51
|
Sato Y, Mita S, Fukushima N, Fujisawa H, Saga Y, Hirata T. Induction of axon growth arrest without growth cone collapse through the N-terminal region of four-transmembrane glycoprotein M6a. Dev Neurobiol 2012; 71:733-46. [PMID: 21714103 DOI: 10.1002/dneu.20941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During development, axons elongate vigorously, carefully controlling their speed, to connect with their targets. In general, rapid axon growth is correlated with active growth cones driven by dynamic actin filaments. For example, when the actin-driven tip is collapsed by repulsive guidance molecules, axon growth is severely impaired. In this study, we report that axon growth can be suppressed, without destroying the actin-based structure or motility of the growth cones, when antibodies bind to the four-transmembrane glycoprotein M6a concentrated on the growth cone edge. Surprisingly, M6a-deficient axons grow actively but are not growth suppressed by the antibodies, arguing for an inductive action of the antibody. The binding of antibodies clusters and displaces M6a protein from the growth cone edge membrane, suggesting that the spatial rearrangement of this protein might underlie the unique growth cone behavior triggered by the antibodies. Molecular dissection of M6a suggested involvement for the N-terminal intracellular domain in this antibody-induced growth cone arrest.
Collapse
Affiliation(s)
- Yasufumi Sato
- Division of Brain Function, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Liu X, Lu Y, Zhang Y, Li Y, Zhou J, Yuan Y, Gao X, Su Z, He C. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling. J Biol Chem 2012; 287:17503-17516. [PMID: 22433866 PMCID: PMC3366791 DOI: 10.1074/jbc.m111.317610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/15/2012] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.
Collapse
Affiliation(s)
- Xiujie Liu
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Lu
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yong Zhang
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuanyuan Li
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jiazhen Zhou
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaofei Gao
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhida Su
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
53
|
Myers JP, Robles E, Ducharme-Smith A, Gomez TM. Focal adhesion kinase modulates Cdc42 activity downstream of positive and negative axon guidance cues. J Cell Sci 2012; 125:2918-29. [PMID: 22393238 DOI: 10.1242/jcs.100107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is biochemical, imaging and functional evidence that Rho GTPase signaling is a crucial regulator of actin-based structures such as lamellipodia and filopodia. However, although Rho GTPases are believed to serve similar functions in growth cones, the spatiotemporal dynamics of Rho GTPase signaling has not been examined in living growth cones in response to known axon guidance cues. Here we provide the first measurements of Cdc42 activity in living growth cones acutely stimulated with both growth-promoting and growth-inhibiting axon-guidance cues. Interestingly, we find that both permissive and repulsive factors can work by modulating Cdc42 activity, but in opposite directions. We find that the growth-promoting factors laminin and BDNF activate Cdc42, whereas the inhibitor Slit2 reduces Cdc42 activity in growth cones. Remarkably, we find that regulation of focal adhesion kinase (FAK) activity is a common upstream modulator of Cdc42 by BDNF, laminin and Slit. These findings suggest that rapid modulation of Cdc42 signaling through FAK by receptor activation underlies changes in growth cone motility in response to permissive and repulsive guidance cues.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Medical Scientist Training Program and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
54
|
Zheng W, Geng AQ, Li PF, Wang Y, Yuan XB. Robo4 regulates the radial migration of newborn neurons in developing neocortex. ACTA ACUST UNITED AC 2011; 22:2587-601. [PMID: 22123939 DOI: 10.1093/cercor/bhr330] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the morphogenesis of neocortex, newborn neurons undergo radial migration from the ventricular zone toward the surface of the cortical plate to form an "inside-out" lamina structure. The spatiotemporal signals that control this stereotyped radial migration remain elusive. Here, we report that a recently identified Robo family member Robo4 (Magic Roundabout), which was considered to be solely expressed in endothelial cells, is expressed in developing brain and regulates the radial migration of newborn neurons in neocortex. Downregulation of Robo4 expression in cortical newborn neurons by using in utero electroporation, with either specific siRNAs in wild-type rodents or with Cre recombinase in floxed-robo4 mutant mice, led to severe defects in the radial migration of newborn neurons with misorientation of these neurons. Moreover, newborn neurons transfected with Robo4 siRNAs exhibited significantly lower motility in a transwell migration assay (Boyden chamber) in the absence of Slit and significantly higher sensitivity to the repulsive effect of Slit in both transwell migration assay and growth cone collapse assay. Overall, our results showed an important role of Robo4 in the regulation of cortical radial migration through Slit-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Wang Zheng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
55
|
Bielle F, Garel S. [Connecting the neocortex with cell migration during development and evolution]. Med Sci (Paris) 2011; 27:802-4. [PMID: 22027412 DOI: 10.1051/medsci/20112710003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
56
|
Ricaño-Cornejo I, Altick AL, García-Peña CM, Nural HF, Echevarría D, Miquelajáuregui A, Mastick GS, Varela-Echavarría A. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the postoptic commissure in the mammalian forebrain. J Neurosci Res 2011; 89:1531-41. [PMID: 21688288 PMCID: PMC4128405 DOI: 10.1002/jnr.22684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/07/2011] [Accepted: 04/04/2011] [Indexed: 02/04/2023]
Abstract
During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.
Collapse
Affiliation(s)
- Itzel Ricaño-Cornejo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Amy L. Altick
- Department of Biology, University of Nevada, Reno, Nevada
| | | | | | - Diego Echevarría
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| | - Amaya Miquelajáuregui
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | | |
Collapse
|
57
|
Regulation of adult neural precursor cell migration. Neurochem Int 2011; 59:382-93. [DOI: 10.1016/j.neuint.2010.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 01/18/2023]
|
58
|
Young CC, Brooks KJ, Buchan AM, Szele FG. Cellular and molecular determinants of stroke-induced changes in subventricular zone cell migration. Antioxid Redox Signal 2011; 14:1877-88. [PMID: 20673127 PMCID: PMC3078507 DOI: 10.1089/ars.2010.3435] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A remarkable aspect of adult neurogenesis is that the tight regulation of subventricular zone (SVZ) neuroblast migration is altered after ischemic stroke and newborn neurons emigrate towards the injury. This phenomenon is an essential component of endogenous repair and also serves to illuminate normal mechanisms and rules that govern SVZ migration. Stroke causes inflammation that leads to cytokine and chemokine release, and SVZ neuroblasts that express their receptors are recruited. Metalloproteinases create pathways and new blood vessels provide a scaffold to facilitate neuroblast migration between the SVZ and the infarct. Most experiments have studied the peri-lesion parenchyma and relatively little is known about SVZ remodeling after stroke. Migration in the SVZ is tightly regulated by cellular interactions and molecular signaling; how are these altered after stroke to allow emigration? Do ependymal cells contribute to this process, given their reported neurogenic potential? How does stroke affect ependymal cell regulation of cerebrospinal fluid flow? Given the heterogeneity of SVZ progenitors, do all types of neuroblasts migrate out, or is this confined to specific subtypes of cells? We discuss these and other questions in our review and propose experiments to address them.
Collapse
Affiliation(s)
- Christopher C Young
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
59
|
Mulik S, Sharma S, Suryawanshi A, Veiga-Parga T, Reddy PBJ, Rajasagi NK, Rouse BT. Activation of endothelial roundabout receptor 4 reduces the severity of virus-induced keratitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:7195-204. [PMID: 21572022 DOI: 10.4049/jimmunol.1100014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.
