51
|
Sarkar S, Moitra P, Bhattacharya S. Structure-activity relationship of drug conjugated polymeric materials against uropathogenic bacteria colonization under in vitro and in vivo settings. J Mater Chem B 2023; 12:187-201. [PMID: 38059523 DOI: 10.1039/d3tb01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The human world has been plagued with different kinds of bacterial infections from time immemorial. The increased development of resistance towards commercial antibiotics has made these bacterial infections an even more critical challenge. Bacteria have modified their mode of interactions with different types of commercial drugs by bringing changes to the receptor proteins or by other resisting mechanisms like drug efflux. Various chemical approaches have been made to date to fight against these smart adapting species. Towards this, we hypothesize chemically modifying the commercial antibacterial drugs in order to deceive the bacteria and destroy the bacterial biomass. In this study, different molecular weight polyethyleneimines are taken and conjugated with some well-known commercial drugs like penicillin and chloramphenicol to explore their antibacterial properties against some of the laboratory and uro-pathogenic strains of Gram-positive and Gram-negative bacteria. A detailed structure-activity relationship of these polymeric prodrug-like materials has been evaluated to determine the optimum formulation. The standardized system not only shows significant ∼90% bacterial killing in liquid broth culture, but also demonstrates promising bacterial inhibition towards biofilm formation for the pathogenic strains on inanimate surfaces like urinary catheters and on an in vivo mouse skin abrasion model. The reported bioactive polymeric materials can be successfully used for widespread therapeutic applications with promising medical relevance.
Collapse
Affiliation(s)
- Sourav Sarkar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Srinivasapuram, Yerpedu Mandal, Tirupati District, Andhra Pradesh 517619, India
| |
Collapse
|
52
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
53
|
Shah R, Jankiewicz O, Johnson C, Livingston B, Dahl JU. Pseudomonas aeruginosa kills Staphylococcus aureus in a polyphosphate-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570291. [PMID: 38106195 PMCID: PMC10723280 DOI: 10.1101/2023.12.05.570291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Due to their frequent coexistence in many polymicrobial infections, including in patients with burn or chronic wounds or cystic fibrosis, recent studies have started to investigate the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro co-cultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role for the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP level are less detrimental to S. aureus growth and survival while the gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high level of polyP. We show that the polyP-dependent phenotype could be a direct effect by the biopolymer, as polyP is present in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through the regulation of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependent and harms S. aureus through membrane damage and the generation of reactive oxygen species, resulting in increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.
Collapse
Affiliation(s)
- Ritika Shah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Olivia Jankiewicz
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Barry Livingston
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
54
|
Zhong Y, He X, Tao W, Feng J, Zhang R, Gong H, Tang Z, Huang C, He Y. 2,4-Diacetylphloroglucinol (DAPG) derivatives rapidly eradicate methicillin-resistant staphylococcus aureus without resistance development by disrupting membrane. Eur J Med Chem 2023; 261:115823. [PMID: 37839345 DOI: 10.1016/j.ejmech.2023.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe public health challenges throughout the world, and the multi-drug resistance (MDR) of MRSA to antibiotics necessitates the development of more effective antibiotics. Natural 2,4-diacetylphloroglucinol (DAPG), produced by Pseudomonas, displays moderate inhibitory activity against MRSA. A series of DAPG derivatives was synthesized and evaluated for their antibacterial activities, and some showed excellent activities (MRSA MIC = 0.5-2 μg/mL). Among these derivatives, 7g demonstrated strong antibacterial activity without resistance development over two months. Mechanistic studies suggest that 7g asserted its activity by targeting bacterial cell membranes. In addition, 7g exhibited significant synergistic antibacterial effects with oxacillin both in vitro and in vivo, with a tendency to eradicate MRSA biofilms. 7g is a promising lead for the treatment of MRSA.
Collapse
Affiliation(s)
- Yifan Zhong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Jizhou Feng
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Ruixue Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Hongzhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Ziyi Tang
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
55
|
Chung E, Ren G, Johnston I, Matharu RK, Ciric L, Walecka A, Cheong YK. Applied Methods to Assess the Antimicrobial Activity of Metallic-Based Nanoparticles. Bioengineering (Basel) 2023; 10:1259. [PMID: 38002383 PMCID: PMC10669044 DOI: 10.3390/bioengineering10111259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
With the rise of antibiotic resistance, the drive to discover novel antimicrobial substances and standard testing methods with the aim of controlling transmissive diseases are substantially high. In healthcare sectors and industries, although methods for testing antibiotics and other aqueous-based reagents are well established, methods for testing nanomaterials, non-polar and other particle-based suspensions are still debatable. Hence, utilities of ISO standard validations of such substances have been recalled where corrective actions had to be taken. This paper reports a serial analysis obtained from testing the antimicrobial activities of 10 metallic-based nanomaterials against 10 different pathogens using five different in vitro assays, where the technique, limitation and robustness of each method were evaluated. To confirm antimicrobial activities of metallic-based nanomaterial suspensions, it was found that at least two methods must be used, one being the agar well diffusion method, which was found to be the most reliable method. The agar well diffusion method provided not only information on antimicrobial efficacy through the size of the inhibitory zones, but it also identified antimicrobial ions and synergistic effects released by the test materials. To ascertain the effective inhibitory concentration of nanoparticles, the resazurin broth dilution method is recommended, as MIC can be determined visually without utilising any equipment. This method also overcomes the limit of detection (LoD) and absorbance interference issues, which are often found in the overexpression of cell debris and nanoparticles or quantum dots with optical profiles. In this study, bimetallic AgCu was found to be the most effective antimicrobial nanoparticle tested against across the bacterial (MIC 7 µg/mL) and fungal (MIC 62.5 µg/mL) species.
Collapse
Affiliation(s)
- Etelka Chung
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| | - Guogang Ren
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| | - Ian Johnston
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| | - Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| | - Agnieszka Walecka
- Intensive Care Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK;
| | - Yuen-Ki Cheong
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| |
Collapse
|
56
|
Gill CP, Phan C, Platt V, Worrell D, Andl T, Roy H. The MprF homolog LysX synthesizes lysyl-diacylglycerol contributing to antibiotic resistance and virulence. Microbiol Spectr 2023; 11:e0142923. [PMID: 37768052 PMCID: PMC10580965 DOI: 10.1128/spectrum.01429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 09/29/2023] Open
Abstract
Lysyl-diacylglycerol (Lys-DAG) was identified three decades ago in Mycobacterium phlei, but the biosynthetic pathway and function of this aminoacylated lipid have since remained uncharacterized. Combining genetic methods, mass spectrometry, and biochemical approaches, we show that the multiple peptide resistance factor (MprF) homolog LysX from Corynebacterium pseudotuberculosis and two mycobacterial species is responsible for Lys-DAG synthesis. LysX is conserved in most Actinobacteria and was previously implicated in the synthesis of another modified lipid, lysyl-phosphatidylglycerol (Lys-PG), in Mycobacterium tuberculosis. Although we detected low levels of Lys-PG in the membrane of C. pseudotuberculosis, our data suggest that Lys-PG is not directly synthesized by LysX and may require an additional downstream pathway, which is as yet undefined. Our results show that LysX in C. pseudotuberculosis is a major factor of resistance against a variety of positively charged antibacterial agents, including cationic antimicrobial peptides (e.g., human peptide LL-37 and polymyxin B) and aminoglycosides (e.g., gentamycin and apramycin). Deletion of lysX caused an increase in cellular membrane permeability without dissipation of the membrane potential, suggesting that loss of the protein does not result in mechanical damage to the cell membrane. Furthermore, lysX-deficient cells exhibited an attenuated virulence phenotype in a Galleria mellonella infection model, supporting a role for LysX during infection. Altogether, Lys-DAG represents a novel molecular determinant for antimicrobial resistance and virulence that may be widespread in Actinobacteria and points to a richer landscape than previously realized of lipid components contributing to overall membrane physiology in this important bacterial phylum. IMPORTANCE In the past two decades, tRNA-dependent modification of membrane phosphatidylglycerol has been implicated in altering the biochemical properties of the cell surface, thereby enhancing the antimicrobial resistance and virulence of various bacterial pathogens. Here, we show that in several Actinobacteria, the multifunctional protein LysX attaches lysine to diacylglycerol instead of phosphatidylglycerol. We found that lysyl-diacylglycerol (Lys-DAG) confers high levels of resistance against various cationic antimicrobial peptides and aminoglycosides and also enhances virulence. Our data show that Lys-DAG is a lipid commonly found in important actinobacterial pathogens, including Mycobacterium and Corynebacterium species.
Collapse
Affiliation(s)
- Cameron P. Gill
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Christopher Phan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Vivien Platt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Danielle Worrell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hervé Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
57
|
Parente R, Fumagalli MR, Di Claudio A, Cárdenas Rincón CL, Erreni M, Zanini D, Iapichino G, Protti A, Garlanda C, Rusconi R, Doni A. A Multilayered Imaging and Microfluidics Approach for Evaluating the Effect of Fibrinolysis in Staphylococcus aureus Biofilm Formation. Pathogens 2023; 12:1141. [PMID: 37764949 PMCID: PMC10534389 DOI: 10.3390/pathogens12091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The recognition of microbe and extracellular matrix (ECM) is a recurring theme in the humoral innate immune system. Fluid-phase molecules of innate immunity share regulatory roles in ECM. On the other hand, ECM elements have immunological functions. Innate immunity is evolutionary and functionally connected to hemostasis. Staphylococcus aureus (S. aureus) is a major cause of hospital-associated bloodstream infections and the most common cause of several life-threatening conditions such as endocarditis and sepsis through its ability to manipulate hemostasis. Biofilm-related infection and sepsis represent a medical need due to the lack of treatments and the high resistance to antibiotics. We designed a method combining imaging and microfluidics to dissect the role of elements of the ECM and hemostasis in triggering S. aureus biofilm by highlighting an essential role of fibrinogen (FG) in adhesion and formation. Furthermore, we ascertained an important role of the fluid-phase activation of fibrinolysis in inhibiting biofilm of S. aureus and facilitating an antibody-mediated response aimed at pathogen killing. The results define FG as an essential element of hemostasis in the S. aureus biofilm formation and a role of fibrinolysis in its inhibition, while promoting an antibody-mediated response. Understanding host molecular mechanisms influencing biofilm formation and degradation is instrumental for the development of new combined therapeutic approaches to prevent the risk of S. aureus biofilm-associated diseases.
