51
|
Heijboer AC, Donga E, Voshol PJ, Dang ZC, Havekes LM, Romijn JA, Corssmit EPM. Sixteen hours of fasting differentially affects hepatic and muscle insulin sensitivity in mice. J Lipid Res 2005; 46:582-8. [PMID: 15576835 DOI: 10.1194/jlr.m400440-jlr200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fasting readily induces hepatic steatosis. Hepatic steatosis is associated with hepatic insulin resistance. The purpose of the present study was to document the effects of 16 h of fasting in wild-type mice on insulin sensitivity in liver and skeletal muscle in relation to 1) tissue accumulation of triglycerides (TGs) and 2) changes in mRNA expression of metabolically relevant genes. Sixteen hours of fasting did not show an effect on hepatic insulin sensitivity in terms of glucose production in the presence of increased hepatic TG content. In muscle, however, fasting resulted in increased insulin sensitivity, with increased muscle glucose uptake without changes in muscle TG content. In liver, fasting resulted in increased mRNA expression of genes promoting gluconeogenesis and TG synthesis but in decreased mRNA expression of genes involved in glycogenolysis and fatty acid synthesis. In muscle, increased mRNA expression of genes promoting glucose uptake, as well as lipogenesis and beta-oxidation, was found. In conclusion, 16 h of fasting does not induce hepatic insulin resistance, although it causes liver steatosis, whereas muscle insulin sensitivity increases without changes in muscle TG content. Therefore, fasting induces differential changes in tissue-specific insulin sensitivity, and liver and muscle TG contents are unlikely to be involved in these changes.
Collapse
Affiliation(s)
- Annemieke C Heijboer
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
52
|
Boden G, Homko C, Mozzoli M, Showe LC, Nichols C, Cheung P. Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 2005; 54:880-5. [PMID: 15734868 DOI: 10.2337/diabetes.54.3.880] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiazolidinediones (TZDs) are a new class of insulin-sensitizing drugs. To explore how and in which tissues they improve insulin action, we obtained fat and muscle biopsies from eight patients with type 2 diabetes before and 2 months after treatment with rosiglitazone (n = 5) or troglitazone (n = 3). TZD treatment was associated with a coordinated upregulation in the expression of genes and synthesis of proteins involved in fatty acid uptake, binding, beta-oxidation and electron transport, and oxidative phosphorylation in subcutaneous fat but not in skeletal muscle. These changes were accompanied by a 13% increase in total body fat oxidation, a 20% decrease in plasma free fatty acid levels, and a 46% increase in insulin-stimulated glucose uptake. We conclude that TZDs induced a coordinated stimulation of fatty acid uptake, oxidation, and oxidative phosphorylation in fat of diabetic patients and thus may have corrected, at least partially, a recently recognized defect in patients with type 2 diabetes consisting of reduced expression of genes related to oxidative metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Guenther Boden
- Division of Endocrinology, Diabetes and Metabolism, Temple University School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Freedman BD, Lee EJ, Park Y, Jameson JL. A dominant negative peroxisome proliferator-activated receptor-gamma knock-in mouse exhibits features of the metabolic syndrome. J Biol Chem 2005; 280:17118-25. [PMID: 15716267 DOI: 10.1074/jbc.m407539200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor family, is a master regulator of adipogenesis. Humans with dominant negative PPARgamma mutations have features of the metabolic syndrome (severe insulin resistance, dyslipidemia, and hypertension). We created a knock-in mouse model containing a potent dominant negative PPARgamma L466A mutation, shown previously to inhibit wild-type PPARgamma action in vitro. Homozygous PPARgamma L466A knock-in mice die in utero. Heterozygous PPARgamma L466A knock-in (PPARKI) mice exhibit hypoplastic adipocytes, hypoadiponectinemia, increased serum-free fatty acids, and hepatic steatosis. When subjected to high fat diet feeding, PPARKI mice gain significantly less weight than controls. Hyperinsulinemic-euglycemic clamp studies in PPARKI mice revealed insulin resistance and reduced glucose uptake into skeletal muscle. Female PPARKI mice exhibit hypertension independent of diet. The PPARKI mouse provides a novel model for studying the relationship between impaired PPARgamma function and the metabolic syndrome.
Collapse
Affiliation(s)
- Bethany D Freedman
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
54
|
Noushmehr H, D'Amico E, Farilla L, Hui H, Wawrowsky KA, Mlynarski W, Doria A, Abumrad NA, Perfetti R. Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes 2005; 54:472-81. [PMID: 15677505 DOI: 10.2337/diabetes.54.2.472] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The membrane receptor FAT/CD36 facilitates the major fraction of long-chain fatty acid (FA) uptake by muscle and adipose tissues. In line with the well-known effects of FA metabolism on carbohydrate utilization and insulin responsiveness, altered expression of CD36 has been linked to phenotypic features of the metabolic syndrome including insulin resistance and dyslipidemia. FA metabolism is also known to significantly affect insulin secretion. However, the role of CD36 in this process remains unknown, since its expression levels and function in the pancreas have not been explored. In the present study, freshly isolated human islets and a mouse-derived beta-cell line (MIN6) were shown positive for CD36 expression by RT-PCR, Western blot, and immunofluorescence. The identity of the PCR product was confirmed by microsequencing. The identified transcript was translated and the protein was expressed and subjected to the known posttranslational glycosylation. Fluorescence resonance energy transfer analysis and subcellular protein fractionation indicated that insulin and CD36 are colocalized in the secretory granules of beta-cells. Islet CD36 functioned in FA uptake because this process was blocked by the irreversible CD36 inhibitor sulfosuccinimidyl-oleate. More importantly, sulfosuccinimidyl-oleate reversed enhancing and inhibiting effects, respectively, of acute and long-term palmitate incubations on glucose-dependent insulin secretion. In conclusion, our study demonstrates that human islets express CD36 in the plasma membrane as well as in the insulin secretory granules. CD36 activity appears important for uptake of FA into beta-cells as well as for mediating their modulatory effects on insulin secretion.
Collapse
Affiliation(s)
- Houtan Noushmehr
- Division Endocrinology & DiabetesMetabolism, Cedars-Sinai Medical Center, 8723 Alden Dr., SSB #290, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Jeon R, Park S. Synthesis and biological activity of Benzoxazole containing thiazolidinedione derivatives. Arch Pharm Res 2004; 27:1099-105. [PMID: 15595409 DOI: 10.1007/bf02975111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a primary regulator of lipid metabolism. Potency for activation of PPARgamma, one of a subfamily of PPARs, particularly mirrors glucose lowering activity. We prepared thiazolidinediones featuring benzoxazole moiety for subtype selective PPARgamma activators. 5-[4-[2-(Benzoxazol-2-yl-alkylamino)ethoxy]benzyl]thiazolidine-2,4-diones have been prepared by Mitsunobu reaction of benzoxazolylalkylaminoethanol 8 and hydroxybenzylthiazolidinedione 6 and their activities were evaluated. Most compounds tested were identified as potent PPARgamma agonists.
Collapse
Affiliation(s)
- Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-Ku, Seoul 140-742, Korea.
| | | |
Collapse
|
56
|
Walcher D, Marx N. Insulin resistance and cardiovascular disease: the role of PPARgamma activators beyond their anti-diabetic action. Diab Vasc Dis Res 2004; 1:76-81. [PMID: 16302645 DOI: 10.3132/dvdr.2004.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past few years it has been recognised that insulin resistance (IR) is an independent risk factor for major cardiovascular events. In addition, IR is associated with other factors such as hypertension, dyslipidaemia and endothelial dysfunction, and this cluster of metabolic disorders contributes to the cardiovascular risk of patients with IR. Given the increasing number of patients with IR, the modulation of their cardiovascular risk is a major task in diabetology and vascular medicine. This review will focus on the role of IR as a cardiovascular risk factor and on the potential of activators of the nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) to modulate these risk factors associated with IR.