Collapse
Affiliation(s)
- Sachin Mulik
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Slit2 Activity in the Migration of Guidepost Neurons Shapes Thalamic Projections during Development and Evolution. Neuron 2011; 69:1085-98. [DOI: 10.1016/j.neuron.2011.02.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
|
61
|
Liu JB, Jiang YQ, Gong AH, Zhang ZJ, Jiang Q, Chu XP. Expression of Slit2 and Robo1 after traumatic lesions of the rat spinal cord. Acta Histochem 2011; 113:43-8. [PMID: 19783284 DOI: 10.1016/j.acthis.2009.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 02/02/2023]
Abstract
We have used semi-quantitative RT-PCR, Western blot, and immunofluorescence imaging approaches to detect the expression levels of Slit2 and its receptor Robo1 in the rat spinal cord after traumatic lesions. Our results revealed that both the mRNA and protein levels of Slit2 were up-regulated in the injured spinal cord. The Slit2 expression level was increased at day 7 until day 14, and then returned to normal level at day 21 after injury. A double-immunolabelling study showed that Slit2 and neurofilament (NF) proteins were both localized in neurons of spinal corda cinerea. Slit2 immunopositivity was detected in neuronal plasma membranes but not in the axonal fibers. In contrast, the immunolabelling of Robo1 in the normal spinal cord was at a low level, mostly in the neurons of spinal corda cinerea, and remained unchanged at all time points following spinal cord injury (SCI). The regulation levels of Slit2 and Robo1 after traumatic lesions in the rat spinal cord are different. Our results indicate that Slit2-Robo1 might not be involved in the inhibitory environment after SCI.
Collapse
Affiliation(s)
- Jin-Bo Liu
- Department of Orthopedics, The Third Affiliated Hospital, Suzhou University, Changzhou, China.
| | | | | | | | | | | |
Collapse
|
62
|
Small EM, Sutherland L, Rajagopalan K, Wang S, Olson EN. MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ Res 2010; 107:1336-44. [PMID: 20947829 PMCID: PMC2997642 DOI: 10.1161/circresaha.110.227926] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Establishment of a functional vasculature requires the interconnection and remodeling of nascent blood vessels. Precise regulation of factors that influence endothelial cell migration and function is essential for these stereotypical vascular patterning events. The secreted Slit ligands and their Robo receptors constitute a critical signaling pathway controlling the directed migration of both neurons and vascular endothelial cells during embryonic development, but the mechanisms of their regulation are incompletely understood. OBJECTIVE To identify microRNAs regulating aspects of the Slit-Robo pathway and vascular patterning. METHODS AND RESULTS Here, we provide evidence that microRNA (miR)-218, which is encoded by an intron of the Slit genes, inhibits the expression of Robo1 and Robo2 and multiple components of the heparan sulfate biosynthetic pathway. Using in vitro and in vivo approaches, we demonstrate that miR-218 directly represses the expression of Robo1, Robo2, and glucuronyl C5-epimerase (GLCE), and that an intact miR-218-Slit-Robo regulatory network is essential for normal vascularization of the retina. Knockdown of miR-218 results in aberrant regulation of this signaling axis, abnormal endothelial cell migration, and reduced complexity of the retinal vasculature. CONCLUSIONS Our findings link Slit gene expression to the posttranscriptional regulation of Robo receptors and heparan sulfate biosynthetic enzymes, allowing for precise control over vascular guidance cues influencing the organization of blood vessels during development.
Collapse
Affiliation(s)
- Eric M. Small
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lillian Sutherland
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kartik Rajagopalan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shusheng Wang
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
63
|
Kaneko N, Marín O, Koike M, Hirota Y, Uchiyama Y, Wu JY, Lu Q, Tessier-Lavigne M, Alvarez-Buylla A, Okano H, Rubenstein JL, Sawamoto K. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 2010; 67:213-23. [PMID: 20670830 PMCID: PMC4080818 DOI: 10.1016/j.neuron.2010.06.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2010] [Indexed: 11/21/2022]
Abstract
In the long-range neuronal migration of adult mammals, young neurons travel from the subventricular zone to the olfactory bulb, a long journey (millimeters to centimeters, depending on the species). How can these neurons migrate through the dense meshwork of neuronal and glial processes of the adult brain parenchyma? Previous studies indicate that young neurons achieve this by migrating in chains through astrocytic tunnels. Here, we report that young migrating neurons actively control the formation and maintenance of their own migration route. New neurons secrete the diffusible protein Slit1, whose receptor, Robo, is expressed on astrocytes. We show that the Slit-Robo pathway is required for morphologic and organizational changes in astrocytes that result in the formation and maintenance of the astrocytic tunnels. Through this neuron-glia interaction, the new neurons regulate the formation of the astrocytic meshwork that is needed to enable their rapid and directional migration in adult brain.
Collapse
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology, Institute of Molecular Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alcant 03550, Alicante, Spain
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Hirota
- Department of Developmental and Regenerative Biology, Institute of Molecular Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jane Y. Wu
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL, 60611, USA
| | - Qiang Lu
- Division of Neuroscience, Beckman Research Institute of the City of Hope, Duarte, CA 81657, USA
| | | | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and Institute for Regeneration Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - John L.R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Institute of Molecular Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
64
|
Ahmed G, Shinmyo Y, Naser IB, Hossain M, Song X, Tanaka H. Olfactory bulb axonal outgrowth is inhibited by draxin. Biochem Biophys Res Commun 2010; 398:730-4. [PMID: 20621059 DOI: 10.1016/j.bbrc.2010.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/05/2010] [Indexed: 11/27/2022]
Abstract
Olfactory bulb (OB) projection neurons receive sensory input from olfactory receptor neurons and precisely relay it through their axons to the olfactory cortex. Thus, olfactory bulb axonal tracts play an important role in relaying information to the higher order of olfactory structures in the brain. Several classes of axon guidance molecules influence the pathfinding of the olfactory bulb axons. Draxin, a recently identified novel class of repulsive axon guidance protein, is essential for the formation of forebrain commissures and can mediate repulsion of diverse classes of neurons from chickens and mice. In this study, we have investigated the draxin expression pattern in the mouse telencephalon and its guidance functions for OB axonal projection to the telencephalon. We have found that draxin is expressed in the neocortex and septum at E13 and E17.5 when OB projection neurons form the lateral olfactory tract (LOT) rostrocaudally along the ventrolateral side of the telencephalon. Draxin inhibits axonal outgrowth from olfactory bulb explants in vitro and draxin-binding activity in the LOT axons in vivo is detected. The LOT develops normally in draxin-/- mice despite subtle defasciculation in the tract of these mutants. These results suggest that draxin functions as an inhibitory guidance cue for OB axons and indicate its contribution to the formation of the LOT.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Murray A, Naeem A, Barnes SH, Drescher U, Guthrie S. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Dev 2010; 5:16. [PMID: 20569485 PMCID: PMC2907369 DOI: 10.1186/1749-8104-5-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022] Open
Abstract
Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A). It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK) and myosin light chain kinase (MLCK), which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.
