51
|
Lu SY, Zhao GR, Wu AM, Jenks MA, Zhang S, Liu JY. Molecular cloning of a cotton phosphatase gene and its functional characterization. BIOCHEMISTRY (MOSCOW) 2010; 75:85-94. [DOI: 10.1134/s0006297910010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Corte L, Rellini P, Roscini L, Fatichenti F, Cardinali G. Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal Chim Acta 2010; 659:258-65. [DOI: 10.1016/j.aca.2009.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
|
53
|
Gunde-Cimerman N, Ramos J, Plemenitaš A. Halotolerant and halophilic fungi. ACTA ACUST UNITED AC 2009; 113:1231-41. [DOI: 10.1016/j.mycres.2009.09.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/02/2009] [Indexed: 11/30/2022]
|
54
|
Jamal A, Ko K, Kim HS, Choo YK, Joung H, Ko K. Role of genetic factors and environmental conditions in recombinant protein production for molecular farming. Biotechnol Adv 2009; 27:914-923. [PMID: 19698776 DOI: 10.1016/j.biotechadv.2009.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 07/19/2009] [Accepted: 07/21/2009] [Indexed: 01/03/2023]
Abstract
Plants are generally considered to represent a promising heterologous expression system for the production of valuable recombinant proteins. Minimal upstream plant production cost is a salient feature driving the development of plant expression systems used for the synthesis of recombinant proteins. For such a plant expression system to be fully effective, it is first essential to improve plant productivity by plant biomass after inserting genes of interest into a suitable plant. Plant productivity is related closely to its growth and development, both of which are affected directly by environmental factors. These environmental factors that affect the cultivation conditions mainly include temperature, light, salinity, drought, nutrition, insects and pests. In addition, genetic factors that affect gene expression at the transcriptional, translational, and post-translational levels are considered to be important factors related to gene expression in plants. Thus, these factors influence both the quality and quantity of recombinant protein produced in transgenic plants. Among the genetic factors, the post-translational process is of particular interest as it influences subcellular localization, protein glycosylation, assembly and folding of therapeutic proteins, consequently affecting both protein quantity and biological quality. In this review, we discuss the effects of cultivation condition and genetic factors on recombinant protein production in transgenic plants.
Collapse
Affiliation(s)
- Arshad Jamal
- School of Food Science/Technology, College of Natural Resources, Yeungnam University, Gyeonbuk 712-749, Republic of Korea
| | - Kinarm Ko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Hyun-Soon Kim
- Plant Genomics Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Hyouk Joung
- Plant Genomics Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kisung Ko
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea.
| |
Collapse
|
55
|
Marcondes J, Garcia A. ASPECTOS CITOMORFOLÓGICOS DO ESTRESSE SALINO EM PLÂNTULAS DE ARROZ (ORYZA SATIVA L.). ARQUIVOS DO INSTITUTO BIOLÓGICO 2009. [DOI: 10.1590/1808-1657v76p1872009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O objetivo deste trabalho foi realizar um estudo citomorfológico em plantas de arroz submetidas ao estresse salino (170 mM NaCl). Os efeitos da salinidade nas estruturas celulares foram analisados por meio de microscopia óptica e eletrônica de transmissão. Um processo de diferenciação precoce pôde ser observado na planta estressada, porém, o efeito deletério mais drástico foi encontrado nas membranas tilacóides dos cloroplastos. Estes resultados permitiram correlacionar o acúmulo de íons sódio, descritos na literatura, com os efeitos citomorfológicos do estresse salino em tecidos maduros de arroz.
Collapse
Affiliation(s)
| | - A.B. Garcia
- Universidade Estadual do Norte Fluminense, Brasil
| |
Collapse
|
56
|
Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJP. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 2009; 9:44. [PMID: 19232129 PMCID: PMC2666651 DOI: 10.1186/1471-2148-9-44] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 02/21/2009] [Indexed: 01/05/2023] Open
Abstract
Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol), oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our data are consistent with the hypothesis that fungal stress signalling components have undergone rapid recent evolution to tune the stress responses in a niche-specific fashion.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Shabala L. Organic vs inorganic: What makes the major contribution to osmotic adjustment in bacteria? Commun Integr Biol 2009; 2:74-5. [PMID: 19704892 PMCID: PMC2686347 DOI: 10.4161/cib.7473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/19/2022] Open
Abstract
In order to survive hyperosmotic stress bacteria should adjust their cell turgor to altered conditions by increasing the intracellular osmolality. The classical view is that bacterial osmotic adjustment is achieved via accumulation of so-called "compatible solutes"-some organic osmolytes that can be accumulated in the cytosol at high concentrations without interfering with cell metabolism. In our recently published paper,11 we have shown that in the absence of osmolytes in the environment uptake of inorganic ions (and, specifically, K(+)) is central to osmotic adjustment in E. coli under hyperosmotic stress conditions. Here we show that optimal E. coli growth, observed at 2% NaCl, corresponds to an osmotic balance between external and internal osmolality within bacterial cells. This is achieved by the regulation of net K(+) fluxes across the bacterial membrane. We suggest that the role of compatible solutes in osmotic adjustment in bacteria is indirect and confined to the fine tuning of a number of ion channels and transporters in order to achieve osmotic balance.
Collapse
Affiliation(s)
- Lana Shabala
- Menzies Research Institute; University of Tasmania; Tasmania, Australia
| |
Collapse
|
58
|
|
59
|
Wang X, Liu Z, He Y. Responses and tolerance to salt stress in bryophytes. PLANT SIGNALING & BEHAVIOR 2008; 3:516-8. [PMID: 19513243 PMCID: PMC2634484 DOI: 10.4161/psb.3.8.6337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 05/09/2023]
Abstract
During exposure to salt environments, plants could perceive salt signal and transmit the signal to cellular machinery to activate adaptive responses. In bryophytes, salt signal components and transcript factor identified suggest that salt activate adaptive responses to tolerate adverse environments. The ability of bryophytes to tolerate salt is determined by multiple biochemical pathways. Transmembrane transport proteins that mediate ion fluxes play a curial role in ionic and osmotic homeostasis under salt environments. Defense proteins protect cells from denaturation and degradation, as well as from oxidative damage following exposure to salt stress in bryophytes. ABA and salt stress positively affect the expression of common genes that participate in protection plant cells from injure, and ABA may be responsible for the ability to tolerate salt stress in bryophytes. In this paper, we reveal the mechanisms of salt responses and tolerance in bryophytes, and imply conservation between higher plants and bryophytes in response and tolerance to salt stress.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Life Sciences; Capital Normal University; Beijing, China
- College of Life Sciences; Xiamen University; Xiamen, China
| | - Zheng Liu
- Department of Plant Sciences; University of Cambridge; Cambridge, United Kingdom
| | - Yikun He
- College of Life Sciences; Capital Normal University; Beijing, China
| |
Collapse
|
60
|
Abstract
Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia.