Collapse
Affiliation(s)
- Daniel Walcher
- University of Ulm, Robert-Koch-Str. 8, D-89081 Ulm, Germany
| | | |
Collapse
|
57
|
Marques AR, Espadinha C, Frias MJ, Roque L, Catarino AL, Sobrinho LG, Leite V. Underexpression of peroxisome proliferator-activated receptor (PPAR)gamma in PAX8/PPARgamma-negative thyroid tumours. Br J Cancer 2004; 91:732-8. [PMID: 15238980 PMCID: PMC2364771 DOI: 10.1038/sj.bjc.6601989] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The expression of peroxisome proliferator-activated receptor (PPAR)γ in thyroid neoplasias and in normal thyroid (NT) tissues has not been fully investigated. The objectives of the present work were: to study and compare the relative expression of PPARγ in normal, benign and malignant thyroid tissues and to correlate PPARγ immunostaining with clinical/pathological features of patients with thyroid cancer. We analysed the expression of PPARγ in several types of thyroid tissues by reverse transcription–polymerase chain reaction (RT–PCR), interphase fluorescent in situ hybridisation, real-time RT–PCR and immunohistochemistry. We have demonstrated that NT tissues express PPARγ both at mRNA and at protein level. PAX8-PPARγ fusion gene expression was found in 25% (six of 24) of follicular thyroid carcinomas (FTCs) and in 17% (six of 36) of follicular thyroid adenomas, but in none of the 10 normal tissues, 28 nodular hyperplasias, 38 papillary thyroid carcinomas (PTCs) and 11 poorly differentiated thyroid carcinomas (PDTCs). By real-time RT–PCR, we observed that tumours negative for the PAX8-PPARγ rearrangement expressed lower levels of PPARγ mRNA than the NT. Overexpression of PPARγ transcripts was detected in 80% (four of five) of translocation-positive tumours. Diffuse nuclear staining was significantly (P<0.05) less prevalent in FTCs (53%; 18 of 34), PTCs (49%; 19 of 39) and PDTCs (0%; zero of 13) than in normal tissue (77%; 36 of 47). Peroxisome proliferator-activated receptorγ-negative FTCs were more likely to be locally invasive, to persist after surgery, to metastasise and to have poorly differentiated areas. Papillary thyroid carcinomas with a predominantly follicular pattern were more often PPARγ negative than classic PTCs (80% vs 28%; P=0.01). Our results demonstrated that PPARγ is underexpressed in translocation-negative thyroid tumours of follicular origin and that a further reduction of PPARγ expression is associated with dedifferentiation at later stages of tumour development and progression.
Collapse
Affiliation(s)
- A R Marques
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
| | - C Espadinha
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
| | - M J Frias
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
| | - L Roque
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
| | - A L Catarino
- Departamento de Patologia Morfológica; Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
| | - L G Sobrinho
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
| | - V Leite
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa Codex, Portugal. E-mail:
| |
Collapse
|
58
|
Schäfer SA, Hansen BC, Völkl A, Fahimi HD, Pill J. Biochemical and morphological effects of K-111, a peroxisome proliferator-activated receptor (PPAR)alpha activator, in non-human primates. Biochem Pharmacol 2004; 68:239-51. [PMID: 15193996 DOI: 10.1016/j.bcp.2004.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/04/2004] [Indexed: 01/09/2023]
Abstract
K-111 has been characterized as a potent peroxisome proliferator-activated receptor (PPAR)alpha activator. Antidiabetic potency and amelioration of disturbed lipid metabolism were demonstrated in rodents, which were accompanied by elevations of peroxisomal enzymes and liver weight. To examine the possible therapeutic application of K-111 we have now assessed its efficacy in non-human primates with high transferability to humans. For this purpose obese, hypertriglyceridaemic, hyperinsulinaemic prediabetic rhesus monkeys were dosed sequentially with 0, 1, 3 and 10mg/kg per day orally over a period of 4 weeks each. In addition, the effect of K-111 on the peroxisome compartment was analyzed in cynomolgus monkeys using liver samples obtained following a 13-week oral toxicity study. In prediabetic monkeys, the reduction of hyperinsulinaemia and improvement of insulin-stimulated glucose uptake rate indicated amelioration of insulin resistance. These effects were nearly maximal at a dose of 3mg/kg per day, while triglycerides and body weight were lowered significantly in a dose-dependent manner. This reduction of body weight contrasts sharply with the adipogenic response observed with thiazolidinediones, another family of insulin-sensitizing agents. In young cynomolgus monkeys at a dosage of 5mg/kg per day and more, K-111 induced an up to three-fold increase in lipid beta-oxidation enzymes with an 1.5- to 2-fold increase in peroxisome volume density. This moderate increase in peroxisomal activity by K-111 in monkeys is consistent with its role as an PPARalpha activator and corresponds to the observations with fibrates in other low responder mammalian species. The increase in beta-oxidation may explain, at least in part, the lipid modulating effect as well as the antidiabetic potency of K-111. This pharmacological profile makes K-111 a highly promising drug candidate for clinical applications in the treatment of type 2 diabetes, dyslipidaemia, obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Silke A Schäfer
- Institute of Anatomy and Cell Biology II, University of Heidelberg, D69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
59
|
Abstract
Hepatic steatosis is a consequence of both obesity and ethanol use. Nonalcoholic steatosis (NASH) resemble alcoholic steatosis and steatohepatitis. Both exhibit increased hepatocellular triglycerides(TG), reflecting an increase in long chain fatty acids (LCFA). LCFA enter cells by both facilitated transport and passive diffusion. A driving force for both is the plasma unbound LCFA concentration ([LCFAu]). In both obese rodents and obese patients, adipocyte LCFA uptake via both facilitated transport and diffusion is increased. However, the LCFA uptake Vmax in hepatocytes is not increased in obese animals. Nevertheless, total LCFA uptake in obese rodents is increased ~3-fold, reflecting increased plasma LCFA concentrations. With advancing obesity, resistance to the antilipolytic effects of insulin results in increased lipolysis within the omental fat depot, a consequent further rise in portal venous LCFA, and an even greater rise in portal [LCFAu]. This causes a further increase in hepatocellular LCFA uptake, increased intracellular generation of reactive oxygen species (ROS), and transition from simple steatosis to NASH. By contrast, in rodent hepatocytes and in human hepatoma cell lines, ethanol up-regulates the LCFA uptake Vmax. Consequently, although plasma LCFA are unaltered, hepatocellular LCFA uptake in ethanol-fed rats is also increased~3-fold, leading to increased ROS generation and evolution of alcoholic hepatitis. Thus, while increased hepatic LCFA uptake contributes to the pathogenesis of both NASH and alcoholic hepatitis,the underlying mechanisms differ. Recognizing these mechanistic differences is important in developing strategies for both prevention and treatment of these conditions.
Collapse
Affiliation(s)
- Michael W Bradbury
- Department of Medicine (Division of Liver Disease), Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1039, New York, NY 10029, USA.
| | | |
Collapse
|
60
|
Effect of reduced maternal protein consumption during pregnancy in the rat on plasma lipid concentrations and expression of peroxisomal proliferator–activated receptors in the liver and adipose tissue of the offspring. Nutr Res 2004. [DOI: 10.1016/j.nutres.2003.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Koyama H, Miller DJ, Boueres JK, Desai RC, Jones AB, Berger JP, MacNaul KL, Kelly LJ, Doebber TW, Wu MS, Zhou G, Wang PR, Ippolito MC, Chao YS, Agrawal AK, Franklin R, Heck JV, Wright SD, Moller DE, Sahoo SP. (2R)-2-ethylchromane-2-carboxylic acids: discovery of novel PPARalpha/gamma dual agonists as antihyperglycemic and hypolipidemic agents. J Med Chem 2004; 47:3255-63. [PMID: 15163205 DOI: 10.1021/jm030621d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of chromane-2-carboxylic acid derivatives was synthesized and evaluated for PPAR agonist activities. A structure-activity relationship was developed toward PPARalpha/gamma dual agonism. As a result, (2R)-7-(3-[2-chloro-4-(4-fluorophenoxy)phenoxy]propoxy)-2-ethylchromane-2-carboxylic acid (48) was identified as a potent, structurally novel, selective PPARalpha/gamma dual agonist. Compound 48 exhibited substantial antihyperglycemic and hypolipidemic activities when orally administered in three different animal models: the db/db mouse type 2 diabetes model, a Syrian hamster lipid model, and a dog lipid model.
