51
|
Characterization and functional analysis of atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol 2012; 194:1464-73. [PMID: 22228730 DOI: 10.1128/jb.06231-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important swine and human pathogen responsible for septicemia and meningitis. A novel gene, designated atl and encoding a major autolysin of S. suis 2 virulent strain HA9801, was identified and characterized in this study. The Atl protein contains 1,025 amino acids with a predicted molecular mass of 113 kDa and has a conserved N-acetylmuramoyl-l-alanine amidase domain. Recombinant Atl was expressed in Escherichia coli, and its bacteriolytic and fibronectin-binding activities were confirmed by zymography and Western affinity blotting. Two bacteriolytic bands were shown in the sodium dodecyl sulfate extracts of HA9801, while both were absent from the atl inactivated mutant. Cell chains of the mutant strain became longer than that of the parental strain. In the autolysis assay, HA9801 decreased to 20% of the initial optical density (OD) value, while the mutant strain had almost no autolytic activity. The biofilm capacity of the atl mutant was reduced ∼30% compared to the parental strain. In the zebrafish infection model, the 50% lethal dose of the mutant strain was increased up to 5-fold. Furthermore, the adherence to HEp-2 cells of the atl mutant was 50% less than that of the parental strain. Based on the functional analysis of the recombinant Atl and observed effects of atl inactivation on HA9801, we conclude that Atl is a major autolysin of HA9801. It takes part in cell autolysis, separation of daughter cells, biofilm formation, fibronectin-binding activity, cell adhesion, and pathogenesis of HA9801.
Collapse
|
52
|
Park KH, Cho KH. A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. FISH & SHELLFISH IMMUNOLOGY 2011; 31:904-910. [PMID: 21906681 DOI: 10.1016/j.fsi.2011.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 06/04/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Oxidation and inflammation are leading causes of nearly all chronic metabolic disorders, and play major roles in cardiovascular disease, cancer, and chronic age-dependent disease. High-density lipoprotein (HDL) and apolipoprotein (apo) A-I have strong antioxidant and anti-inflammatory properties in the plasma. Fructose-induced non-enzymatic glycation of apoA-I can lead to the production of dysfunctional apoA-I and HDL. To compare the physiologic effects of dysfunctional apoA-I and HDL, reconstituted HDL containing native apoA-I (nA-I) or glycated apoA-I (gA-I) was injected into zebrafish embryos in the presence of inflammatory molecules. Co-injection of reconstituted HDL containing VLDL and LDL gA-I (gA-I-rHDL) and lipopolysaccaride (LPS) resulted in acute embryo deaths, while rHDL containing nA-I (nA-I-rHDL) and LPS resulted in significantly enhanced survival. Co-injection of oxidized LDL (oxLDL) and nA-I-rHDL improved embryo survival, while co-injection of oxLDL and gA-I-rHDL aggravated inflammatory deaths. Furthermore, co-injection of oxLDL and HDL(2) (5 ng of protein) or HDL(3) (15 ng of protein) from the young group (22 ± 2 years old) showed significantly increased embryo survival compared with the same co-injection of HDL from the elderly group (71 ± 4 years old). In conclusion, our assay system provides a rapid and economic method to screen antioxidant and anti-inflammatory agents using zebrafish embryos.
Collapse
Affiliation(s)
- Ki-Hoon Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | |
Collapse
|
53
|
Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food Chem Toxicol 2011; 49:2899-905. [PMID: 21855599 DOI: 10.1016/j.fct.2011.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
Abstract
Although many artificial sweeteners (AS) have safety issues, the AS have been widely used in industry. To determine the physiologic effect of AS in the presence of hyperlipidemia, zebrafish were fed aspartame or saccharin with a high-cholesterol diet (HCD). After 12 days, 30% of zebrafish, which consumed aspartame and HCD, died with exhibiting swimming defects. The aspartame group had 65% survivability, while the control and saccharin groups had 100% survivability. Under HCD, the saccharin-fed groups had the highest increase in the serum cholesterol level (599 mg/dL). Aspartame-fed group showed a remarkable increase in serum glucose (up to 125 mg/dL), which was 58% greater than the increase in the HCD alone group. The saccharin and HCD groups had the highest cholesteryl ester transfer protein (CETP) activity (52% CE-transfer), while the HCD alone group had 42% CE-transfer. Histologic analysis revealed that the aspartame and HCD groups showed more infiltration of inflammatory cells in the brain and liver sections. Conclusively, under presence of hyperlipidemia, aspartame-fed zebrafish exhibited acute swimming defects with an increase in brain inflammation. Saccharin-fed zebrafish had an increased atherogenic serum lipid profile with elevation of CETP activity.
Collapse
|
54
|
Romano N, Caccia E, Piergentili R, Rossi F, Ficca AG, Ceccariglia S, Mastrolia L. Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). FISH & SHELLFISH IMMUNOLOGY 2011; 30:773-782. [PMID: 21220030 DOI: 10.1016/j.fsi.2010.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
All jawed vertebrates share lymphocyte receptors that allow the recognition of pathogens and the discrimination between self and non-self antigens. The T cell transmembrane receptor (TcR) has a central role in the maturation and function of T lymphocytes in vertebrates via an important role in positive selection of the variable region of TcR αβ/γδ chains. In this study, the TcRβ transcript expression and TcRβ(+) cell distribution during the ontogeny of the immune system of sea bass (Dicentrarchus labrax, L.) were analysed. RT-PCR analysis of larvae during early development demonstrated that the β chain transcript is expressed by 19 days post-fertilisation (p.f.). RNA probes specific for the β chain were synthesised and used for in situ hybridisation experiments on 30 day p.f. to 180 day old juvenile larvae. A parallel immunohistochemical study was performed using the anti-T cell monoclonal antibody DLT15 developed in our laboratory [Scapigliati et al., Fish Shellfish Immunol 1996; 6:383-401]. The first thymus anlage was detectable at 32-33 days p.f. (Corresponding to about 27 days post-hatch). DLT15(+) cells were detected at day 35 p.f. in the thymus whereas TcRβ(+) cells were recognisable at day 38 p.f. in the thymus and at day 41 p.f. in the gut. TcRβ(+) cells were observed in capillaries from 41 to 80 days p.f. At day 46 p.f., TcRβ(+) cells were identified in the head kidney and were detected in the spleen 4 days later. The present results demonstrate that TcRβ(+) cells can be differentiated first in the thymus and then in other organs/tissues, suggesting potential TcRβ(+) cell colonisation from the thymus to the middle gut. Once the epithelial architecture of the thymus is completed with the formation of the cortical-medullary border (around 70-75 days p.f.), DLT15(+) cells or TcRβ(+) cells are confined mainly to the cortex and cortical-medullary border. In particular, a large influx of TcRβ(+) cells was observed at the cortical-medullary border from 72 to 90 days p.f., suggesting a role in positive selection for this thymic region during the ontogeny of the fish immune system. This study provides novel information about the primary differentiation and distribution of TcRβ(+) cells in sea bass larvae and juveniles.