| | | |
Collapse
|
61
|
Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. PLANTA 2008; 228:167-77. [PMID: 18351383 DOI: 10.1007/s00425-008-0727-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/03/2008] [Indexed: 05/19/2023]
Abstract
Physcomitrella patens is well known because of its importance in the study of plant systematics and evolution. The tolerance of P. patens for high-salinity environments also makes it an ideal candidate for studying the molecular mechanisms by which plants respond to salinity stresses. We measured changes in the proteome of P. patens gametophores that were exposed to high-salinity (250, 300, and 350 mM NaCl) using two-dimensional gel electrophoresis (2-DE) via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots were significantly altered by exposure to the high-salinity environment. Among them, 16 protein spots were down-regulated and 49 protein spots were up-regulated. These proteins were associated with a variety of functions, including energy and material metabolism, protein synthesis and degradation, cell defense, cell growth/division, transport, signal transduction, and transposons. Specifically, the up-regulated proteins were primarily involved in defense, protein folding, and ionic homeostasis. In summary, we outline several novel insights into the response of P. patens to high-salinity; (1) HSP70 is likely to play a significant role in protecting proteins from denaturation and degradation during salinity stress, (2) signaling proteins, such as 14-3-3 and phototropin, may work cooperatively to regulate plasma membrane H(+)-ATPase and maintain ion homeostasis, (3) an increase in photosynthetic activity may contribute to salinity tolerance, and (4) ROS scavengers were up-regulated suggesting that the antioxidative system may play a crucial role in protecting cells from oxidative damage following exposure to salinity stress in P. patens.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Life Sciences, Capital Normal University, Beijing, 100037, China.
| | | | | | | | | | | | | |
Collapse
|
62
|
Szepesi Á, Csiszár J, Gallé Á, Gémes K, Poór P, Tari I. Effects of long-term salicylic acid pre-treatment on tomato ( Lycopersicon esculentum Mill. L.) salt stress tolerance: Changes in glutathione S-transferase activities and anthocyanin contents. ACTA ACUST UNITED AC 2008. [DOI: 10.1556/aagr.56.2008.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the effect of salicylic acid (SA) pre-treatment on the salt stress acclimation of tomato plants (
Lycopersicon esculentum
Mill. L. cv. Rio Fuego). The antioxidant defence and detoxifying capacity of the tissues were analysed by measuring the accumulation of soluble, non-enzymatic antioxidants (anthocyanins) and the activities of glutathione S-transferases (GSTs) at low (10
−7
M) and high (10
−4
M) SA concentrations in plants exposed to 100 mM NaCl. GSTs are a diverse group of enzymes that catalyse the detoxification of xenobiotics and other toxic organic compounds, and anthocyanins are among the few endogenous substrates that bind to GSTs and are sequestered to the vacuole. It was found that 10
−4
M SA pre-treatment improved the acclimation of tomato to high salinity. SA pre-treatments increased the accumulation of anthocyanins both in the presence and absence of 100 mM NaCl. The extractable GST activity of tissues increased under salt stress in young leaves and roots of the control and in plants pre-treated with 10
−4
M SA, while the extractable GST activity in these organs was reduced by 10
−7
M SA. It is suggested that elevated GST activity is a prerequisite for successful acclimation to high salinity in tomato plants pre-treated with SA, but it may also be a symptom of tissue senescence.
Collapse
Affiliation(s)
- Á. Szepesi
- 1 University of Szeged Department of Plant Biology Szeged Hungary
| | - J. Csiszár
- 1 University of Szeged Department of Plant Biology Szeged Hungary
| | - Á. Gallé
- 1 University of Szeged Department of Plant Biology Szeged Hungary
| | - K. Gémes
- 1 University of Szeged Department of Plant Biology Szeged Hungary
| | - P. Poór
- 1 University of Szeged Department of Plant Biology Szeged Hungary
| | - I. Tari
- 1 University of Szeged Department of Plant Biology Szeged Hungary
| |
Collapse
|
63
|
Khavari-Nejad RA, Najafi F, Khavari-Nejad S. Growth and some physiological parameters of four sugar beet (Beta vulgaris l.) cultivars as affected by salinity. Pak J Biol Sci 2008; 11:1390-1393. [PMID: 18817275 DOI: 10.3923/pjbs.2008.1390.1393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The comparative responses of certain biochemical and physiological characteristics to salinity were studied in 4 cultivars of sugar beet (Beta vulgaris L.) plants. Eight weeks old plants were treated with NaCl at 0, 25 and 50 mM in nutrient solutions. Plants were grown under controlled environment and harvested after 3 weeks for measurements of biochemical and physiological parameters. Results showed that in 25 mM NaCl for cultivars of ET5 and C3-3, soluble sugars in leaves, photosynthetic rate and growth parameters were significantly increased as compared to those of other cultivars. In 50 mM NaCl photosynthetic rate and soluble sugars were significantly increased only in ET5 cultivar as compared with those of others. Results indicated that in 25 mM NaCl, ET5 cultivar showed high growth responses and tolerated to 50 mM NaCl.
Collapse
Affiliation(s)
- R A Khavari-Nejad
- Department of Biology, Tarbiat Moallem University, P.O. Box 15815-3587, Tehran, Iran
| | | | | |
Collapse
|
64
|
Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Appl Environ Microbiol 2008; 74:2852-63. [PMID: 18326675 DOI: 10.1128/aem.02311-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The alphaproteobacterium Nitrobacter hamburgensis X14 is a gram-negative facultative chemolithoautotroph that conserves energy from the oxidation of nitrite to nitrate. Sequencing and analysis of the Nitrobacter hamburgensis X14 genome revealed four replicons comprised of one chromosome (4.4 Mbp) and three plasmids (294, 188, and 121 kbp). Over 20% of the genome is composed of pseudogenes and paralogs. Whole-genome comparisons were conducted between N. hamburgensis and the finished and draft genome sequences of Nitrobacter winogradskyi and Nitrobacter sp. strain Nb-311A, respectively. Most of the plasmid-borne genes were unique to N. hamburgensis and encode a variety of functions (central metabolism, energy conservation, conjugation, and heavy metal resistance), yet approximately 21 kb of a approximately 28-kb "autotrophic" island on the largest plasmid was conserved in the chromosomes of Nitrobacter winogradskyi Nb-255 and Nitrobacter sp. strain Nb-311A. The N. hamburgensis chromosome also harbors many unique genes, including those for heme-copper oxidases, cytochrome b(561), and putative pathways for the catabolism of aromatic, organic, and one-carbon compounds, which help verify and extend its mixotrophic potential. A Nitrobacter "subcore" genome was also constructed by removing homologs found in strains of the closest evolutionary relatives, Bradyrhizobium japonicum and Rhodopseudomonas palustris. Among the Nitrobacter subcore inventory (116 genes), copies of genes or gene clusters for nitrite oxidoreductase (NXR), cytochromes associated with a dissimilatory nitrite reductase (NirK), PII-like regulators, and polysaccharide formation were identified. Many of the subcore genes have diverged significantly from, or have origins outside, the alphaproteobacterial lineage and may indicate some of the unique genetic requirements for nitrite oxidation in Nitrobacter.
