22992951 DOI: 10.1242/dev.081133] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dentate gyrus of the hippocampus continues generating new neurons throughout life. These neurons originate from radial astrocytes within the subgranular zone (SGZ). Here, we find that Sox1, a member of the SoxB1 family of transcription factors, is expressed in a subset of radial astrocytes. Lineage tracing using Sox1-tTA;tetO-Cre;Rosa26 reporter mice shows that the Sox1-expressing cells represent an activated neural stem/progenitor population that gives rise to most if not all newly born granular neurons, as well as a small number of mature hilar astrocytes. Furthermore, a subpopulation of Sox1-marked cells have long-term neurogenic potential, producing new neurons 3 months after inactivation of tetracycline transactivator. Remarkably, after 8 weeks of labeling and a 12-week chase, as much as 44% of all granular neurons in the dentate gyrus were derived from Sox1 lineage-traced adult neural stem/progenitor cells. The fraction of Sox1-positive cells within the radial astrocyte population decreases with age, correlating with a decrease in neurogenesis. However, expression profiling shows that these cells are transcriptionally stable throughout the lifespan of the mouse. These results demonstrate that Sox1 is expressed in an activated stem/progenitor population whose numbers decrease with age while maintaining a stable molecular program.
Collapse
Affiliation(s)
- Monica Venere
- Department of Urology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
71
|
Cabarcas SM, Thomas S, Zhang X, Cherry JM, Sebastian T, Yerramilli S, Lader E, Farrar WL, Hurt EM. The role of upregulated miRNAs and the identification of novel mRNA targets in prostatospheres. Genomics 2012; 99:108-17. [PMID: 22206861 PMCID: PMC3430075 DOI: 10.1016/j.ygeno.2011.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 11/30/2022]
Abstract
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.
Collapse
Affiliation(s)
- Stephanie M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Miyake A, Nihno S, Murakoshi Y, Satsuka A, Nakayama Y, Itoh N. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mech Dev 2012; 128:577-90. [PMID: 22265871 DOI: 10.1016/j.mod.2012.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
73
|
Mishra D, Tiwari SK, Agarwal S, Sharma VP, Chaturvedi RK. Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring. Toxicol Sci 2012; 127:84-100. [PMID: 22240977 DOI: 10.1093/toxsci/kfs004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neurogenesis is a process of generation of new neurons in the hippocampus and associated with learning and memory. Carbofuran, a carbamate pesticide, elicits several neurochemical, neurophysiological, and neurobehavioral deficits. We evaluated whether chronic prenatal oral exposure of carbofuran during gestational days 7-21 alters postnatal hippocampal neurogenesis at postnatal day 21. We found carbofuran treatment significantly decreased bromodeoxyuridine (BrdU) positive cell proliferation and long-term survival in the hippocampus only but not in the cerebellum. We observed a reduced number of transcription factor SOX-2 and glial fibrillary acidic protein (GFAP) colabeled cells, decreased nestin messenger RNA (mRNA) expression, and decreased histone-H3 phosphorylation following carbofuran treatment, suggesting a decreased pool of neural progenitor cells (NPC). Colocalization of BrdU with doublecortin (DCX), neuronal nuclei (NeuN), and GFAP suggested decreased neuronal differentiation and increased glial differentiation by carbofuran. The number of DCX(+) and NeuN(+) neurons, NeuN protein levels, and fibers length of DCX(+) neurons were decreased by carbofuran. Carbofuran caused a significant downregulation of mRNA expression of the neurogenic genes/transcription factors such as neuregulin, neurogenin, and neuroD1 and upregulation of the gliogenic gene Stat3. Carbofuran exposure led to increased BrdU/caspase 3 colabeled cells, an increased number of degenerative neurons and profound deficits in learning and memory processes. The number and size of primary neurospheres derived from the hippocampus of carbofuran-treated rats were decreased. These results suggest that early gestational carbofuran exposure diminishes neurogenesis, reduces the NPC pool, produces neurodegeneration in the hippocampus, and causes cognitive impairments in rat offspring.