Collapse
Affiliation(s)
- Ailish Murray
- MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | | | |
Collapse
|
66
|
Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J Neurosci 2010; 30:7049-60. [PMID: 20484647 DOI: 10.1523/jneurosci.0073-10.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal mossy fibers project preferentially to the proximal-most lamina of the suprapyramidal region of CA3, the stratum lucidum, and proximal-most parts of the infrapyrmidal region of CA3c. Molecular mechanisms that govern the lamina-restricted projection of mossy fibers, however, have not been fully understood. We previously studied functions of neural repellent Semaphorin-6A (Sema6A), a class 6 transmembrane semaphorin, and its receptors, plexin-A2 (PlxnA2) and PlxnA4, in mossy fiber projection and have proposed that PlxnA4-expressing mossy fibers are principally prevented from entering the Sema6A-expressing suprapyramidal and infrapyramidal regions of CA3 but are permitted to grow into proximal parts of the regions, where repulsive activity of Sema6A is competitively suppressed by PlxnA2 (Suto et al., 2007). In the present study we demonstrate that Sema6B, another class 6 transmembrane semaphorin, is expressed in CA3 and repels mossy fibers in a PlxnA4-dependent manner in vitro. In Sema6B-deficient mice several mossy fibers aberrantly project to the stratum radiatum and the stratum oriens. The number of aberrant mossy fibers is increased in Sema6A;Sema6B double knock-out mice, indicating that Sema6A and Sema6B function additively to regulate proper projection of mossy fibers. PlxnA2 does not suppress the Sema6B response, but itself promotes growth of mossy fibers. Based on these results, we propose that the balance between mossy fiber repulsion by Sema6A and Sema6B and attraction by PlxnA2 and unknown molecule(s) prescribes the areas permissive for mossy fibers to innervate.
Collapse
|
67
|
Abstract
The mammalian brain is the most complex organ in the body. It controls all aspects of our bodily functions and interprets the world around us through our senses. It defines us as human beings through our memories and our ability to plan for the future. Crucial to all these functions is how the brain is wired in order to perform these tasks. The basic map of brain wiring occurs during embryonic and postnatal development through a series of precisely orchestrated developmental events regulated by specific molecular mechanisms. Below we review the most important features of mammalian brain wiring derived from work in both mammals and in nonmammalian species. These mechanisms are highly conserved throughout evolution, simply becoming more complex in the mammalian brain. This fascinating area of biology is uncovering the essence of what makes the mammalian brain able to perform the everyday tasks we take for granted, as well as those which give us the ability for extraordinary achievement.
Collapse
Affiliation(s)
- Alain Chédotal
- INSERM, UMRS_968, Institut de la Vision, Department of Development, 17 rue Moreau, Paris, France
| | | |
Collapse
|
68
|
Fang M, Liu GW, Pan YM, Shen L, Li CS, Xi ZQ, Xiao F, Wang L, Chen D, Wang XF. Abnormal expression and spatiotemporal change of Slit2 in neurons and astrocytes in temporal lobe epileptic foci: A study of epileptic patients and experimental animals. Brain Res 2010; 1324:14-23. [PMID: 20153733 DOI: 10.1016/j.brainres.2010.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Repellent guidance molecules provide targeting information to outgrowing axons along predetermined pathways during development. These molecules may also play a role in synaptic reorganization in the adult brain and thereby promote epileptogenesis. Our aim was to investigate the expression of Slit2, one of repellent guidance molecules, in temporal lobe epileptic foci from epileptic patients and experimental animals. Thirty-five temporal neocortex tissue samples from patients with intractable temporal lobe epilepsy (TLE) and fifteen histological normal temporal lobes from controls were selected. Fifty-four Sprague-Dawley rats were divided randomly into six groups, including five groups with epilepsy induced by lithium-pilocarpine administration and one control group. Temporal lobe tissue samples were taken from rats at 1, 7, 14, 30, and 60 days post-seizure and from controls. Expression of Slit2 was assessed by immunohistochemistry, immunofluorescence, and Western blot analysis. Slit2 was mainly expressed in neurons in human controls and in both neurons and astrocytes in TLE patients. Slit2 expression was significantly higher in TLE patients as compared with the controls. Slit2-positive cells were mainly neurons in the rat temporal lobe tissues of the control group, the acute period group, and the latent period group, while the Slit2-positive cells were mainly astrocytes in chronic phase. Compared with controls, Slit2 expression in animals in the TLE group gradually decreased from days 1 to 14 post-seizure, but then increased over the levels seen in controls, to peak levels at days 30 and 60. These results suggest that Slit2 may play an important role in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 You Yi Road, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Thanos CG, Bintz B, Emerich DF. Microencapsulated choroid plexus epithelial cell transplants for repair of the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:80-91. [PMID: 20384220 DOI: 10.1007/978-1-4419-5786-3_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The choroid plexuses (CPs) play pivotal roles in basic aspects of neural function including maintaining the extracellular milieu of the brain by actively modulating chemical exchange between the CSF and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive "cocktail" of polypeptides and participating in repair processes following trauma. Even modest changes in the CP can have far reaching effects and changes in the anatomy and physiology of the CP have been linked to several CNS diseases. It is also possible that replacing diseased or transplanting healthy CP might be useful for treating acute and chronic brain diseases. Here we describe the wide-ranging functions of the CP, alterations of these functions in aging and neurodegeneration and recent demonstrations of the therapeutic potential of transplanted microencapsulated CP for neural trauma.
Collapse
|
70
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
71
|
Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol 2009; 7:e1000230. [PMID: 19859539 PMCID: PMC2762166 DOI: 10.1371/journal.pbio.1000230] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022] Open
Abstract
The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.
Collapse
|
72
|
Netrin-DCC, Robo-Slit, and heparan sulfate proteoglycans coordinate lateral positioning of longitudinal dopaminergic diencephalospinal axons. J Neurosci 2009; 29:8914-26. [PMID: 19605629 DOI: 10.1523/jneurosci.0568-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Longitudinal axons provide connectivity between remote areas of the nervous system. Although the molecular determinants driving commissural pathway formation have been well characterized, mechanisms specifying the formation of longitudinal axon tracts in the vertebrate nervous system are largely unknown. Here, we study axon guidance mechanisms of the longitudinal dopaminergic (DA) diencephalospinal tract. This tract is established by DA neurons located in the ventral diencephalon and is thought to be involved in modulating locomotor activity. Using mutant analysis as well as gain of function and loss of function experiments, we demonstrate that longitudinal DA axons navigate by integrating long-range signaling of midline-derived cues. Repulsive Robo2/Slit signaling keeps longitudinal DA axons away from the midline. In the absence of repulsive Robo2/Slit function, DA axons are attracted toward the midline by DCC (deleted in colorectal cancer)/Netrin1 signaling. Thus, Slit-based repulsion counteracts Netrin-mediated attraction to specify lateral positions of the DA diencephalospinal tract. We further identified heparan sulfate proteglycans as essential modulators of DA diencephalospinal guidance mechanisms. Our findings provide insight into the complexity of positioning far-projecting longitudinal axons and allow us to provide a model for DA diencephalospinal pathfinding. Simultaneous integrations of repulsive and attractive long-range cues from the midline act in a concerted manner to define lateral positions of DA longitudinal axon tracts.