Collapse
|
65
|
Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M. Physiology of citrus fruiting. ACTA ACUST UNITED AC 2007. [DOI: 10.1590/s1677-04202007000400006] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrus is the main fruit tree crop in the world and therefore has a tremendous economical, social and cultural impact in our society. In recent years, our knowledge on plant reproductive biology has increased considerably mostly because of the work developed in model plants. However, the information generated in these species cannot always be applied to citrus, predominantly because citrus is a perennial tree crop that exhibits a very peculiar and unusual reproductive biology. Regulation of fruit growth and development in citrus is an intricate phenomenon depending upon many internal and external factors that may operate both sequentially and simultaneously. The elements and mechanisms whereby endogenous and environmental stimuli affect fruit growth are being interpreted and this knowledge may help to provide tools that allow optimizing production and fruit with enhanced nutritional value, the ultimate goal of the Citrus Industry. This article will review the progress that has taken place in the physiology of citrus fruiting during recent years and present the current status of major research topics in this area.
Collapse
Affiliation(s)
| | - Manuel Cercós
- Instituto Valenciano de Investigaciones Agrarias, Spain
| | | | | | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, Spain
| | | | | | - Ignacio Lliso
- Instituto Valenciano de Investigaciones Agrarias, Spain
| | - Raphael Morillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Dévelopement, France
| | | | - Manuel Talon
- Instituto Valenciano de Investigaciones Agrarias, Spain
| |
Collapse
|
66
|
Prista C, González-Hernández JC, Ramos J, Loureiro-Dias MC. Cloning and characterization of two K+ transporters of Debaryomyces hansenii. MICROBIOLOGY-SGM 2007; 153:3034-3043. [PMID: 17768246 DOI: 10.1099/mic.0.2007/006080-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two genes from the halotolerant yeast Debaryomyces hansenii were cloned, DhTRK1 and DhHAK1. These genes encode K(+) transporters with sequence similarities to the TRK and HAK transporters from Debaryomyces occidentalis and Candida albicans. The DhHAK1p transporter was only expressed in K(+)-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a trk1Delta trk2Delta mutant of Saccharomyces cerevisiae, unable to grow at low K(+). This expression resulted in partial recovery of growth and ability to retain K(+) at low concentrations. In liquid media, 0.5 M NaCl affected growth of these S. cerevisiae transformants as it does in D. hansenii, resulting in a much less deleterious effect than in wild-type S. cerevisiae. Kinetics of Rb(+) uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K(+) transporters exhibiting a sigmoid response against Rb(+) concentration and presenting a deviation from classic Michaelis-Menten kinetics at low substrate concentrations. Rb(+) uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na(+) at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of D. hansenii.
Collapse
Affiliation(s)
- Catarina Prista
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, TU Lisbon, 1349-017 Lisboa, Portugal
| | | | - José Ramos
- Departamento Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, E-14071 Córdoba, Spain
| | - Maria C Loureiro-Dias
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, TU Lisbon, 1349-017 Lisboa, Portugal
| |
Collapse
|
67
|
Zhang F, Wang Y, Wang D. Role of nitric oxide and hydrogen peroxide during the salt resistance response. PLANT SIGNALING & BEHAVIOR 2007; 2:473-4. [PMID: 19704588 PMCID: PMC2634338 DOI: 10.4161/psb.2.6.4466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 05/20/2023]
Abstract
Ion homeostasis is essential for plant cell resistance to salt stress. Under salt stress, to avoid cellular damage and nutrient deficiency, plant cells need to maintain adequate K nutrition and a favorable K to Na ratio in the cytosol. Recent observations revealed that both nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) act as signaling molecules to regulate K to Na ratio in calluses from Populus euphratica under salt stress. Evidence indicated that NO mediating H(2)O(2) causes salt resistance via the action of plasma membrane H(+)-ATPase but that activity of plasma membrane NADPH oxidase is dependent on NO. Our study demonstrated the signaling transduction pathway. In this addendum, we proposed a testable hypothesis for NO function in regulation of H(2)O(2) mediating salt resistance.
Collapse
Affiliation(s)
- Feng Zhang
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement; College of Life Sciences and Technology; Gansu Agricultural University; Lanzhou, China
| | | | | |
Collapse
|
68
|
Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. EUKARYOTIC CELL 2007; 6:2175-83. [PMID: 17951516 DOI: 10.1128/ec.00337-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
69
|
Lobão FA, Façanha AR, Okorokov LA, Dutra KR, Okorokova-Façanha AL. Aluminum impairs morphogenic transition and stimulates H+transport mediated by the plasma membrane ATPase ofYarrowia lipolytica. FEMS Microbiol Lett 2007; 274:17-23. [PMID: 17663703 DOI: 10.1111/j.1574-6968.2007.00811.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5-1.0 mM AlK(SO(4))(2)) inhibits yeast-hypha transition. Both vanadate-sensitive H(+) transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H(+) pump was stimulated by aluminum. Furthermore, Al-treated cells showed a stronger H(+) efflux in solid medium. The present results suggest that alterations in the plasma membrane H(+) transport might underline a pH signaling required for yeast/hyphal development. The data point to the cell surface pH as a determinant of morphogenesis of Y. lipolytica and the plasma membrane H(+)-ATPase as a key factor of this process.
Collapse
Affiliation(s)
- Flávia A Lobão
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | | | | | | | | |
Collapse
|
70
|
Najafi F, Khavari-Nejad RA, Rastgar-Jazii F, Sticklen M. Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity. Pak J Biol Sci 2007; 10:2752-5. [PMID: 19070097 DOI: 10.3923/pjbs.2007.2752.2755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of salt stress were studied on growth and physiology of pea (Pisum sativum L. cv. Green Arrow) in a pot study. Pea plants were treated with NaCl at 0, 10, 30, 50 and 70 mM in Hoagland solution. Plants were harvested after 21 days for measurements of physiological parameters. The highest NAR and RGR were found in 10 mM NaCl. However, in 70 mM NaCl, RGR and RLGR were significantly decreased in respect of other concentrations of NaCl. In 50 and 70 mM NaCl, chlorophylls contents and photosynthetic rate, were significantly decreased and CO2 compensation concentration and respiration rate increased in comparison with control. In 10 and 30 mM NaCl gas exchanges and chlorophyll contents were not significantly decrease in respect of control. Results indicated that Pisum sativum L. cv. Green Arrow can tolerate to 70 mM NaCl, also growth of plants in 10 and 30 mM NaCl was better than that of those in 0 mM NaCl.