Collapse
Affiliation(s)
- Divya Mishra
- Developmental Toxicology Division, Systems Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow-226001, India
| | | | | | | | | |
Collapse
|
74
|
SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 2011; 31:13921-35. [PMID: 21957254 DOI: 10.1523/jneurosci.3343-11.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox containing gene 17 (Sox17) in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell cycle control and activation of the Wingless and integration site (Wnt)/β-catenin pathway. Sox17 knockdown also increases the levels of cyclin D1, Axin2, and activated β-catenin. In OPCs, the expression pattern of Sox17, cyclin D1, and secreted Frizzled-related protein-1 in the presence of platelet-derived growth factor (PDGF) was coordinately accelerated by addition of thyroid hormone, indicating differentiation-induced regulation of Sox17 targets. In developing white matter, decreased total β-catenin, activated β-catenin, and cyclin D1 levels coincided with the peak of Sox17 expression, and immunoprecipitates showed a developmentally regulated interaction among Sox17, T-cell transcription factor 4, and β-catenin proteins. In OPCs, PDGF stimulated phosphorylation of glycogen synthase 3β and the Wnt coreceptor LRP6, and enhanced β-catenin-dependent gene expression. Sox17 overexpression inhibited PDGF-induced TOPFLASH and cyclin D1 promoter activity, and decreased endogenous cyclin D1, activated β-catenin, as well as total β-catenin levels. Recombinant Sox17 prevented Wnt3a from repressing myelin protein expression, and inhibition of Sox17-mediated proteasomal degradation of β-catenin blocked myelin protein induction. These results indicate that Sox17 suppresses cyclin D1 expression and cell proliferation by directly antagonizing β-catenin, whose activity in OPCs is stimulated not only by Wnt3a, but also by PDGF. Our identification of downstream targets of Sox17 thus defines signaling pathways and molecular mechanisms in OPCs that are regulated by Sox17 during cell cycle exit and the onset of differentiation in oligodendrocyte development.
Collapse
|
75
|
Notch signaling alters sensory or neuronal cell fate specification of inner ear stem cells. J Neurosci 2011; 31:8351-8. [PMID: 21653840 DOI: 10.1523/jneurosci.6366-10.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells, and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus, Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors.
Collapse
|
76
|
Remboutsika E, Elkouris M, Iulianella A, Andoniadou CL, Poulou M, Mitsiadis TA, Trainor PA, Lovell-Badge R. Flexibility of neural stem cells. Front Physiol 2011; 2:16. [PMID: 21516249 PMCID: PMC3079860 DOI: 10.3389/fphys.2011.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022] Open
Abstract
Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells, and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.
Collapse
Affiliation(s)
- Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center "Alexander Fleming," Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Hosoya M, Fujioka M, Matsuda S, Ohba H, Shibata S, Nakagawa F, Watabe T, Wakabayashi KI, Saga Y, Ogawa K, Okano HJ, Okano H. Expression and function of Sox21 during mouse cochlea development. Neurochem Res 2011; 36:1261-9. [PMID: 21287267 DOI: 10.1007/s11064-011-0416-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
The development of the inner ear is an orchestrated process of morphogenesis with spatiotemporally controlled generations of individual cell types. Recent studies have revealed that the Sox gene family, a family of evolutionarily conserved HMG-type transcriptional factors, is differentially expressed in each cell type of the mammalian inner ear and plays critical roles in cell-fate determination during development. In this study, we examined the expression pattern of Sox21 in the developing and adult murine cochlea. Sox21 was expressed throughout the sensory epithelium in the early otocyst stage but became restricted to supporting cells during adulthood. Interestingly, the expression in adults was restricted to the inner phalangeal, inner border, and Deiters' cells: all of these cells are in direct contact with hair cells. Evaluations of the auditory brainstem-response revealed that Sox21(-/-) mice suffered mild hearing impairments, with an increase in hair cells that miss their appropriate planar cell polarity. Taken together with the previously reported critical roles of SoxB1 families in the morphogenesis of inner ear sensory and neuronal cells, our results suggest that Sox21, a counteracting partner of the SoxB1 family, controls fine-tuned cell fate decisions. Also, the characteristic expression pattern may be useful for labelling a particular subset of supporting cells.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Elkouris M, Balaskas N, Poulou M, Politis PK, Panayiotou E, Malas S, Thomaidou D, Remboutsika E. Sox1 Maintains the Undifferentiated State of Cortical Neural Progenitor Cells via the Suppression of Prox1-Mediated Cell Cycle Exit and Neurogenesis. Stem Cells 2011; 29:89-98. [DOI: 10.1002/stem.554] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