Collapse
Affiliation(s)
- Nicla Romano
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy.
| | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
A comprehensive understanding of the genes and pathways regulating hematopoiesis is needed to identify genes causally related to bone marrow failure syndromes, myelodysplastic syndromes, and hematopoietic neoplasms. To identify novel genes involved in hematopoiesis, we performed an ethyl-nitrosourea mutagenesis screen in zebrafish (Danio rerio) to search for mutants with defective definitive hematopoiesis. We report the recovery and analysis of the grechetto mutant, which harbors an inactivating mutation in cleavage and polyadenylation specificity factor 1 (cpsf1), a gene ubiquitously expressed and required for 3' untranslated region processing of a subset of pre-mRNAs. grechetto mutants undergo normal primitive hematopoiesis and specify appropriate numbers of definitive HSCs at 36 hours postfertilization. However, when HSCs migrate to the caudal hematopoietic tissue at 3 days postfertilization, their numbers start decreasing as a result of apoptotic cell death. Consistent with Cpsf1 function, c-myb:EGFP(+) cells in grechetto mutants also show defective polyadenylation of snrnp70, a gene required for HSC development. By 5 days postfertilization, definitive hematopoiesis is compromised and severely decreased blood cell numbers are observed across the myeloid, erythroid, and lymphoid cell lineages. These studies show that cpsf1 is essential for HSC survival and differentiation in caudal hematopoietic tissue.
Collapse
|
56
|
Katakura F, Yamaguchi T, Yoshida M, Moritomo T, Nakanishi T. Demonstration of T cell and macrophage progenitors in carp (Cyprinus carpio) kidney hematopoietic tissues. Development of clonal assay system for carp hematopoietic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:685-689. [PMID: 20117130 DOI: 10.1016/j.dci.2010.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 05/28/2023]
Abstract
Single hematopoietic cells from carp (Cyprinus carpio) kidney were seeded to each well of 96-well plates and cultured in the presence of a supporting cell layer and conditioned media (CM). The CM were obtained from bulk-cultured carp hematopoietic cells, in which T and macrophage-lineage cells rapidly proliferated as previously reported. After 2-3 weeks, colony formation was found in 0-4 wells of each plate. Three different morphological types of colonies were observed: "type I colonies", "type II colonies" and "mixed-type colonies". Type I colony cells were interpreted as composed by macrophage-lineage cells, since they expressed a specific macrophage marker, M-CSFR/csf1r gene, and most of them phagocytosed latex particles. Type II colony cells were interpreted as composed by T lineage cells, since they expressed several T cell marker genes including gata3, lck and TCRbeta, but did not engulf latex particles. Mixed-type colonies were interpreted as composed by both macrophages and T lineage cells. They expressed not only the M-CSFR gene but also a T cell marker gene, gata3, but not other T cell markers, such as lck and TCRbeta. These results indicated that the mixed-type colonies were developed from immature common progenitors of macrophage and T cell. In contrast, type I and type II colonies were developed from more mature and mono-potent progenitors of macrophage and T cell, respectively.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | |
Collapse
|
57
|
Park KH, Yun CO, Kwon OJ, Kim CH, Kim JR, Cho KH. Enhanced Delivery of Adenovirus, Using Proteoliposomes Containing Wildtype or V156K Apolipoprotein A-I and Dimyristoylphosphatidylcholine. Hum Gene Ther 2010; 21:579-87. [DOI: 10.1089/hum.2008.207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ki-Hoon Park
- School of Biotechnology, Aging-associated Vascular Disease Research Center, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Chae-Ok Yun
- Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei University College of Medicine, Shinchon 134, Seoul 120-749, South Korea
| | - Oh-Joon Kwon
- Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei University College of Medicine, Shinchon 134, Seoul 120-749, South Korea
| | - Cheol-Hee Kim
- Department of Biology and GRAST, Chungnam National University, Daejeon 305-764, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, Yeungnam University, Daegu 705-717, South Korea
| | - Kyung-Hyun Cho
- School of Biotechnology, Aging-associated Vascular Disease Research Center, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|
58
|
|
59
|
Kumari J, Bogwald J, Dalmo RA. Transcription factor GATA-3 in Atlantic salmon (Salmo salar): Molecular characterization, promoter activity and expression analysis. Mol Immunol 2009; 46:3099-107. [DOI: 10.1016/j.molimm.2009.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/27/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
|
60
|
Jima DD, Shah RN, Orcutt TM, Joshi D, Law JM, Litman GW, Trede NS, Yoder JA. Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity. Mol Immunol 2009; 46:1505-16. [PMID: 19200601 PMCID: PMC2735268 DOI: 10.1016/j.molimm.2008.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/30/2023]
Abstract
A recessive nonsense mutation in the zebrafish recombination activating gene 1 (rag1) gene results in defective V(D)J recombination; however, animals homozygous for this mutation (rag1(-/-)) are reportedly viable and fertile in standard, nonsterile aquarium conditions but display increased mortality after intraperitoneal injection with mycobacteria. Based on their survival in nonsterile environments, we hypothesized that the rag1(-/-) zebrafish may possess an "enhanced" innate immune response to compensate for the lack of an adaptive immune system. To test this hypothesis, microarray analyses were used to compare the expression profiles of the intestines and hematopoietic kidneys of rag1 deficient zebrafish to the expression profiles of control (heterozygous) siblings. The expression levels of 12 genes were significantly altered in the rag1(-/-) kidney including the up regulation of a putative interferon stimulated gene, and the down regulation of genes encoding fatty acid binding protein 10, keratin 5 and multiple heat shock proteins. The expression levels of 87 genes were shown to be significantly altered in the rag1(-/-) intestine; the majority of these differences reflect increased expression of innate immune genes, including those of the coagulation and complement pathways. Subsequent analyses of orthologous coagulation and complement genes in Rag1(-/-) mice indicate increased transcription of the complement C4 gene in the Rag1(-/-) intestine.
Collapse
Affiliation(s)
- Dereje D. Jima
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
| | - Radhika N. Shah
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
- Immunology Program, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
| | - Timothy M. Orcutt
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
| | - Deepa Joshi
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112 USA
| | - J. McHugh Law
- Immunology Program, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606 USA
| | - Gary W. Litman
- Department of Molecular Genetics, All Children's Hospital, 801 Sixth Street South, St. Petersburg, Florida 33701 USA
- Department of Pediatrics, University of South Florida College of Medicine, 140 Seventh Avenue South, St. Petersburg, Florida 33701 USA
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, Florida 33612 USA
| | - Nikolaus S. Trede
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112 USA
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
- Immunology Program, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough St., Raleigh, North Carolina 27606 USA
| |
Collapse
|
61
|
Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI. Combinatorial regulation of novel erythroid gene expression in zebrafish. Exp Hematol 2008; 36:424-32. [PMID: 18243489 PMCID: PMC2390894 DOI: 10.1016/j.exphem.2007.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The specification and differentiation of hematopoietic stem cells into red blood cells requires precise coordination by multiple transcription factors. Most genes important for erythroid maturation are regulated by the Gata family of DNA-binding proteins. Previously, we identified three novel genes kelch-repeat containing protein (krcp), kiaa0650, and testhymin/glucocorticoid inducible transcript 1 (glcci1) to be expressed in erythroid cells in a Gata-independent manner, and we sought to further understand how these transcripts are regulated during zebrafish hematopoiesis. MATERIALS AND METHODS We employed a loss-of-function approach, using combinations of antisense morpholinos to hematopoietic transcription factors and assayed for changes in gene expression in zebrafish embryos. RESULTS Upon examination of embryos deficient for Gata1, Gata2, Biklf, and/or Scl, we found distinct gene combinations were required for expression of the novel genes. While krcp expression was dependent upon Gata1 and Biklf, kiaa0650 expression was greatly reduced and glcci1 was maintained in Gata1/Gata2/Biklf-deficient embryos. As with the gata1 gene, kiaa0650 and krcp required Scl for blood expression. Although reduced, glcci1 was expressed in posterior blood precursors in the absence of Scl and Gata2. CONCLUSIONS This work identifies glcci1 as having Scl-independent expression in the posterior hematopoietic mesoderm, suggesting that its posterior expression is activated by factors upstream or parallel to Scl and Gata2. Additionally, these studies establish that blood gene expression programs are regulated by transcription factors acting in combination during erythroid maturation.