Collapse
Affiliation(s)
- F Najafi
- Department of Biology, Tarbiat Moallem University, P.O. Box 15815-3587, Tehran, Iran
| | | | | | | |
Collapse
|
71
|
Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. PLANT, CELL & ENVIRONMENT 2007; 30:775-85. [PMID: 17547650 DOI: 10.1111/j.1365-3040.2007.01667.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H2O2) function as signalling molecules in plants under abiotic and biotic stresses. Calluses from Populus euphratica, which show salt tolerance, were used to study the interaction of NO and H2O2 in plant adaptation to salt resistance. The nitric oxide synthase (NOS) activity was identified in the calluses, and this activity was induced under 150 mM NaCl treatment. Under 150 mM NaCl treatment, the sodium (Na) percentage decreased, but the potassium (K) percentage and the K/Na ratio increased in P. euphratica calluses. Application of glucose/glucose oxidase (G/GO, a H2O2 donor) and sodium nitroprusside (SNP, a NO donor) revealed that both H2O2 and NO resulted in increased K/Na ratio in a concentration-dependent manner. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor) counteracted H2O2 and NO effect by increasing the Na percentage, decreasing the K percentage and K/Na ratio. NG-monomethyl-L-Arg monoacetate (NMMA, an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO, a specific NO scavenger) only reversed NO effect, but did not block H2O2 effect. The increased activity of plasma membrane (PM) H+ -ATPase caused by salt stress was reversed by treatment with DPI and NMMA. Exogenous H2O2 increased the activity of PM H+ -ATPase, but the effect could not be diminished by NMMA and PTIO. The NO-induced increase of PM H+ -ATPase can be reversed by NMMA and PTIO, but not by DPI. Western blot analysis demonstrated that NO and H2O2 stimulated the expression of PM H+ -ATPase in P. euphratica calluses. These results indicate that NO and H2O2 served as intermediate molecules in inducing salt resistance in the calluses from P. euphratica under slat stress by increasing the K/Na ratio, which was dependent on the increased PM H+ -ATPase activity.
Collapse
Affiliation(s)
- Feng Zhang
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | | | | | | | | | | |
Collapse
|
72
|
Wolfe DM, Pearce DA. Channeling studies in yeast: yeast as a model for channelopathies? Neuromolecular Med 2007; 8:279-306. [PMID: 16775381 DOI: 10.1385/nmm:8:3:279] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 11/30/1999] [Accepted: 01/09/2006] [Indexed: 01/30/2023]
Abstract
Regulation of the concentration of ions within a cell is mediated by their specific transport and sequestration across cellular membranes. This regulation constitutes a major factor in the maintenance of correct cellular homeostasis, with the transport occurring through the action of a large number of different channel proteins localized to the plasma membrane as well as to various organelles. These ion channels vary in specificity from broad (cationic vs anionic) to highly selective (chloride vs sodium). Mutations in many of these channels result in a large number of human diseases, collectively termed channelopathies. Characterization of many of these channels has been undertaken in a variety of both prokaryotic and eukaryotic organisms. Among these organisms is the budding yeast Saccharomyces cerevisiae. Possessing a fully annotated genome, S. cerevisiae would appear to be an ideal organism in which to study this class of proteins associated to diseases. We have compiled and reviewed a list of yeast ion channels, each possessing a human homolog implicated in a channelopathy. Although yeast has been used for the study of other human disease, it has been under utilized for channelopathy research. The utility of using yeast as a model system for studying ion channels associated to human disease is illustrated using yeast lacking the GEF1 gene product that encodes the human homolog to the chloride channel CLC-3.
Collapse
Affiliation(s)
- Devin M Wolfe
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
73
|
Hirasawa T, Ashitani K, Yoshikawa K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S. Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 2007; 102:568-71. [PMID: 17270724 DOI: 10.1263/jbb.102.568] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/04/2006] [Indexed: 11/17/2022]
Abstract
Transcriptional responses of laboratory and brewing strains of Saccharomyces cerevisiae to osmotic stresses induced by adding either NaCl or sorbitol to their cultures were compared by clustering DNA microarray data. Our results suggest that the difference in the transcriptional responses of the two strains between NaCl and sorbitol additions is small when the dynamics of the total change in gene expression are similar.
Collapse
Affiliation(s)
- Takashi Hirasawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. PLANT CELL REPORTS 2007; 26:237-45. [PMID: 16972091 DOI: 10.1007/s00299-006-0238-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 08/19/2006] [Accepted: 08/24/2006] [Indexed: 05/11/2023]
Abstract
The halophyte Thellungiella halophila (salt cress) is an ideal model system for studying the molecular mechanisms of salinity tolerance in plants. Herein, we report the identification of a stress-responsive cyclophilin gene (ThCYP1) from T. halophila, using fission yeast as a functional system. The expression of ThCYP1 is highly inducible by salt, abscisic acid (ABA), H(2)O(2) and heat shock. Ectopic overexpression of the ThCYP1 gene enhance the salt tolerance capacity of fission yeast and tobacco (Nicotiana tabacum L.) cv. Bright Yellow 2 (BY-2) cells significantly. ThCYP1 is expressed constitutively in roots, stems, leaves and flowers, with higher expression occurring in the roots and flowers. The ThCYP1 proteins are distributed widely within the cell, but are enriched significantly in the nucleus. The present results suggest that ThCYP1 may participate in response to stresses in the salt cress, perhaps by regulating appropriate folding of certain stress-related proteins, or in the signal transduction processes.
Collapse
Affiliation(s)
- An-Ping Chen
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Ye T, García-Salcedo R, Ramos J, Hohmann S. Gis4, a new component of the ion homeostasis system in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1611-21. [PMID: 17030993 PMCID: PMC1595338 DOI: 10.1128/ec.00215-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gis4 is a new component of the system required for acquisition of salt tolerance in Saccharomyces cerevisiae. The gis4Delta mutant is sensitive to Na(+) and Li(+) ions but not to osmotic stress. Genetic evidence suggests that Gis4 mediates its function in salt tolerance, at least partly, together with the Snf1 protein kinase and in parallel with the calcineurin protein phosphatase. When exposed to salt stress, mutants lacking gis4Delta display a defect in maintaining low intracellular levels of Na(+) and Li(+) ions and exporting those ions from the cell. This defect is due to diminished expression of the ENA1 gene, which encodes the Na(+) and Li(+) export pump. The protein sequence of Gis4 is poorly conserved and does not reveal any hints to its molecular function. Gis4 is enriched at the cell surface, probably due to C-terminal farnesylation. The CAAX box at the C terminus is required for cell surface localization but does not seem to be strictly essential for the function of Gis4 in salt tolerance. Gis4 and Snf1 seem to share functions in the control of ion homeostasis and ENA1 expression but not in glucose derepression, the best known role of Snf1. Together with additional evidence that links Gis4 genetically and physically to Snf1, it appears that Gis4 may function in a pathway in which Snf1 plays a specific role in controlling ion homeostasis. Hence, it appears that the conserved Snf1 kinase plays roles in different pathways controlling nutrient as well as stress response.