Collapse
Affiliation(s)
- Raffaella Parente
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Maria Rita Fumagalli
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Cindy Lorena Cárdenas Rincón
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Marco Erreni
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Damiano Zanini
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Giacomo Iapichino
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Andrea Doni
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
58
|
Marcos-Fernández R, Sánchez B, Ruiz L, Margolles A. Convergence of flow cytometry and bacteriology. Current and future applications: a focus on food and clinical microbiology. Crit Rev Microbiol 2023; 49:556-577. [PMID: 35749433 DOI: 10.1080/1040841x.2022.2086035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Since its development in the 1960s, flow cytometry (FCM) was quickly revealed a powerful tool to analyse cell populations in medical studies, yet, for many years, was almost exclusively used to analyse eukaryotic cells. Instrument and methodological limitations to distinguish genuine bacterial signals from the background, among other limitations, have hampered FCM applications in bacteriology. In recent years, thanks to the continuous development of FCM instruments and methods with a higher discriminatory capacity to detect low-size particles, FCM has emerged as an appealing technique to advance the study of microbes, with important applications in research, clinical and industrial settings. The capacity to rapidly enumerate and classify individual bacterial cells based on viability facilitates the monitoring of bacterial presence in foodstuffs or clinical samples, reducing the time needed to detect contamination or infectious processes. Besides, FCM has stood out as a valuable tool to advance the study of complex microbial communities, or microbiomes, that are very relevant in the context of human health, as well as to understand the interaction of bacterial and host cells. This review highlights current developments in, and future applications of, FCM in bacteriology, with a focus on those related to food and clinical microbiology.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
59
|
Wójtowicz D, Stodolak-Zych E. Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood. MEMBRANES 2023; 13:762. [PMID: 37755184 PMCID: PMC10536434 DOI: 10.3390/membranes13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use resulting in a rapid decline in flux. The most significant reason for this loss is the formation of a biofilm. Protein, blood cells and bacterial cells attach to the membrane surface in complex and fluctuating processes. Anticoagulation allows for longer patency of vascular access and a longer lifespan of the membrane. Other preventive measures include the modification of the membrane itself. In this article, we focused on the role of nanoadditives in the mitigation of biofouling. Nanoparticles such as graphene, carbon nanotubes, and silica effectively change surface properties towards more hydrophilic, affect pore size and distribution, decrease protein adsorption and damage bacteria cells. As a result, membranes modified with nanoparticles show better flow parameters, longer lifespan and increased hemocompatibility.
Collapse
Affiliation(s)
- Dominika Wójtowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
- Clinical Department of Anaesthesiology and Intensive Care, University Hospital in Krakow, ul. Jakubowskiego 2, 30-688 Krakow, Poland
| | - Ewa Stodolak-Zych
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
60
|
Xhafa S, Olivieri L, Di Nicola C, Pettinari R, Pettinari C, Tombesi A, Marchetti F. Copper and Zinc Metal-Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram- Bacterial Strains. Molecules 2023; 28:6160. [PMID: 37630412 PMCID: PMC10459509 DOI: 10.3390/molecules28166160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a new synthetic protocol based on microwave-assisted synthesis (MAS) for the preparation of higher yields of zinc and copper in MOFs based on different bis(pyrazolyl)-tagged ligands ([M(BPZ)]n where M = Zn(II), Cu(II), H2BPZ = 4,4'-bipyrazole, [M(BPZ-NH2)]n where M = Zn(II), Cu(II); H2BPZ-NH2 = 3-amino-4,4'-bipyrazole, and [Mx(Me4BPZPh)] where M = Zn(II), x = 1; Cu(II), x = 2; H2Me4BPZPh = bis-4'-(3',5'-dimethyl)-pyrazolylbenzene) and, for the first time, a detailed study of their antibacterial activity, tested against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, as representative agents of infections. The results show that all MOFs exert a broad-spectrum activity and strong efficiency in bacterial growth inhibition, with a mechanism of action based on the surface contact of MOF particles with bacterial cells through the so-called "chelation effect" and reactive oxygen species (ROS) generation, without a significant release of Zn(II) and Cu(II) ions. In addition, morphological changes were elucidated by using a scanning electron microscope (SEM) and bacterial cell damage was further confirmed by a confocal laser scanning microscopy (CLSM) test.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Laura Olivieri
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| |
Collapse
|
61
|
Astuti MP, Taylor WS, Lewis GD, Padhye LP. Surface-modified activated carbon for N-nitrosodimethylamine removal in the continuous flow biological activated carbon columns. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131518. [PMID: 37172385 DOI: 10.1016/j.jhazmat.2023.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/14/2023]
Abstract
The carcinogenic nitrogenous disinfection by-product, N-nitrosodimethylamine (NDMA), is challenging to adsorb due to its high polarity and solubility. Our previous research demonstrated that the adsorptive removal of NDMA can be improved using surface-modified activated carbon (AC800). The current study evaluated the efficacy of AC800 in removing NDMA in a continuous-flow column over 75 days, using both granular activated carbon (GAC) and biologically activated carbon (BAC) columns. The AC800 GAC column demonstrated extended breakthrough and exhaustion times of 10 days and 22 days, respectively, compared to the conventional GAC column at 4 days and 10.5 days. The surface modification effect persisted for 25 days before the removal trends became indistinguishable. The AC800 BAC column outperformed the conventional BAC column with a longer breakthrough time of 11.3 days compared to 7.4 days. BAC columns consistently showed greater NDMA removal, emphasizing the role of biodegradation in NDMA removal on carbon. The higher NDMA removal in the inoculated columns was attributed to increased microbial diversity and the dominance of six specific genera, Methylobacterium, Phyllobacterium, Curvibacter, Acidovorax, Variovorax, and Rhodoferax. This study provides new insights into using modified activated carbon as GAC and BAC media in a real-world continuous-flow setup.
Collapse
Affiliation(s)
- Maryani P Astuti
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand; Environmental Engineering Study Program, Faculty of Engineering, President University, Bekasi, Indonesia
| | - William S Taylor
- Institute of Environmental Science and Research (ESR), Christchurch, New Zealand
| | - Gillian D Lewis
- School of Biological Science, University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
62
|
Odžak R, Crnčević D, Sabljić A, Krce L, Paladin A, Primožič I, Šprung M. Further Study of the Polar Group's Influence on the Antibacterial Activity of the 3-Substituted Quinuclidine Salts with Long Alkyl Chains. Antibiotics (Basel) 2023; 12:1231. [PMID: 37627651 PMCID: PMC10451673 DOI: 10.3390/antibiotics12081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are among the most potent antimicrobial agents increasingly used by humans as disinfectants, antiseptics, surfactants, and biological dyes. As reports of bacterial co- and cross-resistance to QACs and their toxicity have emerged in recent years, new attempts are being made to develop soft QACs by introducing hydrolyzable groups that allow their controlled degradation. However, the development of such compounds has been hindered by the structural features that affect the bioactivity of QACs, one of them being polarity of the substituent near the quaternary center. To further investigate the influence of the polar group on the bioactivity of QACs, we synthesized 3-aminoquinuclidine salts for comparison with their structural analogues, 3-acetamidoquinuclidines. We found that the less polar amino-substituted compounds exhibited improved antibacterial activity over their more polar amide analogues. In addition to their better minimum inhibitory concentrations, the candidates were excellent at suppressing Staphylococcus aureus biofilm formation and killing bacteria almost immediately, as shown by the flow cytometry measurements. In addition, two candidates, namely QNH2-C14 and QNH2-C16, effectively suppressed bacterial growth even at concentrations below the MIC. QNH2-C14 was particularly effective at subinhibitory concentrations, inhibiting bacterial growth for up to 6 h. In addition, we found that the compounds targeted the bacterial membrane, leading to its perforation and subsequent cell death. Their low toxicity to human cells and low potential to develop bacterial resistance suggest that these compounds could serve as a basis for the development of new QACs.
Collapse
Affiliation(s)
- Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| | - Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Antonela Paladin
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| |
Collapse
|
63
|
Russell B, Rogers A, Yoder R, Kurilich M, Krishnamurthi VR, Chen J, Wang Y. Silver Ions Inhibit Bacterial Movement and Stall Flagellar Motor. Int J Mol Sci 2023; 24:11704. [PMID: 37511461 PMCID: PMC10381017 DOI: 10.3390/ijms241411704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Silver (Ag) in different forms has been gaining broad attention due to its antimicrobial activities and the increasing resistance of bacteria to commonly prescribed antibiotics. However, various aspects of the antimicrobial mechanism of Ag have not been understood, including how Ag affects bacterial motility, a factor intimately related to bacterial virulence. Here, we report our study on how Ag+ ions affect the motility of E. coli bacteria using swimming, tethering, and rotation assays. We observed that the bacteria slowed down dramatically by >70% when subjected to Ag+ ions, providing direct evidence that Ag+ ions inhibit the motility of bacteria. In addition, through tethering and rotation assays, we monitored the rotation of flagellar motors and observed that the tumbling/pausing frequency of bacteria increased significantly by 77% in the presence of Ag+ ions. Furthermore, we analyzed the results from the tethering assay using the hidden Markov model (HMM) and found that Ag+ ions decreased bacterial tumbling/pausing-to-running transition rate significantly by 75%. The results suggest that the rotation of bacterial flagellar motors was stalled by Ag+ ions. This work provided a new quantitative understanding of the mechanism of Ag-based antimicrobial agents in bacterial motility.
