51
|
Ma W, Dumont Y, Vercauteren F, Quirion R. Lipopolysaccharide induces calcitonin gene-related peptide in the RAW264.7 macrophage cell line. Immunology 2010; 130:399-409. [PMID: 20141542 DOI: 10.1111/j.1365-2567.2009.03239.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SUMMARY Calcitonin gene-related peptide (CGRP) is widely distributed and plays important roles in a wide array of biological functions. It is enriched in primary sensory neurons and hence involved in nociception and neurogenic inflammation. Recent studies have shown that CGRP can be produced by immune cells such as monocytes/macrophages following inflammatory stimulation, suggesting a role in innate immunity. However, it is unclear how CGRP is up-regulated in macrophages and if it plays a role in macrophage functions such as the production of cytokines and chemokines. Using enzyme-linked immunosorbent assay (ELISA) and multiplex ELISA, lipopolysaccharide (LPS) was found to induce CGRP in the RAW 264.7 macrophage cell line. LPS-induced inflammatory mediators such as nerve growth factor (NGF), interleukin-1beta (IL-1beta), IL-6, prostaglandin E(2) (PGE(2)) and nuclear factor-kappaB (NF-kappaB) signalling are involved in inducing CGRP, whereas the NGF receptor trkA and CGRP receptor signalling pathways are unexpectedly involved in suppressing LPS-induced CGRP, which leads to the fine-tune regulation of CGRP release. Exogenous CGRP and CGRP receptor antagonists, in a concentration-dependent manner, stimulated, inhibited or had no effect on basal or LPS-induced release of monocyte chemoattractant protein-1, IL-1beta, IL-6, tumour necrosis factor-alpha and IL-10 in RAW macrophages. The ligand-concentration-dependent regulation of the production of inflammatory mediators by CGRP receptor signalling is a novel mechanism underlying the stimulating and suppressing role of CGRP in immune and inflammatory responses. Together, our data suggest that monocytes/macrophages are an important source of CGRP. Inflammation-induced CGRP has a positive or negative reciprocal effect on the production of other pro- and anti-inflammatory mediators. Thereby CGRP plays both facilitating and suppressing roles in immune and inflammatory responses.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
52
|
Abstract
Abnormal neural function contributes to the pathogenesis of airway disease. In addition to affecting airway physiology, the nerves produce and release inflammatory mediators, contributing to the recruitment and activation of leukocytes. Activated inflammatory cells in turn affect the function of airway nerves, changing the production and release of neurotransmitters. Cross-talk between airway nerves and leukocytes helps to maintain chronic inflammation and accentuates neural control of the airways.
Collapse
|
53
|
Böttger D, Ullrich C, Humpel C. Monocytes deliver bioactive nerve growth factor through a brain capillary endothelial cell-monolayer in vitro and counteract degeneration of cholinergic neurons. Brain Res 2009; 1312:108-19. [PMID: 20004179 DOI: 10.1016/j.brainres.2009.11.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease is an age-dependent brain disorder, characterized by progressive memory deficits and cognitive decline and loss of cholinergic neurons. Nerve growth factor (NGF) is the most potent protein to protect cholinergic neurons against degeneration. However, problems of delivery to the brain limit the therapeutical use of NGF. The aim of the present study was to test, if primary rat monocytes can be loaded with recombinant NGF and pass an in vitro monolayer of brain capillary endothelial cells (BCEC), release NGF, and support the cholinergic neurons in an organotypic brain slice model. Monocytes were isolated from rat blood by negative magnetic selection, loaded with recombinant NGF using Bioporter. The monocytes adhered and migrated through an in vitro rat BCEC-monolayer. NGF released at the basolateral side counteracted degeneration of cholinergic basal nucleus of Meynert neurons. In conclusion, our present study shows a proof-of-principle, that primary monocytes secreting NGF might be useful tools to deliver NGF into the brain, however, further in vivo studies are necessary.
Collapse
Affiliation(s)
- Danny Böttger
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Anichstr. 35, A-6020 Innsbruck Medical University, Austria
| | | | | |
Collapse
|
54
|
Mittal RA, Simbruner G, Smith J, Simbruner B, Holzinger A. Mechanical ventilation with high tidal volume or frequency is associated with increased expression of nerve growth factor and its receptor in rabbit lungs. Pediatr Pulmonol 2009; 44:713-9. [PMID: 19499591 DOI: 10.1002/ppul.21053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Nerve growth factor (NGF), a neurotrophin, is induced in lung cells by proinflammatory cytokines, and has a role in bronchial hyperreactivity and lung tissue repair. Ventilation induced lung injury, on the other hand, is known to increase the levels of proinflammatory cytokines in the lungs. We investigated whether, and to what extent, various degrees of lung injury induced by short-term ventilation affect NGF levels in the lung tissue of adolescent rabbits. METHODS The rabbits were randomized to different modes of ventilation: (1) CON: normal ventilation for 30 min; (2) NVT: normal ventilation for 6 hr; (3) HFQ: ventilation for 6 hr at double frequency, but normal tidal volume (VT); and (4) HVT: 6 hr ventilation at double VT but normal frequency. RESULTS NGF protein was detected in bronchoalveolar lavage fluid (BALF) and lung tissue in all animals. Ventilation for 6 hr significantly increased NGF levels, in both BALF and lung tissue, in the HFQ and HVT groups as compared to control (P < 0.05). The maximum increase in BALF NGF was seen in the HVT group (P = 0.02 vs. CON and NVT groups, and P = 0.05 vs. HFQ). A parallel increase in interleukin 1-beta (IL1-beta) was observed. Expression of the high-affinity NGF-receptor, tropomyosin-related kinase A (TrkA), was also upregulated in these two groups. CONCLUSION Injurious modes of mechanical ventilation upregulate NGF and its receptor TrkA in rabbit lungs, and IL1-beta may be a mediator for this response. We speculate that this increase in NGF level may translate into the development of bronchial hyperreactivity.
Collapse
Affiliation(s)
- Rashmi A Mittal
- Department of Neonatology, Dr. von Hauner's Children's Hospital, Ludwig-Maximilians University, Munich D-80337, Germany
| | | | | | | | | |
Collapse
|
55
|
Wernli G, Hasan W, Bhattacherjee A, van Rooijen N, Smith PG. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 2009; 104:681-93. [PMID: 19437062 DOI: 10.1007/s00395-009-0033-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 01/16/2023]
Abstract
Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessary for post-infarct cardiac sympathetic sprouting. Ovariectomized female rats received left coronary artery ligation or sham operation, followed by intravenous injection of liposomes containing saline vehicle or clodronate, which kills macrophages. Sham-operated myocardium contained some sympathetic axons, few myofibroblasts and T cells and no CD-68-positive macrophages. In rats receiving saline liposomes through 7 days post-ligation, the posterolateral infarct border contained numerous myofibroblasts, macrophages and T cells, and sympathetic innervation was increased twofold. Treatment with clodronate liposomes reduced macrophage numbers by 69%, while myofibroblast area was reduced by 23% and T cell number was unaffected. Clodronate liposome treatment reduced sympathetic axon density to levels comparable to the uninfarcted heart. NGF protein content measured in western blots was reduced to 33% of that present in infarcts where rats received saline-containing liposomes. Tissue morphometry confirmed that NGF immunostaining was dramatically reduced, and this was attributable primarily to reduced macrophage content. These results show that macrophage destruction markedly reduces post-infarction levels of NGF and that the presence of elevated numbers of macrophages is obligatory for development of sympathetic hyperinnervation following myocardial infarction.
Collapse
Affiliation(s)
- Gwenaelle Wernli
- Department of Molecular and Integrative Physiology, Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Mail Stop 3051, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
56
|
Samah B, Porcheray F, Dereuddre-Bosquet N, Gras G. Nerve growth factor stimulation promotes CXCL-12 attraction of monocytes but decreases human immunodeficiency virus replication in attracted population. J Neurovirol 2008; 15:71-80. [PMID: 19023688 DOI: 10.1080/13550280802482575] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) are key molecules in the central nervous system development, which also exert specific effects on cells of the immune system. With regard to the latter, in vitro as well as in vivo data suggested that neurotrophins may play a role in human immunodeficiency virus (HIV) infection, especially in perivascular spaces where infiltrated macrophages express NGF. In the present study, we examined the expression of neurotrophins and their receptors in human monocyte-derived macrophages (MDMs) during infection by the R5 prototype HIV1/Ba-L strain. We then assessed to what extent neurotrophins themselves modulate infected macrophage survival and the level of virus production. The data show that neurotrophins and neurotrophin receptors are not modulated during HIV replication. Likewise, exogenous neurotrophins, or alternatively the blocking of neurotrophin receptors, neither modulated MDM sensitivity to HIV infection and replication nor altered their viability. In contrast, NGF clearly increased CD184 expression in macrophages, but this did not sensitize them to the X4 isolate HIV-1/Lai infection. Nevertheless, NGF enhanced monocyte chemotactic response to low CXCL-12 concentration regardless of infection. Surprisingly, CXCL-12-attracted monocytes from NGF-stimulated, HIV-infected cultures produced decreased amounts of virus progeny than their non-NGF-stimulated counterparts. This suggests a preferential effect on uninfected monocytes. Together these findings suggest a role for NGF in the continuous attraction of activated monocytes to the perivascular spaces, contributing to the chronic inflammatory state rather than neuroinvasion by HIV.