Collapse
Affiliation(s)
- Hiroo Koyama
- Department of Medicinal Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care 2004; 27:1660-7. [PMID: 15220243 DOI: 10.2337/diacare.27.7.1660] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Pioglitazone is a member of the thiazolidinediones (TZDs), insulin-sensitizing agents used to treat type 2 diabetes. The aim of this study was to define the effect of pioglitazone on the expression of genes related to carbohydrate and lipid metabolism in subcutaneous fat obtained from type 2 diabetic patients. RESEARCH DESIGN AND METHODS Forty-eight volunteers with type 2 diabetes were divided into two groups treated for 12 weeks with placebo or pioglitazone (30 mg/day). The expression of several genes was quantified by real-time RT-PCR. RESULTS Pioglitazone treatment increased the expression of genes involved in glycerol-3-phosphate synthesis. The mRNA expression of PEPCK-C and glycerol-3-phosphate dehydrogenase (GPDH) increased (P < 0.01) in patients treated with pioglitazone. There was no difference in glycerol kinase (GyK) mRNA levels. The expression of genes that regulate fatty acid availability in adipocytes, including lipoprotein lipase (LPL) and acetyl-CoA synthetase (ACS), was higher (P < 0.01) in pioglitazone-treated patients. Pioglitazone stimulated (P < 0.0001) expression of c-Cbl-associated protein (CAP), whereas tumor necrosis factor-alpha, leptin, resistin, angiopoietin like-4, and 11-beta-hydroxysteroid dehydrogenase type 1 (11beta HSD 1) were not affected by pioglitazone. The baseline peroxisome proliferator-activated receptor (PPAR)-gamma1 mRNA was significantly correlated with mRNA for LPL, CAP, ACS, 11beta HSD 1, GyK, fatty acid synthase, leptin, and GPDH, whereas PPAR-gamma2 mRNA was correlated with CAP, PEPCK-C, leptin, and GPDH. CONCLUSIONS Treatment with pioglitazone increased body weight, and this is associated with upregulation of some, but not all, genes previously demonstrated as "TZD responsive" in subcutaneous fat. The results suggest that TZDs might increase body weight through the upregulation of genes facilitating adipocyte lipid storage in vivo.
Collapse
Affiliation(s)
- Iwona Bogacka
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | | | | | |
Collapse
|
63
|
Pakala R, Kuchulakanti P, Rha SW, Cheneau E, Baffour R, Waksman R. Peroxisome proliferator-activated receptor γ: Its role in metabolic syndrome. ACTA ACUST UNITED AC 2004; 5:97-103. [PMID: 15464947 DOI: 10.1016/j.carrad.2004.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 03/25/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Here we review PPARgamma function in relation to human adipogenesis, insulin sensitization, lipid metabolism, blood pressure regulation and prothrombotic state to perhaps provide justification for this nuclear receptor remaining a key therapeutic target for the continuing development of agents to treat human metabolic syndrome.
Collapse
Affiliation(s)
- Rajbabu Pakala
- Cardiovascular Research Institute, Washington Hospital Center, 110 Irving Street NW, Suite 4B-1, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
64
|
Pégorier JP, Girard J. Thiazolidinediones et insulino-sensibilité : rôle du récepteur nucléaire PPARγ. ANNALES D'ENDOCRINOLOGIE 2004; 65:65-72. [PMID: 15122095 DOI: 10.1016/s0003-4266(04)95633-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J-P Pégorier
- Institut Cochin, département d'Endocrinologie, INSERM U 567, CNRS UMR 8104, Université Paris V René Descartes, 24, rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | |
Collapse
|
65
|
Robinson ACJ, Jeffs JAR, Gray RG, Bannister PA, Mather H, Gallagher JJ, Robinson S, Nattrass M, Venkatesan S, Halliday D, Johnston DG. Metabolic effects of Troglitazone in patients with diet-controlled type 2 diabetes. Eur J Clin Invest 2004; 34:29-36. [PMID: 14984435 DOI: 10.1111/j.1365-2362.2004.01274.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In order to study the mechanisms of action of Troglitazone (TGZ) in vivo in Type 2 diabetes, its effects were studied on glucose metabolism, lipolysis and very low-density lipoprotein (VLDL) apolipoprotein B100 (apoB) kinetics. MATERIALS AND METHODS A placebo-controlled, double-blind study was performed in 24 diet-treated patients randomized to receive TGZ 600 mg day(-1), TGZ 200 mg day(-1) or placebo for 8 weeks. Glucose and glycerol turnover were assessed after an overnight fast, and during sequential low-dose insulin infusions (0.01 U kg(-1) h(-1) followed by 0.015 U kg(-1) h(-1)) using 6,6-2H Glucose and 1,2,3-2H Glycerol. Very low-density lipoprotein apoB secretion was measured using l-13C-leucine, monitoring isotopic enrichment by gas chromatography-mass spectrometry. Treatment effects were analyzed by analysis of covariance, adjusting for baseline. RESULTS Therapy resulted in a significant group differences in fasting plasma glucose adjusting for baseline (P=0.039). This was most evident at TGZ 600 mg daily [glucose decrease from (mean +/- SD) 9.2 +/- 2.7 to 6.6 +/- 0.9 mmol L(-1)]. HbA1c and insulin levels did not change significantly. Plasma nonesterified fatty acid (NEFA) levels decreased (P=0.045), most evidently at TGZ 200 mg daily, but glycerol was not significantly affected. Although no significant effects were observed on VLDL apoB or triglyceride concentrations, there were treatment differences in the absolute secretion rate of VLDL apoB of borderline (P=0.056) statistical significance, with a decrease observed at TGZ 600 mg daily [geometric mean, SD range, 0.94 (0.41-2.15) to 0.40 (0.14-1.13 mg kg(-1) h(-1))]. Very low-density lipoprotein apoB fractional secretion rate and pool size were unaffected. The VLDL triglyceride: apoB molar ratio differed between treatment groups (P=0.013), being higher in the TGZ 600 mg group [5714 (4128-7741) to 8092 (5669-11552)]. Neither glucose nor glycerol rates of appearance were significantly altered by TGZ and nor did TGZ affect their suppression by insulin. DISCUSSION The PPARgamma agonist, troglitazone, decreases fasting glucose and NEFA levels in diet-treated Type 2 diabetes. It may also decrease VLDL particle secretion. These effects would be considered beneficial. The biological importance of the increase in VLDL-triglyceride enrichment warrants further study.