Collapse
Affiliation(s)
- Tian Ye
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, Box 462, S-40530 Göteborg, Sweden
| | | | | | | |
Collapse
|
76
|
|
77
|
Serrano R, Martín H, Casamayor A, Ariño J. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 2006; 281:39785-95. [PMID: 17088254 DOI: 10.1074/jbc.m604497200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.
Collapse
Affiliation(s)
- Raquel Serrano
- Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
78
|
Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Ariño J. The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 2006; 281:36632-42. [PMID: 17023428 DOI: 10.1074/jbc.m606483200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptive response of the yeast Saccharomyces cerevisiae to environmental alkalinization results in remodeling of gene expression. A key target is the gene ENA1, encoding a Na(+)-ATPase, whose induction by alkaline pH has been shown to involve calcineurin and the Rim101/Nrg1 pathway. Previous functional analysis of the ENA1 promoter revealed a calcineurin-independent pH responsive region (ARR2, 83 nucleotides). We restrict here this response to a small (42 nucleotides) ARR2 5.-region, named MCIR (minimum calcineurin independent response), which contains a MIG element, able to bind Mig1,2 repressors. High pH-induced response driven from this region was largely abolished in snf1 cells and moderately reduced in a rim101 strain. Cells lacking Mig1 or Mig2 repressors had a near wild type response, but the double mutant presented a high level of expression upon alkaline stress. Deletion of NRG1 (but not of NRG2) resulted in increased expression. Induction from the MCIR region was marginal in a quadruple mutant lacking Nrg1,2 and Mig1,2 repressors. In vitro band shift experiments demonstrated binding of Nrg1 to the 5. end of the ARR2 region. Furthermore, we show that Nrg1 binds in vivo around the MCIR region under standard growth conditions, and that binding is largely abolished after high pH stress. Therefore, the calcineurin-independent response of the ENA1 gene is under the regulation of Rim101 (through Nrg1) and Snf1 (through Nrg1 and Mig2). Accordingly, induction by alkaline stress of the entire ENA1 promoter in a snf1 rim101 mutant in the presence of the calcineurin inhibitor FK506 is completely abolished. Thus, the transcriptional response to alkaline stress of the ENA1 gene integrates three different signaling pathways.
Collapse
Affiliation(s)
- Maria Platara
- Department of Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Barcelona
| | | | | | | | | | | |
Collapse
|
79
|
Naranjo MA, Forment J, Roldán M, Serrano R, Vicente O. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. PLANT, CELL & ENVIRONMENT 2006; 29:1890-900. [PMID: 16930315 DOI: 10.1111/j.1365-3040.2006.01565.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genes involved in the mechanisms of plant responses to salt stress may be used as biotechnological tools for the genetic improvement of salt tolerance in crop plants. This would help alleviate the increasing problem of salinization of lands cultivated under irrigation in arid and semi-arid regions. We have isolated a novel halotolerance gene from Arabidopsis thaliana, A. thaliana Li-tolerant lipase 1 (AtLTL1), on the basis of the phenotype of tolerance to LiCl conferred by its expression in yeast. AtLTL1 encodes a putative lipase of the GDSL-motif family, which includes bacterial and a very large number of plant proteins. In Arabidopsis, AtLTL1 expression is rapidly induced by LiCl or NaCl, but not by other abiotic stresses. Overexpression of AtLTL1 increases salt tolerance in transgenic Arabidopsis plants, compared to non-transformed controls, allowing germination of seeds in the presence of toxic concentrations of LiCl and NaCl, and stimulating vegetative growth, flowering and seed set in the presence of NaCl. These results clearly point to a role of AtLTL1 in the mechanisms of salt tolerance. In addition, we show that AtLTL1 expression is also activated, although only transiently, by salicylic acid (SA), suggesting that the lipase could also be involved in defence reactions against pathogens.
Collapse
Affiliation(s)
- Miguel Angel Naranjo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
80
|
Chen C, Wanduragala S, Becker DF, Dickman MB. Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol 2006; 72:4001-6. [PMID: 16751508 PMCID: PMC1489650 DOI: 10.1128/aem.02428-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.
Collapse
Affiliation(s)
- Changbin Chen
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, 2123 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
81
|
Aggarwal M, Mondal AK. Role of N-terminal hydrophobic region in modulating the subcellular localization and enzyme activity of the bisphosphate nucleotidase from Debaryomyces hansenii. EUKARYOTIC CELL 2006; 5:262-71. [PMID: 16467467 PMCID: PMC1405886 DOI: 10.1128/ec.5.2.262-271.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3', 5'-Bisphosphate nucleotidase is a ubiquitous enzyme that converts 3'-phosphoadenosine-5'-phosphate to adenosine-5'-phosphate and inorganic phosphate. These enzymes are highly sensitive to sodium and lithium and, thus, perform a crucial rate-limiting metabolic step during salt stress in yeast. Recently, we have identified a bisphosphate nucleotidase gene (DHAL2) from the halotolerant yeast Debaryomyces hansenii. One of the unique features of Dhal2p is that it contains an N-terminal 54-amino-acid-residue hydrophobic extension. In this study, we have shown that Dhal2p exists as a cytosolic as well as a membrane-bound form and that salt stress markedly influences the accumulation of the latter form in the cell. We have demonstrated that the N-terminal hydrophobic region was necessary for the synthesis of the membrane-bound isoform. It appeared that an alternative translation initiation was the major mechanism for the synthesis of these two forms. Moreover, the two forms exhibit significant differences in their substrate specificity. Unlike the cytosolic form, the membrane-bound form showed very high activity against inositol-1,4-bisphosphate. Thus, the present study for the first time reports the existence of multiple forms of a bisphosphate nucleotidase in any organism.