Collapse
Affiliation(s)
- Benjamin Russell
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ariel Rogers
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ryan Yoder
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Matthew Kurilich
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
64
|
Zmerli O, Bellali S, Haddad G, Hisada A, Ominami Y, Raoult D, Bou Khalil J. Rapid microbial viability assay using scanning electron microscopy: a proof-of-concept using Phosphotungstic acid staining. Comput Struct Biotechnol J 2023; 21:3627-3638. [PMID: 37501704 PMCID: PMC10371768 DOI: 10.1016/j.csbj.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple stains have been historically utilized in electron microscopy to provide proper contrast and superior image quality enabling the discovery of ultrastructures. However, the use of these stains in microbiological viability assessment has been limited. Phosphotungstic acid (PTA) staining is a common negative stain used in scanning electron microscopy (SEM). Here, we investigate the feasibility of a new SEM-PTA assay, aiming to determine both viable and dead microbes. The optimal sample preparation was established by staining bacteria with different PTA concentrations and incubation times. Once the assay conditions were set, we applied the protocol to various samples, evaluating bacterial viability under different conditions, and comparing SEM-PTA results to culture. The five minutes 10% PTA staining exhibited a strong distinction between viable micro-organisms perceived as hypo-dense, and dead micro-organisms displaying intense internal staining which was confirmed by high Tungsten (W) peak on the EDX spectra. SEM-PTA viability count after freezing, freeze-drying, or oxygen exposure, were concordant with culture. To our knowledge, this study is the first contribution towards PTA staining of live and dead bacteria. The SEM-PTA strategy demonstrated the feasibility of a rapid, cost-effective and efficient viability assay, presenting an open-view of the sample, and providing a potentially valuable tool for applications in microbiome investigations and antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Omar Zmerli
- Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005 Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Sara Bellali
- Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005 Marseille, France
| | - Gabriel Haddad
- Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005 Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Akiko Hisada
- Hitachi, Ltd. Research & Development Group, 2520, Akanuma, Hatoyama, Saitama, 350- 0395, Japan
| | - Yusuke Ominami
- Hitachi High-Tech Corporation, 882 Ichige, Hitachinaka-shi, Ibaraki-ken 312-8504, Japan
| | | | - Jacques Bou Khalil
- Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005 Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
65
|
Bhartia B, Das S, Jayaraman S, Sharma M, Ting YP, Troadec C, Madapusi SP, Puniredd SR. Universal Single-Step Approach to the Immobilization of Cyclodextrins in a Supercritical Medium for Capturing Drug, Dye, and Metal Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37379523 DOI: 10.1021/acs.langmuir.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
By utilizing nanoreactor-like structures, the immobilization of macromolecules such as calixarenes and cyclodextrins (CD) with bucket-like structures provides new possibilities for engineered surface-molecule systems. The practical use of any molecular system depends on the availability of a universal procedure for immobilizing molecules with torus-like structures on various surfaces while maintaining identical operating parameters. There are currently several steps, including toxic solvent-based approaches using modified β-CD to covalently attach to surfaces with multistep reactions. However, the existing multistep process results in molecular orientation, restricts the accessibility of the hydrophobic barrel of β-CD's for practical use, and is effectively unable to use the surfaces immobilized with β-CD for a variety of applications. In this study, it was demonstrated that β-CD attached to the oxide-based semiconductor and metal surfaces through a condensation reaction between the hydroxyl-terminated oxide-based semiconductor/metal oxide and β-CD in supercritical carbon dioxide (SCCO2) as a medium. The primary benefit of SCCO2-assisted grafting of unmodified β-CD on various oxide-based metal and semiconductor surfaces is that it is a simple, efficient, one-step process and that it is ligand-free, scalable, substrate-independent, and uses minimal energy. Various physical microscopy and chemical spectroscopic methods were used to analyze the grafted β-CD oligomers. The application of the grafted β-CD films was demonstrated by the immobilization of rhodamine B (RhB), a dye, and dopamine, a drug. The in situ nucleation and growth of silver nanoclusters (AgNCs) in the molecular systems were studied for antibacterial and tribological properties by utilizing the guest-host interaction ability of β-CD.
Collapse
Affiliation(s)
- Bhavesh Bhartia
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | - Subhabrata Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | | | - Mohit Sharma
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cedric Troadec
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
| | - Srinivasan Palavedu Madapusi
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, Dubai International Academic City, P.O. Box No. 345055, Dubai, UAE
| | - Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos Level 6, Singapore 138669, Singapore
| |
Collapse
|
66
|
Cutro AC, Coria MS, Bordon A, Rodriguez SA, Hollmann A. Antimicrobial properties of the essential oil of Schinus areira (Aguaribay) against planktonic cells and biofilms of S. aureus. Arch Biochem Biophys 2023:109670. [PMID: 37336342 DOI: 10.1016/j.abb.2023.109670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The essential oil (EO) of Schinus areira L. (Anacardiaceae) leaves has shown antibacterial activity against Staphylococcus aureus. In this study we aimed to unravel the mechanisms of its antibacterial action by using bacterial cells and model membranes. First, the integrity of S. aureus membrane was evaluated by fluorescence microscopy. It was observed an increase in the permeability of cells that was dependent on the EO concentration as well as the incubation time. For a deep evaluation of the action of the EO on the lipids, its effect on the membrane fluidity was evaluated on DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine): DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-1'-rac-glycerol) (5:1) liposomes by dynamic scattering light and by using Laurdan doped liposomes. The results indicate that EO produces changes in lipid membrane packing, increasing the fluidity, reducing the cooperative cohesive interaction between phospholipids and increasing access of water or the insertion of some components of the EO to the interior of the membrane. In addition, the potential effect of EO on intracellular targets, as the increase of cytosolic reactive oxygen species (ROS) and DNA damage, were evaluated. The EO was capable of increasing the production of ROS as well as inducing a partial degradation of DNA. Finally, the effect of EO on S. aureus biofilm was tested. These assays showed that EO was able to inhibit the biofilm formation, and also eradicate preformed biofilms. The results show, that the EO seems to have several bacterial targets involved in the antibacterial activity, from the bacterial membrane to DNA. Furthermore, the antibacterial action affects not only planktonic cells but also biofilms; reinforcing the potential application for this EO.
Collapse
Affiliation(s)
- Andrea C Cutro
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina; Facultad de Ciencias Médicas Universidad Nacional de Santiago del Estero, Argentina
| | - M Sumampa Coria
- INBIONATEC, CONICET- Universidad Nacional de Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias Universidad Nacional de Santiago del Estero - CONICET, Argentina
| | - Anahi Bordon
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina
| | - Sergio A Rodriguez
- Facultad de Agronomía y Agroindustrias Universidad Nacional de Santiago del Estero - CONICET, Argentina
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina; Laboratorio de Microbiología Molecular Universidad Nacional de Quilmes, Argentina.
| |
Collapse
|
67
|
Moore MJ, Qin P, Keith DJ, Wu ZC, Jung S, Chatterjee S, Tan C, Qu S, Cai Y, Stanfield RL, Boger DL. Divergent Total Synthesis and Characterization of Maxamycins. J Am Chem Soc 2023; 145:12837-12852. [PMID: 37278486 PMCID: PMC10330940 DOI: 10.1021/jacs.3c03710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new streamlined and scaled divergent total synthesis of pocket-modified vancomycin analogs is detailed that provides a common late-stage intermediate [Ψ[C(═S)NH]Tpg4]vancomycin (LLS = 18 steps, 12% overall yield, >5 g prepared) to access both existing and future pocket modifications. Highlights of the approach include an atroposelective synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon (11), a one-pot enzymatic glycosylation for direct conversion to [Ψ[C(═S)NH]Tpg4]vancomycin (12), and new powerful methods for the late-stage conversion of the embedded thioamide to amidine/aminomethylene pocket modifications. Incorporation of two peripheral modifications provides a scalable total synthesis of the maxamycins, all prepared from aglycon 11 without use of protecting groups. Thus, both existing and presently unexplored pocket-modified analogues paired with a range of peripheral modifications are accessible from this common thioamide intermediate. In addition to providing an improved synthesis of the initial member of the maxamycins, this is illustrated herein with the first synthesis and examination of maxamycins that contain the most effective of the pocket modifications (amidine) described to date combined with two additional peripheral modifications. These new amidine-based maxamycins proved to be potent, durable, and efficacious antimicrobial agents that display equipotent activity against vancomycin-sensitive and vancomycin-resistant Gram-positive organisms and act by three independent synergistic mechanisms of action. In the first such study conducted to date, one new maxamycin (21, MX-4) exhibited efficacious in vivo activity against a feared and especially challenging multidrug-resistant (MRSA) and vancomycin-resistant (VRSA) S. aureus bacterial strain (VanA VRS-2) for which vancomycin is inactive.