Collapse
Affiliation(s)
- A C J Robinson
- Department of Endocrinology, Imperial College Faculty of Medicine, St. Mary's Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kawamura T, Yoshida K, Sugawara A, Nagasaka M, Mori N, Takeuchi K, Kohzuki M. Regulation of Skeletal Muscle Peroxisome Proliferator-Activated Receptor .GAMMA. Expression by Exercise and Angiotensin-Converting Enzyme Inhibition in Fructose-Fed Hypertensive Rats. Hypertens Res 2004; 27:61-70. [PMID: 15055257 DOI: 10.1291/hypres.27.61] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to examine the effects of chronic exercise training and angiotensin-converting enzyme (ACE) inhibition on peroxisome proliferator-activated receptor gamma (PPAR gamma) expression in fat and skeletal muscle in fructose-fed spontaneously hypertensive rats (SHR). SHR were fed a fructose-rich diet over 16 weeks of either exercise training (Ex group: 20 m/min, 0% grade, 60 min/day, 5 days/week), ACE inhibitor administration (TM group: temocapril, 10 mg/kg/day), or a combination of both treatments (TM+Ex group). The systolic blood pressure was reduced exclusively in the temocapril-treated groups. Serum leptin level was positively correlated with the ratio of epididymal fat weight to body weight (p<0.001). Exercise training significantly upregulated the PPARgamma expression in all tissues, which was attenuated by temocapril. PPARgamma expression was significantly upregulated in skeletal muscles in the Ex group, and temocapril administration attenuated this effect in the Ex+TM group. The level of PPARgamma protein was significantly higher in the extensor digitorum longus muscle than in the soleus muscle. Both TM and Ex prevented the fructose diet-induced transitions of fiber type. These data suggested that PPARgamma expression is tissue-specific, and that alterations in PPARgamma expression in the skeletal muscle induced by either or both treatments may have contributed to reducing the fat mass via the regulation of metabolic homeostasis. Changes in muscle morphology were independent of PPARgamma expression, and the higher proportion of type I fiber might also explain some of the beneficial impact of exercise and ACE inhibition on energy metabolism.
Collapse
Affiliation(s)
- Takayuki Kawamura
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
67
|
Muurling M, van den Hoek AM, Mensink RP, Pijl H, Romijn JA, Havekes LM, Voshol PJ. Overexpression of APOC1 in obob mice leads to hepatic steatosis and severe hepatic insulin resistance. J Lipid Res 2003; 45:9-16. [PMID: 14523051 DOI: 10.1194/jlr.m300240-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obese obob mice with strong overexpression of the human apolipoprotein C1 (APOC1) exhibit excessive free fatty acid (FFA) and triglyceride (TG) levels and severely reduced body weight (due to the absence of subcutaneous adipose tissue) and skin abnormalities. To evaluate the effects of APOC1 overexpression on hepatic and peripheral insulin sensitivity in a less-extreme model, we generated obob mice with mild overexpression of APOC1 (obob/APOC1(+/-)) and performed hyperinsulinemic clamp analysis. Compared with obob littermates, obob/APOC1(+/-) mice showed reduced body weight (-25%) and increased plasma levels of TG (+632%), total cholesterol (+134%), FFA (+65%), glucose (+73%), and insulin (+49%). Hyperinsulinemic clamp analysis revealed severe whole-body and hepatic insulin resistance in obob/APOC1(+/-) mice and, in addition, increased hepatic uptake of FFA and hepatic TG content. Treatment of obob/APOC1(+/-) mice with rosiglitazone strongly improved whole-body insulin sensitivity as well as hepatic insulin sensitivity, despite a further increase of hepatic fatty acid (FA) uptake and a panlobular increase of hepatic TG accumulation. We conclude that overexpression of APOC1 prevents rosiglitazone-induced peripheral FA uptake leading to severe hepatic steatosis. Interestingly, despite rosiglitazone-induced hepatic steatosis, hepatic insulin sensitivity improves dramatically. We hypothesize that the different hepatic fat accumulation and/or decrease in FA intermediates has a major effect on the insulin sensitivity of the liver.
Collapse
Affiliation(s)
- Martin Muurling
- Netherlands Organization for Applied Scientific Research-Prevention and Health, Gaubius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Diabetes, obesity, atherosclerosis and cancer are the principal contributors to morbidity and mortality in Western society. Emerging evidence indicates that a nuclear receptor, the peroxisome proliferator-activated receptor gamma (PPARgamma), plays a role in these pathological processes. Furthermore, modulation of receptor action in these diseases may be of therapeutic value, as exemplified by the recent introduction of the thiazolidinediones, a novel class of insulin-sensitizing agent for the treatment of type 2 diabetes mellitus. The availability of such high-affinity ligands has facilitated the study of signalling pathways through which PPARgamma regulates metabolic processes; these analyses have been complemented by the study of human subjects harbouring (naturally occurring) mutations and polymorphisms within the receptor. The latter have provided unique genetic evidence for a link between PPARgamma and mammalian glucose homeostasis, lipid metabolism and regulation of fat mass. This review highlights recent studies which have advanced our understanding of the pivotal role that this receptor plays in metabolism, with particular reference to the consequences of inherited variation in the human receptor gene.
Collapse
Affiliation(s)
- Mark Gurnell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
69
|
Wilmsen HM, Ciaraldi TP, Carter L, Reehman N, Mudaliar SR, Henry RR. Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Am J Physiol Endocrinol Metab 2003; 285:E354-62. [PMID: 12700163 DOI: 10.1152/ajpendo.00491.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the regulation of free fatty acid (FFA, palmitate) uptake into skeletal muscle cells of nondiabetic and type 2 diabetic subjects. Palmitate uptake included a protein-mediated component that was inhibited by phloretin. The protein-mediated component of uptake in muscle cells from type 2 diabetic subjects (78 +/- 13 nmol. mg protein-1. min-1) was reduced compared with that in nondiabetic muscle (150 +/- 17, P < 0.01). Acute insulin exposure caused a modest (16 +/- 5%, P < 0.025) but significant increase in protein-mediated uptake in nondiabetic muscle. There was no significant insulin effect in diabetic muscle (+19 +/- 19%, P = not significant). Chronic (4 day) treatment with a series of thiazolidinediones, troglitazone (Tgz), rosiglitazone (Rgz), and pioglitazone (Pio) increased FFA uptake. Only the phloretin-inhibitable component was increased by treatment, which normalized this activity in diabetic muscle cells. Under the same conditions, FFA oxidation was also increased by thiazolidinedione treatment. Increases in FFA uptake and oxidation were associated with upregulation of fatty acid translocase (FAT/CD36) expression. FAT/CD36 protein was increased by Tgz (90 +/- 22% over control), Rgz (146 +/- 42%), and Pio (111 +/- 37%, P < 0.05 for all 3) treatment. Tgz treatment had no effect on fatty acid transporter protein-1 and membrane-associated plasmalemmal fatty acid-binding protein mRNA expression. We conclude that FFA uptake into cultured muscle cells is, in part, protein mediated and acutely insulin responsive. The basal activity of FFA uptake is impaired in type 2 diabetes. In addition, chronic thiazolidinedione treatment increased FFA uptake and oxidation into cultured human skeletal muscle cells in concert with upregulation of FAT/CD36 expression. Increased FFA uptake and oxidation may contribute to lower circulating FFA levels and reduced insulin resistance in skeletal muscle of individuals with type 2 diabetes following thiazolidinedione treatment.
Collapse
|
70
|
Hegarty BD, Furler SM, Ye J, Cooney GJ, Kraegen EW. The role of intramuscular lipid in insulin resistance. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:373-83. [PMID: 12864742 DOI: 10.1046/j.1365-201x.2003.01162.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is interest in how altered lipid metabolism could contribute to muscle insulin resistance. Many animal and human states of insulin resistance have increased muscle triglyceride content, and there are now plausible mechanistic links between muscle lipid accumulation and insulin resistance, which go beyond the classic glucose-fatty acid cycle. We postulate that muscle cytosolic accumulation of the metabolically active long-chain fatty acyl CoAs (LCACoA) is involved, leading to insulin resistance and impaired insulin signalling or impaired enzyme activity (e.g. glycogen synthase or hexokinase) either directly or via chronic translocation/activation of mediators such as a protein kinase C (particularly PKC theta and epsilon ). Ceramides and diacylglycerols (DAGs) have also been implicated in forms of lipid-induced muscle insulin resistance. Dietary lipid-induced muscle insulin resistance in rodents is relatively easily reversed by manipulations that lessen cytosolic lipid accumulation (e.g. diet change, exercise or fasting). PPAR agonists (both gamma and alpha) also lower muscle LCACoA and enhance insulin sensitivity. Activation of AMP-activated protein kinase (AMPK) by AICAR leads to muscle enhancement (especially glycolytic muscle) of insulin sensitivity, but involvement of altered lipid metabolism is less clear cut. In rodents there are similarities in the pattern of muscle lipid accumulation/PKC translocation/altered insulin signalling/insulin resistance inducible by 3-5-h acute free fatty acid elevation, 1-4 days intravenous glucose infusion or several weeks of high-fat feeding. Recent studies extend findings and show relevance to humans. Muscle cytosolic lipids may accumulate either by increased fatty acid flux into muscle, or by reduced fatty acid oxidation. In some circumstances muscle insulin resistance may be an adaptation to optimize use of fatty acids when they are the predominant available energy fuel. The interactions described here are fundamental to optimizing therapy of insulin resistance based on alterations in muscle lipid metabolism.