Collapse
Affiliation(s)
- Boubekeur Samah
- Institute of Emerging Diseases and Innovative Therapies, Division of ImmunoVirology, CEA, 18 route du Panorama, Fontenay-aux Roses, France
| | | | | | | |
Collapse
|
57
|
Jiang Y, Chen G, Zheng Y, Lu L, Wu C, Zhang Y, Liu Q, Cao X. TLR4 signaling induces functional nerve growth factor receptor p75NTR on mouse dendritic cells via p38MAPK and NF-kappa B pathways. Mol Immunol 2008; 45:1557-66. [PMID: 18006062 DOI: 10.1016/j.molimm.2007.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/05/2007] [Indexed: 11/30/2022]
Abstract
Many neuropeptides that are produced by immune cells have been shown to be involved in the pathogenesis of immunological disorders. Nerve growth factor (NGF) and its receptors are found to be widely expressed in the immune system and regulate both innate and adaptive immune responses. However, the underlying mechanisms by which NGF contributes to pathogenesis of inflammatory diseases remain to be fully understood. Dendritic cells (DCs) are potent initiator for inflammatory and immune responses upon recognization and activation of Toll-like receptors (TLRs). In this study, we demonstrated that stimulation with TLR ligand lipopolysaccharide (LPS), but not lipoteichoic acid (LTA), Poly (I:C) and CpG oligodeoxynucleotide (ODN), could significantly induce expression of NGF and NGF receptor p75(NTR) on mouse bone marrow-derived DCs (BMDCs) in vitro in dose- and time-dependent manners. The expression of NGF and NGF receptor p75(NTR) also increased on splenic DCs isolated from the mice injected with LPS in vivo. However, there was no such effect on DCs derived from TLR4-deficient mice, indicating the LPS-induced upregulation of NGF and p75(NTR) was TLR4 pathway-dependent. Furthermore, LPS-induced upregulation of NGF and p75(NTR) could be inhibited by p38MAPK inhibitor SB203580 and NF-kappaB inhibitor PDTC, suggesting TLR4-triggered activation of p38MAPK and NF-kappaB pathways are responsible for the process. Interestingly, NGF could markedly promote LPS-pretreated BMDCs to secret IL-12p40 and TNF-alpha, which could be abolished by pretreatment with p75(NTR) antagonist or the specific small interference RNA duplex targeting p75(NTR) (p75-siRNA), suggesting the inducible p75(NTR) is critical for the TLR4-initiated inflammatory effect of NGF on BMDCs. Thus, TLR4 signaling can induce expression of NGF and p75 (NTR) on DCs via activation of p38 MAPK and NF-kappaB pathways, suggesting that NGF may be involved in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Yingming Jiang
- Institute of Immunology and National Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Samah B, Porcheray F, Gras G. Neurotrophins modulate monocyte chemotaxis without affecting macrophage function. Clin Exp Immunol 2008; 151:476-86. [PMID: 18190610 DOI: 10.1111/j.1365-2249.2007.03578.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurotrophins nerve growth factor (NGF), brain-derived growth factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) and their high-affinity tyrosine protein kinase receptor (Trk) family, TrkA, TrkB, TrkC, and low-affinity p75(NTR) receptor, are key molecules implicated in the development of the central nervous system. Increasing evidence suggests that they also have physiological and pathological roles outside the nervous system. In this study we examined the expression of neurotrophins and their receptors in human activated macrophages and to what extent neurotrophins themselves modulate macrophage activation, in a model of primary adult monocyte-derived macrophage. Our data indicate that macrophages express neurotrophin and neurotrophin receptor genes differentially, and respond to cell stimulation by specific inductions. Neurotrophins did not modify the antigen-presenting capacities of macrophages or their production of proinflammatory cytokines, but somehow skewed their activation phenotype. In contrast, NGF clearly increased CXCR-4 expression in macrophage and their chemotactic response to low CXCL-12 concentration. The differential effect of specific macrophage stimuli on neurotrophin expression, in particular NGF and NT-3, and the specific enhancement of CXCR-4 expression suggest that neurotrophins might participate in tissue-healing mechanisms that should be investigated further in vivo.
Collapse
Affiliation(s)
- B Samah
- CEA, DSV, iMETI, SIV, UMR E-01 Université Paris Sud, IFR13 Institut Paris Sud Cytokines, Service d'Immuno-Virologie, Fontenay-aux Roses, France
| | | | | |
Collapse
|
59
|
Ishikawa N, Suzuki Y, Ohta M, Cho H, Suzuki S, Dezawa M, Ide C. Peripheral nerve regeneration through the space formed by a chitosan gel sponge. J Biomed Mater Res A 2007; 83:33-40. [PMID: 17370321 DOI: 10.1002/jbm.a.31126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The clinical treatment of traumatized peripheral nerves often requires grafting of autologous cutaneous nerves. However, there are drawbacks in sacrificing healthy nerves and tissue scarring. In this study, an artificial material, freeze-dried chitosan gel sponge, was examined as a scaffold for nerve regeneration in rats. An 8-mm gap was made by removing a segment of the sciatic nerve, and the distal and proximal stumps were sandwiched by chitosan gel sponge. Rats were killed at 4, 7, 14, and 28 days, and 2 and 4 months after the operation and histological and morphometric evaluations were performed. Regenerating axons were observed at 4 days after the operation. Regenerating nerves extended the distal stump at 14 days after surgery. By electron microscopy, numerous macrophages appeared to phagocyte chitosan, and made a dense cell layer on the chitosan. Regenerating axons did not touch the chitosan, and extended through the space surrounded by macrophage-stacked chitosan. Regenerating nerves were well-myelinated 2 months after surgery. Regenerating nerves were on average 2.45 and 2.75 microm in diameter at 2 and 4 months, respectively, after surgery. These results indicate that the chitosan gel sponge sandwich might be suitable as a graft for peripheral nerve regeneration.
Collapse
Affiliation(s)
- N Ishikawa
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Jiang Y, Chen G, Zhang Y, Lu L, Liu S, Cao X. Nerve Growth Factor Promotes TLR4 Signaling-Induced Maturation of Human Dendritic Cells In Vitro through Inducible p75NTR 1. THE JOURNAL OF IMMUNOLOGY 2007; 179:6297-304. [DOI: 10.4049/jimmunol.179.9.6297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Longbrake EE, Lai W, Ankeny DP, Popovich PG. Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J Neurochem 2007; 102:1083-94. [PMID: 17663750 DOI: 10.1111/j.1471-4159.2007.04617.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spinal cord injury (SCI) elicits a neuroinflammatory reaction dominated by microglia and monocyte-derived macrophages (MDM). Because MDM do not infiltrate the spinal cord until days after injury, it may be possible to control whether they differentiate into neuroprotective or neurotoxic effector cells. However, doing so will require better understanding of the factors controlling MDM differentiation and activation. Our goal was to develop an in vitro model of MDM that is relevant in the context of SCI. This tool would allow future studies to define mechanisms and intracellular signaling pathways that are associated with MDM-mediated neuroprotection or neurotoxicity. We first characterized SCI-induced cytokine expression in MDM using laser capture microdissection and real-time PCR. Based on this data, we assessed which easily procurable primary macrophage subset would mimic this phenotype in vitro. We established the baseline and inductive potential of resident peritoneal, thioglycollate-elicited peritoneal and bone marrow-derived macrophages (BMDM) at the molecular, cellular and functional level. Of these cells, only BMDM retained the phenotypic, molecular and functional characteristics of MDM that infiltrate the injured spinal cord. Thus, peripheral macrophages should not be used interchangeably in vitro to model the functional consequences of the MDM response elicited by SCI.