79
|
Qin YR, Tang H, Xie F, Liu H, Zhu Y, Ai J, Chen L, Li Y, Kwong DL, Fu L, Guan XY. Characterization of tumor-suppressive function of SOX6 in human esophageal squamous cell carcinoma. Clin Cancer Res 2010; 17:46-55. [PMID: 21084391 DOI: 10.1158/1078-0432.ccr-10-1155] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE By using cDNA microarray analysis, we identified a transcriptional factor, SOX6, was frequently downregulated in esophageal squamous cell carcinoma (ESCC). The aim of this study is to investigate the role of SOX6 in human esophageal cancer development, and to examine the prevalence and clinical significance of SOX6 downregulation in ESCC. EXPERIMENTAL DESIGN Expressions of SOX6 mRNA in 50 ESCCs and SOX6 protein in 300 ESCCs were investigated by semiquantitative RT-PCR and immunohistochemistry, respectively. The tumor-suppressive function of SOX6 was characterized by cell growth, foci formation, wound-healing and cell invasive assays, and tumor xenograft experiment. Western blot analysis was applied to detect protein expression levels. RESULTS SOX6 was frequently downregulated in primary ESCCs in both mRNA level (29/50, 58%) and protein level (149/219, 68.0%), which was significantly associated with the poor differentiation (P = 0.029), lymph node metastases (P = 0.014), advanced TNM stage (P = 0.000), and disease-specific survival (P < 0.001). Multivariate analysis indicated that the downregulation of SOX6 (P = 0.000) was a significant independent prognostic factors for ESCC. Functional studies showed that SOX6 was able to suppress both in vitro and in vivo tumorigenic ability of ESCC cells. The tumor-suppressive mechanism of SOX6 was associated with its role in G1/S cell-cycle arrest by upregulating expressions of p53 and p21(WAF1/CIP1) and downregulating expressions of cyclin D1/CDK4, cyclin A, and β-catenin. CONCLUSIONS We provided the first evidence that SOX6 is a novel tumor-suppressor gene in ESCC development and is a potential prognostic marker in ESCC.
Collapse
Affiliation(s)
- Yan-Ru Qin
- Department of Clinical Oncology, the First affiliated hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Mathews LA, Hurt EM, Zhang X, Farrar WL. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells. Mol Cancer 2010; 9:267. [PMID: 20929579 PMCID: PMC2958982 DOI: 10.1186/1476-4598-9-267] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 10/07/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs) that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. RESULTS Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. CONCLUSIONS Using this method we can begin to understand which genes are epigenetically regulated in the invasive population compared to the bulk tumor cells. These aggressive sub-populations of cells may be linked to the cancer stem cell hypothesis, making their patterns of epigenetic regulation very attractive for biomarker analysis.
Collapse
Affiliation(s)
- Lesley A Mathews
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
81
|
Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc Natl Acad Sci U S A 2010; 107:16685-90. [PMID: 20823235 DOI: 10.1073/pnas.0906917107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) silences neuronal genes in neural stem cells (NSCs) and nonneuronal cells through its role as a dynamic modular platform for recruitment of transcriptional and epigenetic regulatory cofactors to RE1-containing promoters. In embryonic stem cells, the REST regulatory network is highly integrated with the transcriptional circuitry governing self-renewal and pluripotency, although its exact functional role is unclear. The C-terminal cofactor for REST, CoREST, also acts as a modular scaffold, but its cell type-specific roles have not been elucidated. We used chromatin immunoprecipitation-on-chip to examine CoREST and REST binding sites in NSCs and their proximate progenitor species. In NSCs, we identified a larger number of CoREST (1,820) compared with REST (322) target genes. The majority of these CoREST targets do not contain known RE1 motifs. Notably, these CoREST target genes do play important roles in pluripotency networks, in modulating NSC identity and fate decisions and in epigenetic processes previously associated with both REST and CoREST. Moreover, we found that NSC-mediated developmental transitions were associated primarily with liberation of CoREST from promoters with transcriptional repression favored in less lineage-restricted radial glia and transcriptional activation favored in more lineage-restricted neuronal-oligodendrocyte precursors. Clonal NSC REST and CoREST gene manipulation paradigms further revealed that CoREST has largely independent and previously uncharacterized roles in promoting NSC multilineage potential and modulating early neural fate decisions.