Collapse
Affiliation(s)
- Maxwell J. Moore
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pengjin Qin
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - D. Jamin Keith
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhi-Chen Wu
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sunna Jung
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shreyosree Chatterjee
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ceheng Tan
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shiwei Qu
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yu Cai
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L. Boger
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
68
|
Bajaj A, Abutoama M, Isaacs S, Abuleil MJ, Yaniv K, Kushmaro A, Modic M, Cvelbar U, Abdulhalim I. Biofilm growth monitoring using guided wave ultralong-range Surface Plasmon Resonance: A proof of concept. Biosens Bioelectron 2023; 228:115204. [PMID: 36913883 DOI: 10.1016/j.bios.2023.115204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more. In this study, we propose using a plasmonic insulator-metal-insulator (IMI) structure (SiO2-Ag-SiO2) with a higher penetration depth based on a diverging beam single wavelength format of Kretschmann configuration in a portable SPR device. An SPR line detection algorithm for locating the reflectance minimum of the device helps to view changes in refractive index and accumulation of the biofilm in real-time down to 10-7 RIU precision. The optimized IMI structure exhibits strong penetration dependence on wavelength and incidence angle. Within the plasmonic resonance, different angles penetrate different depths, showing a maximum near the critical angle. At the wavelength of 635 nm, a high penetration depth of more than 4 μm was obtained. Compared to a thin gold film substrate, for which the penetration depth is only ∼200 nm, the IMI substrate provides more reliable results. The average thickness of the biofilm after 24 h of growth was found to be between 6 and 7 μm with ∼63% live cell volume, as estimated from confocal microscopic images using an image processing tool. To explain this saturation thickness, a graded index biofilm structure is proposed in which the refractive index decreases with the distance from the interface. Furthermore, when plasma-assisted degeneration of biofilms was studied in a semi-real-time format, there was almost no effect on the IMI substrate compared to the gold substrate. The growth rate over the SiO2 surface was higher than on gold, possibly due to differences between surface charge effects. On the gold, the excited plasmon generates an oscillating cloud of electrons, while for the SiO2 case, this does not happen. This methodology can be utilized to detect and characterize biofilms with better signal reliability with respect to concentration and size dependence.
Collapse
Affiliation(s)
- Aabha Bajaj
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Mohammad Abutoama
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sivan Isaacs
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Marwan J Abuleil
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ariel Kushmaro
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Martina Modic
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Ibrahim Abdulhalim
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
69
|
Dzuvor CKO, Shanbhag BK, Shen HH, Haritos VS, He L. An Ultrastable Self-Assembled Antibacterial Nanospears Made of Protein. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2302409. [PMID: 37120846 DOI: 10.1002/adma.202302409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Bhuvana K Shanbhag
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
70
|
Välimets S, Pedetti P, Virginia LJ, Hoang MN, Sauer M, Peterbauer C. Secretory expression of recombinant small laccase genes in Gram-positive bacteria. Microb Cell Fact 2023; 22:72. [PMID: 37062846 PMCID: PMC10108450 DOI: 10.1186/s12934-023-02075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. RESULTS In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. CONCLUSIONS Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.
Collapse
Affiliation(s)
- Silja Välimets
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Patricia Pedetti
- Food Microbiology, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Ludovika Jessica Virginia
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Mai Ngoc Hoang
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Human Medicine, Institute of Immunology, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria.
| |
Collapse
|
71
|
Martins de Sousa K, Linklater DP, Murdoch BJ, Al Kobaisi M, Crawford RJ, Judge R, Dashper S, Sloan AJ, Losic D, Ivanova EP. Modulation of MG-63 Osteogenic Response on Mechano-Bactericidal Micronanostructured Titanium Surfaces. ACS APPLIED BIO MATERIALS 2023; 6:1054-1070. [PMID: 36880728 DOI: 10.1021/acsabm.2c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Despite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward Pseudomonas aeruginosa and Staphylococcus aureus bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (H2SO4), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-H2SO4. The MN-HCl surfaces were characterized by an average surface microroughness (Sa) of 0.8 ± 0.1 μm covered by blade-like nanosheets of 10 ± 2.1 nm thickness, whereas the MN-H2SO4 surfaces exhibited a greater Sa value of 5.8 ± 0.6 μm, with a network of nanosheets of 20 ± 2.6 nm thickness. Both micronanostructured surfaces promoted enhanced MG-63 attachment and differentiation; however, cell proliferation was only significantly increased on MN-HCl surfaces. In addition, the MN-HCl surface exhibited increased levels of bactericidal activity, with only 0.6% of the P. aeruginosa cells and approximately 5% S. aureus cells remaining viable after 24 h when compared to control surfaces. Thus, we propose the modulation of surface roughness and architecture on the micro- and nanoscale to achieve efficient manipulation of osteogenic cell response combined with mechanical antibacterial activity. The outcomes of this study provide significant insight into the further development of advanced multifunctional orthopedic implant surfaces.
Collapse
Affiliation(s)
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohammad Al Kobaisi
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Roy Judge
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart Dashper
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair J Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
72
|
Vladimirov M, Zhang RX, Mak S, Nodwell JR, Davidson AR. A contractile injection system is required for developmentally regulated cell death in Streptomyces coelicolor. Nat Commun 2023; 14:1469. [PMID: 36927736 PMCID: PMC10020575 DOI: 10.1038/s41467-023-37087-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Diverse bacterial species produce extracellular contractile injection systems (eCISs). Although closely related to contractile phage tails, eCISs can inject toxic proteins into eukaryotic cells. Thus, these systems are commonly viewed as cytotoxic defense mechanisms that are not central to other aspects of bacterial biology. Here, we provide evidence that eCISs appear to participate in the complex developmental process of the bacterium Streptomyces coelicolor. In particular, we show that S. coelicolor produces eCIS particles during its normal growth cycle, and that strains lacking functional eCIS particles exhibit pronounced alterations in their developmental program. Furthermore, eCIS-deficient mutants display reduced levels of cell death and altered morphology during growth in liquid media. Our results suggest that the main role of eCISs in S. coelicolor is to modulate the developmental switch that leads to aerial hyphae formation and sporulation, rather than to attack other species.
Collapse
Affiliation(s)
- Maria Vladimirov
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ruo Xi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stefanie Mak
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
73
|
Xie W, Fan C, Qi J, Li H, Dong L, Hu W, Kojima T, Zhang D. Decrease of bioaerosols in westerlies from Chinese coast to the northwestern Pacific: Case data comparisons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161040. [PMID: 36572311 DOI: 10.1016/j.scitotenv.2022.161040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The dissemination of bioaerosols in the westerly wind from the Asian continent to the northwestern Pacific constantly links the land and marine ecosystems. Several observation campaigns targeting bioaerosols were conducted in the coastal city Qingdao of China (QD), at a coast site of Kumamoto in southwestern Japan (KM), and in the northwestern Pacific (NP) between 2014 and 2016. We compared the concentration of bioaerosols in the range of 1.1-7.0 μm obtained in those campaigns to investigate their variation in the westerly wind. The substantial influence of westerlies on bioaerosol concentration was confirmed in the three areas. In the case of non-dust air, the arrival of the continental air led to a 29 % decrease of bioaerosols at KM while a 57 % increase at NP, indicating that the concentration in non-dust air was lower than the local level in the island air while higher than that in the remote marine air. In case of dust occurrence, bioaerosols in the air decreased with the distance from the Asian continent at KM and NP consecutively, and the arrival of the air caused a 2-fold increase at KM and a 1.7-fold increase at NP. The relative concentration increase rate of bioaerosols (IRRC), defined as the ratio of the increment of bioaerosols caused by long-distance transported air to the local level in each area, decreased rapidly after the air left the continent in the dust cases, which is similar to the decrease of the dry deposition flux of dust reported in the literature. This result indicates that the reduction of bioaerosols in the dusty air was likely dominated by the removal of bioaerosols attached to dust particles.
Collapse
Affiliation(s)
- Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Chunlan Fan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Hongtao Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lijie Dong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Tomoko Kojima
- Department Earth and Environmental Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
74
|
Serioli L, Gruzinskyte L, Zappalà G, Hwu ET, Laksafoss TZ, Jensen PL, Demarchi D, Müllertz A, Boisen A, Zór K. Moving perfusion culture and live-cell imaging from lab to disc: proof of concept toxicity assay with AI-based image analysis. LAB ON A CHIP 2023; 23:1603-1612. [PMID: 36790123 DOI: 10.1039/d2lc00984f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vitro, cell-based assays are essential in diagnostics and drug development. There are ongoing efforts to establish new technologies that enable real-time detection of cell-drug interaction during culture under flow conditions. Our compact (10 × 10 × 8.5 cm) cell culture and microscope on disc (CMoD) platform aims to decrease the application barriers of existing lab-on-a-chip (LoC) approaches. For the first time in a centrifugal device, (i) cells were cultured for up to six days while a spindle motor facilitated culture medium perfusion, and (ii) an onboard microscope enabled live bright-field imaging of cells while the data wirelessly transmitted to a computer. The quantification of cells from the acquired images was done using artificial intelligence (AI) software. After optimization, the obtained cell viability data from the AI-based image analysis proved to correlate well with data collected from commonly used image analysis software. The CMoD was also suitable for conducting a proof-of-concept toxicity assay with HeLa cells under continuous flow. The half-maximal inhibitory time (IT50) for various concentrations of doxorubicin (DOX) in the case of HeLa cells in flow, was shown to be lower than the IT50 obtained from a static cytotoxicity assay, indicating a faster onset of cell death in flow. The CMoD proved to be easy to handle, enabled cell culture and monitoring without assistance, and is a promising tool for examining the dynamic processes of cells in real-time assays.