Collapse
Affiliation(s)
- Erin E Longbrake
- Integrated Biomedical Science Graduate Studies Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
62
|
Glanzer JG, Enose Y, Wang T, Kadiu I, Gong N, Rozek W, Liu J, Schlautman JD, Ciborowski PS, Thomas MP, Gendelman HE. Genomic and proteomic microglial profiling: pathways for neuroprotective inflammatory responses following nerve fragment clearance and activation. J Neurochem 2007; 102:627-45. [PMID: 17442053 DOI: 10.1111/j.1471-4159.2007.04568.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microglia, a primary immune effector cell of the central nervous system (CNS) affects homeostatic, neuroprotective, regenerative and degenerative outcomes in health and disease. Despite these broad neuroimmune activities linked to specific environmental cues, a precise cellular genetic profile for microglia in the context of disease and repair has not been elucidated. To this end we used nucleic acid microarrays, proteomics, immunochemical and histochemical tests to profile microglia in neuroprotective immune responses. Optic and sciatic nerve (ON and SN) fragments were used to stimulate microglia in order to reflect immune consequences of nervous system injury. Lipopolysaccharide and latex beads-induced microglial activation served as positive controls. Cytosolic and secreted proteins were profiled by surface enhanced laser desorption ionization-time of flight (SELDI-TOF) ProteinChip, 1D and 2D difference gel electrophoresis. Proteins were identified by peptide sequencing with tandem mass spectrometry, ELISA and western blot tests. Temporal expression of pro-inflammatory cytokines, antioxidants, neurotrophins, and lysosomal enzyme expression provided, for the first time, a unique profile of secreted microglia proteins with neuroregulatory functions. Most importantly, this molecular and biochemical signature supports a broad range of microglial functions for debris clearance and promotion of neural repair after injury.
Collapse
Affiliation(s)
- Jason G Glanzer
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
El Zein N, Badran BM, Sariban E. The neuropeptide pituitary adenylate cyclase activating protein stimulates human monocytes by transactivation of the Trk/NGF pathway. Cell Signal 2007; 19:152-62. [PMID: 16914291 DOI: 10.1016/j.cellsig.2006.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 11/18/2022]
Abstract
Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.
Collapse
Affiliation(s)
- Nabil El Zein
- Laboratory of Pediatric Oncology, Hôpital des Enfants, 1020 Brussels, Belgium
| | | | | |
Collapse
|
64
|
Martinelli PM, Camargos ERDS, Azevedo AA, Chiari E, Morel G, Machado CRDS. Cardiac NGF and GDNF expression during Trypanosoma cruzi infection in rats. Auton Neurosci 2006; 130:32-40. [PMID: 16854632 DOI: 10.1016/j.autneu.2006.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/08/2006] [Accepted: 05/13/2006] [Indexed: 11/28/2022]
Abstract
In rats, autonomic nerve endings are damaged during Trypanosoma cruzi-induced myocarditis. Gradual recovery occurs after the acute phase. The present work shows the cardiac levels of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF), and their cellular sources during T. cruzi infection in rats. Atrial and ventricular NGF levels (ELISA) increased significantly at day 20 post inoculation, the time-point of maximal sympathetic denervation. ELISA failed to show significant increase of cardiac GDNF levels. However immunohistochemistry showed a significant increase of anti-GDNF gold particles over atrial granules at day 20. Light microscopy showed stronger NGF immunostaining in atrial cardiomyocytes and several blood capillaries. In situ hybridization showed NGF and GDNF mRNAs in atrial and ventricular myocytes of both infected and uninfected animals. Endothelial cells exhibited NGF mRNA and protein only in infected rats. No evidence of neurotrophic factor expression by the infiltrating mononuclear cells was found. This is the first report on neurotrophic factor expression during T. cruzi infection. Our findings indicate an important role for NGF in the regenerative phenomena subsequent to a myocarditis able to damage sympathetic nerve endings, with preservation of preterminals and nerve trunks. GDNF could have a minor or a more transient participation.
Collapse
Affiliation(s)
- Patrícia Massara Martinelli
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
65
|
Rochlitzer S, Nassenstein C, Braun A. The contribution of neurotrophins to the pathogenesis of allergic asthma. Biochem Soc Trans 2006; 34:594-9. [PMID: 16856870 DOI: 10.1042/bst0340594] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurotrophins nerve growth factor, brain-derived neurotrophic factor, NT-3 (neurotrophin 3) and NT-4 are known for regulating neuron development, function and survival. Beyond this, neurotrophins were found to exert multiple effects on non-neuronal cells such as immune cells, smooth muscle and epithelial cells. In allergic asthma, airway inflammation, airway obstruction, AHR (airway hyperresponsiveness) and airway remodelling are characteristic features, indicating an intensive interaction between neuronal, structural and immune cells in the lung. In allergic asthma patients, elevated neurotrophin levels in the blood and locally in the lung are commonly observed. Additionally, structural cells of the lung and immune cells, present in the lung during airway inflammation, were shown to be capable of neurotrophin production. A functional relationship between neurotrophins and the main features of asthma was revealed, as airway obstruction, airway inflammation, AHR and airway remodelling were all shown to be stimulated by neurotrophins. The aim of the present review is to provide an overview of neurotrophin sources and target cells in the lung, concerning their possible role as mediators between structural cells, immune cells and neurons, connecting the different features of allergic asthma.
Collapse
Affiliation(s)
- S Rochlitzer
- Immunology and Allergology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
66
|
Kyung KS, Gon JH, Geun KY, Sup JJ, Suk WJ, Ho KJ. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury. Eur J Neurosci 2006; 24:1042-52. [PMID: 16930431 DOI: 10.1111/j.1460-9568.2006.04908.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting astrogliosis. Our finding that the administration of shogaol prevents secondary pathological events in traumatic SCIs and promotes recovery of motor functions in an animal model raises the issue of whether shogaol could be used therapeutically in humans after SCI.
Collapse
Affiliation(s)
- Kang Soo Kyung
- Department of Physiology, School of Medicine, Pusan National University, 1-10 Ami-Dong, Seo-Gu, Busan, South Korea.
| | | | | | | | | | | |
Collapse
|
67
|
Ahn YH, Lee G, Kang SK. Molecular insights of the injured lesions of rat spinal cords: Inflammation, apoptosis, and cell survival. Biochem Biophys Res Commun 2006; 348:560-70. [PMID: 16890196 DOI: 10.1016/j.bbrc.2006.07.105] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurologic injury with functional deficits. In the acute phase, which starts at the moment of the injury and extends over the first few days, numerous pathological processes begin. In this study, we made several additional advances to broaden our understanding of SCI-induced gene expression changes. We examined changes at multiple time points: 0, 6, 24, 48, and 72 h after injury, with the latter time period being added. Also, we utilized multiple analysis methods such as real-time RT-PCR, Western blot, and immunohistochemistry to increase confidence in our candidate gene and molecular processes. From the pool of information, we generated profiles of expression changes and molecular mechanisms of several injury processing. Early stages after the injury are characterized by the strong upregulation of genes involved in transcription, inflammation, and signaling proteins, and a general downregulation of neural function-related genes. In addition, edema of the spinal cord develops, and metabolic disturbances involving intra-neuronal Ca2+ accumulation occur. This translates into a general failure of normal neural functions and a stage of signal shock that lasts for a few days in experimental rat models. Traumatic injury to the spinal cord also leads to a strong inflammatory response with the recruitment of peripherally derived immature cells, such as ED1-positive macrophages. After the trauma, apoptotic cell death continues, and scarring and demyelination accompany Wallerian degeneration. Strong expression of transcription factors of the Janus-activated kinase (JAK) and signal transducer and activator of transcription (STAT) family represents an early attempt of spinal cord repair and regeneration. Our study allowed us to conclude that combined therapeutic strategies for enhanced recovery should be performed until the chronic phase of the injury in areas distal to the lesion epicenter of spinal cords.
Collapse
Affiliation(s)
- Young Hwan Ahn
- Department of Physiology, College of Medicine, Pusan National University, Busan, Republic of Korea
| | | | | |
Collapse
|
68
|
Donnerer J, Liebmann I. The NK 1 Receptor Antagonist SR140333 Inhibits Capsaicin-Induced ERK Phosphorylation in Sensory Neurons. Pharmacology 2006; 77:144-9. [PMID: 16788306 DOI: 10.1159/000094022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 01/07/2023]
Abstract
Primary sensory neurons respond to a vigorous excitation via the capsaicin receptor/TRPV1 cation channel by a phosphorylation of the Jak/STAT pathway as measured by phospho-STAT3, and of the Ras/Raf-MAPK pathway as measured by phospho-MAPK/ERK1/2. In the present investigation a possible involvement of NK1 receptors in the capsaicin-induced activation of these signal transduction pathways was investigated by protein extraction and Western immunoblotting. Phospho-MAPK/ERK1/2 and phospho-STAT3 were determined in the dorsal root ganglia (DRG) and in the sciatic nerve of rats at 3 and 6 h following a systemic capsaicin treatment without or with the pretreatment of the selective NK1 receptor antagonist SR140333 (1 mg/kg s.c.; 3 h before capsaicin). Capsaicin evoked a threefold increase in phospho-ERK in the sciatic nerve and a two- to threefold increase in the DRG at 3 h and 6 h after the treatment. SR140333 markedly attenuated the capsaicin-induced increase in phosphorylated ERK. In the sciatic nerve the difference was significant at each individual time point (3 and 6 h, p < 0.001). In the DRG the difference was significant when the data at 3 h and 6 h were combined (p < 0.05), but not when individual time points were considered. Capsaicin evoked a four- to fivefold increase in phospho-STAT3 in the sciatic nerve and a twofold increase in the DRG at 3 and 6 h after the treatment. SR140333 less markedly attenuated the capsaicin-induced increase in phosphorylated STAT3: whereas in the sciatic nerve the difference was significant when the data at 3 h and 6 h were combined (p < 0.05), no such treatment effect of SR140333 was observed in the DRG. The expression of TRPV1 mRNA, a specific marker of capsaicin-sensitive small sensory neurons, was investigated by RT-PCR 4 days after the capsaicin treatment. Treatment of rats with SR140333 had no influence on the long-term downregulation of TRPV1 mRNA by capsaicin. Based on the present results and previous findings it can be postulated that the capsaicin-induced ERK phosphorylation in sensory neurons is not a direct effect by capsaicin, but that rather substance P release from the stimulated sensory neurons with an NK1-mediated nerve growth factor (NGF) production is involved.