Collapse
|
73
|
Braisted JE, Ringstedt T, O'Leary DDM. Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon. Cereb Cortex 2009; 19 Suppl 1:i144-51. [PMID: 19435711 PMCID: PMC2693534 DOI: 10.1093/cercor/bhp035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into ventral telencephalon. During TCA pathfinding, Slit1 and Slit2 are expressed in hypothalamus and ventral thalamus and Robo1 and Robo2 are expressed in dorsal thalamus. In collagen gel cocultures of dorsal thalamus and Slit2-expressing cells, axon number and length are decreased on the explant side facing Slit2-expressing cells, overall axon outgrowth is diminished, and axons turn away from the Slit2-expressing cells. Thus, Slit2 is an inhibitor and chemorepellent for dorsal thalamic axons. Collagen gel cocultures of dorsal thalamus with sections of live diencephalon, with and without the hypothalamus portion overlaid with Robo2-fc-expressing cells to block Slit function, identify Slits as the hypothalamic chemorepellent. Thus, Slits are chemorepellents for TCAs endogenous to hypothalamus and steer TCAs from diencephalon into ventral telencephalon, a critical pathfinding event defective in Slit and Robo2 mutant mice.
Collapse
Affiliation(s)
- Janet E Braisted
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
74
|
Wang J, Ren L, Li L, Liu W, Zhou J, Yu W, Tong D, Chen S. Microfluidics: a new cosset for neurobiology. LAB ON A CHIP 2009; 9:644-52. [PMID: 19224012 DOI: 10.1039/b813495b] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recently, microfluidic systems have shown great potential in the study of molecular and cellular biology. With its excellent properties, such as miniaturization, integration and automation, to name just a few, microfluidics creates new opportunities for the spatial and temporal control of cell growth and environmental stimuli in vitro. In the field of neuroscience, microfluidic devices offer precise control of the microenvironment surrounding individual cells, and the delivery of biochemical or physical cues to neural networks or single neurons. The intent of this review is to outline recent advances in microfluidic-based applications in neurobiology, with emphasis on neuron culture, neuron manipulation, neural stem cell differentiation, neuropharmacology, neuroelectrophysiology, and neuron biosensors. It also aims to stimulate development of microfluidic-based applications in neurobiology by involving scientists from various disciplines, especially neurobiology and microtechnology.
Collapse
Affiliation(s)
- Jinyi Wang
- College of Animal Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
In vitro guidance of retinal axons by a tectal lamina-specific glycoprotein Nel. Mol Cell Neurosci 2009; 41:113-9. [PMID: 19249368 DOI: 10.1016/j.mcn.2009.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/31/2008] [Accepted: 02/06/2009] [Indexed: 11/20/2022] Open
Abstract
Nel is a glycoprotein containing five chordin-like and six epidermal growth factor-like domains and is strongly expressed in the nervous system. In this study, we have examined expression patterns and in vitro functions of Nel in the chicken retinotectal system. We have found that in the developing tectum, expression of Nel is localized in specific laminae that retinal axons normally do not enter, including the border between the retinorecipient and non-retinorecipient laminae. Nel-binding activity is detected on retinal axons both in vivo and in vitro, suggesting that retinal axons express a receptor for Nel. In vitro, Nel inhibits retinal axon outgrowth and induces growth cone collapse and axon retraction. These results indicate that Nel acts as an inhibitory guidance cue for retinal axons, and suggest its roles in the establishment of the lamina-specificity in the retinotectal projection.
Collapse
|
76
|
Emerich DF, Borlongan CV. Potential of choroid plexus epithelial cell grafts for neuroprotection in Huntington's disease: what remains before considering clinical trials. Neurotox Res 2009; 15:205-11. [PMID: 19384593 DOI: 10.1007/s12640-009-9021-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 12/23/2022]
Abstract
The choroid plexuses (CPs) help maintain the extracellular milieu of the brain by modulating chemical exchange between the cerebrospinal fluid and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive "cocktail" of polypeptides, and participating in repair processes following trauma. Based on recent pre-clinical studies in animal models, a novel therapeutic approach has been suggested that involves transplanting CP for treating acute and chronic brain diseases. To date most studies have focused on rodent and primate models of Huntington's disease (HD) with demonstrations that transplants of CP can prevent the behavioral and anatomical consequences of striatal degeneration. Despite the encouraging results that lend support to the possibility of protecting vulnerable neurons in HD, critical basic science issues remain unexamined that limit the translation of the pre-clinical findings into clinical evaluations of CP transplants for HD. Here we briefly outline the logic behind using this novel cell source for transplantation, the pre-clinical data supporting this concept, and most importantly identify several critical, gating issues that remain prior to moving this approach forward in a meaningful clinical manner.
Collapse
Affiliation(s)
- Dwaine F Emerich
- InCytu Inc., 701 George Washington Highway, Lincoln, RI 02865, USA.
| | | |
Collapse
|
77
|
Tamura M, Tamura N, Ikeda T, Koyama R, Ikegaya Y, Matsuki N, Yamada MK. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers. Mol Brain 2009; 2:2. [PMID: 19183490 PMCID: PMC2642816 DOI: 10.1186/1756-6606-2-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/31/2009] [Indexed: 02/07/2023] Open
Abstract
Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.
Collapse
Affiliation(s)
- Makoto Tamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
78
|
Regulation of axonal elongation and pathfinding from the entorhinal cortex to the dentate gyrus in the hippocampus by the chemokine stromal cell-derived factor 1 alpha. J Neurosci 2008; 28:8344-53. [PMID: 18701697 DOI: 10.1523/jneurosci.1670-08.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the early developmental stage, a neural circuit is established between the entorhinal cortex (EC) and the hippocampal dentate gyrus (DG) via the perforant pathway. However, the manner in which the perforant fibers are navigated has mostly remained a mystery. Here, we analyzed the functional role of a chemokine, namely, stromal cell-derived factor 1alpha (SDF-1alpha), in the navigation of the perforant fibers. SDF-1alpha was observed to promote neurite growth, which is dependent on mDia1, in cultured entorhinal cortical neurons obtained from rats at postnatal day 0. We then used entorhino-hippocampal cocultures comprising green fluorescence-labeled EC and DG slices to assess the projection of the perforant fibers from the EC. Although the specific laminar termination of the entorhinal axons was observed with this system, the number of appropriately terminating entorhinal axons decreased significantly when the SDF-1alpha signaling pathway was blocked by a neutralizing antibody against SDF-1alpha or by the specific SDF-1alpha receptor antagonist AMD3100 (1,1'-[1,4-phenylenebis(methylene)]bis-1,4,8,11-tetra-azacyclotetradecane octahydrochloride). Furthermore, inhibition of the SDF-1alpha signaling pathway resulted in a decrease in the immunoreactivity for PSD-95 (postsynaptic density protein-95) in the DG, possibly because of a reduction in the number of projecting perforant fibers. These results demonstrate that SDF-1alpha plays a critical role in promoting the growth of perforant fibers from the EC to the DG.