Collapse
Affiliation(s)
- Monika Aggarwal
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
82
|
Di Martino C, Pizzuto R, Pallotta ML, De Santis A, Passarella S. Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. PLANTA 2006; 223:1123-33. [PMID: 16322984 DOI: 10.1007/s00425-005-0166-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 10/31/2005] [Indexed: 05/05/2023]
Abstract
Abiotic stresses, such as high salinity or drought, can cause proline accumulation in plants. Such an accumulation involves proline transport into mitochondria where proline catabolism occurs. By using durum wheat seedlings as a plant model system, we investigated how proline enters isolated coupled mitochondria. The occurrence of two separate translocators for proline, namely a carrier solely for proline and a proline/glutamate antiporter, is shown in a functional study in which we found the following: (1) Mitochondria undergo passive swelling in isotonic proline solutions in a stereospecific manner. (2) Externally added L: -proline (Pro) generates a mitochondrial membrane potential (Delta Psi) with a rate depending on the transport of Pro across the mitochondrial inner membrane. (3) The dependence of the rate of generation of Delta Psi on increasing Pro concentrations exhibits hyperbolic kinetics. Proline transport is inhibited in a competitive manner by the non-penetrant thiol reagent mersalyl, but it is insensitive to the penetrant thiol reagent N-ethylmaleimide (NEM). (4) No accumulation of proline occurs inside the mitochondria as a result of the addition of proline externally, whereas the content of glutamate increases both in mitochondria and in the extramitochondrial phase. (5) Glutamate efflux from mitochondria occurs at a rate which depends on the mitochondrial transport, and it is inhibited in a non-competitive manner by NEM. The dependence of the rate of glutamate efflux on increasing proline concentration shows saturation kinetics. The physiological role of carrier-mediated transport in the regulation of proline catabolism, as well as the possible occurrence of a proline/glutamate shuttle in durum wheat seedlings mitochondria, are discussed.
Collapse
Affiliation(s)
- Catello Di Martino
- Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Università del Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy
| | | | | | | | | |
Collapse
|
83
|
Todeschini AL, Condon C, Bénard L. Sodium-induced GCN4 expression controls the accumulation of the 5' to 3' RNA degradation inhibitor, 3'-phosphoadenosine 5'-phosphate. J Biol Chem 2006; 281:3276-82. [PMID: 16352596 DOI: 10.1074/jbc.m511688200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most cytoplasmic mRNAs are decapped and digested by the 5'-3'-exonuclease Xrn1p in Saccharomyces cerevisiae. The activity of Xrn1p is naturally inhibited in the presence of 3'-phosphoadenosine 5'-phosphate (pAp), a metabolite produced during sulfate assimilation that is quickly metabolized to AMP by the enzymatic activity of Hal2p. However, pAp accumulates and 5'-3' degradation decreases in the presence of ions known to inhibit Hal2p activity, such as sodium or lithium. We have shown that yeast cells can better adapt to the presence of sodium than lithium because of their ability to reduce pAp accumulation by activating HAL2 expression in a Gcn4p-dependent response, a regulatory loop that is likely to be conserved in different yeast species. We have thus identified a new role for the transcriptional activity of Gcn4p in maintaining an active mRNA degradation pathway under conditions of sodium stress. Since deregulation of proteins involved in different metabolic pathways is observed in xrn1Delta mutants, the maintenance of mRNA degradation capacity is likely to be important for the accurate and rapid adaptation of gene expression to salt stress.
Collapse
|
84
|
Jin Y, Weining S, Nevo E. A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: Prospects for saline agriculture. Proc Natl Acad Sci U S A 2005; 102:18992-7. [PMID: 16365289 PMCID: PMC1323214 DOI: 10.1073/pnas.0509653102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Dead Sea is one of the most saline lakes on earth ( approximately 340 g/liter salinity) and is approximately 10 times saltier than the oceans. Eurotium herbariorum, a common fungal species, was isolated from its water. EhHOG gene, encoding a mitogen-activated protein kinase (MAPK) that plays an essential role in the osmoregulatory pathway in yeast and many other eukaryotes, was isolated from E. herbariorum. The deduced amino acid sequences of EhHOG indicated high similarity with homologous genes from Aspergillus nidulans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe and contained a TGY motif for phosphorylation by MAPK kinase. When EhHOG was expressed in S. cerevisiae hog1Delta mutant, the growth and aberrant morphology of hog1Delta mutant was restored under high osmotic stress condition. Moreover, intracellular glycerol content in the transformant increased to a much higher level than that in the mutant during salt-stress situations. hog1Delta mutant complemented by EhHOG outperformed the wild type or had higher genetic fitness under high Li(+) and freezing-thawing conditions. The present study revealed the putative presence of a high-osmolarity glycerol response (HOG) pathway in E. herbariorum and the significance of EhHOG in osmotic regulation, heat stress, freeze stress, and oxidative stress. The Dead Sea is becoming increasingly more saline while the fungi living in it evolutionarily adapt to its high-saline environment, particularly with the extraordinarily high Li(+) concentration. The Dead Sea is potentially an excellent model for studies of evolution under extreme environments and is an important gene pool for future agricultural genetic engineering prospects.
Collapse
Affiliation(s)
- Yan Jin
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | | | |
Collapse
|
85
|
Aggarwal M, Bansal PK, Mondal AK. Molecular cloning and biochemical characterization of a 3'(2'),5'-bisphosphate nucleotidase from Debaryomyces hansenii. Yeast 2005; 22:457-70. [PMID: 15849794 DOI: 10.1002/yea.1223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme 3'(2'),5'-bisphosphate nucleotidase catalyses a reaction that converts 3'-phosphoadenosine-5'-phosphate (PAP) to adenosine-5'-phosphate (AMP) and inorganic phosphate (Pi). The enzyme from Saccharomyces cerevisiae is highly sensitive to sodium and lithium and is thus considered to be the in vivo target of salt toxicity in yeast. In S. cerevisiae, the HAL2 gene encodes this enzyme. We have cloned a homologous gene, DHAL2, from the halotolerant yeast Debaryomyces hansenii. DNA sequencing of this clone revealed a 1260 bp open reading frame (ORF) that putatively encoded a protein of 420 amino acid residues. S. cerevisiae transformed with DHAL2 gene displayed higher halotolerance. Biochemical studies showed that recombinant Dhal2p could efficiently utilize PAP (K(m)17 microM) and PAPS (K(m)48 microM) as substrate. Moreover, we present evidence that, in comparison to other homologues from yeast, Dhal2p displays significantly higher resistance towards lithium and sodium ions.