Collapse
Affiliation(s)
- B D Hegarty
- Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | |
Collapse
|
71
|
Abstract
The metabolic nuclear receptors act as metabolic and toxicological sensors, enabling the organism to quickly adapt to environmental changes by inducing the appropriate metabolic genes and pathways. Ligands for these metabolic receptors are compounds from dietary origin, intermediates in metabolic pathways, drugs, or other environmental factors that, unlike classical nuclear receptor ligands, are present in high concentrations. Metabolic receptors are master regulators integrating the homeostatic control of (a) energy and glucose metabolism through peroxisome proliferator-activated receptor gamma (PPARgamma); (b) fatty acid, triglyceride, and lipoprotein metabolism via PPARalpha, beta/delta, and gamma; (c) reverse cholesterol transport and cholesterol absorption through the liver X receptors (LXRs) and liver receptor homolog-1 (LRH-1); (d) bile acid metabolism through the farnesol X receptor (FXR), LXRs, LRH-1; and (e) the defense against xeno- and endobiotics by the pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR). The transcriptional control of these metabolic circuits requires coordination between these metabolic receptors and other transcription factors and coregulators. Altered signaling by this subset of receptors, either through chronic ligand excess or genetic factors, may cause an imbalance in these homeostatic circuits and contribute to the pathogenesis of common metabolic diseases such as obesity, insulin resistance and type 2 diabetes, hyperlipidemia and atherosclerosis, and gallbladder disease. Further studies should exploit the fact that many of these nuclear receptors are designed to respond to small molecules and turn them into therapeutic targets for the treatment of these disorders.
Collapse
Affiliation(s)
- Gordon A Francis
- CIHR Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
72
|
Koyama H, Boueres JK, Han W, Metzger EJ, Bergman JP, Gratale DF, Miller DJ, Tolman RL, MacNaul KL, Berger JP, Doebber TW, Leung K, Moller DE, Heck JV, Sahoo SP. 5-Aryl thiazolidine-2,4-diones as selective PPARgamma agonists. Bioorg Med Chem Lett 2003; 13:1801-4. [PMID: 12729668 DOI: 10.1016/s0960-894x(03)00257-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of 5-aryl thiazolidine-2,4-diones containing 4-phenoxyphenyl side chains was designed, synthesized, and evaluated for PPAR agonist activities. One such compound 28 exhibited comparable levels of glucose correction to rosiglitazone in the db/db mouse type 2 diabetes animal model.
Collapse
Affiliation(s)
- Hiroo Koyama
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Mathieu-Costello O, Kong A, Ciaraldi TP, Cui L, Ju Y, Chu N, Kim D, Mudaliar S, Henry RR. Regulation of skeletal muscle morphology in type 2 diabetic subjects by troglitazone and metformin: relationship to glucose disposal. Metabolism 2003; 52:540-6. [PMID: 12759881 DOI: 10.1053/meta.2002.50108] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The goal of this work was to compare the effects of different antidiabetic therapies on the phenotype of skeletal muscle in type 2 diabetic subjects failing sulfonylurea therapy. Subjects were treated with a thiazolidinedione (troglitazone, TGZ) or a biguanide (metformin, MET) in addition to glyburide for 3 to 4 months. Insulin action was determined with a hyperinsulinemic (300 mU. m(-2). min(-1)) euglycemic (5.0 to 5.5 mmol/L) clamp. Biopsies were obtained from the vastus lateralis muscle for morphological analysis. Despite similar glycemic control, relative increases in the insulin-stimulated glucose disposal rate (GDR) were greater after TGZ treatment (37 +/- 8% increase, P <.05) than after MET (21 +/- 11%, P <.05). Neither treatment had any effect on fiber type composition of the muscle. Capillary density was reduced in diabetic subjects compared to a nondiabetic group (P <.01) and was increased with TGZ treatment (P <.05), while MET was without significant effect. Diabetic muscle also displayed a lower mitochondrial volume density that was unaltered by either treatment. Both TGZ and MET therapy resulted in a reduction in the lipid content of muscle (percent fiber volume as lipid droplets); the relative decrease tended to be greater for TGZ (-33% v -23% for MET). The relative (%) improvement in GDR was correlated with the change in lipid content (r = -0.756, P <.05) after TGZ treatment; no such relationship was observed for MET. From these results we conclude that the higher potency of TGZ to increase capillary density and reduce the lipid content of muscle may contribute to its greater ability to improve glucose disposal in skeletal muscle of type 2 diabetic individuals.
Collapse
MESH Headings
- Adult
- Aged
- Biopsy
- Capillaries/drug effects
- Capillaries/physiology
- Chromans/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Glucose/metabolism
- Histocytochemistry
- Humans
- Hypoglycemic Agents/therapeutic use
- Lipid Metabolism
- Male
- Metformin/therapeutic use
- Microscopy, Electron
- Middle Aged
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Thiazoles/therapeutic use
- Thiazolidinediones
- Troglitazone
Collapse
|
74
|
Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VKK, O'Rahilly S. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 2003; 52:910-917. [PMID: 12663460 DOI: 10.2337/diabetes.52.4.910] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported a syndrome of severe hyperinsulinemia and early-onset hypertension in three patients with dominant-negative mutations in the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-gamma. We now report the results of further detailed pathophysiological evaluation of these subjects, the identification of affected prepubertal children within one of the original families, and the effects of thiazolidinedione therapy in two subjects. These studies 1) definitively demonstrate the presence of severe peripheral and hepatic insulin resistance in the affected subjects; 2) describe a stereotyped pattern of partial lipodystrophy associated with all the features of the metabolic syndrome and nonalcoholic steatohepatitis; 3) document abnormalities in the in vivo function of remaining adipose tissue, including the inability of subcutaneous abdominal adipose tissue to trap and store free fatty acids postprandially and the presence of very low circulating levels of adiponectin; 4) document the presence of severe hyperinsulinemia in prepubertal carriers of the proline-467-leucine (P467L) PPAR-gamma mutation; 5) provide the first direct evidence of cellular resistance to PPAR-gamma agonists in mononuclear cells derived from the patients; and 6) report on the metabolic response to thiazolidinedione therapy in two affected subjects. Although the condition is rare, the study of humans with dominant-negative mutations in PPAR-gamma can provide important insight into the roles of this nuclear receptor in human metabolism.