Collapse
|
79
|
Nguyen-Ba-Charvet KT, Di Meglio T, Fouquet C, Chédotal A. Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. J Neurosci 2008; 28:4244-9. [PMID: 18417704 PMCID: PMC6670299 DOI: 10.1523/jneurosci.5671-07.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/18/2008] [Accepted: 03/13/2008] [Indexed: 12/13/2022] Open
Abstract
Odorants are detected by olfactory receptor neurons (ORNs) located in the olfactory epithelium. In mice, ORNs expressing the same odorant receptor (OR) project to a single glomerulus out of 1800 in the olfactory bulb (OB). It has been proposed that OR-derived cAMP signals guide ORN axons to their glomeruli rather than OR themselves. Recently, it has also been shown that the axon guidance molecule Slit1 and its receptor Robo2 control the dorsoventral segregation of ORN axons as they are projecting to the OB. We have analyzed the development of olfactory projections in Slit1/Slit2 and Robo1/Robo2 single and double mutants. We show that in Robo1-/-;Robo2-/- mice, most ORN axons fail to enter the OB and instead project caudally into the diencephalon. Moreover, in these mice, ORN axons expressing the same OR project to several glomeruli at ectopic positions. Thus, Slit1, Slit2, Robo1, and Robo2 cooperate to control the convergence of ORN axons to the OB and the precise targeting of ORN axons to specific glomeruli.
Collapse
Affiliation(s)
- Kim T. Nguyen-Ba-Charvet
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Thomas Di Meglio
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Coralie Fouquet
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Alain Chédotal
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, F-75013 Paris, France
| |
Collapse
|
80
|
Curinga G, Smith GM. Molecular/genetic manipulation of extrinsic axon guidance factors for CNS repair and regeneration. Exp Neurol 2008; 209:333-42. [PMID: 17706643 PMCID: PMC2255571 DOI: 10.1016/j.expneurol.2007.06.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/25/2007] [Accepted: 06/25/2007] [Indexed: 11/22/2022]
Abstract
During development, guidance molecules play a key role in the formation of complex circuits required for neural functions. With the cessation of development, this exuberant growth process slows and stabilizes, and inhibitory molecules expressed by glia prevent initial attempts for axonal regeneration. In this review, we discuss the expression patterns and relative contribution of several guidance molecules on the regenerative process. Injury to the immature CNS or species capable of regenerating exhibit a complete or partial recapitulation of their developmental guidance patterns, whereas similar injuries to adult mammals results in altered expression that acts to further hinder regeneration. Manipulations of guidance molecules after injury have been used to control detrimental effects of axon sprouting and target regenerating axons within the spinal cord.
Collapse
Affiliation(s)
- Gabrielle Curinga
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
81
|
Yao Q, Jin WL, Wang Y, Ju G. Regulated shuttling of Slit-Robo-GTPase activating proteins between nucleus and cytoplasm during brain development. Cell Mol Neurobiol 2008; 28:205-21. [PMID: 17710530 PMCID: PMC11514978 DOI: 10.1007/s10571-007-9187-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/28/2007] [Indexed: 12/11/2022]
Abstract
(1) A Little information exists on the distribution of Slit-Robo-GTPase activating proteins (srGAPs), particularly about their intracellular locations, which may provide further clues to their functions. The purpose of this study is to elucidate the expression patterns of the three srGAPs in wild-type rat brains at adult and various developmental stages, and in the cultured cortical neurons. (2) Immunohistochemical method was applied to detect the distribution and localization of the srGAPs in the normal rat brains at adult and various developmental stages, and in the cultured cortical neurons using the rabbit polyclonal antibodies. (3) Immunohistochemical analysis demonstrated that the three srGAPs were mainly expressed in neurons throughout the brain. More importantly, srGAPs translocated during development by a highly regulated shuttling process between the nucleus and the cytoplasm of neurons and their expression patterns were not overlapping. In cultured cortical neurons srGAPs were found in equal amounts in the cytoplasm, nucleus, in neurites, and growth cones. When neurons were maintained in vitro for longer time, the amount of srGAPs in the nucleus strongly increased. (4) These results suggest that srGAPs are not only involved in the regulation of the Slit-Robo signal transduction, but also in neuronal development and that the translocation of srGAPs is important for their functions.
Collapse
Affiliation(s)
- Qin Yao
- Institute of Neurosciences, the Fourth Military Medical University, 17 Chang Le Xi Road, Xi’an, 710032 P.R. China
| | - Wei-Lin Jin
- Institute of Neurosciences, Shanghai JiaoTong University, 800 Dongchuan Road, MinHang, Shanghai 200240 P.R. China
| | - Ying Wang
- Institute of Neurosciences, the Fourth Military Medical University, 17 Chang Le Xi Road, Xi’an, 710032 P.R. China
| | - Gong Ju
- Institute of Neurosciences, the Fourth Military Medical University, 17 Chang Le Xi Road, Xi’an, 710032 P.R. China
- Institute of Neurosciences, Shanghai JiaoTong University, 800 Dongchuan Road, MinHang, Shanghai 200240 P.R. China
| |
Collapse
|
82
|
Kapfhammer JP, Xu H, Raper JA. The detection and quantification of growth cone collapsing activities. Nat Protoc 2007; 2:2005-11. [PMID: 17703212 DOI: 10.1038/nprot.2007.295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth cone guidance during development, as well as axonal extension in neural repair and plasticity, is strongly regulated by both attractive (growth-promoting) and repulsive (growth-inhibiting) guidance molecules. The growth cone collapse assay has been widely and successfully used for the identification and purification of molecules that are repulsive to growth cones or inhibit axonal outgrowth. Here we provide a detailed description of the assay, which uses the morphology of the growth cone after exposure to a test protein as the readout. With the modifications detailed in this protocol, this assay can be used for the biochemical enrichment of proteins with a collapsing activity and for the identification of a collapsing activity of a known protein or gene. This assay does not require very specialized equipment and can be established by every lab with experience in neuronal cell culture. It can be completed in 3 d.
Collapse
Affiliation(s)
- Josef P Kapfhammer
- Anatomisches Institut, Universität Basel, Pestalozzistr. 20, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
83
|
Rosen GD, Bai J, Wang Y, Fiondella CG, Threlkeld SW, LoTurco JJ, Galaburda AM. Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cereb Cortex 2007; 17:2562-72. [PMID: 17218481 PMCID: PMC3742088 DOI: 10.1093/cercor/bhl162] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The brains of individuals with developmental dyslexia have neocortical neuronal migration abnormalities including molecular layer heterotopias, laminar dysplasias, and periventricular nodular heterotopias (PNH). RNA interference (RNAi) of Dyx1c1, a candidate dyslexia susceptibility gene, disrupts neuronal migration in developing embryonic neocortex. Using in utero electroporation, we cotransfected cells in the rat neocortical ventricular zone (VZ) at E14/15 with short hairpin RNA vectors targeting Dyx1c1 along with either plasmids encoding enhanced green fluorescent protein or plasmids encoding monomeric red fluorescent protein only. RNAi of Dyx1c1 resulted in pockets of unmigrated neurons resembling PNH. The pattern of migration of transfected neurons was bimodal, with approximately 20% of the neurons migrating a short distance from the VZ and another 40% that migrated past their expected lamina. Approximately 25% of the transfected brains had hippocampal pyramidal cell migration anomalies. Molecular layer ectopias, which were not related to injection site artifacts, were also seen in 25% of the animals. These results support the hypothesis that targeted disruption of the candidate dyslexia susceptibility gene, Dyx1c1, results in neuronal migration disorders similar to those seen in the brains of dyslexics.