Collapse
Affiliation(s)
- Jenna L. Galloway
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, MA; Department of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rebecca A. Wingert
- Harvard Stem Cell Institute, Center for Regenerative Medicine, Massachusetts General Hospital, Boston
| | | | | | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, MA; Department of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
62
|
Takizawa F, Mizunaga Y, Araki K, Moritomo T, Ototake M, Nakanishi T. GATA3 mRNA in ginbuna crucian carp (Carassius auratus langsdorfii): cDNA cloning, splice variants and expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:898-907. [PMID: 18313140 DOI: 10.1016/j.dci.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 05/26/2023]
Abstract
GATA3, a transcriptional activator, plays a critical role in the development of T-cells and differentiation to T helper type 2 cells. To date, no information is available on the role of GATA3 in the teleost immune system. We identified full-length cDNA and alternatively spliced variants of ginbuna crucian carp GATA3 (gbGATA3). The gbGATA3 gene is transcribed into multiple splice variants lacking either one or both zinc finger domains, although the sequences of both domains are fully conserved between ginbuna and other vertebrates. We found that alternative splice site and stop codon in gbGATA3 intron 3, located between exons that separately encode the two zinc finger domains, are conserved among teleosts, suggesting that teleost GATA3 gene can be translated into multiple isoforms. RT-PCR analysis revealed that the gbGATA3 is strongly expressed in the brain, thymus and gill of unstimulated fish. Moreover, gbGATA3 expression was detected in surface-IgM-negative lymphocytes among kidney cells sorted by FACS. Real-time PCR demonstrated that expression levels of full-length gbGATA3 and the splice variants differed with tissue type, but full length was always the predominantly expressed form. These results suggest that gbGATA3, including its splice variants, is involved in teleost T-cell function.
Collapse
Affiliation(s)
- Fumio Takizawa
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Takizawa F, Araki K, Kobayashi I, Moritomo T, Ototake M, Nakanishi T. Molecular cloning and expression analysis of T-bet in ginbuna crucian carp (Carassius auratus langsdorfii). Mol Immunol 2008; 45:127-36. [PMID: 17624433 DOI: 10.1016/j.molimm.2007.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 05/06/2007] [Indexed: 11/16/2022]
Abstract
In the adaptive immune system of mammals, naive helper T (Th) cells differentiate into Th1 or Th2 cells. The T-box expressed in T cells (T-bet) is a member of a family of T-box transcription factors that regulates the expression of IFN-gamma and plays a crucial role in Th1 cell differentiation and cell-mediated immunity. We cloned and sequenced T-bet cDNA for the first time from non-mammalian species, ginbuna crucian carp. Ginbuna T-bet was composed of 608 predicted amino acids and showed 41.5% identity with human T-bet (Tbx21), and human and ginbuna T-bet share 77.3% identity in their T-box regions. Comparative genomic analysis showed conserved synteny in these regions between zebrafish, fugu, medaka and human T-bet. Phylogenetic analysis indicated that ginbuna T-bet is closely related to that of mouse and human. In unstimulated fish, ginbuna T-bet mRNA was strongly expressed in peripheral blood leukocytes (PBL), head kidney (HK) and spleen. RT-PCR analysis in kidney cells sorted by FACS revealed that T-bet was strongly expressed in surface-IgM-negative lymphocytes in comparison to IgM-positive lymphocytes. These results suggest that ginbuna T-bet is involved in the immune system, especially in T-cell function, and is an important tool to analyze teleost cell-mediated immunity.
Collapse
Affiliation(s)
- Fumio Takizawa
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Li X, Wang S, Qi J, Echtenkamp SF, Chatterjee R, Wang M, Boons GJ, Dziarski R, Gupta D. Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity 2007; 27:518-29. [PMID: 17892854 PMCID: PMC2074879 DOI: 10.1016/j.immuni.2007.07.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/04/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are structurally conserved through evolution, but their functions in innate immunity are different in invertebrates and vertebrates. We asked what the functions of PGRPs in fish are and whether they are indispensable for defense against infection because fish are the first vertebrates that developed adaptive immunity, but they still rely solely on innate immunity during early development of embryos. We identified and cloned three zebrafish PGRPs and showed that they are highly expressed in eggs, developing embryos, and adult tissues that contact external environment. Zebrafish PGRPs have both peptidoglycan-lytic amidase activity and broad-spectrum bactericidal activity, which is a unique feature. Furthermore, we demonstrated that in the developing zebrafish embryo, one of these PGRPs is essential for defense and survival during bacterial infections. These data demonstrate an absolute requirement for innate immunity in defense against infections in fish embryos and for a PGRP protein for survival in vertebrates.
Collapse
Affiliation(s)
- Xinna Li
- Indiana University School of Medicine Northwest, Gary, IN 46408, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Villablanca EJ, Pistocchi A, Court FA, Cotelli F, Bordignon C, Allende ML, Traversari C, Russo V. Abrogation of Prostaglandin E2/EP4 Signaling Impairs the Development of rag1+ Lymphoid Precursors in the Thymus of Zebrafish Embryos. THE JOURNAL OF IMMUNOLOGY 2007; 179:357-64. [PMID: 17579056 DOI: 10.4049/jimmunol.179.1.357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGE(2) is involved in a wide variety of physiological and pathological processes; however, deciphering its role in early mammalian development has been difficult due to the maternal contribution of PGE(2). To overcome this limitation we have investigated the role of PGE(2) during T cell development in zebrafish. In this study, we show that zebrafish ep4a, a PGE(2) receptor isoform of EP4, is expressed at 26 h postfertilization in the dorsal aorta-posterior cardinal vein joint region, which has a high homology with the mammal aorta-gonad-mesonephros area and where definitive hemopoiesis arises. Furthermore, it is expressed in the presumptive thymus rudiment by 48 h postfertilization. Supplementation of PGE(2) results in a strong increase in rag1 levels and cell proliferation in the thymus. In contrast, the inhibition of PGE(2) production, as well as EP4 blockade, abrogates the expression of rag1 in the thymus and that of the lymphoid precursor marker ikaros, not only in the dorsal aorta-posterior cardinal vein joint region but also in the newly identified caudal hemopoietic tissue without affecting early hemopoietic (scl, gata2) and erythropoietic (gata1) markers. These results identify ep4a as the earliest thymus marker and define a novel role for the PGE(2)/EP4 pathway in controlling T cell precursor development in zebrafish.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Cancer Gene Therapy Unit, Cancer Immunotherapy and Gene Therapy Program, Scientific Institute H. San Raffaele, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Trede NS, Medenbach J, Damianov A, Hung LH, Weber GJ, Paw BH, Zhou Y, Hersey C, Zapata A, Keefe M, Barut BA, Stuart AB, Katz T, Amemiya CT, Zon LI, Bindereif A. Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110. Proc Natl Acad Sci U S A 2007; 104:6608-13. [PMID: 17416673 PMCID: PMC1871833 DOI: 10.1073/pnas.0701919104] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease.