Collapse
Affiliation(s)
- Monika Aggarwal
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | | | |
Collapse
|
86
|
VILLAGRA PABLOEUGENIO, CAVAGNARO JUANBRUNO. Effects of salinity on the establishment and early growth of Prosopis argentina and Prosopis alpataco seedlings in two contrasting soils: Implications for their ecological success. AUSTRAL ECOL 2005. [DOI: 10.1111/j.1442-9993.2005.01477.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2005. [PMID: 0 DOI: 10.1080/07352680590910410] [Citation(s) in RCA: 1075] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
88
|
Tang W, Peng X, Newton RJ. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:139-46. [PMID: 15820661 DOI: 10.1016/j.plaphy.2005.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Accepted: 01/03/2005] [Indexed: 05/02/2023]
Abstract
A reproducible approach to improve salt tolerance of conifers has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of three genotypes of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harboring the plasmid pBIGM which carrying two bacterial genes encoding the mannitol-1-phosphate dehydrogenase (Mt1D, EC 1.1.1.17) and glucitol-6-phosphate dehydrogenase (GutD) (EC 1.1.1.140), respectively. Transgenic plantlets were produced on selection medium containing 15 mg l(-1) kanamycin and confirmed by polymerase chain reaction (PCR) and Southern blot analysis of genomic DNA. The Mt1D and GutD genes were expressed and translated into functional enzymes that resulted in the synthesis and accumulation of mannitol and glucitol in transgenic plants. Salt tolerance assays demonstrated that transgenic plantlets producing mannitol and glucitol had an increased ability to tolerate high salinity. These results suggested that an efficient A. tumefaciens-mediated transformation protocol for stable integration of bacterial Mt1D and GutD genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|
89
|
Munson AM, Haydon DH, Love SL, Fell GL, Palanivel VR, Rosenwald AG. Yeast ARL1 encodes a regulator of K+ influx. J Cell Sci 2005; 117:2309-20. [PMID: 15126631 DOI: 10.1242/jcs.01050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular genetic approach was undertaken in Saccharomyces cerevisiae to examine the functions of ARL1, encoding a G protein of the Ras superfamily. We show here that ARL1 is an important component of the control of intracellular K(+). The arl1 mutant was sensitive to toxic cations, including hygromycin B and other aminoglycoside antibiotics, tetramethylammonium ions, methylammonium ions and protons. The hygromycin-B-sensitive phenotype was suppressed by the inclusion of K(+) and complemented by wild-type ARL1 and an allele of ARL1 predicted to be unbound to nucleotide in vivo. The arl1 mutant strain internalized approximately 25% more [(14)C]-methylammonium ion than did the wild type, consistent with hyperpolarization of the plasma membrane. The arl1 strain took up 30-40% less (86)Rb(+) than did the wild type, showing an inability to regulate K(+) import properly, contributing to membrane hyperpolarity. By contrast, K(+) and H(+) efflux were undisturbed. The loss of ARL1 had no effect on the steady-state level or the localization of a tagged version of Trk1p. High copy suppressors of the hygromycin-B phenotype included SAP155, encoding a protein that interacts with the cell cycle regulator Sit4p, and HAL4 and HAL5, encoding Ser/Thr kinases that regulate the K(+)-influx mediators Trk1p and Trk2p. These results are consistent with a model in which ARL1, via regulation of HAL4/HAL5, governs K(+) homeostasis in cells.
Collapse
Affiliation(s)
- Amanda M Munson
- Department of Biology, 406 Reiss Science Center, Box 571229, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
90
|
Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 2005; 102:509-14. [PMID: 15630095 PMCID: PMC544286 DOI: 10.1073/pnas.0406485102] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus-(35)S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T(0) transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T(0) transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T(1) transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na(+) ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T(1) transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
91
|
Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. PLANT PHYSIOLOGY 2005; 137:117-26. [PMID: 15618414 PMCID: PMC548843 DOI: 10.1104/pp.104.055079] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 11/05/2004] [Accepted: 11/22/2004] [Indexed: 05/17/2023]
Abstract
Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K(m) = 0.1-0.3 mM), lower for Pro (K(m) = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K(m) = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.
Collapse
Affiliation(s)
- Silke Grallath
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
92
|
MIYAZAKI SAORI, NEVO EVIATAR, BOHNERT HANSJ. Adaptive oxidative stress in yeast Saccharomyces cerevisiae: interslope genetic divergence in ‘Evolution Canyon’. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2005.00418.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
93
|
González-Hernández JC, Jiménez-Estrada M, Peña A. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 2004; 9:7-16. [PMID: 15338455 DOI: 10.1007/s00792-004-0415-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 07/06/2004] [Indexed: 11/29/2022]
Abstract
The comparative analysis of growth, intracellular content of Na+ and K+, and the production of trehalose in the halophilic Debaryomyces hansenii and Saccharomyces cerevisiae were determined under saline stress. The yeast species were studied based on their ability to grow in the absence or presence of 0.6 or 1.0 M NaCl and KCl. D. hansenii strains grew better and accumulated more Na+ than S. cerevisiae under saline stress (0.6 and 1.0 M of NaCl), compared to S. cerevisiae strains under similar conditions. By two methods, we found that D. hansenii showed a higher production of trehalose, compared to S. cerevisiae; S. cerevisiae active dry yeast contained more trehalose than a regular commercial strain (S. cerevisiae La Azteca) under all conditions, except when the cells were grown in the presence of 1.0 M NaCl. In our experiments, it was found that D. hansenii accumulates more glycerol than trehalose under saline stress (2.0 and 3.0 M salts). However, under moderate NaCl stress, the cells accumulated more trehalose than glycerol. We suggest that the elevated production of trehalose in D. hansenii plays a role as reserve carbohydrate, as reported for other microorganisms.
Collapse
Affiliation(s)
- J C González-Hernández
- Departamento de Genética y Biología Molecular, Instituto de Fisiología celular, Universidad Nacional Autónoma de México, Apartado 70-242, 04510 México DF, México.
| | | | | |
Collapse
|
94
|
Munson AM, Love SL, Shu J, Palanivel VR, Rosenwald AG. ARL1 participates with ATC1/LIC4 to regulate responses of yeast cells to ions. Biochem Biophys Res Commun 2004; 315:617-23. [PMID: 14975746 DOI: 10.1016/j.bbrc.2004.01.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Indexed: 10/26/2022]
Abstract
ATC1/LIC4, previously identified as a suppressor of the Li(+)-sensitive phenotype of calcineurin mutants, was also identified as a suppressor of the hygromycin B-sensitive phenotype of strains lacking the G protein gene, ARL1. Although loss of ARL1 confers several phenotypes, including sensitivity to hygromycin B and Li(+), reduced influx of K(+), and increased secretion of carboxypeptidase Y (CPY), loss of ATC1 was without effect by these and other measures. However, loss of ATC1 in an arl1 background exacerbated ion sensitivities, although not the CPY phenotype. Moreover, overexpression of ATC1 in an arl1 background partially suppressed ion sensitivities, but not the CPY phenotype. Additionally, expression of ENA1, the Na(+)/Li(+) efflux ATPase, and activated calcineurin, but not normal calcineurin, suppressed the Li(+)-sensitive phenotype of the arl1 atc1 double mutant. These results show ARL1 and ATC1 interact to control intracellular ion levels, but ATC1 has little influence on other functions of ARL1.
Collapse
Affiliation(s)
- Amanda M Munson
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
95
|
Nakayama H, Yoshida K, Shinmyo A. Yeast plasma membrane Ena1p ATPase alters alkali-cation homeostasis and confers increased salt tolerance in tobacco cultured cells. Biotechnol Bioeng 2004; 85:776-89. [PMID: 14991656 DOI: 10.1002/bit.20021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.