Collapse
Affiliation(s)
- Laura Serioli
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| | - Lina Gruzinskyte
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Giulia Zappalà
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - En Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Trygvi Zachariassen Laksafoss
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | | | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| |
Collapse
|
75
|
Abrevaya XC, Galante D, Tribelli PM, Oppezzo OJ, Nóbrega F, Araujo GG, Rodrigues F, Odert P, Leitzinger M, Ricardi MM, Varela ME, Gallo T, Sanz-Forcada J, Ribas I, Porto de Mello GF, Rodler F, Cerini MF, Hanslmeier A, Horvath JE. Protective Effects of Halite to Vacuum and Vacuum-Ultraviolet Radiation: A Potential Scenario During a Young Sun Superflare. ASTROBIOLOGY 2023; 23:245-268. [PMID: 36577046 DOI: 10.1089/ast.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the latter representing an extreme scenario with high VUV fluxes comparable to the amount of radiation of a stellar superflare from the young Sun. The stellar VUV parameters were estimated by using the very well-studied solar analog of the young Sun, κ1 Cet. To evaluate the protective effects of halite, we entrapped a halophilic archaeon (Haloferax volcanii) and a non-halophilic bacterium (Deinococcus radiodurans) in laboratory-grown halite. Control groups were cells entrapped in salt crystals (mixtures of different salts and NaCl) and non-trapped (naked) cells, respectively. All groups were exposed either to vacuum alone or to vacuum plus VUV. Our results demonstrate that halite can serve as protection against vacuum and VUV radiation, regardless of the type of microorganism. In addition, we found that the protection is higher than provided by crystals obtained from mixtures of salts. This extends the protective effects of halite documented in previous studies and reinforces the possibility to consider the crystals of this mineral as potential preservation structures in airless bodies or as vehicles for the interplanetary transfer of microorganisms.
Collapse
Affiliation(s)
- Ximena C Abrevaya
- Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, Pabellón IAFE, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- IQUIBICEN, CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Centro Atómico Constituyentes, Argentina
| | | | - Gabriel G Araujo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Petra Odert
- Institute of Physics, University of Graz, Graz, Austria
| | | | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Varela
- Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE-CONICET), San Juan, Argentina
| | - Tamires Gallo
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | | | - Ignasi Ribas
- Institut de Ciències de l'Espai (ICE, CSIC), Campus UAB, Bellaterra, Spain
- Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
| | | | | | | | | | - Jorge E Horvath
- Instituto de Astronomía, Geofísica e Ciencias Atmosfericas (IAG), Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
76
|
Xu S, Yan Y, Shuang C, Zhou Q, Ji R, Li A. Biological magnetic ion exchange resin on advanced treatment of synthetic wastewater. BIORESOURCE TECHNOLOGY 2023; 372:128613. [PMID: 36640820 DOI: 10.1016/j.biortech.2023.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In this work, three biological ion exchange systems and one biological activated carbon (BAC) system were established by employing magnetic ion exchange resin (MIEX), non-magnetic resin (NIEX), polystyrenic resin (DIEX) and granular activated carbon as the biocarrier for advanced treatment of wastewater. Dissolved organic carbon (DOC) removal of four systems all stabilized at about 84% due to biodegradation. The start-up period of bio-MIEX (nearly 40 d) was greatly shorter than that of others (nearly 190 d). Ibuprofen removal was ascribed to adsorption in the initial stage, which subsequently changed to the effect of biodegradation. After the start-up period, ibuprofen removal was nearly 100% (bio-MIEX), 60% (bio-NIEX), 61% (bio-DIEX) and 89% (BAC). According to the surface observation, ATP and protein measurement and metagenomic analysis, the superior performance of bio-MIEX could be attributed to its highest biological activity resulted from the presence of Fe3O4 rather than polymer matrix and surface roughness.
Collapse
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunbao Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
77
|
da Silva RA, Wong JJ, Antypas H, Choo PY, Goh K, Jolly S, Liang C, Tay Kwan Sing L, Veleba M, Hu G, Chen J, Kline KA. Mitoxantrone targets both host and bacteria to overcome vancomycin resistance in Enterococcus faecalis. SCIENCE ADVANCES 2023; 9:eadd9280. [PMID: 36812322 PMCID: PMC9946351 DOI: 10.1126/sciadv.add9280] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance critically limits treatment options for infection caused by opportunistic pathogens such as enterococci. Here, we investigate the antibiotic and immunological activity of the anticancer agent mitoxantrone (MTX) in vitro and in vivo against vancomycin-resistant Enterococcus faecalis (VRE). We show that, in vitro, MTX is a potent antibiotic against Gram-positive bacteria through induction of reactive oxygen species and DNA damage. MTX also synergizes with vancomycin against VRE, rendering the resistant strains more permeable to MTX. In a murine wound infection model, single-dose MTX treatment effectively reduces VRE numbers, with further reduction when combined with vancomycin. Multiple MTX treatments accelerate wound closure. MTX also promotes macrophage recruitment and proinflammatory cytokine induction at the wound site and augments intracellular bacterial killing in macrophages by up-regulating the expression of lysosomal enzymes. These results show that MTX represents a promising bacterium- and host-targeted therapeutic for overcoming vancomycin resistance.
Collapse
Affiliation(s)
- Ronni A. G. da Silva
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Haris Antypas
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Karlyn Goh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shreya Jolly
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Cui Liang
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
| | - Leona Tay Kwan Sing
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianzhu Chen
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kimberly A. Kline
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
78
|
Ye Y, Wang Y, Zhang K, Guo W, Kong T, Ding X, Zhao N, Xu F. Facile fabrication of two-dimensional iodine nanosheets for antibacterial therapy. Biomater Sci 2023; 11:1311-1317. [PMID: 36723355 DOI: 10.1039/d2bm01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we report a facile approach for the preparation of two-dimensional iodine nanosheets (2D iodine NSs) with good stability and high biocompatibility via an aqueous solvent-assisted ultrasonic route. Due to the large specific surface area of the 2D morphology, iodine NSs effectively interact with bacterial membranes and destroy bacterial integrity, as well as further damaging intracellular DNA, showing prominent antibacterial activity against S. aureus in vitro and in vivo.
Collapse
Affiliation(s)
- Yingmin Ye
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanmin Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianyu Kong
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
79
|
Cardoso AF, da Silva RDSS, Prado IGDO, Bitencourt JAP, Gastauer M. Acquiring Iron-Reducing Enrichment Cultures: Environments, Methods and Quality Assessments. Microorganisms 2023; 11:microorganisms11020448. [PMID: 36838412 PMCID: PMC9959475 DOI: 10.3390/microorganisms11020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region.
Collapse
|
80
|
Richard CSM, Dey H, Øyen F, Maqsood M, Blencke HM. Outer Membrane Integrity-Dependent Fluorescence of the Japanese Eel UnaG Protein in Live Escherichia coli Cells. BIOSENSORS 2023; 13:232. [PMID: 36831998 PMCID: PMC9953992 DOI: 10.3390/bios13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Reporter genes are important tools in many biological disciplines. The discovery of novel reporter genes is relatively rare. However, known reporter genes are constantly applied to novel applications. This study reports the performance of the bilirubin-dependent fluorescent protein UnaG from the Japanese eel Anguilla japonicas in live Escherichia coli cells in response to the disruption of outer membrane (OM) integrity at low bilirubin (BR) concentrations. Using the E. coli wild-type strain MC4100, its isogenic OM-deficient mutant strain NR698, and different OM-active compounds, we show that BR uptake and UnaG fluorescence depend on a leaky OM at concentrations of 10 µM BR and below, while fluorescence is mostly OM integrity-independent at concentrations above 50 µM BR. We suggest that these properties of the UnaG-BR couple might be applied as a biosensor as an alternative to the OM integrity assays currently in use.
Collapse
|
81
|
McKeithen-Mead SA, Grossman AD. Timing of integration into the chromosome is critical for the fitness of an integrative and conjugative element and its bacterial host. PLoS Genet 2023; 19:e1010524. [PMID: 36780569 PMCID: PMC9956884 DOI: 10.1371/journal.pgen.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are major contributors to genome plasticity in bacteria. ICEs reside integrated in the chromosome of a host bacterium and are passively propagated during chromosome replication and cell division. When activated, ICEs excise from the chromosome and may be transferred through the ICE-encoded conjugation machinery into a recipient cell. Integration into the chromosome of the new host generates a stable transconjugant. Although integration into the chromosome of a new host is critical for the stable acquisition of ICEs, few studies have directly investigated the molecular events that occur in recipient cells during generation of a stable transconjugant. We found that integration of ICEBs1, an ICE of Bacillus subtilis, occurred several generations after initial transfer to a new host. Premature integration in new hosts led to cell death and hence decreased fitness of the ICE and transconjugants. Host lethality due to premature integration was caused by rolling circle replication that initiated in the integrated ICEBs1 and extended into the host chromosome, resulting in catastrophic genome instability. Our results demonstrate that the timing of integration of an ICE is linked to cessation of autonomous replication of the ICE, and that perturbing this linkage leads to a decrease in ICE and host fitness due to a loss of viability of transconjugants. Linking integration to cessation of autonomous replication appears to be a conserved regulatory scheme for mobile genetic elements that both replicate and integrate into the chromosome of their host.