Collapse
Affiliation(s)
- Nikolaus S. Trede
- *Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jan Medenbach
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Andrey Damianov
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Gerhard J. Weber
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Barry H. Paw
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Yi Zhou
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Candace Hersey
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Agustin Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; and
| | - Matthew Keefe
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Bruce A. Barut
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Andrew B. Stuart
- Benaroya Research Institute at Virginia Mason, Department of Biology, University of Washington, Seattle, WA 98101
| | - Tammisty Katz
- *Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Chris T. Amemiya
- Benaroya Research Institute at Virginia Mason, Department of Biology, University of Washington, Seattle, WA 98101
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
- **To whom correspondence may be addressed at:
Howard Hughes Medical Institute, Department of Hematology/Oncology, Children's Hospital, Harvard Medical School, Karp Family Research Laboratories, 300 Longwood Avenue, Boston, MA 02115. E-mail:
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
- To whom correspondence may be addressed at:
Institute of Biochemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany. E-mail:
| |
Collapse
|
67
|
Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD. NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 2007; 21:462-71. [PMID: 17252014 DOI: 10.1038/sj.leu.2404546] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activating mutations in the NOTCH1 gene have been found in about 60% of patients with T-cell acute lymphoblastic leukemia (T-ALL). In order to study the molecular mechanisms by which altered Notch signaling induces leukemia, a zebrafish model of human NOTCH1-induced T-cell leukemia was generated. Seven of sixteen mosaic fish developed a T-cell lymphoproliferative disease at about 5 months. These neoplastic cells extensively invaded tissues throughout the fish and caused an aggressive and lethal leukemia when transplanted into irradiated recipient fish. However, stable transgenic fish exhibited a longer latency for leukemia onset. When the stable transgenic line was crossed with another line overexpressing the zebrafish bcl2 gene, the leukemia onset was dramatically accelerated, indicating synergy between the Notch pathway and the bcl2-mediated antiapoptotic pathway. Reverse transcription-polymerase chain reaction analysis showed that Notch target genes such as her6 and her9 were highly expressed in NOTCH1-induced leukemias. The ability of this model to detect a strong interaction between NOTCH1 and bcl2 suggests that genetic modifier screens have a high likelihood of revealing other genes that can cooperate with NOTCH1 to induce T-ALL.
Collapse
Affiliation(s)
- J Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute of Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
68
|
Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2006; 103:15166-71. [PMID: 17015828 PMCID: PMC1622794 DOI: 10.1073/pnas.0603349103] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a clonal disease that evolves through the accrual of genetic rearrangements and/or mutations within the dominant clone. The TEL-AML1 (ETV6-RUNX1) fusion in precursor-B (pre-B) ALL is the most common genetic rearrangement in childhood cancer; however, the cellular origin and the molecular pathogenesis of TEL-AML1-induced leukemia have not been identified. To study the origin of TEL-AML1-induced ALL, we generated transgenic zebrafish expressing TEL-AML1 either ubiquitously or in lymphoid progenitors. TEL-AML1 expression in all lineages, but not lymphoid-restricted expression, led to progenitor cell expansion that evolved into oligoclonal B-lineage ALL in 3% of the transgenic zebrafish. This leukemia was transplantable to conditioned wild-type recipients. We demonstrate that TEL-AML1 induces a B cell differentiation arrest, and that leukemia development is associated with loss of TEL expression and elevated Bcl2/Bax ratio. The TEL-AML1 transgenic zebrafish models human pre-B ALL, identifies the molecular pathways associated with leukemia development, and serves as the foundation for subsequent genetic screens to identify modifiers and leukemia therapeutic targets.
Collapse
Affiliation(s)
- Hatem E Sabaawy
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Davidson AJ, Zon LI. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev Biol 2006; 292:506-18. [PMID: 16457800 DOI: 10.1016/j.ydbio.2006.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/21/2005] [Accepted: 01/03/2006] [Indexed: 12/16/2022]
Abstract
The hox genes play a central role in organogenesis and are implicated in the formation of hematopoietic stem cells (HSCs). The cdx genes encode homeodomain transcription factors that act as master regulators of the hox genes. In zebrafish, mutations in cdx4 cause a severe, but not complete, deficit in embryonic blood cells. Here, we report the expression and function of cdx1a, a zebrafish Cdx1 paralogue. Using morpholino-mediated knockdown of cdx1a in a cdx4 mutant background, we show that a deficiency in both cdx genes causes a severe perturbation of hox gene expression and a complete failure to specify blood. The hematopoietic defect in cdx-deficient embryos does not result from a general block in posterior mesoderm differentiation as endothelial cells and kidney progenitors are still formed in the doubly deficient embryos. In addition, cdx-deficient embryos display a significant reduction in runx1a(+) putative HSCs in the zebrafish equivalent to the aorta-gonad-mesonephros (AGM) region. Overexpressing hoxa9a in cdx-deficient embryos rescues embryonic erythropoiesis in the posterior mesoderm as well as the formation of HSCs in the AGM region. Taken together, these results suggest that the cdx-hox pathway plays an essential role in the formation of both embryonic erythroid cells and definitive HSCs during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Alan J Davidson
- Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Department of Pediatrics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
70
|
Holländer G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y. Cellular and molecular events during early thymus development. Immunol Rev 2006; 209:28-46. [PMID: 16448532 DOI: 10.1111/j.0105-2896.2006.00357.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The thymic stromal compartment consists of several cell types that collectively enable the attraction, survival, expansion, migration, and differentiation of T-cell precursors. The thymic epithelial cells constitute the most abundant cell type of the thymic microenvironment and can be differentiated into morphologically, phenotypically, and functionally separate subpopulations of the postnatal thymus. All thymic epithelial cells are derived from the endodermal lining of the third pharyngeal pouch. Very soon after the formation of a thymus primordium and prior to its vascularization, thymic epithelial cells orchestrate the first steps of intrathymic T-cell development, including the attraction of lymphoid precursor cells to the thymic microenvironment. The correct segmentation of pharyngeal epithelial cells and their subsequent crosstalk with cells in the pharyngeal arches are critical prerequisites for the formation of a thymus anlage. Mutations in several transcription factors and their target genes have been informative to detail some of the complex mechanisms that control the development of the thymus anlage. This review highlights recent findings related to the genetic control of early thymus organogenesis and provides insight into the molecular basis by which lymphocyte precursors are attracted to the thymus.
Collapse
Affiliation(s)
- Georg Holländer
- Pediatric Immunology, The Center for Biomedicine, Department of Clinical-Biological Sciences, University of Basel, and The University Children's Hospital of Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
71
|
Zapata A, Diez B, Cejalvo T, Gutiérrez-de Frías C, Cortés A. Ontogeny of the immune system of fish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:126-36. [PMID: 15939627 DOI: 10.1016/j.fsi.2004.09.005] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 09/03/2004] [Indexed: 05/02/2023]
Abstract
Information on the ontogeny of the fish immune system is largely restricted to a few species of teleosts (e.g., rainbow trout, catfish, zebrafish, sea bass) and has previously focused on morphological features. However, basic questions including the identification of the first lympho-hematopoietic sites, the origin of T- and B-lymphocytes and the acquisition of full immunological capacities remain to be resolved. We review these three main topics with special emphasis on recent results obtained from the zebrafish, a new experimental model particularly suitable for study of the ontogeny of the immune system because of its rapid development and easy manipulation. This species also provides an easy way of creating mutations that can be detected by various types of screens. In some teleosts (i.e., angelfish) the first blood cells are formed in the yolk sac. In others, such as zebrafish, the first hematopoietic site is an intraembryonic locus, the intermediate cell mass (ICM), whereas in both killifish and rainbow trout the first blood cells appear for a short time in the yolk sac but later the ICM becomes the main hematopoietic area. Erythrocytes and macrophages are the first blood cells to be identified in zebrafish embryos. They occur in the ICM, the duct of Cuvier and the peripheral circulation. Between 24 and 30 hour post-fertilization (hpf) at a temperature of 28 degrees C a few myeloblasts and myelocytes appear between the yolk sac and the body walls, and the ventral region of the tail of 1-2 day-old zebrafish also contains developing blood cells. The thymus, kidney and spleen are the major lymphoid organs of teleosts. The thymus is the first organ to become lymphoid, although earlier the kidney can contain hematopoietic precursors but not lymphocytes. In freshwater, but not in marine, teleosts the spleen is the last organ to acquire that condition. We and other authors have demonstrated an early expression of Rag-1 in the zebrafish thymus that correlates well with the morphological identification of lymphoid cells. On the other hand, the origins and time of appearance of B lymphocytes in teleosts are a matter of discussion and recent results are summarized here. The functioning rather than the mere morphological evidence of lymphocytes determines when the full immunocompetence in fish is attained. Information on the histogenesis of fish lymphoid organs can also be obtained by analysing zebrafish mutants with defects in the development of immune progenitors and/or in the maturation of non-lymphoid stromal elements of the lymphoid organs. The main characteristics of some of these mutants will also be described.