Collapse
Affiliation(s)
- Hideki Nakayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
96
|
Serrano R, Bernal D, Simón E, Ariño J. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 2004; 279:19698-704. [PMID: 14993228 DOI: 10.1074/jbc.m313746200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of the yeast Saccharomyces cerevisiae to an alkaline environment represents a stress situation that negatively affects growth and results in an adaptive transcriptional response. We screened a collection of 4825 haploid deletion mutants for their ability to grow at mild alkaline pH, and we identified 118 genes, involved in numerous cellular functions, whose absence results in reduced growth. The list includes several key genes in copper and iron homeostasis, such as CCC2, RCS1, FET3, LYS7, and CTR1. In contrast, a screen of high-copy number plasmid libraries for clones able to increase tolerance to alkaline pH revealed only two genes: FET4 (encoding a low affinity transporter for copper, iron, and zinc) and CTR1 (encoding a high affinity copper transporter). The beneficial effect of overexpression of CTR1 requires a functional high affinity iron transport system, as it was abolished by deletion of FET3, a component of the high affinity transport system, or CCC2, which is required for assembly of the transport system. The growth-promoting effect of FET4 was not modified in these mutants. These results suggest that the observed tolerance to alkaline pH is because of improved iron uptake and indicate that both iron and copper are limiting factors for growth under alkaline pH conditions. Addition to the medium of micromolar concentrations of copper or iron ions drastically improved growth at high pH. Supplementation with iron improved somewhat the tolerance of a fet3 strain but was ineffective in a ctr1 mutant, suggesting the existence of additional copper-requiring functions important for tolerance to an alkaline environment.
Collapse
Affiliation(s)
- Raquel Serrano
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
97
|
Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. PLANT PHYSIOLOGY 2004; 134:849-57. [PMID: 14739346 PMCID: PMC344559 DOI: 10.1104/pp.103.030023] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 08/22/2003] [Accepted: 11/06/2003] [Indexed: 05/18/2023]
Abstract
Calluses from two ecotypes of reed (Phragmites communis Trin.) plant (dune reed [DR] and swamp reed [SR]), which show different sensitivity to salinity, were used to study plant adaptations to salt stress. Under 200 mm NaCl treatment, the sodium (Na) percentage decreased, but the calcium percentage and the potassium (K) to Na ratio increased in the DR callus, whereas an opposite changing pattern was observed in the SR callus. Application of sodium nitroprusside (SNP), as a nitric oxide (NO) donor, revealed that NO affected element ratios in both DR and SR calluses in a concentration-dependent manner. N(omega)-nitro-l-arginine (an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (a specific NO scavenger) counteracted NO effect by increasing the Na percentage, decreasing the calcium percentage and the K to Na ratio. The increased activity of plasma membrane (PM) H(+)-ATPase caused by NaCl treatment in the DR callus was reversed by treatment with N(omega)-nitro-l-arginine and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde. Western-blot analysis demonstrated that NO stimulated the expression of PM H(+)-ATPase in both DR and SR calluses. These results indicate that NO serves as a signal in inducing salt resistance by increasing the K to Na ratio, which is dependent on the increased PM H(+)-ATPase activity.
Collapse
Affiliation(s)
- Liqun Zhao
- State Key Laboratory of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
98
|
Yonamine I, Yoshida K, Kido K, Nakagawa A, Nakayama H, Shinmyo A. Overexpression of NtHAL3 genes confers increased levels of proline biosynthesis and the enhancement of salt tolerance in cultured tobacco cells. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:387-95. [PMID: 14739262 DOI: 10.1093/jxb/erh043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Hal3 protein of Saccharomyces cerevisiae inhibits the activity of PPZ1 type-1 protein phosphatases and functions as a regulator of salt tolerance and cell cycle control. In plants, two HAL3 homologue genes in Arabidopsis thaliana, AtHAL3a and AtHAl3b, have been isolated and the function of AtHAL3a has been investigated through the use of transgenic plants. Expressions of both AtHAL3 genes are induced by salt stress. AtHAL3a overexpressing transgenic plants exhibit improved salt and sorbitol tolerance. In vitro studies have demonstrated that AtHAL3 protein possessed 4'-phosphopantothenoylcysteine decarboxylase activity. This result suggests that the molecular function of plant HAL3 genes is different from that of yeast HAL3. To understand the function of plant HAL3 genes in salt tolerance more clearly, three tobacco HAL3 genes, NtHAL3a, NtHAL3b, and NtHAL3c, from Nicotiana tabacum were identified. NtHAL3 genes were constitutively expressed in all organs and under all conditions of stress examined. Overexpression of NtHAL3a improved salt, osmotic, and lithium tolerance in cultured tobacco cells. NtHAL3 genes could complement the temperature-sensitive mutation in the E. coli dfp gene encoding 4'-phosphopantothenoyl-cysteine decarboxylase in the coenzyme A biosynthetic pathway. Cells overexpressing NtHAL3a had an increased intracellular ratio of proline. Taken together, these results suggest that NtHAL3 proteins are involved in the coenzyme A biosynthetic pathway in tobacco cells.
Collapse
Affiliation(s)
- Ikuko Yonamine
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Lefebvre B, Boutry M, Morsomme P. The yeast and plant plasma membrane H+ pump ATPase: divergent regulation for the same function. ACTA ACUST UNITED AC 2004; 74:203-37. [PMID: 14510077 DOI: 10.1016/s0079-6603(03)01014-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Benoit Lefebvre
- Unité de biochimie physiologique, Institut des Sciences de la Vie, University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
100
|
Li J, Steen H, Gygi SP. Protein Profiling with Cleavable Isotope-coded Affinity Tag (cICAT) Reagents. Mol Cell Proteomics 2003; 2:1198-204. [PMID: 14506205 DOI: 10.1074/mcp.m300070-mcp200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein expression profiles in yeast cells, in response to salinity stress, were determined using the cleavable isotope-coded affinity tag (cICAT) labeling strategy. The analysis included separation of the mixed protein samples by SDS-PAGE, followed by excision of the entire gel lane, and division of the lane into 14 gel regions. Regions were subjected to in-gel digestion, biotin affinity chromatography, and analysis by nano-scale microcapillary liquid chromatography coupled to tandem mass spectrometry. The novel (13)C-labeled ICAT reagents have identical elution profiles for labeled peptide pairs and broadly spread the distribution of labeled peptides during reversed-phase chromatography. A total of 560 proteins were identified and quantified, with 51 displaying more than 2-fold expression differences. In addition to some known proteins involved in salt stress, four RNA-binding proteins were found to be up-regulated by high salinity, suggesting that selective RNA export from the nucleus is important for the salt-stress response. Some proteins involved in amino acid synthesis, which have been observed to be up-regulated by amino acid starvation, were also found to increase their abundance on salt stress. These results indicate that salt stress and amino acid starvation cause overlapping cellular responses and are likely to be physiologically linked.
Collapse
Affiliation(s)
- Jiaxu Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115-5730, USA
| | | | | |
Collapse
|