Collapse
|
82
|
Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS One 2010; 5:e12376. [PMID: 20811503 PMCID: PMC2928265 DOI: 10.1371/journal.pone.0012376] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/25/2010] [Indexed: 11/19/2022] Open
Abstract
Intermediate progenitor cells constitute a second proliferative cell type in the developing mammalian cerebral cortex. Little is known about the factors that govern the production of intermediate progenitors. Although persistent expression of stabilized β-catenin was found to delay the maturation of radial glial progenitors into intermediate progenitors, the relationship between β-catenin signaling and intermediate progenitors remains poorly understood. Using a transgenic reporter mouse for Axin2, a direct target of Wnt/β-catenin signaling, we observed that β-catenin signaling is decreased in intermediate progenitor cells relative to radial glial progenitors. Conditional deletion of β-catenin from mouse cortical neural progenitors increased intermediate progenitor numbers, while conditional expression of stabilized β-catenin reduced the intermediate progenitor population. Together, these findings provide evidence that β-catenin signaling in radial progenitors negatively regulates intermediate progenitor cell number during cortical development.
Collapse
|
83
|
Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 2010; 239:56-68. [PMID: 19655378 DOI: 10.1002/dvdy.22046] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The SOX family of transcription factors have emerged as modulators of canonical Wnt/beta-catenin signaling in diverse development and disease contexts. There are over 20 SOX proteins encoded in the vertebrate genome and recent evidence suggests that many of these can physically interact with beta-catenin and modulate the transcription of Wnt-target genes. The precise mechanisms by which SOX proteins regulate beta-catenin/TCF activity are still being resolved and there is evidence to support a number of models including: protein-protein interactions, the binding of SOX factors to Wnt-target gene promoters, the recruitment of co-repressors or co-activators, modulation of protein stability, and nuclear translocation. In some contexts, Wnt signaling also regulates SOX expression resulting in feedback regulatory loops that fine-tune cellular responses to beta-catenin/TCF activity. In this review, we summarize the examples of Sox-Wnt interactions and examine the underlying mechanisms of this potentially widespread and underappreciated mode of Wnt-regulation.
Collapse
Affiliation(s)
- Jay D Kormish
- Division of Developmental Biology, Cincinnati Children's Research Foundation and University of Cincinnati Department of Pediatrics, College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
84
|
Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci U S A 2010; 107:5254-9. [PMID: 20194744 DOI: 10.1073/pnas.0914114107] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To examine the fundamental mechanisms governing neural differentiation, we analyzed the transcriptome changes that occur during the differentiation of hESCs into the neural lineage. Undifferentiated hESCs as well as cells at three stages of early neural differentiation-N1 (early initiation), N2 (neural progenitor), and N3 (early glial-like)-were analyzed using a combination of single read, paired-end read, and long read RNA sequencing. The results revealed enormous complexity in gene transcription and splicing dynamics during neural cell differentiation. We found previously unannotated transcripts and spliced isoforms specific for each stage of differentiation. Interestingly, splicing isoform diversity is highest in undifferentiated hESCs and decreases upon differentiation, a phenomenon we call isoform specialization. During neural differentiation, we observed differential expression of many types of genes, including those involved in key signaling pathways, and a large number of extracellular receptors exhibit stage-specific regulation. These results provide a valuable resource for studying neural differentiation and reveal insights into the mechanisms underlying in vitro neural differentiation of hESCs, such as neural fate specification, neural progenitor cell identity maintenance, and the transition from a predominantly neuronal state into one with increased gliogenic potential.