Collapse
Affiliation(s)
- A Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
72
|
Abstract
Zebrafish produce nearly identical hematopoeitic cell lineages to those found in mammals and other higher vertebrates. As in mammals, blood cell development proceeds in distinct waves, constituting embryonic (primitive) and adult (definitive) hematopoiesis. The conservation of genes such as scl, pu.1, c/ebpalpha, mpo, l-plastin, and lysozyme C in myelopoiesis and the corresponding expression patterns in zebrafish suggests that shared genetic pathways regulate this complex developmental process. In the zebrafish model system, experimental approaches have been applied, including RNA in situ hybridization, morpholino injections, and the analysis of mutant and transgenic fish lines, leading to improved understanding of the regulation in vivo of key molecular pathways with conserved roles in vertebrate myelopoiesis.
Collapse
Affiliation(s)
- Jason N Berman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Mass. 02115, USA
| | | | | |
Collapse
|
73
|
Lam SH, Sin YM, Gong Z, Lam TJ. Effects of thyroid hormone on the development of immune system in zebrafish. Gen Comp Endocrinol 2005; 142:325-35. [PMID: 15935159 DOI: 10.1016/j.ygcen.2005.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/27/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Effects of thyroxine (T4) and methimazole (MMI) on the development of the zebrafish immune system were investigated using continuous immersion treatment experiments. The effects of the treatments on thymus development were determined using computer-aided thymus morphometric analyses on in situ hybridization serial sections of the thymus while the effects on immune-related gene expression levels were monitored using quantitative real-time PCR. The findings indicate that thymus development and thymopoiesis, as indicated by thymus size, thymus Rag-1-positive region, and TCRAC expression level, were affected by T4 and MMI-treatments. With the exception of Ikaros, MMI-treated fish has lower immune-related gene expression levels, although it is not certain whether the effect resulted indirectly from the concomitant growth-retardation and/or directly from an effect on lymphopoiesis itself. The findings were comparable with those in mammalian system, thus providing the first evidence that the thyroid relationship with thymus development and lymphopoiesis is likely to be conserved from fish to higher vertebrates. It suggests the possibility of using zebrafish as a model system to investigate the molecular mechanisms involved in thyroid hormone-dependent disorders in the immune system.
Collapse
Affiliation(s)
- S H Lam
- Department of Biological Sciences, National University of Singapore
| | | | | | | |
Collapse
|
74
|
Abstract
T-cell and thymic development are processes that have been highly conserved throughout vertebrate evolution. Mammals, birds, reptiles and fish share common molecular signalling pathways that regulate the development of the adaptive immune system. This Review article focuses on defining the similarities and differences between zebrafish and mammalian T-cell immunobiology, and it highlights the advantages of using the zebrafish as a genetic model to uncover mutations that affect T-cell and thymic development. Finally, we summarize the use of the zebrafish as a new model for assessing stem-cell function and for drug discovery.
Collapse
Affiliation(s)
- David M Langenau
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, 1 Blackfan Circle, Karp Building, Seventh floor, Boston, Massachusetts 02115-5713, USA
| | | |
Collapse
|
75
|
Hogan BM, Hunter MP, Oates AC, Crowhurst MO, Hall NE, Heath JK, Prince VE, Lieschke GJ. Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Dev Biol 2005; 276:508-22. [PMID: 15581882 DOI: 10.1016/j.ydbio.2004.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 09/11/2004] [Accepted: 09/13/2004] [Indexed: 11/25/2022]
Abstract
The pharyngeal arches give rise to multiple organs critical for diverse processes, including the thymus, thyroid and parathyroids. Several molecular regulators of thymus and thyroid organogenesis are strikingly conserved between mammals and zebrafish. However, land animals have parathyroids whereas fish have gills. The murine transcription factor Glial cells missing 2 (Gcm2) is expressed specifically in the parathyroid primordium in the endodermal epithelium of the third pharyngeal pouch, and in both mice and humans is required for normal development of parathyroid glands. The molecular regulation of fish gill organogenesis remains to be described. We report the expression of gcm2 in the zebrafish pharyngeal epithelium and a requirement for Hox group 3 paralogs for gcm2 expression. Strikingly, zebrafish gcm2 is expressed in the ectodermal portion of the pharyngeal epithelium and is required for the development of the gill filament buds, precursors of fish-specific gill filaments. This study identifies yet another role for a GCM gene in embryonic development and indicates a role for gcm2 during the evolution of divergent pharyngeal morphologies.
Collapse
Affiliation(s)
- Benjamin M Hogan
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Miller JD, Neely MN. Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect Immun 2005; 73:921-34. [PMID: 15664934 PMCID: PMC546978 DOI: 10.1128/iai.73.2.921-934.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Zoonotic pathogens have the unique ability to cross the species barrier, causing disease in both humans and specific animal hosts. Streptococcus iniae is a zoonotic pathogen of both fish and humans, and the clinical presentations of S. iniae infections in fish and humans are very similar to those caused by various human-specific streptococcal pathogens. Virulence mechanisms required for infection by this pathogen of either host have yet to be determined. Using the previously reported zebrafish infectious disease model, we performed a large-scale screening to determine genes required for systemic infection. Screening 1,128 signature-tagged transposon mutants through the zebrafish model allowed identification of 41 potential mutants that were unable to survive within the host environment. Greater than 50% of the mutants that could be identified through homology searches were highly homologous to genes found in other human-specific streptococcal pathogens, while 32% were found to have no homology to any sequences found in the databases, suggesting as yet unknown gram-positive bacterial virulence factors. A large percentage of the insertions were found to be located in several putative capsule synthesis genes, an important virulence component for other systemic pathogens. Density gradient assays demonstrated that several of these putative capsule mutants have dissimilar buoyant densities, suggesting different levels of capsule synthesis. Putative capsule mutants were also less resistant to phagocytosis in whole-blood assays than wild-type S. iniae. Our initial large-scale characterization of S. iniae virulence highlights the importance of the capsule for successful infection.