Collapse
Affiliation(s)
- Glenn D Rosen
- Dyslexia Research Laboratory and Charles A Dana Research Institute, Department of Neurology, Division of Behavioral Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Interneurons are an integral part of cortical neuronal circuits. During the past decade, numerous studies have shown that these cells, unlike their pyramidal counterparts that are derived from the neuroepithelium along the lumen of the lateral ventricles, are generated in the ganglionic eminences in the subpallium. They use tangential migratory paths to reach the cortex, guided by intrinsic and extrinsic cues. Evidence is now emerging which suggests that the family of Slit proteins, acting through Robo receptors, play a role not only in axon guidance in the developing forebrain, but also as guiding signals in the migration of cortical interneurons. Here we describe the patterns of expression of Slit and Robo at different stages of forebrain development and review the evidence in support of their role in cortical interneuron migration. Slit-Robo signal transduction mechanisms are also important during normal development in a number of systems in the body and in disease states, making them potential therapeutic targets for the treatment of neurological disorders and certain types of cancer.
Collapse
Affiliation(s)
- William D Andrews
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
85
|
Inoue T, Ota M, Ogawa M, Mikoshiba K, Aruga J. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J Neurosci 2007; 27:5461-73. [PMID: 17507568 PMCID: PMC6672357 DOI: 10.1523/jneurosci.4046-06.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial telencephalon is a source of neurons that follow distinct tangential trajectories of migration to various structures such as the cerebral cortex, striatum, and olfactory bulb. In the present study, we characterized the forebrain anomalies in Zic1/Zic3 compound mutant mice. Zic1 and Zic3 were strongly expressed in the medial structures, including the septum, medial cerebral cortex, and choroid plexus. Mice homozygous for the Zic1 mutant allele together with the null Zic3 allele showed medial forebrain defects, which were not obvious in either Zic1 or Zic3 single mutants. Absence of both Zic1 and Zic3 caused hypoplasia of the hippocampus, septum, and olfactory bulb. Analysis of the cell cycle revealed that the cell cycle exit rate was increased in the septa of double mutants. Misexpression of Zic3 in the ventricular layer of the cerebral cortex inhibited neuronal differentiation. These results indicated that both Zic1 and Zic3 function in maintaining neural precursor cells in an undifferentiated state. The functions of these genes may be essential to increasing neural cell numbers regionally in the medial telencephalon and to proper mediolateral patterning of the telencephalon.
Collapse
Affiliation(s)
| | - Maya Ota
- Laboratory for Comparative Neurogenesis, and
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Jun Aruga
- Laboratory for Comparative Neurogenesis, and
| |
Collapse
|
86
|
Fouquet C, Di Meglio T, Ma L, Kawasaki T, Long H, Hirata T, Tessier-Lavigne M, Chédotal A, Nguyen-Ba-Charvet KT. Robo1 and robo2 control the development of the lateral olfactory tract. J Neurosci 2007; 27:3037-45. [PMID: 17360927 PMCID: PMC6672566 DOI: 10.1523/jneurosci.0172-07.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 02/02/2023] Open
Abstract
The development of olfactory bulb projections that form the lateral olfactory tract (LOT) is still poorly understood. It is known that the septum secretes Slit1 and Slit2 which repel olfactory axons in vitro and that in Slit1-/-;Slit2-/- mutant mice, the LOT is profoundly disrupted. However, the involvement of Slit receptors, the roundabout (Robo) proteins, in guiding LOT axons has not been demonstrated. We show here that both Robo1 and Robo2 receptors are expressed on early developing LOT axons, but that only Robo2 is present at later developmental stages. Olfactory bulb axons from Robo1-/-;Robo2-/- double-mutant mice are not repelled by Slit in vitro. The LOT develops normally in Robo1-/- mice, but is completely disorganized in Robo2-/- and Robo1-/-;Robo2-/- double-mutant embryos, with many LOT axons spreading along the ventral surface of the telencephalon. Finally, the position of lot1-expressing cells, which have been proposed to be the LOT guidepost cells, appears unaffected in Slit1-/-;Slit2-/- mice and in Robo1-/-;Robo2-/- mice. Together, our results indicate that Robo1 and Robo2 directly mediate the repulsive activity of Slit receptors on LOT axons, and are required for normal guidance of these axons in vivo.
Collapse
Affiliation(s)
- Coralie Fouquet
- Centre National de la Recherche Scientifique and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, Paris, 75005 France
| | - Thomas Di Meglio
- Centre National de la Recherche Scientifique and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, Paris, 75005 France
| | - Le Ma
- Howard Hughes Medical Institute, Department of Biological sciences, Stanford University, Stanford, California 94305
| | - Takahiko Kawasaki
- Division of Brain Function, National Institute of Genetics, Graduate University for advanced Studies (Sokendai), Yata 1111, Mishima 411-8540, Japan, and
| | - Hua Long
- Howard Hughes Medical Institute, Department of Biological sciences, Stanford University, Stanford, California 94305
| | - Tatsumi Hirata
- Division of Brain Function, National Institute of Genetics, Graduate University for advanced Studies (Sokendai), Yata 1111, Mishima 411-8540, Japan, and
| | - Marc Tessier-Lavigne
- Division of Brain Function, National Institute of Genetics, Graduate University for advanced Studies (Sokendai), Yata 1111, Mishima 411-8540, Japan, and
| | - Alain Chédotal
- Centre National de la Recherche Scientifique and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, Paris, 75005 France
| | - Kim T. Nguyen-Ba-Charvet
- Centre National de la Recherche Scientifique and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, Paris, 75005 France
| |
Collapse
|
87
|
Suto F, Tsuboi M, Kamiya H, Mizuno H, Kiyama Y, Komai S, Shimizu M, Sanbo M, Yagi T, Hiromi Y, Chédotal A, Mitchell KJ, Manabe T, Fujisawa H. Interactions between Plexin-A2, Plexin-A4, and Semaphorin 6A Control Lamina-Restricted Projection of Hippocampal Mossy Fibers. Neuron 2007; 53:535-47. [PMID: 17296555 DOI: 10.1016/j.neuron.2007.01.028] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/13/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Hippocampal mossy fibers project preferentially to the stratum lucidum, the proximal-most lamina of the suprapyramidal region of CA3. The molecular mechanisms that govern this lamina-restricted projection are still unknown. We examined the projection pattern of mossy fibers in mutant mice for semaphorin receptors plexin-A2 and plexin-A4, and their ligand, the transmembrane semaphorin Sema6A. We found that plexin-A2 deficiency causes a shift of mossy fibers from the suprapyramidal region to the infra- and intrapyramidal regions, while plexin-A4 deficiency induces inappropriate spreading of mossy fibers within CA3. We also report that the plexin-A2 loss-of-function phenotype is genetically suppressed by Sema6A loss of function. Based on these results, we propose a model for the lamina-restricted projection of mossy fibers: the expression of plexin-A4 on mossy fibers prevents them from entering the Sema6A-expressing suprapyramidal region of CA3 and restricts them to the proximal-most part, where Sema6A repulsive activity is attenuated by plexin-A2.