Collapse
Affiliation(s)
- David B Savage
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Gerber P, Lübben G, Heusler S, Dodo A. Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin 2003; 19:532-9. [PMID: 14594526 DOI: 10.1185/030079903125002180] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM This Swiss multicentre study examined the efficacy and safety of oral pioglitazone in patients with type 2 diabetes. METHODS Patients were randomised to pioglitazone at once-daily doses of 30 mg for 20 weeks (n = 76), 30 mg for 12 weeks followed by 45 mg for 8 weeks (n = 74), or 45 mg for 20 weeks (n = 84); 94.9% of patients completed 12 weeks and 88.9% completed all 20 weeks. Almost all (96.6%) patients received pioglitazone in combination with other anti-diabetic treatments. RESULTS Mean HbA(1c) at baseline was 8.8 +/- 1.2%, and changes to endpoint were -1.1 +/- 1.1%, -1.1 +/- 1.4% and -0.9 +/- 1.6%, respectively for the three dose groups ( p < 0.001 for each group). Triglyceride concentrations decreased in each group and the overall mean change during the study was -0.58 mmol/l (p < 0.001 versus baseline). HDL-cholesterol increased, with an overall mean change of 0.10 mmol/l (p < 0.001 versus baseline). Blood pressure decreased from baseline, particularly for hypertensive patients with mean changes: systolic -10 mmHg, p < 0.001, diastolic -8 mmHg, p < 0.001 versus baseline. Serum alanine aminotransferase and gamma-glutamyl transferase concentrations were significantly (p < 0.001 for each) reduced during the study. CONCLUSIONS The study demonstrates the efficacy of pioglitazone 30 mg/day and 45 mg/day in the treatment of type 2 diabetes, with an improved lipid profile and decreased blood pressure in addition to improved glycaemic control.
Collapse
|
76
|
Cellular uptake of long chain free fatty acids: the structure and function of plasma membrane fatty acid binding protein. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
77
|
Qi N, Kazdova L, Zidek V, Landa V, Kren V, Pershadsingh HA, Lezin ES, Abumrad NA, Pravenec M, Kurtz TW. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J Biol Chem 2002; 277:48501-7. [PMID: 12384507 DOI: 10.1074/jbc.m206655200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pioglitazone, like other thiazolidinediones, is an insulin-sensitizing agent that activates the peroxisome proliferator-activated receptor gamma and influences the expression of multiple genes involved in carbohydrate and lipid metabolism. However, it is unknown which of these many target genes play primary roles in determining the antidiabetic and hypolipidemic effects of thiazolidinediones. To specifically investigate the role of the Cd36 fatty acid transporter gene in the insulin-sensitizing actions of thiazolidinediones, we studied the metabolic effects of pioglitazone in spontaneously hypertensive rats (SHR) that harbor a deletion mutation in Cd36 in comparison to congenic and transgenic strains of SHR that express wild-type Cd36. In congenic and transgenic SHR with wild-type Cd36, administration of pioglitazone was associated with significantly lower circulating levels of fatty acids, triglycerides, and insulin as well as lower hepatic triglyceride levels and epididymal fat pad weights than in SHR harboring mutant Cd36. Additionally, insulin-stimulated glucose oxidation in isolated soleus muscle was significantly augmented in pioglitazone-fed rats with wild-type Cd36 versus those with mutant Cd36. The Cd36 genotype had no effect on pioglitazone-induced changes in blood pressure. These findings provide direct pharmacogenetic evidence that in the SHR model, Cd36 is a key determinant of the insulin-sensitizing actions of a thiazolidinedione ligand of peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Nianning Qi
- Department of Laboratory Medicine, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor involved in the control of metabolism. Research on PPARgamma is oriented towards understanding its role in insulin sensitization, which was inspired by the discovery that antidiabetic agents, the thiazolidinediones, were agonists for PPARgamma. PPARgamma stimulation improves glucose tolerance and insulin sensitivity in type 2 diabetic patients and in animal models of insulin resistance through mechanisms that are incompletely understood. Upon activation, PPARgamma heterodimerizes with retinoid X receptor, recruits specific cofactors, and binds to responsive DNA elements, thereby stimulating the transcription of target genes. Because PPARgamma is highly enriched in adipose tissue and because of its major role in adipocyte differentiation, it is thought that the effects of PPARgamma in adipose tissue are crucial to explain its role in insulin sensitization, but recent studies have highlighted the contribution of other tissues as well. Although relatively potent for their insulin-sensitizing action, currently marketed PPARgamma activators have some important undesirable side effects. These concerns led to the discovery of new ligands with potent antidiabetic properties but devoid of certain of these side effects. Data from human genetic studies and from PPARgamma heterozygous knockout mice indicate that a reduction in PPARgamma activity could paradoxically improve insulin sensitivity. These findings suggest that modulation of PPARgamma activity by partial agonists or compounds that affect cofactor recruitment might hold promise for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Frédéric Picard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, B.P. 163, F-67404 Illkirch, C.U. de Strasbourg, France
| | | |
Collapse
|
79
|
Martens FMAC, Visseren FLJ, Lemay J, de Koning EJP, Rabelink TJ. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62:1463-80. [PMID: 12093315 DOI: 10.2165/00003495-200262100-00004] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several cardiovascular risk factors (dyslipidaemia, hypertension, glucose intolerance, hypercoagulability, obesity, hyperinsulinaemia and low-grade inflammation) cluster in the insulin resistance syndrome. Treatment of these individual risk factors reduces cardiovascular complications. However, targeting the underlying pathophysiological mechanisms of the insulin resistance syndrome is a more rational treatment strategy to further improve cardiovascular outcome. Our understanding of the so-called cardiovascular dysmetabolic syndrome has been improved by the discovery of nuclear peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors belonging to the nuclear receptor superfamily. As transcription factors, PPARs regulate the expression of numerous genes and affect glycaemic control, lipid metabolism, vascular tone and inflammation. Activation of the subtype PPAR-gamma improves insulin sensitivity. Expression of PPAR-gamma is present in several cell types involved in the process of atherosclerosis. Thus, modulation of PPAR-gamma activity is an interesting therapeutic approach to reduce cardiovascular events. Thiazolidinediones are PPAR-gamma agonists and constitute a new class of pharmacological agents for the treatment of type 2 (non-insulin-dependent) diabetes mellitus. Two such compounds are currently available for clinical use: rosiglitazone and pioglitazone. Thiazolidinediones improve insulin sensitivity and glycaemic control in patients with type 2 diabetes. In addition, improvement in endothelial function, a decrease in inflammatory conditions, a decrease in plasma levels of free fatty acids and lower blood pressure have been observed, which may have important beneficial effects on the vasculature. Several questions remain to be answered about PPAR-gamma agonists, particularly with respect to the role of PPAR-gamma in vascular pathophysiology. More needs to be known about the adverse effects of thiazolidinediones, such as hepatotoxicity, increased low-density lipoprotein cholesterol levels and increased oedema. The paradox of adipocyte differentiation with weight gain concurring with the insulin-sensitising effect of thiazolidinediones is not completely understood. The decrease in blood pressure induced by thiazolidinedione treatment seems incompatible with an increase in the plasma volume, and the discrepancy between the stimulation of the expression of CD36 and the antiatherogenic effects of the thiazolidinediones also needs further explanation. Long-term clinical trials of thiazolidinediones with cardiovascular endpoints are currently in progress. In conclusion, studying the effects of thiazolidinediones may shed more light on the mechanisms involved in the insulin resistance syndrome. Furthermore, thiazolidinediones could have specific, direct effects on processes involved in the development of vascular abnormalities.
Collapse
Affiliation(s)
- Fabrice M A C Martens
- Department of Internal Medicine, Section of Vascular Medicine and Diabetology, University Medical Center Utrecht, Room F.02.126, Heidelberglaan 100, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
80
|
Lee GY, Cho JW, Lee HC, Kim YS. Genomic organization and characterization of the promoter of rat malonyl-CoA decarboxylase gene. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:133-8. [PMID: 12151105 DOI: 10.1016/s0167-4781(02)00398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malonyl-CoA decarboxylase (MCD) catalyzes the decarboxylation of malonyl-CoA, an elongating agent for fatty acid synthesis and also known as a fuel-sensing mediator. In order to elucidate the genome organization, we isolated a 2020 bp rat MCD cDNA from rat brain cDNA library and isolated the corresponding rat genomic clones from the rat genomic PAC library. Sequencing and comparison of these clones showed that the MCD genome consists of five exons and four introns spanning approximately 17 kb. The proximal upstream region is GC-rich, lacks a TATA box, and contains a variety of putative transcriptional regulatory elements within 2 kb. A major transcriptional initiation site was identified by a primer extension at a site 157 nucleotides upstream of the translational initiation site. To investigate the transcriptional regulation of MCD, a series of 5'-deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in CV-1 cells, we suggest that an area of -15 bp 5' from the first exon acted as a basal promoter for MCD and that there are positive cis-regulatory elements in the region from -55 to -325 bp and negative regulator elements in the region -1380 to -2240 bp.