Collapse
Affiliation(s)
- Saria A. McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
82
|
eDNA Provides a Scaffold for Autoaggregation of B. subtilis in Bacterioplankton Suspension. Microorganisms 2023; 11:microorganisms11020332. [PMID: 36838297 PMCID: PMC9966259 DOI: 10.3390/microorganisms11020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The self-binding of bacterial cells, or autoaggregation, is, together with surface colonization, one of the first steps in the formation of a mature biofilm. In this work, the autoaggregation of B. subtilis in dilute bacterial suspensions was studied. The dynamics of cell lysis, eDNA release, and bacterial autoaggregate assembly were determined and related to the spatial autocorrelation of bacterial cells in dilute planktonic bacterial suspensions. The non-random distribution of cells was associated with an eDNA network, which stabilized the initial bacterial cell-cell aggregates. Upon the addition of DNase I, the aggregates were dispersed. The release of eDNA during cell lysis allows for the entrapment of bacterial drifters at a radius several times the size of the dying bacteria. The size of bacterial aggregates increased from 2 to about 100 μm in diameter in dilute bacterial suspensions. The results suggest that B. subtilis cells form previously unnoticed continuum of autoaggregate structures during planktonic growth.
Collapse
|
83
|
Song M, Park J, Jeon J, Ha YG, Cho YR, Koo HJ, Kim W, Bae H. Application of poly (vinyl alcohol)-cryogels to immobilizing nitrifiers: Enhanced tolerance to shear stress-induced destruction and viability control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158835. [PMID: 36122708 DOI: 10.1016/j.scitotenv.2022.158835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The hardness of poly (vinyl alcohol)-cryogels (PVA-CGs) was improved under three parameter conditions: 7.5 %-12.5 % PVA, 1-5 freezing-thawing cycles (FTCs), and the addition of 0 %-10 % glycerol as a cryoprotectant. This study investigated the effects of shear stress-induced destruction (SSID) on mechanical strength by inducing rapid erosion with a high frictional force. Tolerance to SSID (Tol-SSID) exhibited different sensitivities and trends depending on the above three fabrication parameters. The measured Tol-SSID exhibited consistent and inconsistent trends with tensile strength and swelling, respectively. Tol-SSID evaluation provides new insights into the practically meaningful mechanical strength of PVA-CGs against strong friction, which simulates extreme shear stress in a bioreactor. A PVA-CG with a PVA concentration of 10 % and in two FTCs resulted in Tol-SSID and tensile strength of 88.3 % and 0.59 kPa, respectively. Here, 5 % glycerol was added to maintain the bacterial respiration activity of immobilized nitrifiers of 0.097 mg-O2/g-VSS·min and survival of 88.6 %. The continuous mode of nitrification using the optimized PVA-CG for 10 days resulted in an ammonia removal rate of 0.2173 kg-N/m3·d, which is an improvement over cases without glycerol addition: 0.1426 and 0.1472 kg-N/m3·d for PVA-CGs in two and three FTCs, respectively.
Collapse
Affiliation(s)
- Minsu Song
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jihye Park
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Junbeom Jeon
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Yun-Geun Ha
- School of Materials Science and Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Young-Rae Cho
- School of Materials Science and Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyokwan Bae
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
84
|
Nguyen TT, Nguyen NH, Pham GT, Vongsvivut J, Brown MH, Truong VK, Vasilev K. Synchrotron macro ATR-FTIR micro-spectroscopy to unlock silver ion-induced biochemical alterations in bacteria. MATERIALS ADVANCES 2023; 4:6342-6352. [DOI: 10.1039/d3ma00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The use of synchrotron macro ATR-FTIR micro-spectroscopy to reveal the antibacterial mechanism of silver ions against S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- Tien Thanh Nguyen
- College of Medicine and Pharmacy, Tra Vinh University, Tra Vinh 87000, Vietnam
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Ngoc Huu Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Giang Tuyet Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
85
|
Moshynets OV, Pokholenko I, Iungin O, Potters G, Spiers AJ. eDNA, Amyloid Fibers and Membrane Vesicles Identified in Pseudomonas fluorescens SBW25 Biofilms. Int J Mol Sci 2022; 23:ijms232315096. [PMID: 36499433 PMCID: PMC9738004 DOI: 10.3390/ijms232315096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas fluorescens SBW25 is a model soil- and plant-associated bacterium capable of forming a variety of air-liquid interface biofilms in experimental microcosms and on plant surfaces. Previous investigations have shown that cellulose is the primary structural matrix component in the robust and well-attached Wrinkly Spreader biofilm, as well as in the fragile Viscous Mass biofilm. Here, we demonstrate that both biofilms include extracellular DNA (eDNA) which can be visualized using confocal laser scanning microscopy (CLSM), quantified by absorbance measurements, and degraded by DNase I treatment. This eDNA plays an important role in cell attachment and biofilm development. However, exogenous high-molecular-weight DNA appears to decrease the strength and attachment levels of mature Wrinkly Spreader biofilms, whereas low-molecular-weight DNA appears to have little effect. Further investigation with CLSM using an amyloid-specific fluorophore suggests that the Wrinkly Spreader biofilm might also include Fap fibers, which might be involved in attachment and contribute to biofilm strength. The robust nature of the Wrinkly Spreader biofilm also allowed us, using MALDI-TOF mass spectrometry, to identify matrix-associated proteins unable to diffuse out of the structure, as well as membrane vesicles which had a different protein profile compared to the matrix-associated proteins. CLSM and DNase I treatment suggest that some vesicles were also associated with eDNA. These findings add to our understanding of the matrix components in this model pseudomonad, and, as found in other biofilms, biofilm-specific products and material from lysed cells contribute to these structures through a range of complex interactions.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Ianina Pokholenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olga Iungin
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, 2000 Antwerp, Belgium
- Correspondence:
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
86
|
Silva TP, Gamalier JP, Zarantonello V, Soares CR, Resende NS, Barros NO, Melo RCN. Enhanced ability of freshwater bacteria to secrete extracellular vesicles upon interaction with virus. Environ Microbiol 2022; 24:5882-5897. [PMID: 36054062 DOI: 10.1111/1462-2920.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
The ability of freshwater bacteria to secrete extracellular vesicles (EVs) upon interaction with viruses remains to be established. Here, we investigated for the first time if freshwater virus-infected bacteria release EVs in both natural ecosystems and virus-like particles (VLPs)-enriched cultures. We performed a systematic study using transmission electron microscopy to visualize viruses and EVs at high resolution and single-cell imaging analyses to quantitate nascent EVs at the surface of gram-negative bacteria. First, by analysing freshwater samples from a tropical ecosystem (Negro River/Amazon Basin/Brazil), we captured bacteriophages-infected bacteria releasing EVs from their outer membrane. Next, VLPs isolated from these samples and inoculated in bacterial cultures not only impacted bacteria growth and viability but also led them to a significant release of EVs (~300% increase in numbers/cell section) compared to controls. The numbers of both budding and free EVs and EVs per linear micrometre of cell envelope were significantly higher in infected bacteria. Our findings identify a yet-not recognized capability of freshwater bacteria in generating EVs (overvesiculation) in response to viral infection. Since viruses are abundant members of aquatic ecosystems and bacteria are natural hosts for them, such interaction is an interesting event for microbial communities to be explored in freshwater ecosystems.
Collapse
Affiliation(s)
- Thiago P Silva
- Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora
| | - Juliana P Gamalier
- Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora
| | - Victor Zarantonello
- Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora
| | - Caique R Soares
- Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora
| | - Nathália S Resende
- Laboratory of Aquatic Ecology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nathan O Barros
- Laboratory of Aquatic Ecology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora
| |
Collapse
|
87
|
Gao M, Yang T, Qin W, Wang Q, Huang M, Peng H, Shao M, Yao W, Yi X, Sun G, He X. Cell Membrane-Anchoring Nano-Photosensitizer for Light-Controlled Calcium-Overload and Tumor-Specific Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204689. [PMID: 36180398 DOI: 10.1002/smll.202204689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Poor selectivity and unintended toxicity to normal organs are major challenges in calcium ion (Ca2+ ) overload tumor therapy. To address this issue, a cell membrane-anchoring nano-photosensitizer (CMA-nPS) is constructed for inducing tumor-specific Ca2+ overload through multistage endogenous Ca2+ homeostasis disruption under light guidance, i.e., the extracellular Ca2+ influx caused by cell membrane damage, followed by the intracellular Ca2+ imbalance caused by mitochondrial dysfunction. CMA-nPS is decorated by two types of functionalized cell membranes, the azide-modified macrophage cell membrane is used to conjugate the dibenzocyclooctyne-decorated photosensitizer, and the vesicular stomatitis virus glycoprotein (VSV-G)-modified NIH3T3 cell membrane is used to guide the anchoring of photosensitizer to the lung cancer cell membrane. The in vitro study shows that CMA-nPS mainly anchors on the cell membrane, and further causes membrane damage, mitochondrial dysfunction, as well as intracellular Ca2+ overload upon light irradiation. Synergistically enhanced antitumor efficiency is observed in vitro and in vivo. This study provides a new synergistic strategy for Ca2+ -overload-based cancer therapy, as well as a strategy for anchoring photosensitizer on the cell membrane, offering broad application prospects for the treatment of lung cancer.