Collapse
Affiliation(s)
- Fumikazu Suto
- Division of Developmental Genetics, National Institute of Genetics, Mishima 411-8540, Japan; CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Lin L, Isacson O. Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits. Stem Cells 2006; 24:2504-13. [PMID: 16840550 PMCID: PMC2613222 DOI: 10.1634/stemcells.2006-0119] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The physical restoration of dopamine circuits damaged or lost in Parkinson disease by implanting embryonic stem (ES)-derived cells may become a treatment. It is critical to understand responses of ES-derived dopamine (DA) neurons to guidance signals that determine axonal path and targeting. Using a collagen gel culture system, we examined effects of secreted molecules Netrin-1 and Slits on neurite outgrowth of fetal DA neurons and murine ES-differentiated DA neurons. We have previously shown that fetal DA neurons express DCC and Robo1/2 receptors and that Netrin-1 and Slit2 function as an attractant and a repellent for DA neurite outgrowth. In the present study, we observe that both Slit1 and Slit3 repel and inhibit neurite growth of fetal DA neurons. Here, we also demonstrate that ES-differentiated neurons including DA neurons express the Netrin receptor DCC and Slit receptor Robo proteins. In the gel culture system of ES cells, Netrin-1 promoted neurite outgrowth mediated by DCC receptor, and Slit1 and Slit3 were inhibitory for neurite outgrowth through Robo receptors. Slit2 appeared to exert inhibitory as well as repulsive effects in the coculture assay. However, unlike fetal DA neurites, no directed neurite outgrowth was observed in the cocultures of ES-derived DA neurons with Netrin-1-, Slit1-, and Slit3-producing cells. The findings suggest that ES-derived DA neurons generated by current protocols can respond to guidance cues in vitro in a similar manner to fetal cells but also exhibit distinct responses. This may result from developmental differences generated by present in vitro methods of cell patterning or conditioning during ES cell differentiation.
Collapse
Affiliation(s)
- Ling Lin
- Udall Parkinson's Disease Research Center of Excellence and Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, Massachusetts 02478, USA.
| | | |
Collapse
|
89
|
Walz A, Omura M, Mombaerts P. Development and topography of the lateral olfactory tract in the mouse: imaging by genetically encoded and injected fluorescent markers. ACTA ACUST UNITED AC 2006; 66:835-46. [PMID: 16673392 DOI: 10.1002/neu.20266] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.
Collapse
Affiliation(s)
- Andreas Walz
- The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
90
|
Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J Neurosci 2006; 26:8082-91. [PMID: 16885222 PMCID: PMC6673773 DOI: 10.1523/jneurosci.1342-06.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An early step in the formation of the optic pathway is the directed extension of retinal ganglion cell (RGC) axons into the optic fiber layer (OFL) of the retina in which they project toward the optic disc. Using analysis of knock-out mice and in vitro assays, we found that, in the mammalian retina, Slit1 and Slit2, known chemorepellents for RGC axons, regulate distinct aspects of intraretinal pathfinding in different regions of the retina. In ventral and, to a much lesser extent, dorsal retina, Slits help restrict RGC axons to the OFL. Additionally, within dorsal retina exclusively, Slit2 also regulates the initial polarity of outgrowth from recently differentiated RGCs located in the retinal periphery. This regional specificity occurs despite the fact that Slits are expressed throughout the retina, and both dorsal and ventral RGCs are responsive to Slits. The gross morphology and layering of the retina of the slit-deficient retinas is normal, demonstrating that these distinct guidance defects are not the result of changes in the organization of the tissue. Although displaced or disorganized, the aberrant axons within both dorsal and ventral retina exit the eye. We also have found that the lens, which because of its peripheral location within the developing eye is ideally located to influence the initial direction of RGC axon outgrowth, secretes Slit2, suggesting this is the source of Slit regulating OFL development. These data demonstrate clearly that multiple mechanisms exist in the retina for axon guidance of which Slits are an important component.
Collapse
|
91
|
Abstract
The innervation of the cochlear sensory epithelium is intricately organized, allowing the tonotopy established by the auditory hair cells to be maintained along the ascending auditory pathways. These auditory projections are patterned by several gene families that regulate neurite attraction and repulsion, known as axon guidance cues. In this review, the roles of various axon guidance molecules, including fibroblast growth factor, ephs, semaphorins, netrins and slits, are examined in light of their known contribution to auditory development. Additionally, morphogens are discussed in the context of their recently described influence on axonal pathfinding in other sensory systems. The elucidation of these various mechanisms may guide the development of therapies aimed at maximizing the connectivity of auditory neurons in the context of congenital or acquired sensorineural hearing loss, especially as pertains to cochlear implants. Further afield, improved understanding of the molecular processes which regulate innervation of the organ of Corti during normal development may prove useful in connecting regenerated hair cells to the central nervous system.
Collapse
Affiliation(s)
- Audra Webber
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
92
|
Niclou SP, Ehlert EME, Verhaagen J. Chemorepellent axon guidance molecules in spinal cord injury. J Neurotrauma 2006; 23:409-21. [PMID: 16629626 DOI: 10.1089/neu.2006.23.409] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regenerating axons stop growing when they reach the border of the glial-fibrotic scar, presumably because they encounter a potent molecular barrier inhibiting growth cone advance. Chemorepulsive axon guidance molecules provide a non-permissive environment restricting and channeling axon growth in the developing nervous system. These molecules could also act as growth-inhibitory molecules in the regenerating nervous system. The receptors for repulsive guidance cues are expressed in the mature nervous system, suggesting that adult neurons are sensitive to the activity of developmentally active repulsive proteins. In this review, we summarize recent observations on semaphorins, ephrins, and slits in the injured brain and spinal cord, providing evidence that these proteins are major players in inhibiting axonal regeneration and establishing the glial-fibrotic scar.
Collapse
Affiliation(s)
- Simone P Niclou
- Netherlands Institute for Brain Research, Laboratory for Neuroregeneration, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
93
|
Zhang D, Zhou W, Yin C, Chen W, Ozawa R, Ang LH, Anandan L, Aigaki T, Hing H. Misexpression screen for genes altering the olfactory map in Drosophila. Genesis 2006; 44:189-201. [PMID: 16607613 DOI: 10.1002/dvg.20202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the identification of a number of guidance molecules, a comprehensive picture has yet to emerge to explain the precise anatomy of the olfactory map. From a misexpression screen of 1,515 P{GS} lines, we identified 23 genes that, when forcibly expressed in the olfactory receptor neurons, disrupted the stereotyped anatomy of the Drosophila antennal lobes. These genes, which have not been shown previously to control olfactory map development, encode novel proteins as well as proteins with known roles in axonal outgrowth and cytoskeletal remodeling. We analyzed Akap200, which encodes a Protein Kinase A-binding protein. Overexpression of Akap200 resulted in fusion of the glomeruli, while its loss resulted in misshapen and ectopic glomeruli. The requirement of Akap200 validates our screen as an effective approach for recovering genes controlling glomerular map patterning. Our finding of diverse classes of genes reveals the complexity of the mechanisms that underlie olfactory map development.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Erzurumlu RS, Chen ZF, Jacquin MF. Molecular determinants of the face map development in the trigeminal brainstem. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:121-34. [PMID: 16432893 PMCID: PMC3556733 DOI: 10.1002/ar.a.20285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
95
|
Anstrom JA, Thore CR, Moody DM, Challa VR, Block SM, Brown WR. Germinal matrix cells associate with veins and a glial scaffold in the human fetal brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:96-100. [PMID: 16168493 DOI: 10.1016/j.devbrainres.2005.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/22/2005] [Accepted: 07/31/2005] [Indexed: 01/18/2023]
Abstract
Germinal matrix (GM) in the subventricular zone (SVZ) includes progenitor cells of neurons and glia, which migrate from the SVZ to regions where they become integrated into the developing brain. In the human fetal brain, GM cells pack into high density clusters that encircle GM veins producing a profile we describe as a venous cuff. Venous cuffs are, in turn, encircled by GFAP-positive astrocytes that project processes through the cuff to the venous wall. The high cell density exhibited by cuffs, as well as their association with astrocytes, are reminiscent of features associated with chain migration. However, chain migration has not been associated previously with veins. We suggest that the GM cuff cells may represent a distinct subset of GM cells that migrate away from the GM on a pathway consisting of a vein and its associated astrocytic scaffold.