Collapse
|
85
|
Abstract
In the cochlea, spiral ganglion neurons play a critical role in hearing as they form the relay between mechanosensory hair cells in the inner ear and cochlear nuclei in the brainstem. The proneural basic helix-loop-helix transcription factors Neurogenin1 (Neurog1) and NeuroD1 have been shown to be essential for the development of otocyst-derived inner ear sensory neurons. Here, we show neural competence of nonsensory epithelial cells in the cochlea, as ectopic expression of either Neurog1 or NeuroD1 results in the formation of neuronal cells. Since the high-mobility-group type transcription factor Sox2, which is also known to play a role in neurogenesis, is expressed in otocyst-derived neural precursor cells and later in the spiral ganglion neurons along with Neurog1 and NeuroD1, we used both gain- and loss-of-function experiments to examine the role of Sox2 in spiral ganglion neuron formation. We demonstrate that overexpression of Sox2 results in the production of neurons, suggesting that Sox2 is sufficient for the induction of neuronal fate in nonsensory epithelial cells. Furthermore, spiral ganglion neurons are absent in cochleae from Sox2(Lcc/Lcc) mice, indicating that Sox2 is also required for neuronal formation in the cochlea. Our results indicate that Sox2, along with Neurog1 and NeuroD1, are sufficient to induce a neuronal fate in nonsensory regions of the cochlea. Finally, we demonstrate that nonsensory cells within the cochlea retain neural competence through at least the early postnatal period.
Collapse
|
86
|
Chew LJ, Gallo V. The Yin and Yang of Sox proteins: Activation and repression in development and disease. J Neurosci Res 2010; 87:3277-87. [PMID: 19437544 DOI: 10.1002/jnr.22128] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The general view of development consists of the acquisition of committed/differentiated phenotypes following a period of self-renewal and progenitor expansion. Lineage specification and progression are phenomena of antagonistic events, silencing tissue-specific gene expression in precursors to allow self-renewal and multipotentiality, and subsequently suppressing proliferation and embryonic gene expression to promote the restricted expression of tissue-specific genes during maturation. The high mobility group-containing Sox family of transcription factors constitutes one of the earliest classes of genes to be expressed during embryonic development. These proteins not only are indispensable for progenitor cell specification but also are critical for terminal differentiation of multiple cell types in a wide variety of lineages. Sox transcription factors are now known to induce or repress progenitor cell characteristics and cell proliferation or to activate the expression of tissue-specific genes. Sox proteins fulfill their diverse functions in developmental regulation by distinct molecular mechanisms. Not surprisingly, in addition to DNA binding and bending, Sox transcription factors also interact with different protein partners to function as coactivators or corepressors of downstream target genes. Here we seek to provide an overview of the current knowledge of Sox gene functional mechanisms, in an effort to understand their roles in both development and pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
87
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
88
|
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009; 30:790-829. [PMID: 19837867 PMCID: PMC2806371 DOI: 10.1210/er.2009-0008] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | |
Collapse
|
89
|
SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch. Biochem Biophys Res Commun 2009; 390:1114-20. [DOI: 10.1016/j.bbrc.2009.08.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/13/2022]
|
90
|
Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009; 3:412-24. [PMID: 19535895 DOI: 10.4161/cam.3.4.8803] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.
Collapse
Affiliation(s)
- Sohail Ahmed
- Institute of Medical Biology, Immunos, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136:3289-99. [PMID: 19736324 DOI: 10.1242/dev.040451] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
92
|
Rogers C, Moody SA, Casey E. Neural induction and factors that stabilize a neural fate. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:249-62. [PMID: 19750523 PMCID: PMC2756055 DOI: 10.1002/bdrc.20157] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neural ectoderm of vertebrates forms when the bone morphogenetic protein (BMP) signaling pathway is suppressed. Herein, we review the molecules that directly antagonize extracellular BMP and the signaling pathways that further contribute to reduce BMP activity in the neural ectoderm. Downstream of neural induction, a large number of "neural fate stabilizing" (NFS) transcription factors are expressed in the presumptive neural ectoderm, developing neural tube and ultimately in neural stem cells. Herein, we review what is known about their activities during normal development to maintain a neural fate and regulate neural differentiation. Further elucidation of how the NFS genes interact to regulate neural specification and differentiation should ultimately prove useful for regulating the expansion and differentiation of neural stem and progenitor cells.