Collapse
Affiliation(s)
- Gha Young Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
81
|
Willson TM, Lambert MH, Kliewer SA. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 2002; 70:341-67. [PMID: 11395411 DOI: 10.1146/annurev.biochem.70.1.341] [Citation(s) in RCA: 454] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear peroxisome proliferator-activated receptor gamma (PPAR gamma) is a transcription factor that is activated by polyunsaturated fatty acids and their metabolites and is essential for fat cell formation. Although obesity is a strong risk factor for type 2 diabetes mellitus and other metabolic diseases, potent PPAR gamma activators such as the glitazone drugs lower glucose and lipid levels in patients with type 2 diabetes and also have antiatherosclerotic and antihypertensive effects. We review recent studies providing insight into the paradoxical relationship between PPAR gamma and metabolic disease. We also review recent advances in understanding the structural basis for PPAR gamma activation by ligands. The unusual ligand-binding properties of PPAR gamma suggest that it will be possible to discover new chemical classes of receptor "modulators" with distinct pharmacological activities for the treatment of type 2 diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- T M Willson
- GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
82
|
Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 2001; 50:1883-90. [PMID: 11473052 DOI: 10.2337/diabetes.50.8.1883] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular mechanisms by which peroxisome proliferator-activated receptor (PPAR) activation by fibrates reduces fat deposition and improves insulin sensitivity are not completely understood. We report that exposure of a rat primary culture of adipocytes for 24 h to the PPAR activator bezafibrate increased the mRNA levels of crucial genes involved in peroxisomal and mitochondrial beta-oxidation. The mRNA levels of the peroxisomal beta-oxidation rate-limiting enzyme acyl-CoA oxidase and of the muscle-type carnitine palmitoyl transferase I (M-CPT-I), which determines the flux of mitochondrial beta-oxidation, increased by 1.6-fold (P < 0.02) and 4.5-fold (P = 0.001), respectively. These changes were accompanied by an increase in the transcript levels of the uncoupling protein-2 (UCP-2; 1.5-fold induction; P < 0.05) and UCP-3 (3.7-fold induction; P < 0.001), mitochondrial proteins that reduce ATP yield and may facilitate the oxidation of fatty acids. Furthermore, bezafibrate increased the mRNA levels of the fatty acid translocase (2-fold induction; P < 0.01), suggesting a higher fatty acid uptake into adipocytes. In agreement with these changes, bezafibrate caused a 1.9-fold induction (P < 0.02) in 9,10-[(3)H]palmitate oxidation. Moreover, bezafibrate reduced the mRNA expression of several adipocyte markers, including PPARgamma (30% reduction; P = 0.05), tumor necrosis factor-alpha (33% reduction; P < 0.05), and the ob gene (26% reduction). In contrast, adipocyte fatty acid binding protein mRNA levels increased (1.5-fold induction; P < 0.01), pointing to a mobilization of fatty acids to mitochondria and peroxisomes. The reduction of the adipocyte markers caused by bezafibrate was accompanied by an increase in the mRNA levels of the preadipocyte marker Pref-1 (1.6-fold induction; P < 0.01). Some of the changes observed in the primary culture of rat adipocytes also were studied in the epididymal white adipose tissue of bezafibrate-treated rats for 7 days. In vivo, M-CPT-I mRNA levels increased (4.5-fold induction; P = 0.001) in epididymal white adipose tissue of bezafibrate-treated rats. Similarly, fatty acid translocase (2.6-fold induction; P = 0.002) and Pref-1 (5.6-fold induction) mRNA levels increased, although differences in the latter were not significant because of huge individual variations. These results indicate that exposure of adipocytes to bezafibrate, independent of its hepatic effects, increases the degradation of fatty acids, reducing their availability to synthesize triglycerides. As a result, some degree of dedifferentiation of adipocytes to preadipocyte-like cells is achieved. These changes may be involved in the reduction in fat depots and in the improvement of insulin sensitivity observed after bezafibrate treatment.
Collapse
|
83
|
Poirier H, Niot I, Monnot MC, Braissant O, Meunier-Durmort C, Costet P, Pineau T, Wahli W, Willson TM, Besnard P. Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 2001; 355:481-8. [PMID: 11284737 PMCID: PMC1221761 DOI: 10.1042/0264-6021:3550481] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Collapse
MESH Headings
- Animals
- Bezafibrate/pharmacology
- Butyrates/pharmacology
- Carrier Proteins/genetics
- DNA Primers
- Fatty Acid-Binding Protein 7
- Fatty Acid-Binding Proteins
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Hypolipidemic Agents
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Linoleic Acid/pharmacology
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Neoplasm Proteins
- Nerve Tissue Proteins
- Phenylurea Compounds/pharmacology
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/physiology
- Transcription Factors/agonists
- Transcription Factors/physiology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- H Poirier
- Physiologie de la Nutrition, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation (ENSBANA) FRE 2049 CNRS, 1 Esplanade Erasme, CESG/Université de Bourgogne, F-21000 Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
The objective of this paper is to review the current evidence in support of genetic factors underlying the clustering of components of the metabolic syndrome in obese individuals. It has become clear that individual features of the metabolic syndrome are partially determined by familial factors some of which are unique to a given component and others that are shared among several features. A few candidate genes, encoding proteins of glucose, insulin and lipid metabolism, lipolytic cascade, fatty acid intestinal absorption, glucocorticoid metabolism, haemostasis and blood pressure, have been associated with a clustering of metabolic abnormalities, although the functional significance of these associations remains to be established. Furthermore, genetic polymorphisms, such as those detected at several lipoprotein metabolism loci, can modulate the relationships between different components of the metabolic syndrome. An overfeeding study conducted on identical twins has demonstrated that genetic factors play an important role in the responsiveness to changing energy balance conditions. Leptin receptor, beta2 adrenergic receptor and glucocorticoid receptor gene polymorphisms have been associated with an augmented clustering of metabolic abnormalities in response to overfeeding. Gene-gene interaction effects between markers of the alpha2A, beta2 and beta3 adrenergic receptor genes on components of the metabolic syndrome have been described. Genetic factors also seem to modify the responsiveness of metabolic syndrome features to endurance training. A growing understanding of the genetic architecture of the metabolic syndrome may help in the prevention of this condition. The reduction of excess body fat, the most common clinical feature among the cluster of metabolic abnormalities, should be the focus of the prevention and treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- O Ukkola
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808-4124, USA
| | | |
Collapse
|
85
|
|
86
|
Affiliation(s)
- B Staels
- U325 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille and Faculté de Pharmacie, Université de Lille, France.
| |
Collapse
|
87
|
Abstract
Insulin resistance is known to unite several metabolic abnormalities. The associated dyslipidaemia appears to play a central role in this atherogenic syndrome. Thiazolidinediones, which are recently introduced insulin sensitizing agents, have been shown to be effective not only in reducing elevated glucose levels, but also in improving the other metabolic abnormalities that are associated with insulin resistance. The present review focuses on these potential effects of thiazolidinediones.