Collapse
Affiliation(s)
- J Donnerer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, Austria.
| | | |
Collapse
|
69
|
Asami T, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S. Autocrine activation of cultured macrophages by brain-derived neurotrophic factor. Biochem Biophys Res Commun 2006; 344:941-7. [PMID: 16631618 DOI: 10.1016/j.bbrc.2006.03.228] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/30/2006] [Indexed: 12/27/2022]
Abstract
To elucidate a significance of the expression of brain-derived neurotrophic factor (BDNF) in the activated microglia/macrophages of the injured central nervous system, we examined BDNF actions on or BDNF synthesis by macrophages cultured from the mouse peritoneal cavity. They synthesized BDNF and neurotrophin-3 (NT-3) in addition to expressing high-affinity neurotrophin receptors, full-length TrkB (FL), truncated TrkB (TK(-)), and TrkC, thus suggesting an autocrine influence of BDNF and NT-3. BDNF, but not NT-3, enhanced phagocytic activity and stimulated synthesis/secretion of interleukin-1beta in the same manner as lipopolysaccharide (LPS). Furthermore, there was a significant correlation of the phagocytic activity with the expression of BDNF or TrkB (FL). These results imply that the phagocytic activity of macrophages depends on BDNF synthesis and/or TrkB (FL) expression, suggesting that BDNF participates in the activation processes of macrophages by acting in an autocrine manner.
Collapse
Affiliation(s)
- Toshio Asami
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1, Mitahora-Higashi, Gifu 502-8585, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Zassler B, Humpel C. Transplantation of NGF secreting primary monocytes counteracts NMDA-induced cell death of rat cholinergic neurons in vivo. Exp Neurol 2006; 198:391-400. [PMID: 16443222 DOI: 10.1016/j.expneurol.2005.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 09/22/2005] [Accepted: 12/09/2005] [Indexed: 11/22/2022]
Abstract
Cholinergic neurons of the basal forebrain degenerate in Alzheimer's disease. Nerve growth factor (NGF) is so far the most potent molecule to counteract this neurodegeneration; however, the delivery of NGF into the brain is very difficult. The aim of the present study was to observe, if transplanted primary monocytes secreting NGF may counteract N-methyl-D-aspartate (NMDA)-induced cell death of cholinergic neurons of the basal nucleus of Meynert (nBM) in vivo. Monocytes were purified by indirect magnetic separation from rat blood. Recombinant NGF was introduced into cells using the novel protein-delivery reagent BioPORTERtrade mark and secretion of NGF was measured by ELISA. Monocytes secreted approximately 4000 pg NGF/day/1 x 10(6) cells. Injection of monocytes onto organotypic brain slices of the nBM in vitro protected cholinergic neurons against cell death. When monocytes were transplanted in vivo into the lateral ventricle, the cells survived for up to 7 days and counteracted the NMDA-induced cell death of cholinergic neurons. In conclusion, primary monocytes secreting recombinant NGF are useful to deliver NGF directly into the brain.
Collapse
Affiliation(s)
- Birgit Zassler
- Laboratory of Experimental Alzheimer Research, Univ. Clinic of Psychiatry, Anichstr. 35, A-6020 Innsbruck, Innsbruck Medical University, Austria
| | | |
Collapse
|
71
|
Nockher WA, Renz H. Neurotrophins in allergic diseases: From neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol 2006; 117:583-9. [PMID: 16522457 DOI: 10.1016/j.jaci.2005.11.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/04/2005] [Accepted: 11/09/2005] [Indexed: 10/24/2022]
Abstract
Understanding the complex pathophysiology of allergic diseases has been a main challenge of clinical and experimental research for many years. It is well known that the allergic inflammation triggers neuronal dysfunction and structural changes in the diseased tissues such as the airways or the skin. Recent evidence has emerged that the inflammatory response is also controlled by resident tissue cells such as neurons and structural cells. Therefore, signaling molecules that mediate inflammatory interactions among immune, neuronal, and structural cells are becoming a focus of allergy research. Neurotrophins, a family of homologous growth factors initially discovered in the nervous system, display such bidirectional signaling. The expression of neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), is highly upregulated during allergic inflammation. Neurons, structural cells, and invading immune cells were now identified not only as sources but also as targets of neurotrophins within the inflamed tissue. In this review, we provide an actual overview of the role of neurotrophins in the pathobiology of allergic diseases. We discuss recent findings in human and animal studies such as the regulation of neurotrophin expression during allergic inflammation and the effect of neurotrophins on the development and magnitude of allergic reactions.
Collapse
Affiliation(s)
- Wolfgang Andreas Nockher
- Department of Clinical Chemistry and Molecular Diagnostics, University Hospital, Philipps-Universität Marburg, Germany.
| | | |
Collapse
|
72
|
Nassenstein C, Schulte-Herbrüggen O, Renz H, Braun A. Nerve growth factor: the central hub in the development of allergic asthma? Eur J Pharmacol 2006; 533:195-206. [PMID: 16458292 DOI: 10.1016/j.ejphar.2005.12.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 01/19/2023]
Abstract
Neurotrophins like nerve growth factor (NGF), originally described as nerve growth factors in neuronal development, have been implicated in many physiological processes in the last years. They are now regarded as important factors involved in the resolution of pathological conditions. NGF has profound effects on inflammation, repair and remodeling of tissues. However, in the lung these beneficial effects can transact into disease promoting actions, e.g., in allergic inflammation or respiratory syncytial virus (RSV) infection. Overproduction of NGF then enhances inflammation, and promotes (neuronal) airway hyperreactivity and neurogenic inflammation. We hypothesize that NGF overexpression in certain vulnerable time windows during infancy could be a major risk factor for the development of asthma symptoms.
Collapse
Affiliation(s)
- Christina Nassenstein
- Fraunhofer Institute of Toxicology and Experimental Medicine, 30625 Hannover, and Department of Clinical Chemistry and Molecular Diagnostics, Hospital of the Philipps University, Marburg, Germany
| | | | | | | |
Collapse
|
73
|
Guan Z, Fang J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 2006; 20:64-71. [PMID: 15922558 DOI: 10.1016/j.bbi.2005.04.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/11/2005] [Accepted: 04/18/2005] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, induces neuronal death, decreases neurogenesis, and impairs synaptic plasticity and memory, but the mechanisms for these effects are not well understood. We hypothesize that neurotrophin levels in the brain are influenced by LPS. To test this hypothesis, we determined effects of LPS on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and NT-3 levels in the brain after intraperitoneal injection of saline or LPS (0.1, 0.3 or 1.0mg/kg) in rats. LPS significantly decreased BDNF in the hippocampus (-20%), frontal cortex (-19%), parietal cortex (-63%), temporal cortex (-29%), and occipital cortex (-41%). LPS also significantly decreased NGF levels by 10-20% in the hippocampus and different cortical regions, except in the occipital cortex. Finally, LPS decreased NT-3 by 15-25% in the frontal cortex. These observations indicate that the neuroprotection mediated by neurotrophins in the brain are compromised by systemic immune activation induced by LPS.