Collapse
Affiliation(s)
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University
| | - Elena Casey
- Department of Biology, Georgetown University
| |
Collapse
|
93
|
Wexler EM, Paucer A, Kornblum HI, Palmer TD, Plamer TD, Geschwind DH. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 2009; 27:1130-41. [PMID: 19418460 DOI: 10.1002/stem.36] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling regulates neural stem cell (NSC) function and development throughout an individual's lifetime. Intriguingly, adult hippocampal progenitors (AHPs) produce several Wnts, and the intracellular machinery necessary to respond to them, creating the potential for an active autocrine-signaling loop within this stem cell niche. However, the standard luciferase-based Wnt assay failed to detect this signaling loop. This assay is inherently less temporally sensitive to activity among a population of unsynchronized proliferating cells because it relies on the rapidly degrading reporter luciferase. We circumvented this limitation using a promoter assay that employs green fluorescent protein (GFP), as a relatively long-lived reporter of canonical Wnt activity. We found that at baseline, AHPs secreted functional Wnt that self-stimulates low-level canonical Wnt signaling. Elimination baseline Wnt activity, via application of an extracellular Wnt antagonist promoted neurogenesis, based on a combination of unbiased gene expression analysis and cell-fate analysis. A detailed clonal analysis of progenitors transduced with specific intracellular antagonists of canonical signaling, either Axin or truncated cadherin (beta-catenin sequestering), revealed that loss of baseline signaling depletes the population of multipotent precursors, thereby driving an increasing fraction to assume a committed cell fate (i.e., unipotent progenitors). Similarly, baseline Wnt signaling repressed differentiation of human NSCs. Although the specific Wnts produced by neural precursors vary with age and between species, their effects remain remarkably consistent. In sum, this study establishes that autonomous Wnt signaling is a conserved feature of the neurogenic niche that preserves the delicate balance between NSC maintenance and differentiation.
Collapse
Affiliation(s)
- Eric M Wexler
- Department of Psychiatry, The Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Ishii Y, Weinberg K, Oda-Ishii I, Coughlin L, Mikawa T. Morphogenesis and cytodifferentiation of the avian retinal pigmented epithelium require downregulation of Group B1 Sox genes. Development 2009; 136:2579-89. [PMID: 19570849 DOI: 10.1242/dev.031344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The optic vesicle is a multipotential primordium of the retina, which becomes subdivided into the neural retina and retinal pigmented epithelium domains. Although the roles of several paracrine factors in patterning the optic vesicle have been studied extensively, little is known about cell-autonomous mechanisms that regulate coordinated cell morphogenesis and cytodifferentiation of the retinal pigmented epithelium. Here we demonstrate that members of the SoxB1 gene family, Sox1, Sox2 and Sox3, are all downregulated in the presumptive retinal pigmented epithelium. Constitutive maintenance of SoxB1 expression in the presumptive retinal pigmented epithelium both in vivo and in vitro resulted in the absence of cuboidal morphology and pigmentation, and in concomitant induction of neural differentiation markers. We also demonstrate that exogenous Fgf4 inhibits downregulation all SoxB1 family members in the presumptive retinal pigment epithelium. These results suggest that retinal pigment epithelium morphogenesis and cytodifferentiation requires SoxB1 downregulation, which depends on the absence of exposure to an FGF-like signal.