Collapse
Affiliation(s)
- S Sunayama
- Department of Cardiology, Juntendo University, Tokyo, Japan.
| | | | | | | |
Collapse
|
88
|
Michels GM, Boudinot FD, Ferguson DC, Hoenig M. Pharmacokinetics of the insulin-sensitizing agent troglitazone in cats. Am J Vet Res 2000; 61:775-8. [PMID: 10895899 DOI: 10.2460/ajvr.2000.61.775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine pharmacokinetics of troglitazone in healthy cats after i.v. and oral administration of a single dose of the drug. ANIMALS 5 healthy ovariohysterectomized adult cats. PROCEDURE Using a randomized crossover design, cats were given 5 mg of troglitazone/kg of body weight i.v. and 40 mg of troglitazone/kg orally. Blood and urine samples were collected after drug administration, and concentrations of troglitazone in plasma and urine were determined by use of high-performance liquid chromatography. RESULTS Area-moment analysis was used to calculate pharmacokinetic variables. Terminal phase half-life was 1.1 +/- 0.1 hours. Steady-state volume of distribution was 0.23 +/- 0.15 L/kg. After i.v. administration, clearance was 0.33 +/- 0.04 L/h/kg. Drug was not detected in urine samples. Mean bioavailability of orally administered troglitazone was 6.9%. CONCLUSIONS AND CLINICAL RELEVANCE The overall disposition of troglitazone in cats was similar to that reported in other species, including humans. Troglitazone has low and variable oral bioavailability. Clearance of the compound is moderate. Little if any unchanged troglitazone is excreted in urine; thus, metabolism and biliary excretion play predominant roles in elimination of the drug. On the basis of troglitazone pharmacokinetics in healthy cats, as well as on the basis of pharmacodynamics of the drug in humans and other animals, a regimen that uses a dosage of 20 to 40 mg/kg administered orally once or twice per day to cats will produce plasma concentrations of the insulin-sensitizing agent that have been documented to be effective in humans.
Collapse
Affiliation(s)
- G M Michels
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
89
|
Martin G, Nemoto M, Gelman L, Geffroy S, Najib J, Fruchart JC, Roevens P, de Martinville B, Deeb S, Auwerx J. The human fatty acid transport protein-1 (SLC27A1; FATP-1) cDNA and gene: organization, chromosomal localization, and expression. Genomics 2000; 66:296-304. [PMID: 10873384 DOI: 10.1006/geno.2000.6191] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uptake of fatty acids into cells is a controlled process in part regulated by fatty acid transport proteins (FATPs), which facilitate the transport of fatty acids across the cell membrane. In this study the structure of the human FATP-1 (HGMW-approved symbol SLC27A1) cDNA and gene was determined, and the expression of its mRNA in human was characterized. Muscle and adipose tissue have the highest levels of FATP-1 mRNA, small intestine has intermediate levels, and FATP-1 mRNA is barely detectable in liver. The human FATP-1 gene has 12 exons and extends over more than 13 kb of genomic DNA. The FATP gene maps to chromosome 19p13.1 by fluorescence in situ hybridization, a region previously suggested to be implicated in the determination of small dense low-density lipoprotein (LDL). Knowledge of the gene structure and chromosomal localization will allow screening for FATP mutations in humans with metabolic disorders, whereas knowledge of its expression pattern and factors regulating its expression could be of importance in understanding its biology.
Collapse
Affiliation(s)
- G Martin
- Département d'Athérosclérose, INSERM U 325, Lille, F-59019, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43:527-50. [PMID: 10691680 DOI: 10.1021/jm990554g] [Citation(s) in RCA: 1409] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T M Willson
- Department of Medicinal Chemistry, Glaxo Wellcome Research & Development, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
91
|
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear receptor that controls the expression of a large array of genes involved in adipocyte differentiation, lipid storage and insulin sensitization. PPARgamma is bound and activated by prostaglandin J2 and fatty acid derivatives, which are its natural ligands. In addition, thiazolidinediones and nonsteroidal anti-inflammatory drugs are synthetic ligands and agonists of this receptor. Several studies have recently shown that this nuclear receptor has a role expanding beyond metabolism (diabetes and obesity) with functions in cell cycle control, carcinogenesis, inflammation and atherosclerosis. This review addresses the role of PPARgamma in these processes.
Collapse
Affiliation(s)
- S Rocchi
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | | |
Collapse
|
92
|
Affiliation(s)
- B Desvergne
- Institute of Animal Biology, University of Lausanne, Switzerland
| | | |
Collapse
|
93
|
Sunayama S, Watanabe Y, Ohmura H, Sawano M, Shimada K, Mokuno H, Daida H, Yamaguchi H. Effects of troglitazone on atherogenic lipoprotein phenotype in coronary patients with insulin resistance. Atherosclerosis 1999; 146:187-93. [PMID: 10487503 DOI: 10.1016/s0021-9150(99)00138-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insulin resistance is associated with atherogenic lipoprotein phenotype, including small dense LDL particle, hypertriglycemia and low HDL cholesterol levels. Troglitazone, a novel insulin sensitizing agent, may improve the associated lipid profile in patients with insulin resistance. We examined the effects of troglitazone (400 mg daily for 12 weeks) in 12 non-diabetic coronary patients (60+/-10 years), all of whom had hyperinsulinemic response to an oral glucose load. Troglitazone markedly reduced the insulin response. After the treatment, plasma triglycerides decreased by 32% (P<0.05), HDL cholesterol increased by 11%, (P<0.05) and LDL peak particle diameter increased from 24.7+/-0.3 to 25.5+/-0.5 nm (P<0.01). These lipidic improvements were associated with a significant rise in postheparin lipoprotein lipase levels (175+/-52 to 217+/-69 ng/ml, P<0.01). In patients with insulin resistance syndrome, troglitazone improved the atherogenic lipoprotein phenotype as well as hyperinsulinemia. Our data suggest that troglitazone therapy could reduce the atherosclerotic risk due to insulin resistance even in non-diabetic patients.
Collapse
Affiliation(s)
- S Sunayama
- Department of Cardiology, Juntendo University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Halle M, Berg A, Garwers U, Grathwohl D, Knisel W, Keul J. Concurrent reductions of serum leptin and lipids during weight loss in obese men with type II diabetes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E277-82. [PMID: 10444423 DOI: 10.1152/ajpendo.1999.277.2.e277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of the study was to examine the effects of weight reduction by exercise and diet on metabolic control in obese subjects with insulin resistance, particularly investigating if changes in serum leptin concentrations were directly associated with improvements in metabolic control. Twenty obese men (48 +/- 8 yr; body mass index 32. 1 +/- 3.9 kg/m(2)) with previously diagnosed type II diabetes mellitus were assigned to a 4-wk intervention program of exercise (2, 200 kcal/wk) and diet (1,000 kcal/day; 50% carbohydrates, 25% protein, 25% fat; polyunsaturated-to-saturated fatty acid ratio 1.0). Intervention induced significant reductions in body weight and serum leptin levels, and improvements in lipoprotein profile and glucose control. Reductions in leptin levels were directly associated with reductions in serum triglycerides and cholesterol, a finding that was independent of improvements in glucose control. These data show that serum leptin concentrations can be reduced with caloric restriction and exercise in male patients with type II diabetes, and they suggest a direct relationship between leptin and lipoprotein metabolism that is not solely due to weight reduction.
Collapse
Affiliation(s)
- M Halle
- Department of Prevention, Rehabilitation, and Sports Medicine, Center for Internal Medicine, Freiburg University Hospital, D-79106 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- I Rajman
- Clinical Pharmacology, Eli Lilly and Company, Lilly Research Centre, Erl Wood Manor, Windlesham, UK
| | | | | | | |
Collapse
|
96
|
Gelman L, Auwerx J. Peroxisome proliferator-activated receptors: mediators of a fast food impact on gene regulation. Curr Opin Clin Nutr Metab Care 1999; 2:307-12. [PMID: 10453311 DOI: 10.1097/00075197-199907000-00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors are nuclear receptors with pleiotropic effects on intra- and extracellular lipid metabolism, glucose homeostasis, inflammation control, and cell proliferation. This review addresses the respective roles of the different peroxisome proliferator-activated receptor isoforms in these different processes.
Collapse
Affiliation(s)
- L Gelman
- Département d'Athérosclérose, Institut Pasteur de Lille, France
| | | |
Collapse
|