Collapse
Affiliation(s)
- Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tianhao Yang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weiji Qin
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingyue Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wanqing Yao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230012, China
| |
Collapse
|
88
|
Chu L, Cheng J, Zhou C, Mo T, Ji X, Zhu T, Chen J, Ma S, Gao J, Zhang Q. Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production. ACS Chem Biol 2022; 17:3198-3206. [PMID: 36288500 DOI: 10.1021/acschembio.2c00657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Linaridins and lanthipeptides are two classes of natural products belonging to the ribosomally synthesized and posttranslationally modified peptide (RiPP) superfamily. Although these two RiPP classes share similar structural motifs such as dehydroamino acids and thioether-based cross-links, the biosynthesis of linaridins and lanthipeptides involved distinct sets of enzymes. Here, we report the identification of a novel lanthipeptide cypepeptin from a recombinant strain of Streptomyces lividans, which harbors most of the cypemycin (a prototypic linaridin) biosynthetic gene cluster but lacks the decarboxylase gene cypD. In contrast to the generally believed structure of cypemycin, multiple d-amino acids and Z-dehydrobutyrines were observed in both cypepeptin and cypemycin, and the stereochemistry of each amino acid was established by the extensive structural analysis in combination with genetic knockout and mutagenesis studies. Comparative analysis of cypemycin and cypepeptin showed that the aminovinyl-cysteine (AviCys) moiety of cypemycin plays an essential role in disrupting the cell integrity of M. luteus, which cannot be functionally substituted by the structurally similar lanthionine moiety.
Collapse
Affiliation(s)
- Leixia Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chengzeng Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Taoting Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jie Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Suze Ma
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
89
|
Cao J, Hlaing SP, Lee J, Kim J, Lee EH, Kang SH, Hong SW, Yoon IS, Yun H, Jung Y, Yoo JW. Bacteria-Adhesive Nitric Oxide-Releasing Graphene Oxide Nanoparticles for MRPA-Infected Wound Healing Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50507-50519. [PMID: 36331408 DOI: 10.1021/acsami.2c13317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI1.8k) surface modified NO-releasing polyethylenimine 25k (PEI25k)-functionalized graphene oxide (GO) nanoparticles (GO-PEI25k/NO-PEI1.8k NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface. In vitro antibacterial activity and in vivo wound healing efficacy in an infected wound model were evaluated compared with NO-releasing NPs (GO-PEI25k/NO NPs). Surface modification with PEI1.8k can enhance the ability of nanoparticles to adhere to bacteria. GO-PEI25k/NO-PEI1.8k NPs released NO in a sustained manner for 48 h and exhibited the highest bactericidal activity (99.99% killing) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MRPA) without cytotoxicity to L929 mouse fibroblast cells at 0.1 mg/mL. In the MRPA-infected wound model, GO-PEI25k/NO-PEI1.8k NPs showed 87% wound size reduction while GO-PEI25k/NO NPs showed 23% wound size reduction at 9 days postinjury. Masson trichrome and hematoxylin and eosin staining revealed that GO-PEI25k/NO-PEI1.8k NPs enhanced re-epithelialization and collagen deposition, which are comparable to healthy mouse skin tissue. GO-PEI25k/NO-PEI1.8k NPs hold promise as effective antibacterial and wound healing agents.
Collapse
Affiliation(s)
- Jiafu Cao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang550014, China
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong30019, South Korea
| | - Seok Hee Kang
- College of Nanoscience & Nanotechnology, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan46241, South Korea
| | - Suck Won Hong
- College of Nanoscience & Nanotechnology, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan46241, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| |
Collapse
|
90
|
Admella J, Torrents E. A Straightforward Method for the Isolation and Cultivation of Galleria mellonella Hemocytes. Int J Mol Sci 2022; 23:13483. [PMID: 36362269 PMCID: PMC9657452 DOI: 10.3390/ijms232113483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/10/2023] Open
Abstract
Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.
Collapse
Affiliation(s)
- Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| |
Collapse
|
91
|
Mageshwaran V, Gupta R, Singh S, Sahu PK, Singh UB, Chakdar H, Bagul SY, Paul S, Singh HV. Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front Microbiol 2022; 13:994847. [PMID: 36406422 PMCID: PMC9667066 DOI: 10.3389/fmicb.2022.994847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to identify potential endophytic bacteria antagonistic against three soil-borne fungal pathogens, Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum f.sp. ciceri causing root rot, collar rot, and fungal wilt diseases in chickpea plants, respectively. A total of 255 bacterial endophytes were isolated from the leaves, stems, and roots of seven different crop plants (chickpea, tomato, wheat, berseem, mustard, potato, and green pea). The dual culture-based screening for antifungal properties indicated that three endophytic isolates had strong inhibition (>50%) against all three pathogens tested. Based on morphological, biochemical, and molecular characterization, the selected isolates (TRO4, CLO5, and PLO3) were identified as different strains of Bacillus subtilis. The bacterial endophytes (TRO4 and CLO5) were positive for plant growth promoting (PGP) traits viz., ammonia, siderophore, and indole-3-acetic acid (IAA) production. The bio-efficacy of the endophytes (TRO4, CLO5, and PLO3) was tested by an in planta trial in chickpea pre-challenged with R. solani, S. rolfsii, and F. oxysporum f.sp. ciceri. The B. subtilis strains TRO4 and CLO5 were found to be effective in reducing percent disease incidence (p ≤ 0.05) and enhancing plant growth parameters. The different root parameters viz. root length (mm), surface area (cm2), root diameter (mm), and root volume (cm3) were significantly (p ≤ 0.05) increased in TRO4 and CLO5 inoculated chickpea plants. Confocal Scanning Laser Microscopy showed heavy colonization of bacteria in the roots of endophyte-inoculated chickpea plants. The inoculation of endophytic Bacillus subtilis strains TRO4 and CLO5 in chickpea plants through seed biopriming reduced the accumulation of superoxide, enhanced the plant defense enzymes, and induced the expression of Pathogenesis-Related (PR) genes. Semi-quantitative analysis of defense-related genes showed differential activation of PR genes (60srp and IFR) by endophyte inoculation. The results of the present study reveal the antagonistic potential of B. subtilis strains TRO4 and CLO5 against three major soil-borne fungal pathogens and their ability to suppress wilt complex disease in chickpea plants. This is the first report on the simultaneous suppression of three major soil-borne fungal pathogens causing wilt complex in chickpea plants by endophytic B. subtilis strains.
Collapse
Affiliation(s)
- Vellaichamy Mageshwaran
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- *Correspondence: Vellaichamy Mageshwaran, ;
| | - Rishabh Gupta
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- Udai B. Singh,
| | - Hillol Chakdar
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Samadhan Y. Bagul
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, Gujarat, India
| | - Surinder Paul
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
92
|
Chowdhury MAZ, Ok K, Luo Y, Liu Z, Chen S, O’Halloran TV, Kettimuthu R, Tekawade A. ROI-Finder: machine learning to guide region-of-interest scanning for X-ray fluorescence microscopy. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1495-1503. [PMID: 36345757 PMCID: PMC9641565 DOI: 10.1107/s1600577522008876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The microscopy research at the Bionanoprobe (currently at beamline 9-ID and later 2-ID after APS-U) of Argonne National Laboratory focuses on applying synchrotron X-ray fluorescence (XRF) techniques to obtain trace elemental mappings of cryogenic biological samples to gain insights about their role in critical biological activities. The elemental mappings and the morphological aspects of the biological samples, in this instance, the bacterium Escherichia coli (E. Coli), also serve as label-free biological fingerprints to identify E. coli cells that have been treated differently. The key limitations of achieving good identification performance are the extraction of cells from raw XRF measurements via binary conversion, definition of features, noise floor and proportion of cells treated differently in the measurement. Automating cell extraction from raw XRF measurements across different types of chemical treatment and the implementation of machine-learning models to distinguish cells from the background and their differing treatments are described. Principal components are calculated from domain knowledge specific features and clustered to distinguish healthy and poisoned cells from the background without manual annotation. The cells are ranked via fuzzy clustering to recommend regions of interest for automated experimentation. The effects of dwell time and the amount of data required on the usability of the software are also discussed.
Collapse
Affiliation(s)
- M. A. Z. Chowdhury
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - K. Ok
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Y. Luo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Z. Liu
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - S. Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - T. V. O’Halloran
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - R. Kettimuthu
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - A. Tekawade
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
93
|
Chen X, Chen Z, Liu H, Huang N, Mao Y, Cao K, Shi Q, Lu Y, Hu HY. Synergistic effects of UV and chlorine in bacterial inactivation for sustainable water reclamation and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157320. [PMID: 35839898 DOI: 10.1016/j.scitotenv.2022.157320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Disinfection is a necessity in water and wastewater treatment and reclamation. This study examined the inactivation of a disinfectant resistant but widely existed opportunistic pathogen in reclaimed water, Staphylococcus aureus (S. aureus), by sequential UV and chlorine disinfection or simultaneous UV and chlorine disinfection (UV/Cl). It was identified that UV/Cl greatly promoted the inactivation efficacy and inhibited photoreactivation of S. aureus by the generation of free radicals (i.e. OH and Cl), which reached a 7-log10 reduction at UV and chlorine doses of 18 mJ/cm2 and 2 mg-Cl/L, respectively. The changes of bacterial viability and morphology and the increase of extracellular ATP concentration confirmed the enhancement of cell membranes damages (>21.4 %) due to free radicals generated in UV/Cl process, which caused a dramatic reduction in metabolic activity and suppressed the photoreactivation. Furthermore, this study demonstrated that UV/Cl effectively removed heterotrophic plate count bacteria and aromatic organic fluorophores in reclaimed water samples. This study is of significant theoretical and applicable importance in guaranteeing safe microbial levels for water reclamation and reuse.