Collapse
Affiliation(s)
- Jesse D Miller
- Department of Immunology and Microbiology, Wayne State School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
77
|
Iwanami N, Takahama Y, Kunimatsu S, Li J, Takei R, Ishikura Y, Suwa H, Niwa K, Sasado T, Morinaga C, Yasuoka A, Deguchi T, Hirose Y, Yoda H, Henrich T, Ohara O, Kondoh H, Furutani-Seiki M. Mutations affecting thymus organogenesis in Medaka, Oryzias latipes. Mech Dev 2005; 121:779-89. [PMID: 15210185 DOI: 10.1016/j.mod.2004.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 03/26/2004] [Accepted: 03/28/2004] [Indexed: 10/26/2022]
Abstract
The thymus is an organ for T lymphocyte maturation and is indispensable for the establishment of a highly developed immune system in vertebrates. In order to genetically dissect thymus organogenesis, we carried out a large-scale mutagenesis screening for Medaka mutations affecting recombination activating gene 1 (rag1) expression in the developing thymus. We identified 24 mutations, defining at least 13 genes, which led to a marked reduction of rag1 expression in the thymus. As thymus development depends on pharyngeal arches, we classified those mutations into three classes according to the defects in the pharyngeal arches. Class 1 mutants had no or slight morphological abnormalities in the pharyngeal arches, implying that the mutations may include defects in such thymus-specific events as lymphocyte development and thymic epithelial cell maturation. Class 2 mutants had abnormally shaped pharyngeal arches. Class 3 mutants showed severely attenuated pharyngeal arch development. In Class 2 and Class 3 mutants, the defects in thymus development may be due to abnormal pharyngeal arch development. Those mutations are expected to be useful for identifying the molecular mechanisms underlying thymus organogenesis.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Onnebo SMN, Condron MM, McPhee DO, Lieschke GJ, Ward AC. Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion. Exp Hematol 2005; 33:182-8. [PMID: 15676212 DOI: 10.1016/j.exphem.2004.10.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 10/22/2004] [Accepted: 10/26/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Various TEL-JAK2 fusions have been identified in patients with lymphoblastic and myeloid leukemias that result in constitutive activation of the JAK2 kinase domain. Such fusions can mediate factor-independent growth of hematopoietic cell lines and induction of malignancy in mouse models. MATERIALS AND METHODS To assess whether zebrafish could be utilized as a suitable model for the study of myeloid oncogenesis, we generated a zebrafish tel-jak2a fusion oncoprotein based on that seen in a case of chronic myeloid leukemia. This was transiently expressed in zebrafish embryos under the control of the spi1 promoter, which is strongly active in myeloid precursors. RESULTS Visual, histological, and molecular analysis revealed disruption of normal embryonic hematopoiesis, including perturbation of the myeloid and erythroid lineages. CONCLUSION These results indicate that the zebrafish tel-jak2a oncoprotein is functional, and suggest that this organism will be useful for the experimental study of myeloid malignancy.
Collapse
Affiliation(s)
- Sara M N Onnebo
- Centre for Cellular & Molecular Biology, School of Biological & Chemical Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | | | |
Collapse
|
79
|
Fischer U, Dijkstra JM, Köllner B, Kiryu I, Koppang EO, Hordvik I, Sawamoto Y, Ototake M. The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2005; 18:49-60. [PMID: 15450968 DOI: 10.1016/j.fsi.2004.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/30/2004] [Accepted: 05/19/2004] [Indexed: 05/24/2023]
Abstract
In the present study, clonal rainbow trout (Oncorhynchus mykiss) embryos and larvae were assayed for the expression of key molecules involved in specific cell-mediated cytotoxicity using an anti-MHC class I monoclonal Ab and by RT-PCR using specific primers derived from classical MHC class I (class Ia), TCR and CD8. Whereas RT-PCR revealed that MHC class Ia and CD8 were expressed from at least 1 week after fertilisation (p.f.) on, TCR expression was detectable from 2 weeks p.f. Immunohistochemistry indicated an early and distinct expression of MHC class I protein in the thymus. Positive lymphoid, epithelial and endothelial cells were found in the pronephros, in the spleen and in the inner and outer epithelia at later stages. Whereas in older rainbow trout the intestine is counted among the organs of the highest class I expression, during ontogeny it was the last site (39 days after hatching) where such expression was detectable. Knowledge on the appearance of the assayed key molecules during fish development is relevant for the pathogenesis of infections as well as for early vaccine delivery. Besides such information regarding the development of the adaptive immune system, immunohistochemistry revealed that in early larvae MHC class I was expressed in neurons whereas in older rainbow trout this was not observed.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL, Look AT. Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 2004; 105:3278-85. [PMID: 15618471 DOI: 10.1182/blood-2004-08-3073] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zebrafish is an attractive vertebrate model for genetic studies of development, apoptosis, and cancer. Here we describe a transgenic zebrafish line in which T- and B-lymphoid cells express a fusion transgene that encodes the zebrafish bcl-2 protein fused to the enhanced green fluorescence protein (EGFP). Targeting EGFP-bcl-2 to the developing thymocytes of transgenic fish resulted in a 2.5-fold increase in thymocyte numbers and a 1.8-fold increase in GFP-labeled B cells in the kidney marrow. Fluorescent microscopic analysis of living rag2-EGFP-bcl-2 transgenic fish showed that their thymocytes were resistant to irradiation- and dexamethasone-induced apoptosis, when compared with control rag2-GFP transgenic zebrafish. To test the ability of bcl-2 to block irradiation-induced apoptosis in malignant cells, we compared the responsiveness of Myc-induced leukemias with and without EGFP-bcl-2 expression in living transgenic zebrafish. T-cell leukemias induced by the rag2-EGFP-Myc transgene were ablated by irradiation, whereas leukemias in double transgenic fish expressing both Myc and EGFP-bcl-2 were resistant to irradiation-induced apoptotic cell death. The forward genetic capacity of the zebrafish model system and the ability to monitor GFP-positive thymocytes in vivo make this an ideal transgenic line for modifier screens designed to identify genetic mutations or small molecules that modify bcl-2-mediated antiapoptotic pathways.
Collapse
Affiliation(s)
- David M Langenau
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
To decipher the complexity of host-pathogen interactions the widest possible range of model hosts and of analytical methods is required. As some virulence mechanisms and certain host responses have been conserved throughout evolution, even simple organisms can be used as model hosts to help our understanding of infectious diseases. The availability of molecular genetic tools and a cooperative community of researchers are pivotal to the emergence of model systems. In this review, we first summarize the genetic screens that can be used to identify pathogen virulence factors, then we present a comparative overview of existing or emerging genetically tractable host models.
Collapse
Affiliation(s)
- Elizabeth Pradel
- Centre d'Immunologie de Marseille-Luminy, INSERM/CNRS/Universite de la Mediterranee, Case 906, 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
82
|
Abstract
Progressive advances using zebrafish as a model organism have provided hematologists with an additional genetic system to study blood cell formation and hematological malignancies. Despite extensive evolutionary divergence between bony fish (teleosts) and mammals, the molecular pathways governing hematopoiesis have been highly conserved. As a result, most (if not all) of the critical hematopoietic transcription factor genes identified in mammals have orthologues in zebrafish. As in other vertebrates, all of the teleost blood lineages are believed to originate from a pool of pluripotent, self-renewing hematopoietic stem cells. Here, we provide a detailed review of the timing, anatomical location, and transcriptional regulation of zebrafish 'primitive' and 'definitive' hematopoiesis as well as discuss a model of T-cell leukemia and recent advances in blood cell transplantation. Given that many of the regulatory genes that control embryonic hematopoiesis have been implicated in oncogenic pathways in adults, an understanding of blood cell ontogeny is likely to provide insights into the pathophysiology of human leukemias.
Collapse
Affiliation(s)
- Alan J Davidson
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | |
Collapse
|
83
|
Onnebo SMN, Yoong SHS, Ward AC. Harnessing zebrafish for the study of white blood cell development and its perturbation. Exp Hematol 2004; 32:789-96. [PMID: 15345279 DOI: 10.1016/j.exphem.2004.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Considerable progress has been made in understanding the molecular basis of normal white blood cell development and its perturbation in disease through the use of clinical studies and traditional animal and cell line models. Despite this, however, many questions are still being answered and white blood cell disorders, including leukemia and lymphoma, remain a significant health problem. The zebrafish (Danio rerio) has emerged as a powerful alternative vertebrate model for the study of development and disease. We review the recent application of zebrafish to the study of white blood cell development and its disruption, particularly leukemogenesis. Such studies have highlighted the overall conservation of these processes throughout vertebrates, and establish zebrafish as a useful experimental model. This organism is now poised to make an important contribution to our understanding of the underlying genetic control of white blood cell development and its disruption, as well as the identification of new therapeutic agents.