Collapse
Affiliation(s)
- John A Anstrom
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Pasterkamp RJ, Dai HN, Terman JR, Wahlin KJ, Kim B, Bregman BS, Popovich PG, Kolodkin AL. MICAL flavoprotein monooxygenases: expression during neural development and following spinal cord injuries in the rat. Mol Cell Neurosci 2005; 31:52-69. [PMID: 16230022 DOI: 10.1016/j.mcn.2005.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 08/29/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022] Open
Abstract
MICALs comprise of a family of phylogenetically conserved, multidomain cytosolic flavoprotein monooxygenases. Drosophila (D-)MICAL binds the neuronal Sema1a receptor PlexA, and D-MICAL-PlexA interactions are required in vivo for Sema1a-induced axon repulsion. The biological functions of vertebrate MICAL proteins, however, remain unknown. Here, we describe three rodent MICAL genes and analyze their expression in the intact rat nervous system and in two models of spinal cord injury. MICAL-1, -2, and -3 expression patterns in the embryonic, postnatal, and adult nervous system support the idea that MICALs play roles in neural development and plasticity. In addition, MICAL expression is elevated in oligodendrocytes and in meningeal fibroblasts at sites of spinal cord injury but is unchanged in lesioned corticospinal tract neurons. Furthermore, we find that the selective monooxygenase inhibitor EGCG attenuates the repulsive effects of Sema3A and Sema3F in vitro, but not those of several other repulsive cues and substrates. These results implicate MICALs in neuronal regeneration and support the possibility of employing EGCG to attenuate Sema3-mediated axon repulsion in the injured spinal cord.
Collapse
Affiliation(s)
- R Jeroen Pasterkamp
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Inatani M. Molecular mechanisms of optic axon guidance. Naturwissenschaften 2005; 92:549-61. [PMID: 16220285 DOI: 10.1007/s00114-005-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Accepted: 08/03/2005] [Indexed: 01/17/2023]
Abstract
Axon guidance is one of the critical processes during vertebrate central nervous system (CNS) development. The optic nerve, which contains the axons of retinal ganglion cells, has been used as a powerful model to elucidate some of the mechanisms underlying axon guidance because it is easily manipulated experimentally, and its function is well understood. Recent molecular biology studies have revealed that numerous guidance molecules control the development of the visual pathway. This review introduces the molecular mechanisms involved in each critical step during optic axon guidance. Axonal projections to the optic disc are thought to depend on adhesion molecules and inhibitory extracellular matrices such as chondroitin sulfate. The formation of the head of the optic nerve and the optic chiasm require ligand-receptor interactions between netrin-1 and the deleted in colorectal cancer receptor, and Slit proteins and Robo receptors, respectively. The gradient distributions of ephrin ligands and Eph receptors are essential for correct ipsilateral projections at the optic chiasm and the topographic mapping of axons in the superior colliculus/optic tectum. The precise gradient is regulated by transcription factors determining the retinal dorso-ventral and nasal-temporal polarities. Moreover, the axon guidance activities by Slit and semaphorin 5A require the existence of heparan sulfate, which binds to numerous guidance molecules. Recent discoveries about the molecular mechanisms underlying optic nerve guidance will facilitate progress in CNS developmental biology and axon-regeneration therapy.
Collapse
Affiliation(s)
- Masaru Inatani
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| |
Collapse
|
98
|
Hammond R, Vivancos V, Naeem A, Chilton J, Mambetisaeva E, Mambitisaeva E, Andrews W, Sundaresan V, Guthrie S. Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development 2005; 132:4483-95. [PMID: 16162649 DOI: 10.1242/dev.02038] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit.
Collapse
Affiliation(s)
- Rachel Hammond
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ward ME, Jiang H, Rao Y. Regulated formation and selection of neuronal processes underlie directional guidance of neuronal migration. Mol Cell Neurosci 2005; 30:378-87. [PMID: 16154761 DOI: 10.1016/j.mcn.2005.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/03/2005] [Accepted: 08/04/2005] [Indexed: 01/18/2023] Open
Abstract
Axon guidance and neuronal migration are critical features of neural development, and it is believed that extracellular gradients of secreted guidance cues play important roles in pathfinding. It has been well documented that the growth cones of extending axons respond to such extracellular gradients by growing toward or away from the source of the secreted cue via asymmetrical extension of a single growth cone. However, it is unclear whether migrating neurons change direction in response to guidance molecules using the same mode of turning as extending axons. In this study, we demonstrate that migrating neurons turn away from the chemo-repellent Slit through repeated rounds of process extension and retraction and do not turn through the reorientation of a single growth cone. We further show that Slit increases the rate of somal process formation and that these processes form preferentially on the side of the cell body furthest away from the Slit source. In addition, Slit causes cell turning through asymmetric process selection. Finally, we show that multiple types of migrating neurons employ this mode of cell turning in response to a variety of guidance cues. These results show that migrating neurons employ a unique type of turning when faced with secreted guidance cues that is distinct from the type employed by axons.
Collapse
Affiliation(s)
- Michael E Ward
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 10-185, Chicago, IL 60611, USA
| | | | | |
Collapse
|
100
|
Lin L, Rao Y, Isacson O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Mol Cell Neurosci 2005; 28:547-55. [PMID: 15737744 DOI: 10.1016/j.mcn.2004.11.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 11/25/2022] Open
Abstract
We investigated the roles of netrin-1 and slit-2 in regulation and navigation of dopamine (DA) axon growth using an explant culture preparation of embryonic ventral midbrain (embryonic day 14) and a co-culture system. We found that netrin-1 protein significantly enhanced DA axonal outgrowth and promoted DA axonal outgrowth in a co-culture system of netrin-1 expressing cells. Such effects were mediated by the receptor DCC as demonstrated by antibody perturbation of the DCC receptor. In contrast, slit-2 inhibited DA neuron extensions and repelled DA neurite growth. These slit-2 activities required robo receptors since the reduced neurite extension was abolished by addition of excess robo receptors. In this system, netrin-1 stimulated and slit-2 opposed DA neurite growth. Such regulation may be important for DA axonal maintenance, regeneration, and phenotypic target recognition.
Collapse
Affiliation(s)
- Ling Lin
- Neuroregeneration Laboratories, Mailman Research Center, Harvard Medical School/McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | |
Collapse
|