Collapse
Affiliation(s)
- Zhiwei Guan
- Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
74
|
Rihl M, Kruithof E, Barthel C, De Keyser F, Veys EM, Zeidler H, Yu DTY, Kuipers JG, Baeten D. Involvement of neurotrophins and their receptors in spondyloarthritis synovitis: relation to inflammation and response to treatment. Ann Rheum Dis 2005; 64:1542-9. [PMID: 15817657 PMCID: PMC1755273 DOI: 10.1136/ard.2004.032599] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate whether expression of the four members of the neurotrophin (NT) family and their four corresponding receptors is related to synovial inflammation in patients with spondyloarthritis (SpA). MATERIAL AND METHODS Synovial fluid (SF) and serum NTs and their receptors were measured by ELISA. Immunohistochemistry was used for synovial tissue biopsy specimens from patients with SpA, rheumatoid arthritis, and osteoarthritis (OA). In SpA synovium, immunoreactivity of the receptors trkA and NGFRp75 was also assessed before and after 12 weeks of treatment with the monoclonal anti-tumour necrosis factor alpha antibody, infliximab. RESULTS mRNA transcripts of all NTs and receptors were expressed in the inflamed synovium. At the protein level, brain derived neurotrophic factor and NT-3 were significantly higher in the SF of patients with SpA than in those with OA. In contrast, ELISA of serum samples showed that the highest member in SpA was NT-4. Immunohistochemistry demonstrated that the NT receptors trkA and NGFRp75 were highly expressed in the inflamed synovium of patients with SpA, correlating with vascularity and lymphoid aggregates, respectively. Additionally, immunoreactivity of both receptors was significantly decreased after infliximab treatment. CONCLUSIONS NTs and their receptors are expressed in inflamed peripheral joints of patients with SpA. Their expression is not constitutive but related to inflammation and they may be involved in the local disease processes.
Collapse
Affiliation(s)
- M Rihl
- Hannover Medical School (MHH), Department of Rheumatology (OE 6850), Carl-Neuberg-Str 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Rost B, Hanf G, Ohnemus U, Otto-Knapp R, Groneberg DA, Kunkel G, Noga O. Monocytes of allergics and non-allergics produce, store and release the neurotrophins NGF, BDNF and NT-3. ACTA ACUST UNITED AC 2005; 124:19-25. [PMID: 15544837 DOI: 10.1016/j.regpep.2004.06.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 06/17/2004] [Accepted: 06/17/2004] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Recent studies have shown that neurotrophins (NTs) are involved in inflammatory processes. Elevated plasma levels of NTs were found allergic diseases with the highest levels in allergic asthma. However, the exact cellular sources involved in the regulation and release of neurotrophins in allergic inflammation are still not well defined. OBJECTIVE The aim of this study was to assess whether monocytes of allergic and non-allergic subjects produce, store and release the neurotrophins NGF, BDNF and NT-3. METHODS Monocytes of allergic and non-allergic donors were purified by immunomagnetic selection. APAAP-staining for the presence of NTs and their receptors was performed. RT-PCR and Western blot evaluated the production and storage of NTs. Monocytes were incubated and supernatants were collected for measurement of neurotrophic factors after stimulation with lipopolysaccharide (LPS) as inflammatory stimulus. The neurotrophin content in lysates and cell culture supernatants was determined by ELISA. RESULTS Human monocytes express the neurotrophins NGF, BDNF and NT-3 but also their specific receptors TrkA, TrkB and TrkC. RT-PCR amplification of isolated mRNA demonstrated expression of the examined neurotrophins. Proteins were detectable by Western blot. NTs were found in the monocyte lysates and supernatants at different levels in allergic and non-allergic donors. Cell stimulation with LPS leads to release of NGF and NT3. CONCLUSIONS Monocytes, produce, store and release NGF, BDNF and NT-3. They are a possible source of elevated neurotrophin levels found in allergy and asthma.
Collapse
Affiliation(s)
- Bettina Rost
- Allergy and Asthma Clinic, Department of medicine Infectious and Respiratory diseases, Charité, Humboldt University, Augustenburger Platz 1, Berlin 13353, Germany
| | | | | | | | | | | | | |
Collapse
|
76
|
Omura T, Omura K, Sano M, Sawada T, Hasegawa T, Nagano A. Spatiotemporal quantification of recruit and resident macrophages after crush nerve injury utilizing immunohistochemistry. Brain Res 2005; 1057:29-36. [PMID: 16112089 DOI: 10.1016/j.brainres.2005.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate quantitatively the temporal and spatial regulation and the morphological changes of the recruit and resident macrophages in the sciatic nerve during Wallerian degeneration and the following regeneration using immunohistochemistry. Sciatic nerves in Sprague-Dawley (SD) rats were examined after nerve crush. The rats were anesthetized with 100 mg of ketamine and 20 mg of xylazine in a dose of 1 ml/kg by intraperitoneal injection. Anti-ED-1 antibody was used to detect phagocytic macrophage and anti-OX-6 antibody was used to detect MHC class II cells. Few ED-1-immunopositive cells were seen within the normal sciatic nerve. After crush injury the number and the size of ED-1-immunopositive cells started to increase in all the segments distal to the crush site 3 days after injury and the number and size reached its peak on day 14 when the population of macrophage was 150 times higher in all the segments compared to controls. However, the number of ED-1-immunopositive cells and the size of the cells remains significantly high even after day 56 when functional recovery and axonal regeneration were complete. OX-6-immunopositive cells were observed within the control sciatic nerves. The number decreases significantly 3 days after injury in all the segments distal to the crush site but showed no significant difference thereafter. There were also no significant differences in the cell areas. ED-1-immunopositive phagocytic macrophages show significant differences temporally in both the cell number and the size even after axonal regeneration.
Collapse
Affiliation(s)
- Takao Omura
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, Postal Code 431-3192, Japan.
| | | | | | | | | | | |
Collapse
|
77
|
Freeman AF, Crawford SE, Cornwall ML, Garcia FL, Shulman ST, Rowley AH. Angiogenesis in fatal acute Kawasaki disease coronary artery and myocardium. Pediatr Cardiol 2005; 26:578-84. [PMID: 16132289 DOI: 10.1007/s00246-005-0801-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Angiogenesis has been shown to be dysregulated in coronary artery (CA) aneurysms in the chronic phase of Kawasaki disease (KD). Neovascularization may occur in inflammatory-related vascular diseases because many angiogenesis mediators are secreted by inflammatory cells. We hypothesized that inflammation of the acute KD CA aneurysm could lead to dysregulation of angiogenesis mediators and subsequent neovascularization. To investigate this hypothesis, acute fatal KD cardiac tissues were immunostained for angiogenic inducers and inhibitors. Microvessel density was determined and the degree of inflammation assessed. Marked inflammation and angiogenesis were found in acute KD CA aneurysms and myocardium, with the highest microvessel density seen in patients who died 2-3 weeks after onset of the disease. Expression of proangiogenic proteins was higher than expression of inhibitors in KD CA aneurysms and myocardium. Angiogenesis mediators were localized to inflammatory cells in the myointima, adventitia, and myocardium. We conclude that significant neovascularization occurs in acute KD CA aneurysms and myocardium much sooner after onset of the disease than has been previously reported, that multiple angiogenesis factors are involved, and that dysregulation of angiogenesis likely contributes to KD vasculopathy.
Collapse
Affiliation(s)
- A F Freeman
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, W140, Ward 12-204, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Bracci-Laudiero L, Aloe L, Caroleo MC, Buanne P, Costa N, Starace G, Lundeberg T. Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood 2005; 106:3507-14. [PMID: 16099883 DOI: 10.1182/blood-2004-10-4055] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our recent results on autocrine nerve growth factor (NGF) synthesis in B lymphocytes, which directly regulates the expression and release of calcitonin gene-related peptide (CGRP), a neuropeptide known to down-regulate immune response, led us to propose an anti-inflammatory action of NGF. In the present work, we investigated whether the endogenous synthesis of NGF can regulate the expression of CGRP in other antigen-presenting cells, such as monocytes, and whether this may have a functional effect. Our data indicate that human monocytes synthesize basal levels of NGF and CGRP and that, following lipopolysaccharide (LPS) stimulation, NGF and CGRP expression are both up-regulated. When endogenous NGF is neutralized, the up-regulation of CGRP expression induced by LPS is inhibited. The expression of membrane molecules involved in T-cell activation such as human leukocyte antigen-DR (HLA-DR) and CD86 is affected by endogenous NGF, and similar effects were obtained using a CGRP(1) receptor antagonist. In addition, NGF deprivation in LPS-treated monocytes significantly decreases interleukin 10 (IL-10) synthesis. Our findings indicate that endogenous NGF synthesis has a functional role and may represent a physiologic mechanism to down-regulate major histocompatibility complex (MHC) class II and CD86 expression and alter the development of immune responses.