Collapse
Affiliation(s)
- Sara M N Onnebo
- Centre for Cellular & Molecular Biology, School of Biological & Chemical Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | |
Collapse
|
84
|
Abstract
Zebrafish have emerged as a useful vertebrate model system in which unbiased large-scale screens have revealed hundreds of mutations affecting vertebrate development. Many zebrafish mutants closely resemble known human disorders, thus providing intriguing prospects for uncovering the genetic basis of human diseases and for the development of pharmacologic agents that inhibit or correct the progression of developmental disorders. The rapid pace of advances in genomic sequencing and map construction, in addition to morpholino targeting and transgenic techniques, have facilitated the identification and analysis of genes associated with zebrafish mutants, thus promoting the development of zebrafish as a model for human disorders. This review aims to illustrate how the zebrafish has been used to identify unknown genes, to assign function to known genes, and to delineate genetic pathways, all contributing valuable leads toward understanding human pathophysiology.
Collapse
Affiliation(s)
- Trista E North
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital of Boston, Enders Research Building, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
85
|
Miller JD, Neely MN. Zebrafish as a model host for streptococcal pathogenesis. Acta Trop 2004; 91:53-68. [PMID: 15158689 DOI: 10.1016/j.actatropica.2003.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/06/2003] [Indexed: 01/21/2023]
Abstract
Streptococcal pathogens continue to evade concerted efforts to determine clear-cut virulence mechanisms, although numerous genes have been implicated in pathogenesis. A single species can infect a diversity of tissues, suggesting the expression of specific virulence factors based on the local tissue environment or stage of infection. In an effort to identify the interactions that occur between the host and pathogen that lead to activation of virulence mechanisms and contribute to specific streptococcal disease states, we have developed a unique animal model, the zebrafish (Danio rerio), to characterize specific virulence mechanisms utilized within various tissues in vivo. We are using this model host to study infection by two streptococcal species that represent two forms of streptococcal disease: a natural pathogen of fish and humans, Streptococcus iniae and a human-specific pathogen, Streptococcus pyogenes. S. iniae primarily causes a fatal systemic disease in the zebrafish following intra-muscular injection, with similar pathologies to that seen in human infections caused by Streptococcus agalactiae and S. pneumoniae. While the fatal infection by S. pyogenes causes a locally spreading necrotic disease confined to the muscle with pathology similar to what is observed in a human infection of necrotizing fasciitis. By studying pathogens that are virulent for both fish and humans and that mediate disease states in the zebrafish that are identical to those found in human streptococcal infections, we will be able to identify common virulence strategies shared by a number of Gram-positive pathogens.
Collapse
Affiliation(s)
- Jesse D Miller
- Department of Immunology and Microbiology, Wayne State School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
86
|
Abstract
For decades immunologists have relied heavily on the mouse model for their experimental designs. With the realization of the important role innate immunity plays in orchestrating immune responses, invertebrates such as worms and flies have been added to the repertoire. Here, we discuss the advent of the zebrafish as a powerful vertebrate model organism that promises to positively impact immunologic research.
Collapse
Affiliation(s)
- Nikolaus S Trede
- Division of Pediatric Oncology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA.
| | | | | | | | | |
Collapse
|
87
|
Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JPD, Kanki JP, Zon LI, Look AT, Trede NS. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 2004; 101:7369-74. [PMID: 15123839 PMCID: PMC409925 DOI: 10.1073/pnas.0402248101] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Indexed: 12/28/2022] Open
Abstract
Transgenic zebrafish that express GFP under control of the T cell-specific tyrosine kinase (lck) promoter were used to analyze critical aspects of the immune system, including patterns of T cell development and T cell homing after transplant. GFP-labeled T cells could be ablated in larvae by either irradiation or dexamethasone added to the water, illustrating that T cells have evolutionarily conserved responses to chemical and radiation ablation. In transplant experiments, thymocytes from lck-GFP fish repopulated the thymus of irradiated wild-type fish only transiently, suggesting that the thymus contains only short-term thymic repopulating cells. By contrast, whole kidney marrow permanently reconstituted the T lymphoid compartment of irradiated wild-type fish, suggesting that long-term thymic repopulating cells reside in the kidney.
Collapse
Affiliation(s)
- David M Langenau
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Affiliation(s)
- Jason Berman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
89
|
Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:9-28. [PMID: 12962979 DOI: 10.1016/s0145-305x(03)00103-4] [Citation(s) in RCA: 451] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development and maturation of the immune system in zebrafish was investigated using immune-related gene expression profiling by quantitative real-time polymerase chain reaction, in situ hybridization (ISH), immunoglobulin (Ig) detection by immuno-affinity purification and Western blotting as well as immersion immunization experiments. Ikaros expression was first detected at 1 day post-fertilization (dpf) and thereafter increased gradually to more than two-fold between 28 and 42dpf before decreasing to less than the initial 1dpf expression level in adult fish (aged 105dpf). Recombination activating gene-1 (Rag-1) expression levels increased rapidly (by 10-fold) between 3 and 17dpf, reaching a maximum between 21 and 28dpf before decreasing gradually. However, in adult fish aged 105dpf, the expression level of Rag-1 had dropped markedly, and was equivalent to the expression level at 3dpf. T-cell receptor alpha constant region and immunoglobulin light chain constant region (IgLC) isotype-1, 2 and 3 mRNAs were detected at low levels by 3dpf and their expression levels increased steadily to the adult range between 4 and 6 weeks post-fertilization (wpf). Using tissue-section ISH, Rag-1 expression was detected in head kidney by 2wpf while IgLC-1, 2 and 3 were detected in the head kidney and the thymus by 3wpf onwards. Secreted Ig was only detectable using immuno-affinity purification and Western blotting by 4wpf. Humoral response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent antigen (human gamma globulin) was observed in zebrafish immunized at 4 and 6wpf, respectively, indicating that immunocompetence was achieved. The findings reveal that the zebrafish immune system is morphologically and functionally mature by 4-6wpf.
Collapse
Affiliation(s)
- S H Lam
- Department of Biological Sciences, The National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | | | | | | | | |
Collapse
|
90
|
Abstract
The toll-like family of receptors (TLR) is an ancient pattern recognition receptor family, conserved from insects to mammals. We have identified in zebrafish (Danio rerio) 19 putative TLR variants, the orthologs of mammalian TLR2-5, 7-9, a fish specific receptor type group and three putative splice variants. One receptor is very close to mammalian TLR1, 6 and 10 and seems to be their common ancestor. However, in contrast to the pufferfish, Fugu rubripes, we found two receptors homologous to TLR4, showing that lack of TLR4 is not general for fish. In addition, we identified two members close to mammalian TLR8 and five members close to FuguTLR21 and goldfish TLR, a TLR group which now has only been found in fish. By RT-PCR we showed that all TLR are widely expressed in adult tissues, but also at different stages of development. All these TLRs contain very conserved toll/interleukin-1 receptor (TIR) domains able to interact with TIR-domain of adapter molecules. We demonstrate here that TIR-domain containing adapters MyD88 and SARM are present in zebrafish, showing that TLR adapter molecules are highly conserved in evolution.
Collapse
Affiliation(s)
- Cyril Jault
- Dynamique des Interactions Système Immunitaire et Cancer, Unité INSERM 517, Faculté des Sciences Gabriel, 6, bld Gabriel, F-21800 Dijon, France
| | | | | |
Collapse
|
91
|
Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4:1238-46. [PMID: 14608381 DOI: 10.1038/ni1007] [Citation(s) in RCA: 635] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 10/14/2003] [Indexed: 12/20/2022]
Abstract
The zebrafish is firmly established as a genetic model for the study of vertebrate blood development. Here we have characterized the blood-forming system of adult zebrafish. Each major blood lineage can be isolated by flow cytometry, and with these lineal profiles, defects in zebrafish blood mutants can be quantified. We developed hematopoietic cell transplantation to study cell autonomy of mutant gene function and to establish a hematopoietic stem cell assay. Hematopoietic cell transplantation can rescue multilineage hematopoiesis in embryonic lethal gata1-/- mutants for over 6 months. Direct visualization of fluorescent donor cells in embryonic recipients allows engraftment and homing events to be imaged in real time. These results provide a cellular context in which to study the genetics of hematopoiesis.