Collapse
Affiliation(s)
- Yasuo Ishii
- University of California San Francisco, Cardiovascular Research Institute, Rock Hall Room 384D, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
95
|
The effect of ultra-nanocrystalline diamond films on the proliferation and differentiation of neural stem cells. Biomaterials 2009; 30:3428-35. [DOI: 10.1016/j.biomaterials.2009.03.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/04/2009] [Indexed: 12/20/2022]
|
96
|
Suter DM, Tirefort D, Julien S, Krause KH. A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 2009; 27:49-58. [PMID: 18832594 DOI: 10.1634/stemcells.2008-0319] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factors Sox1 and Pax6 are expressed sequentially during early mouse embryonic neurogenesis. Sox1 expression starts upon formation of neuroectoderm, whereas Pax6 is subsequently expressed in radial glial cells, the latter giving rise to most neurons of the cerebral cortex. Here we used mouse embryonic stem (ES) cells to study the role of Sox1 and Pax6 in regulating differentiation of neural progenitors. For this purpose, we investigated the effect of overexpression and knockdown of Sox1 and Pax6, using three differentiation protocols. We show that (a) expression of Sox1 or Pax6 in uncommitted ES cells favored neuroectodermal lineage choice; (b) continuous Sox1 expression maintained cells at the neuroepithelial stage and prevented expression of Pax6 and other radial glial cell markers; (c) Sox1 knockdown facilitated exit from the progenitor stage, whereas Pax6 knockdown decreased formation of radial glia; (d) forced Pax6 expression in neuroepithelial cells triggered their differentiation into radial glia and neurons; and (e) Pax6 expression induced cell migration, a feature typical of radial glia-derived early neurons. We conclude that Sox1 enhances neuroectodermal commitment and maintenance but blocks further differentiation. In contrast, Pax6 is involved in the progression of neuroectoderm toward radial glia.
Collapse
Affiliation(s)
- David M Suter
- Department of Pathology and Immunology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
97
|
Pekkanen-Mattila M, Kerkelä E, Tanskanen JMA, Pietilä M, Pelto-Huikko M, Hyttinen J, Skottman H, Suuronen R, Aalto-Setälä K. Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions--a comparison of multiple cell lines. Ann Med 2009; 41:360-70. [PMID: 19165643 DOI: 10.1080/07853890802609542] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The differentiation efficiencies of human embryonic stem cell (hESC) lines differ from each other. To assess this in more detail we studied the cardiac differentiation of eight hESC lines derived in the same laboratory. RESULTS Substantial variation in growth and in the ability to form beating areas was seen between the different hESC lines; line HS346 gave the best efficiency (9.4%), while HS293 did not differentiate into beating colonies at all. Nine germ layer and differentiation markers were quantified during early differentiation in four hESC lines. The expression levels of Brachyury T, MESP1 and NKX2.5 were highest in the most efficient cardiac line (HS346). A systematic characterization of the beating cells revealed proper cardiac marker expression, electrophysiological activity, and pharmacological response. CONCLUSIONS The hESC lines derived in the same laboratory varied considerably in their potential to differentiate into beating cardiomyocytes. None of the expression markers could clearly predict cardiac differentiation potential, although the expression of early cardiomyogenic genes was upregulated in the best cardiac line. The proper cardiomyocyte characteristics and pharmacological response indicate that these cells could be used as a model for human cardiomyocytes in pharmacological and toxicological analyses when investigating new heart medications or cardiac side-effects.
Collapse
Affiliation(s)
- Mari Pekkanen-Mattila
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Biokatu 12, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wen S, Li H, Liu J. Epigenetic background of neuronal fate determination. Prog Neurobiol 2008; 87:98-117. [PMID: 19007844 DOI: 10.1016/j.pneurobio.2008.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/03/2008] [Accepted: 10/15/2008] [Indexed: 01/07/2023]
Abstract
The development of the central nervous system (CNS) starts from neural stem cells (NSCs). During this process, NSCs are specified in space- and time-related fashions, becoming spatially heterogeneous and generating a progressively restricted repertoire of cell types: neurons, astrocytes and oligodendrocytes. The processes of neurodevelopment are determined reciprocally by intrinsic and external factors which interface to program and re-program the profiling of fate-determination gene expression. Multiple signaling pathways act in a dynamic web mode to determine the fate of NSCs through modulating the activity of a distinct set of transcription factors which in turn trigger the transcription of neural fate-determination genes. Accumulating evidence reveals that during CNS development, multiple epigenetic factors regulate the activities of extracellular signaling and corresponding transcription factors in a coordinative manner, leading to the formation of a system with sophisticated structure and magic functions. This review aims to introduce recent advances in the epigenetic background of neural cell fate determination.