Collapse
|
79
|
Amann R, Schuligoi R. Beta adrenergic inhibition of capsaicin-induced, NK1 receptor-mediated nerve growth factor biosynthesis in rat skin. Pain 2005; 112:76-82. [PMID: 15494187 DOI: 10.1016/j.pain.2004.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 07/27/2004] [Accepted: 08/02/2004] [Indexed: 11/28/2022]
Abstract
Excitation of primary afferent neurons stimulates the expression of cytokines and nerve growth factor (NGF) in innervated tissues. Since NGF is a neurotrophic and immunomodulatory factor contributing to inflammatory hyperalgesia and tissue response to injury, this study was conducted in order to investigate the mechanisms by which afferent neuron stimulation by topical application of capsaicin increases NGF in the rat skin. Thereby it was sought to identify possible targets for pharmacological modulation of NGF biosynthesis. Topical capsaicin (>1 mg/ml ethanol) caused a concentration- and time-dependent increase in the concentration of NGF in rat skin. The capsaicin-induced increase of NGF was not significantly affected by indomethacin administered at a dose (2 mg/kg) that abolishes prostaglandin E2 biosynthesis. The NGF increase was suppressed by treatment of rats with the selective tachykinin NK1 receptor antagonist SR140333 (0.1 mg/kg), and by the beta adrenergic agonist terbutaline (0.3 mg/kg). The effect of terbutaline was reversed by the beta adrenergic antagonist propranolol (1 mg/kg). Terbutaline also inhibited the increase in NGF caused by intraplantar injection of the NK1 receptor agonist substance P (SP), but did not significantly affect that caused by carrageenan. The results show that topical administration of capsaicin causes a primarily NK1 receptor-dependent increase in the NGF content of rat skin, which is susceptible to inhibition by beta adrenergic agonists. These observations not only suggest regulation of skin NGF biosynthesis by afferent neuronal and adrenergic mechanisms, but also indicate possible targets for pharmacological modulation of skin NGF biosynthesis.
Collapse
Affiliation(s)
- Rainer Amann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätplatz 4, A-8010 Graz, Austria.
| | | |
Collapse
|
80
|
Abstract
HIV-1, like the other lentiviruses, has evolved the ability to infect nondividing cells including macrophages. HIV-1 replication in monocytes/macrophages entails peculiar features and differs in many respects from that in CD4 T lymphocytes. HIV-1 exhibits different tropism for CD4 T cells and macrophages. The virus can enter macrophages via several routes. Mitosis is not required for nuclear import of viral DNA or for its integration into the host cell genome. Specific cellular factors are required for HIV-1 transcription in macrophages. The assembly and budding of viral particles in macrophages take place in late endosomal compartments. Viral particles can use the exosome pathway to exit cells. Given their functions in host defence against pathogens and the regulation of the immune response plus their permissivity to HIV-1 infection, monocytes/macrophages exert a dual role in HIV infection. They contribute to the establishment and persistence of HIV-1 infection, and may activate surrounding T cells favouring their infection. Furthermore, monocytes/macrophages act as a Trojan horse to transmit HIV-1 to the central nervous system. They also exhibit antiviral activity and express many molecules that inhibit HIV-1 replication. Activated microglia and macrophages may also exert a neurotrophic and neuroprotective effect on infected brain regulating glutamate metabolism or by secretion of neurotrophins. This review will discuss specific aspects of viral replication in monocytes/macrophages and the role of their interactions with the cellular environment in HIV-1 infection swinging between protection and pathogenesis.
Collapse
Affiliation(s)
- Alessia Verani
- Human Virology Unit, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
81
|
Zheng J, Zhuang W, Yan N, Kou G, Peng H, McNally C, Erichsen D, Cheloha A, Herek S, Shi C. Classification of HIV-1-mediated neuronal dendritic and synaptic damage using multiple criteria linear programming. Neuroinformatics 2004; 2:303-26. [PMID: 15365193 DOI: 10.1385/ni:2:3:303] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to identify neuronal damage in the dendritic arbor during HIV-1-associated dementia (HAD) is crucial for designing specific therapies for the treatment of HAD. To study this process, we utilized a computer-based image analysis method to quantitatively assess HIV-1 viral protein gp120 and glutamate-mediated individual neuronal damage in cultured cortical neurons. Changes in the number of neurites, arbors, branch nodes, cell body area, and average arbor lengths were determined and a database was formed (http://dm.ist.unomaha. edu/database.htm). We further proposed a two-class model of multiple criteria linear programming (MCLP) to classify such HIV-1-mediated neuronal dendritic and synaptic damages. Given certain classes, including treatments with brain-derived neurotrophic factor (BDNF), glutamate, gp120 or non-treatment controls from our in vitro experimental systems, we used the two-class MCLP model to determine the data patterns between classes in order to gain insight about neuronal dendritic damages. This knowledge can be applied in principle to the design and study of specific therapies for the prevention or reversal of neuronal damage associated with HAD. Finally, the MCLP method was compared with a well-known artificial neural network algorithm to test for the relative potential of different data mining applications in HAD research.
Collapse
Affiliation(s)
- Jialin Zheng
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198-6880, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wahab NA, Weston BS, Mason RM. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 2004; 16:340-51. [PMID: 15601748 DOI: 10.1681/asn.2003100905] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Connective tissue growth factor (CTGF) is implicated as a factor promoting tissue fibrosis in several disorders, including diabetic nephropathy. However, the molecular mechanism(s) by which it functions is not known. CTGF rapidly activates several intracellular signaling molecules in human mesangial cells (HMC), including extracellular signal-related kinase 1/2, Jun NH(2)-terminal kinase, protein kinase B, CaMK II, protein kinase Calpha, and protein kinase Cdelta, suggesting that it functions via a signaling receptor. Treating HMC with CTGF stimulated tyrosine phosphorylation of proteins 75 to 80 and 140 to 180 kD within 10 min, and Western blot analysis of anti-phosphotyrosine immunoprecipitates identified the neurotrophin receptor TrkA (molecular weight approximately 140 kD). Cross-linking rCTGF to cell surface proteins with 3,3'-dithiobis(sulfosuccinimidylpropionate) revealed that complexes formed with TrkA and with the general neurotrophin co-receptor p75(NTR). rCTGF stimulated phosphorylation of TrkA (tyr 490, 674/675). K252a, a known selective inhibitor of Trk, blocked this phosphorylation, CTGF-induced activation of signaling proteins, and CTGF-dependent induction of the transcription factor TGF-beta-inducible early gene in HMC. It is concluded that TrkA serves as a tyrosine kinase receptor for CTGF.
Collapse
Affiliation(s)
- Nadia Abdel Wahab
- Renal Section, Division of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 ONN, UK.
| | | | | |
Collapse
|
83
|
Caroleo MC, Costa N, Tirassa P, Aloe L. Nerve growth factor produced by activated human monocytes/macrophages is severely affected by ethanol. Alcohol 2004; 34:107-14. [PMID: 15902903 DOI: 10.1016/j.alcohol.2004.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ethanol intake impairs immune function and increases the incidence of infection in the host. Although the precise cellular target of this immunotoxic action is still unknown, findings of several studies have shown that ethanol acts on the immune response predominantly by interfering with the ability of blood monocyte-derived macrophages to produce cytokines and growth factors. Nerve growth factor (NGF) represents a key molecule in monocyte/macrophage-mediated responses. Thus, we tested the hypothesis that exposure to ethanol would affect NGF synthesis as well as expression of NGF receptor trkA in this cell population. Because NGF has been reported to affect the synthesis of proinflammatory cytokines, we also evaluated whether the production of tumor necrosis factor-alpha would be affected by ethanol-mediated changes in NGF synthesis. The study results demonstrated that the acute exposure of lipopolysaccharide-activated human monocyte/macrophage cultures to ethanol led to a sharp decrease in endogenous-produced NGF, which is associated with a reduced expression of high-affinity NGF receptor on cell membrane, and to a concomitant impairment of tumor necrosis factor-alpha production. Taken together, the current findings support the suggestion that a new mechanism exists by which ethanol can compromise the efficiency of the mononuclear phagocyte system in dealing with infection and host inflammatory response.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacobiology, Faculty of Pharmacy, University of Calabria, 87036 Cosenza, Italy
| | | | | | | |
Collapse
|
84
|
Nassenstein C, Kerzel S, Braun A. Neurotrophins and neurotrophin receptors in allergic asthma. PROGRESS IN BRAIN RESEARCH 2004; 146:347-67. [PMID: 14699973 DOI: 10.1016/s0079-6123(03)46022-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 (NT-3) and NT-4 play a pivotal role in the development of the nervous system. Despite their well-known effects on neurons, elevated neurotrophin concentrations have been observed under pathological conditions in sera of patients with inflammatory disorders. Patients with asthma feature both airway inflammation and an abnormal airway reactivity to many unspecific stimuli, referred to as airway hyperresponsiveness, which is, at least partly, neuronally controlled. Interestingly, these patients show increased levels of neurotrophins in the blood as well as locally in the lung. It has been demonstrated that neurotrophin release from immune cells is triggered by allergen contact. The presence of neurotrophins and the neurotrophin receptors p75 (p75NTR), tyrosine kinase A (TrkA), TrkB and TrkC have been described in several immune cells. There is strong evidence for an involvement of neurotrophins in regulation of hematopoiesis and, in addition, in modulation of immune cell function in mature cells circulating in blood or resting in lymphatic organs and peripheral tissues. The aim of this review is to demonstrate possible roles of neurotrophins during an allergic reaction in consideration of the temporospatial compartimentalization.