Collapse
Affiliation(s)
- David Traver
- Children's Hospital Boston and the Howard Hughes Medical Institute, 320 Longwood Avenue, Enders 720, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
92
|
Ward AC, McPhee DO, Condron MM, Varma S, Cody SH, Onnebo SMN, Paw BH, Zon LI, Lieschke GJ. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 2003; 102:3238-40. [PMID: 12869502 DOI: 10.1182/blood-2003-03-0966] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized. Transient transgenesis revealed that a 5.3 kilobase promoter fragment immediately upstream of the spi1 coding sequence was sufficient to drive expression of enhanced green fluorescent protein (EGFP) in injected embryos in a manner that largely recapitulated the native spi1 gene expression pattern. This fragment was successfully used to produce a germ line transgenic line of zebrafish with EGFP-expressing myeloid cells. These TG(spi1:EGFP)pA301 transgenic zebrafish represent a valuable tool for further studies of myeloid development and its perturbation.
Collapse
Affiliation(s)
- Alister C Ward
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Lymphoid organs represent a specialized microenvironment for interaction of stromal and lymphoid cells. In primary lymphoid organs, these interactions are required to establish a self-tolerant repertoire of lymphocytes. While detailed information is available about the genes that control lymphocyte differentiation, little is known about the genes that direct the establishment and differentiation of principal components of such microenvironments. Here, we discuss genetic studies addressing the role of thymic epithelial cells (TECs) during thymopoiesis. We have identified an evolutionarily conserved key regulator of TEC differentiation, Foxn1, that is required for the immigration of prothymocytes into the thymic primordium. Because Foxn1 specifies the prospective endodermal domain that gives rise to thymic epithelial cells, it can be used to identify the evolutionary origins of this specialized cell type. In the course of these studies, we have found that early steps of thymus development in zebrafish are very similar to those in mice. Subsequently, we have used chemical mutagenesis to derive zebrafish lines with aberrant thymus development. Strengths and weaknesses of mouse and zebrafish models are largely complementary such that genetic analysis of mouse and zebrafish mutants may lead to a better understanding of thymus development.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology, Freiburg, Germany.
| | | | | |
Collapse
|
94
|
van der Sar AM, Musters RJP, van Eeden FJM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 2003; 5:601-11. [PMID: 12925130 DOI: 10.1046/j.1462-5822.2003.00303.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial virulence is best studied in animal models. However, the lack of possibilities for real time analysis and the need for laborious and invasive sample analysis limit the use of experimental animals. In the present study 28 h-old zebrafish embryos were infected with DsRed-labelled cells of Salmonella typhimurium. Using multidimensional digital imaging microscopy we were able to determine the exact location and fate of these bacterial pathogens in a living vertebrate host during three days. A low dose of wild-type S. typhimurium resulted in a lethal infection with bacteria residing and multiplying both in macrophage-like cells and at the epithelium of blood vessels. Lipopolysaccharide (LPS) mutants of S. typhimurium, known to be attenuated in the murine model, proved to be non-pathogenic in the zebrafish embryos and were partially lysed in the bloodstream or degraded in macrophage-like cells. However, injection of LPS mutants in the yolk of the embryo resulted in uncontrolled bacterial proliferation. Heat-killed, wild-type bacteria were completely lysed extracellularly within minutes after injection, which shows that the blood of these zebrafish embryos does already contain lytic activity. In conclusion, the zebrafish embryo model allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host.
Collapse
Affiliation(s)
- Astrid M van der Sar
- Department of Medical Microbiology, Vrije Universiteit Medical Centre, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
95
|
|
96
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
97
|
Quigley IK, Parichy DM. Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form. Microsc Res Tech 2002; 58:442-55. [PMID: 12242701 DOI: 10.1002/jemt.10162] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The zebrafish Danio rerio is an emerging model organism for understanding vertebrate development and genetics. One trait of both historical and recent interest is the pattern formed by neural crest-derived pigment cells, or chromatophores, which include black melanophores, yellow xanthophores, and iridescent iridophores. In zebrafish, an embryonic and early larval pigment pattern consists of several stripes of melanophores and iridophores, whereas xanthophores are scattered widely over the flank. During metamorphosis, however, this pattern is transformed into that of the adult, which comprises several dark stripes of melanophores and iridophores that alternate with light stripes of xanthophores and iridophores. In this review, we place zebrafish relative to other model and non-model species; we review what is known about the processes of chromatophore specification, differentiation, and morphogenesis during the development of embryonic and adult pigment patterns, and we address how future studies of zebrafish will likely aid our understanding of human disease and the evolution of form.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
98
|
Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002; 17:693-702. [PMID: 12479816 DOI: 10.1016/s1074-7613(02)00475-2] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of vertebrate hosts with pathogenic Mycobacteria, the agents of tuberculosis, produces granulomas, highly organized structures containing differentiated macrophages and lymphocytes, that sequester the pathogen. Adult zebrafish are naturally susceptible to tuberculosis caused by Mycobacterium marinum. Here, we exploit the optical transparency of zebrafish embryos to image the events of M. marinum infection in vivo. Despite the fact that the embryos do not yet have lymphocytes, infection leads to the formation of macrophage aggregates with pathological hallmarks of granulomas and activation of previously identified granuloma-specific Mycobacterium genes. Thus, Mycobacterium-macrophage interactions can initiate granuloma formation solely in the context of innate immunity. Strikingly, infection can redirect normal embryonic macrophage migration, even recruiting macrophages seemingly committed to their developmentally dictated tissue sites.
Collapse
Affiliation(s)
- J Muse Davis
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Two decades of research have established the zebrafish (Danio rerio) as a significant model system for studying vertebrate development and gene structure-function relationships. Recent advances in mutation screening, the creation of genomic resources, including the Zebrafish Genome Project and the development of efficient transgenesis procedures, make this model increasingly attractive for immunological study.
Collapse
Affiliation(s)
- Jeffrey A Yoder
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
100
|
Schorpp M, Leicht M, Nold E, Hammerschmidt M, Haas-Assenbaum A, Wiest W, Boehm T. A zebrafish orthologue (whnb) of the mouse nude gene is expressed in the epithelial compartment of the embryonic thymic rudiment. Mech Dev 2002; 118:179-85. [PMID: 12351184 DOI: 10.1016/s0925-4773(02)00241-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cloning and characterization of the zebrafish orthologue of the mouse nude (Whn/Foxn1) gene, whnb are reported. A previously described Whn-like gene from zebrafish, now designated as whna, is shown to be the orthologue of the mouse Foxn4 gene. The whnb gene is specifically expressed in the thymic rudiment of zebrafish embryos at day 3 after fertilization, whereas the whna gene is expressed in eye and brain structures. Whnb expression is maintained in cloche mutants, where endothelial and haematopoietic cell differentiation is defective, but absent in casanova mutants where endoderm formation is impaired. In adult thymi, whnb is expressed throughout cortical and medullary areas, whereas whna expression is observed in rare cell clusters only. Our results provide the first specific marker for the epithelial compartment of the zebrafish thymus.
Collapse
Affiliation(s)
- Michael Schorpp
- Department of Developmental Immunology, Max-Planck Institute for Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|