Collapse
Affiliation(s)
- Shu Wen
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, Liaoning, PR China
| | | | | |
Collapse
|
99
|
Tamashiro DAA, Alarcón VB, Marikawa Y. Ectopic expression of mouse Sry interferes with Wnt/beta-catenin signaling in mouse embryonal carcinoma cell lines. Biochim Biophys Acta Gen Subj 2008; 1780:1395-402. [PMID: 18675318 DOI: 10.1016/j.bbagen.2008.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 12/14/2022]
Abstract
In mammals, Sry is the master regulator of male sex determination, although how it functions is still unclear. By contrast, female sex determination depends on the action of Rspo1 and Wnt4, the regulators of Wnt/beta-catenin signaling. To seek a possible interaction between male and female sex determination mechanisms, we examined whether Sry affects Wnt/beta-catenin signaling. Using the TOPFLASH reporter system to measure Lef/Tcf-dependent transcriptional activity, we showed that ectopic expression of mouse Sry strongly suppressed Wnt/beta-catenin signaling in mouse embryonal carcinoma and human embryonic kidney cell lines. This inhibition occurred downstream of beta-catenin but upstream of Lef/Tcf, and depended on both the HMG-box and the C-terminal transcriptional activation domain. By contrast, TOPFLASH was not inhibited by human SRY, which apparently lacks a transcriptional activation domain. However, a fusion construct consisting of human SRY attached to the C-terminal domain of mouse Sry was able to inhibit TOPFLASH effectively. Furthermore, Sry constructs carrying point mutations equivalent to those in human sex reversal mutations were less effective in inhibiting Wnt/beta-catenin signaling. Also, we showed that the action of Sry as a transcriptional activator was both necessary and sufficient to inhibit Wnt/beta-catenin signaling, suggesting that the transcriptional targets of Sry are responsible for the inhibition of signaling. Sox9 is a potential transcriptional target of Sry, although quantitative RT-PCR analysis indicates that the expression of Sox9 was not up-regulated by the ectopic expression of mouse Sry in mouse embryonal carcinoma cells. While the present study demonstrates an impact of mouse Sry on Wnt/beta-catenin signaling at an in vitro level, it requires further investigations to assess whether such action also takes place in vivo to regulate male sex determination.
Collapse
Affiliation(s)
- Dana Ann A Tamashiro
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii School of Medicine, Honolulu, HI 96813, USA
| | | | | |
Collapse
|
100
|
Bernard P, Sim H, Knower K, Vilain E, Harley V. Human SRY inhibits beta-catenin-mediated transcription. Int J Biochem Cell Biol 2008; 40:2889-900. [PMID: 18598779 DOI: 10.1016/j.biocel.2008.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 02/06/2023]
Abstract
In most mammals, sex is determined by the presence or absence of the SRY gene. SRY encodes a DNA-binding HMG-box transcription factor which, during embryogenesis, is the initial trigger of testis differentiation from the bipotential gonad, yet its precise mode of function remains unclear. In ovarian development, R-spondin1 and Wnt4 act through the Wnt/beta-catenin-signaling pathway to regulate TCF-dependent expression of unknown target genes and repress testis development. Conversely, SRY may be necessary to prevent the development of ovaries by inhibiting the action of ovarian-determining genes. We hypothesize that SRY prevents Wnt/beta-catenin signaling, thereby inhibiting ovarian development. In HEK293T cells, SRY repressed beta-catenin-mediated TCF-dependent gene activation in the presence of a specific GSK3beta inhibitor or an activated beta-catenin mutant, suggesting that SRY inhibits Wnt signaling at the level of beta-catenin. Three SRY mutant proteins with nuclear localization defects, encoded by XY male-to-female patients, failed to inhibit beta-catenin; surprisingly four SRY sex reversed mutants with defective DNA-binding activity showed near wild-type SRY inhibitory activity. Moreover the potent transactivator SRY-VP16 fusion protein also showed wild-type SRY inhibitory activity. Thus SRY inhibition of beta-catenin involves neither DNA-binding nor transactivation functions of SRY. beta-Catenin and SRY interact in vitro and SRY expression triggered beta-catenin localization into specific nuclear bodies in NT2/D1 and Hela cells. We conclude that SRY inhibits beta-catenin-mediated Wnt signaling by a novel nuclear function of SRY that could be important in sex determination.
Collapse
Affiliation(s)
- Pascal Bernard
- Prince Henry's Institute of Medical Research, Human Molecular Genetics Laboratory, Monash Medical Centre, Clayton, Australia
| | | | | | | | | |
Collapse
|