Collapse
Affiliation(s)
- Christina Nassenstein
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
85
|
McCluskey LP. Up-regulation of activated macrophages in response to degeneration in the taste system: Effects of dietary sodium restriction. J Comp Neurol 2004; 479:43-55. [PMID: 15389612 DOI: 10.1002/cne.20307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary sodium restriction combined with unilateral chorda tympani nerve section leads to a rapid and specific decrease in neurophysiological taste responses to sodium in the contralateral, intact chorda tympani (Hill and Phillips [1994] J. Neurosci. 14:2904-2910). Previous work demonstrated that dietary sodium restriction may induce these early functional deficits by inhibiting immune activity after denervation (Phillips and Hill [1996] Am. J. Physiol. 271:R857-R862). However, little is known about the leukocyte response to denervation of taste buds in fungiform papillae. In the current study, it was hypothesized that T cells and macrophages are increased in the tongue after unilateral denervation in control-fed but not sodium-restricted animals. Adult, specified pathogen-free rats received unilateral chorda tympani nerve section or sham section followed by dietary sodium restriction or maintenance on control diet. At day 1, 2, 5, 7, or 50 postsectioning, immunostaining was used to detect the percentage of staining for activated macrophages, the number of alpha beta T cells, and the number of delta gamma epithelial T cells in the tongue. The number of lingual T cells did not significantly differ between treatment groups following denervation. However, there was a dramatic bilateral increase in ED1(+) staining for activated macrophages in control-fed rats that peaked at day 2 postsectioning. In contrast, sodium-restricted rats did not show an increase in activated macrophages above baseline at any time postsectioning. Further analysis of extralingual macrophages indicated that the deficit in immune activity in sodium-restricted rats is localized to the tongue and is not widespread. A model for immune modulation of taste receptor cell function is proposed based on these novel findings.
Collapse
|
86
|
Villoslada P, Genain CP. Role of nerve growth factor and other trophic factors in brain inflammation. PROGRESS IN BRAIN RESEARCH 2004; 146:403-14. [PMID: 14699976 DOI: 10.1016/s0079-6123(03)46025-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation in the brain is a double-edged process that may be beneficial in promoting homeostasis and repair, but can also result in tissue injury through the damaging potential of inflammatory mediators. Thus, control mechanisms that minimize the extent of the inflammatory reaction are necessary in order to help preserve brain architecture and restore function. The expression of neurotrophic factors such as nerve growth factor (NGF) is increased after brain injury, in part mediated by effects on astrocytes of pro-inflammatory mediators and cytokines produced by immune cells. Conversely, cells of the immune system express NGF receptors, and NGF signaling modulates immune function. Multiple sclerosis (MS) and the disease model experimental autoimmune encephalomyelitis are neurodegenerative disorders whereby chronic destruction of the brain parenchyma results from an autoaggressive, immune-mediated inflammatory process and insufficient tissue regeneration. Here, we review evidence indicating that the increased production of NGF and other trophic factors in central nervous system (CNS) during these diseases can suppress inflammation by switching the immune response to an anti-inflammatory, suppressive mode in a brain-specific environment. Thus, trophic factors networks in the adult CNS not only protects axons and myelin but appear to also actively contribute to the maintenance of the brain immune privilege. These agents may represent good targets for therapeutic intervention in MS and other chronic CNS inflammatory diseases.
Collapse
Affiliation(s)
- Pablo Villoslada
- Neuroimmunology Laboratory, Department of Neurology, University of Navarra, Spain
| | | |
Collapse
|
87
|
Kanda N, Watanabe S. 17Beta-estradiol enhances the production of nerve growth factor in THP-1-derived macrophages or peripheral blood monocyte-derived macrophages. J Invest Dermatol 2003; 121:771-80. [PMID: 14632195 DOI: 10.1046/j.1523-1747.2003.12487.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined in vitro effects of 17beta-estradiol (E2) on nerve growth factor production by macrophages derived from monocytic cell line THP-1-or periphereal blood monocytes. E2 and membrane-impermeable bovine serum albumin-conjugated E2 (E2-BSA) enhanced nerve growth factor secretion and mRNA expression in both types of macrophages E2 enhanced nerve growth factor promotor activity in THP-1-derived macrophages and two activator protein-1 binding sites on the promoter were responsible for the enhancement. E2 and E2-BSA enhanced transcriptional activity and DNA binding of activator protein-1. E2 and E2-BSA shifted the activator protein-1 composition from c-Jun homodimers to c-Fos/c-Jun heterodimers. E2 and E2-BSA transiently induced c-Fos mRNA, which was constitutively undetectable in both types of macrophages. Adenylate cyclase inhibitor SQ22536 suppressed E2-induced nerve growth factor production and c-Fos expression. E2 and E2-BSA increased intracellular cyclic adenosine monophosphate level in both types of macrophages. Antisense oligonucleotide against guanine nucleotide-binding protein-coupled receptor, GPR30 suppressed the E2-induced cyclic adenosine monophosphate signal, c-Fos expression, and nerve growth factor secretion in both types of macrophages. These results suggest that E2 may enhance nerve growth factor production by inducing c-Fos expression via cyclic adenosine monophosphate signal in macrophages. These effects may be mediated via GPR30.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
88
|
Nockher WA, Renz H. Neurotrophins in inflammatory lung diseases: modulators of cell differentiation and neuroimmune interactions. Cytokine Growth Factor Rev 2003; 14:559-78. [PMID: 14563357 DOI: 10.1016/s1359-6101(03)00071-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic inflammatory lung diseases represent a group of severe diseases with increasing prevalence as well as epidemiological importance. Inflammatory lung diseases could result from allergic or infectious genesis. There is growing evidence that the immune and nervous system are closely related not only in physiological but also in pathological reactions in the lung. Extensive communications between neurons and immune cells are responsible for the magnitude of airway inflammation and the development of airway hyperreactivity, a consequence of neuronal dysregulation. Neurotrophins are molecules regulating and controlling this crosstalk between the immune and peripheral nervous system (PNS) during inflammatory lung diseases. They are constitutively expressed by resident lung cells and produced in increasing quantities by immune cells invading the airways under inflammatory conditions. They act as activation, differentiation and survival factors for cells of both the immune and nervous system. This article will review the most recent data of neurotrophin signaling in the normal and inflamed lung and as yet unexplored, roles of neurotrophins in the complex communication within the neuroimmune network.
Collapse
Affiliation(s)
- Wolfgang Andreas Nockher
- Department of Clinical Chemistry and Molecular Diagnostics, University Hospital, Philipps-Universität Marburg, Marburg 35033, Germany.
| | | |
Collapse
|
89
|
Shibata A, Zelivyanskaya M, Limoges J, Carlson KA, Gorantla S, Branecki C, Bishu S, Xiong H, Gendelman HE. Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function. J Neuroimmunol 2003; 142:112-29. [PMID: 14512170 DOI: 10.1016/s0165-5728(03)00253-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat cortical neurons cultured in conditioned media from human monocyte-derived macrophages (MDM) show increased neuronal protein synthesis, neurite outgrowth, mitogen-activating protein kinase activity, and synaptic function. Neurotrophic properties of human MDM-conditioned media are significantly enhanced by human peripheral nerve and to a more limited extent by CD40 ligand pre-stimulation. Such positive effects of MDM secretions on neuronal function parallel the secretion of brain-derived neurotrophic factor (BDNF). MDM activation cues may serve to balance toxic activities produced during neurodegenerative diseases and thus, under certain circumstances, mitigate neuronal degeneration.
Collapse
Affiliation(s)
- Annemarie Shibata
- Center for Neurovirology and Neurodegenerative Disorders and the Department of Pathology and Microbiology, University of Nebraska Medical Center, 985215 Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Guntinas-Lichius O, Wittekindt C. The Role of Growth Factors for Disease and Therapy in Diseases of the Head and Neck. DNA Cell Biol 2003; 22:593-606. [PMID: 14577911 DOI: 10.1089/104454903322405473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Growth factors are a large family of polypeptide molecules that regulate cell division in many tissues by autocrine or paracrine mechanisms. Depending on what receptors are activated, growth factors can initiate mitogenic, antiproliferative, or trophic effects, that is, growth factors act as positive or negative modulators of cell proliferation. Therefore, growth factors do not only play an important role in embryonic development and adult tissue homeostasis, but also in pathological situations like infection, wound healing, and tumorigenesis. Consequently, the application of growth factors, or vice versa the application of substances which are directed against growth factors like antigrowth factor antibodies, may have therapeutic applications. This review provides a brief account of what we know regarding growth factors in otorhinolaryngology, particularly in the field of otology, wound healing, oncology, peripheral nerve regeneration, and rhinology.