Collapse
Affiliation(s)
- Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Hai Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kefan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
94
|
Zhang Q, Jia S, Ding Y, Li D, Ding Y, Zhou X. Antibacterial activity and mechanism of malondialdehyde against Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from a traditional Chinese dry-cured fish. Front Microbiol 2022; 13:979388. [DOI: 10.3389/fmicb.2022.979388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Malondialdehyde (MDA) is one of the most representative reactive carbonyl species (RCSs) produced by lipid oxidation in food. However, the inhibitory effect of MDA on microorganisms has received little attention. Thus, the aim of this study was to reveal the antibacterial mechanism of MDA on Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from dry-cured fish. The results showed that the minimum inhibitory concentrations (MICs) of MDA on S. xylosus and L. plantarum were 90 μg/ml and 180 μg/ml, respectively. Time-kill curves indicated a concentration-dependent antibacterial activity of MDA. Moreover, cell wall damage, cell membrane depolarization, intracellular adenosine triphosphate (ATP) decline, Ca2+ and Mg2+ leakage, cell morphological destruction and alterations in intracellular biomolecules were observed, which indicated the negative influence of MDA on cell membrane and cellular homeostasis. This study demonstrated the potential antimicrobial properties of MDA and provided theoretical support for the scientific prevention and control of lipid oxidation and microbial contamination in food. This study demonstrated the potential antibacterial properties of MDA and further enriches theoretical studies on the effects of lipid oxidation on microorganisms.
Collapse
|
95
|
Bean EL, McLellan LK, Grossman AD. Activation of the integrative and conjugative element Tn916 causes growth arrest and death of host bacteria. PLoS Genet 2022; 18:e1010467. [PMID: 36279314 PMCID: PMC9632896 DOI: 10.1371/journal.pgen.1010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Integrative and conjugative elements (ICEs) serve as major drivers of bacterial evolution. These elements often confer some benefit to host cells, including antibiotic resistance, metabolic capabilities, or pathogenic determinants. ICEs can also have negative effects on host cells. Here, we investigated the effects of the ICE (conjugative transposon) Tn916 on host cells. Because Tn916 is active in a relatively small subpopulation of host cells, we developed a fluorescent reporter system for monitoring activation of Tn916 in single cells. Using this reporter, we found that cell division was arrested in cells of Bacillus subtilis and Enterococcus faecalis (a natural host for Tn916) that contained an activated (excised) Tn916. Furthermore, most of the cells with the activated Tn916 subsequently died. We also observed these phenotypes on the population level in B. subtilis utilizing a modified version of Tn916 that can be activated in the majority of cells. We identified two genes (orf17 and orf16) in Tn916 that were sufficient to cause growth defects in B. subtilis and identified a single gene, yqaR, that is in a defective phage (skin) in the B. subtilis chromosome that was required for this phenotype. These three genes were only partially responsible for the growth defect caused by Tn916, indicating that Tn916 possesses multiple mechanisms to affect growth and viability of host cells. These results highlight the complex relationships that conjugative elements have with their host cells and the interplay between mobile genetic elements.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Lisa K. McLellan
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
96
|
Silver Nanoparticles Produced by Laser Ablation and Re-Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation. Int J Mol Sci 2022; 23:ijms231912027. [PMID: 36233328 PMCID: PMC9570054 DOI: 10.3390/ijms231912027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Implant-associated infection due to biofilm formation is a growing problem. Given that silver nanoparticles (Ag-NPs) have shown antibacterial effects, our goal is to study their effect against multispecies biofilm involved in the development of peri-implantitis. To this purpose, Ag-NPs were synthesized by laser ablation in de-ionized water using two different lasers, leading to the production of colloidal suspensions. Subsequently, part of each suspension was subjected to irradiation one and three times with the same laser source with which it was obtained. Ag-NPs were immobilized on the surface of titanium discs and the resultant materials were compared with unmodified titanium coupons. Nanoparticles were physico-chemically analysed to determine their shape, crystallinity, chemical composition, and mean diameter. The materials were incubated for 90 min or 48 h, to evaluate bacterial adhesion or biofilm formation respectively with Staphylococcus aureus or oral mixed bacterial flora composed of Streptococcus oralis, Actinomyces naeslundii, Veionella dispar, and Porphyromonas gingivalis. Ag-NPs help prevent the formation of biofilms both by S. aureus and by mixed oral bacterial flora. Nanoparticles re-irradiated three times showed the biggest antimicrobial effects. Modifying dental implants in this way could prevent the development of peri-implantitis.
Collapse
|
97
|
Tang A, Ren Q, Wu Y, Wu C, Cheng Y. Investigation into the Antibacterial Mechanism of Biogenic Tellurium Nanoparticles and Precursor Tellurite. Int J Mol Sci 2022; 23:ijms231911697. [PMID: 36232999 PMCID: PMC9569536 DOI: 10.3390/ijms231911697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Antibacterial tellurium nanoparticles have the advantages of high activity and biocompatibility. Microbial synthesis of Te nanoparticles is not only a green technology but builds new ecological relationships in diverse environments. However, the antibacterial mechanism of Te nanoparticles is largely unclear. In this study, we report the bacterial synthesis of rod-shaped Te nanoparticles (BioTe) with high antibacterial activity against Escherichia coli. Morphology and permeability examination indicates that membrane damage is the primary reason for the antibacterial activity of BioTe, rather than ROS production and DNA damage. Moreover, a comparison of transcriptome and relative phenotypes reveals the difference in antibacterial mechanisms between BioTe and tellurite. Based on our evidence, we propose an antibacterial mode of rod-shaped BioTe, in which positively charged BioTe interact with the cell membrane through electrostatic attraction and then penetrate the membrane by using their sharp ends. In contrast, tellurite toxicity might be involved in sulfur metabolism.
Collapse
Affiliation(s)
- Aiguo Tang
- School of Life Sciences, Anhui University, Hefei 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, China
| | - Qianwen Ren
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230109, China
| | - Yaling Wu
- School of Life Sciences, Anhui University, Hefei 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, China
| | - Chao Wu
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230109, China
| | - Yuanyuan Cheng
- School of Life Sciences, Anhui University, Hefei 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, China
- Correspondence:
| |
Collapse
|
98
|
Navarro-Barreda D, de Llanos R, Miravet JF, Galindo F. Photodynamic inactivation of Staphylococcus aureus in the presence of aggregation-prone photosensitizers based on BODIPY used at submicromolar concentrations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112543. [PMID: 36113260 DOI: 10.1016/j.jphotobiol.2022.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Two new brominated BODIPYs (1 and 2) bearing amino acid-based chains (l-valine for 1, and dimethyl-l-lysine for 2) were synthesized and characterized. In organic solvents, 1 and 2 were fully soluble and showed the photophysical properties expected for brominated BODIPY dyes, including efficient generation of singlet oxygen (1O2), upon irradiation. In contrast, in aqueous media, both compounds were prone to aggregation and the photo-induced generation of 1O2 was halted. Despite the lack of generation of this reactive species in aqueous media (in cuvette), both 1 and 2 have positive antimicrobial Photodynamic Inactivation (aPDI) effect. The activity against gram-positive Staphylococcus aureus and gram-negative Escherichia coli was determined through the inactivation curves, with a total energy dose of 5.3 J/cm2 (white light LED used as an energy source). Compound 2 was highly active against both gram-positive and gram-negative bacteria (3 log CFU/mL reduction was obtained at 0.16 μM for S. aureus and 2.5-5.0 μM for E. coli), whereas 1 was less effective to kill S. aureus (3 log CFU/mL at 0.32 μM) and ineffective for E. coli. The higher efficiency of 2, as compared to 1, to reduce the population of bacteria, can reside in the presence of a protonatable residue in 2, allowing a more effective interaction of this molecule with the cell walls of the microorganisms. In order to explain the lack of reactivity in pure aqueous media (in cuvette) and the contrasting good activity in the presence of bacterial cells it can be hypothesized that upon interaction with the walls of the microorganisms, the aggregated photosensitizers suffer a disaggregation process restoring the ability to generate 1O2, and hence leading to efficient photodynamic activity against these pathogenic microorganisms, in agreement with the similar effect observed recently for porphyrinoid photosensitizers.
Collapse
Affiliation(s)
- Diego Navarro-Barreda
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
99
|
Yang S, Tian L, Wang X, Wu M, Liao S, Fu J, Xiong W, Gong G. Metabolomics analysis and membrane damage measurement reveal the antibacterial mechanism of lipoic acid against Yersinia enterocolitica. Food Funct 2022; 13:11476-11488. [PMID: 36178296 DOI: 10.1039/d2fo01306a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yersinia enterocolitica is a pathogenic microorganism that can cause food-borne diseases. Lipoic acid (LA) has been used as an antioxidant against bacteria, but its antibacterial mechanism is rarely reported. This study aims to explore the antibacterial mechanism of LA and its effect on the metabolites of Y. enterocolitica through membrane damage and metabolomics analysis. The results showed that the minimum inhibitory concentration (MIC) of LA against Y. enterocolitica was 2.5 mg mL-1. The membrane potential was depolarized, and intracellular pH (pHin) and ATP were significantly reduced, indicating that LA destroys the cell membrane structure. Confocal laser scanning microscopy (CLSM) and field emission scanning electron microscopy (FESEM) further confirmed LA-induced cell membrane damage. The metabolic profile of Y. enterocolitica following LA treatment was analyzed by liquid chromatography-mass spectrometry (LC-MS). In the metabolome evaluation, 6209 differential metabolites were screened, including 3394 up-regulated and 2815 down-regulated metabolites. Fifteen metabolic pathways of Y. enterocolitica exhibited significant changes after LA treatment, including the pathways important for amino acid and nucleotide metabolism. The results show that LA is a bacteriostatic substance with potential application value in the food industry.
Collapse
Affiliation(s)
- Siqi Yang
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| | - Lu Tian
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| | - Xuyang Wang
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| | - Mi Wu
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| | - Sichen Liao
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| | - Jiapeng Fu
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| | - Wangdan Xiong
- Grassl and Agri-Husbandry Research Center, School of Grassl and Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| | - Guoli Gong
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
100
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|