Collapse
Affiliation(s)
- O Guntinas-Lichius
- Clinic of Otolaryngology, Head and Neck Surgery, University of Cologne, Germany.
| | | |
Collapse
|
91
|
Abstract
The neurotrophins are a family of polypeptide growth factors that are essential for the development and maintenance of the vertebrate nervous system. In recent years, data have emerged indicating that neurotrophins could have a broader role than their name might suggest. In particular, the putative role of NGF and its receptor TrkA in immune system homeostasis has become a much studied topic, whereas information on the other neurotrophins is scarce in this regard. This paper reviews what is known about the expression and possible functions of neurotrophins and their receptors in different immune tissues and cells, as well as recent data obtained from studies of transgenic mice in our laboratory. Results from studies to date support the idea that neurotrophins may regulate some immune functions. They also play an important role in the development of the thymus and in the survival of thymocytes.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
92
|
Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 2003; 53:292-304. [PMID: 12601697 DOI: 10.1002/ana.10446] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammatory reactions in the central nervous system usually are considered detrimental, but recent evidence suggests that they also can be beneficial and even have neuroprotective effects. Intriguingly, immune cells can produce various neurotrophic factors of various molecular families. The concept of "neuroprotective immunity" will have profound consequences for the pathogenesis and treatment of neuroinflammatory diseases such as multiple sclerosis. It also will prove important for neurodegenerative disorders, in which inflammatory reactions often occur. This review focuses on recent findings that immune cells produce brain-derived neurotrophic factor in multiple sclerosis lesions, whereas neurons and astrocytes express the appropriate tyrosine kinase receptor TrkB. Together with functional evidence for the neuroprotective effects of immune cells, these observations support the concept of "neuroprotective immunity." We next examine current and future therapeutic strategies for multiple sclerosis and experimental autoimmune encephalomyelitis in light of neuroprotective immunity and finally address the broader implications of this new concept for other neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Martin Kerschensteiner
- Brain Research Institute, University of Zurich and Department of Biology, ETH Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
93
|
Bracci-Laudiero L, Celestino D, Starace G, Antonelli A, Lambiase A, Procoli A, Rumi C, Lai M, Picardi A, Ballatore G, Bonini S, Aloe L. CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol 2003; 136:130-9. [PMID: 12620652 DOI: 10.1016/s0165-5728(03)00007-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, we investigated whether hematopoietic stem cells (HSC) and progenitors present in human cord blood can express nerve growth factor (NGF)-specific receptors, TrkA and p75. Our results showed a marked expression of TrkA and NGF in cord blood CD34(+) cells. A gradient of TrkA and NGF expression exists and is highest in cord blood CD34(+) cells, reduced in cord blood mononuclear cells (MNC) and minimal in mononuclear cells isolated from adult peripheral blood. Our findings suggest that NGF may play a role in the differentiation of hematopoietic progenitors and indicate a different requirement for NGF by immune cells, depending on their state of maturity.
Collapse
MESH Headings
- Adult
- Antigens, CD34/immunology
- Cell Differentiation/immunology
- Fetal Blood/cytology
- Fetal Blood/immunology
- Flow Cytometry
- Fluorescent Antibody Technique
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Humans
- Infant, Newborn
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Middle Aged
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- RNA, Messenger/metabolism
- Receptor, Nerve Growth Factor
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
Collapse
Affiliation(s)
- Luisa Bracci-Laudiero
- Institute of Neurobiology and Molecular Medicine, CNR, Viale Marx 15/43, 00137 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Pérez-Pérez M, García-Suárez O, Esteban I, Germanà A, Fariñas I, Naves FJ, Vega JA. p75NTR in the spleen: age-dependent changes, effect of NGF and 4-methylcatechol treatment, and structural changes in p75NTR-deficient mice. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 270:117-28. [PMID: 12524687 DOI: 10.1002/ar.a.10010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In addition to their well-known actions within the nervous system, neurotrophins and their receptors are involved in immune system functioning, as demonstrated by their wide distribution in lymphoid tissues and their in vitro actions on immunocompetent cells. Nevertheless, the in vivo roles of neurotrophin-receptor systems in lymphoid tissues, as well as the scope of their influence throughout development and adulthood, are yet to be clarified. In the present study, we used combined morphological and immunohistochemical techniques to investigate the presence and cellular localization of p75NTR, the pan-neurotrophin receptor protein, in rat spleen from newborns to aging individuals, and the structural and innervation changes in the spleens of p75NTR-deficient mice. In rats, p75NTR was expressed by splenic nerve fibers and dendritic cells in an age-regulated fashion, with maximal expression detected at 2 weeks. Consistently, the spleens of newborn mice lacking this receptor protein showed no signs of ingrowing sympathetic fibers, along with an absence of defined white pulp areas. The present findings suggest a prolonged role of p75NTR in the physiology of the spleen; at least during the embryonic development period, the receptor may be critical for correct innervation and compartmentalization processes to occur.
Collapse
Affiliation(s)
- M Pérez-Pérez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
95
|
Cotter R, Williams C, Ryan L, Erichsen D, Lopez A, Peng H, Zheng J. Fractalkine (CX3CL1) and brain inflammation: Implications for HIV-1-associated dementia. J Neurovirol 2002; 8:585-98. [PMID: 12476352 DOI: 10.1080/13550280290100950] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Leukocyte migration and activation play an important role in immune surveillance and the pathogenesis of a variety of neurodegenerative disorders, including human immunodeficiency virus (HIV)-1-associated dementia (HAD). A novel chemokine named fractalkine (FKN, CX3CL1), which exists in both membrane-anchored and soluble isoforms, has been proposed to participate in the generation and progression of inflammatory brain disorders. Upon binding to the CX3C receptor one (CX3CR1), FKN induces adhesion, chemoattraction, and activation of leukocytes, including brain macrophages and microglia (MP). Constitutively expressed in the central nervous system (CNS), mainly by neurons, FKN is up-regulated and released in response to proinflammatory stimuli. Importantly, FKN is up-regulated in the brain tissue and cerebrospinal fluid (CSF) of HAD patients. Together, these observations suggest that FKN and its receptor have a unique role in regulating the neuroinflammatory events underlying disease. This review will examine how FKN contributes to the recruitment and activation of CX3CR1-expressing MP, which are critical events in the neuropathogenesis of HAD.
Collapse
Affiliation(s)
- R Cotter
- The Laboratory of Neurotoxicology, the Center for Neurovirology and Neurodegenerative Disorders, Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002; 106:2257-62. [PMID: 12390957 DOI: 10.1161/01.cir.0000033971.56802.c5] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The neurotrophin nerve growth factor (NGF) regulates neuron survival and differentiation. Implication in neovascularization is supported by statement of NGF and its high-affinity receptor at vascular level and by NGF property of stimulating vascular endothelial cell proliferation. The present study investigated the involvement of endogenous NGF in spontaneous reparative response to ischemia. Mechanisms and therapeutic potential of NGF-induced neovascularization were examined. METHODS AND RESULTS Unilateral limb ischemia was produced in CD1 mice by femoral artery resection. By ELISA and immunohistochemistry, we documented that statement of NGF and its high-affinity receptor is upregulated in ischemic muscles. The functional relevance of this phenomenon was assessed by means of NGF-neutralizing antibody. Chronic NGF blockade abrogated the spontaneous capillarization response to ischemia and augmented myocyte apoptosis. Then we tested whether NGF administration may exert curative effects. Repeated NGF injection into ischemic adductors increased capillary and arteriole density, reduced endothelial cell and myofiber apoptosis, and accelerated perfusion recovery, without altering systemic hemodynamics. In normoperfused muscles, NFG-induced capillarization was blocked by vascular endothelial growth factor-neutralizing antibodies, dominant-negative Akt, or NO synthase inhibition. CONCLUSIONS These results indicate that NGF plays a functional role in reparative neovascularization. Furthermore, supplementation of the growth factor promotes angiogenesis through a vascular endothelial growth factor-Akt-NO-mediated mechanism. In the setting of ischemia, potentiation of NGF pathway stimulates angiogenesis and arteriogenesis, thereby accelerating hemodynamic recovery. NGF might be envisaged as a utilitarian target for the treatment of ischemic vascular disease.
Collapse
Affiliation(s)
- Costanza Emanueli
- Cardiovascular Medicine and Gene Therapy Section, National Laboratory of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|