51
|
Kalluru PKR, Mamilla M, Valisekka SS, Mandyam S, Calderon Martinez E, Posani S, Sharma S, Gopavaram RR, Gargi B, Gaddam A, Reddy S. Aminotransferases in Relation to the Severity of Dengue: A Systematic Review. Cureus 2023; 15:e39436. [PMID: 37234451 PMCID: PMC10208548 DOI: 10.7759/cureus.39436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
A systematic review was conducted to investigate the relationship between aminotransferases and the severity of dengue infection, which is a prevalent and significant infection in tropical and subtropical regions. Aminotransferases are enzymes that are often elevated in dengue due to the liver's physiological and immunological response to the infection. This review focused on analyzing various studies that examined the correlation between aminotransferase levels and the severity of dengue. Extensive literature searches were performed using ("dengue*" OR "dengue fever*" OR "dengue haemorrhagic fever*" OR "dengue shock syndrome*") AND ("alanine aminotransferase*" OR "aspartate aminotransferase*") on PubMed. The selected articles were thoroughly reviewed, encompassing epidemiology, pathogenesis, and clinical manifestations of dengue. The consistent findings across the studies indicated that aminotransferases can serve as predictive markers for dengue severity. Therefore, early assessment of liver enzyme levels is crucial in dengue cases, and elevated levels should be closely monitored to prevent adverse outcomes.
Collapse
Affiliation(s)
| | - Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | - Sai Sudha Valisekka
- Internal Medicine, University of Minnesota School of Medicine, Minneapolis, USA
| | | | | | - Sarojini Posani
- Internal Medicine, Sri Devaraj Urs Medical College, Kothagudem, IND
| | - Shriya Sharma
- Internal Medicine, Dnipropetrovsk State Medical Academy, Dnipro, UKR
| | | | - Borgharkar Gargi
- Public Health, University of Alabama at Birmingham School of Medicine, Brimingham, USA
| | - Anvitha Gaddam
- Internal Medicine, Siddhartha Medical College, Vijayawada, IND
| | - Sushritha Reddy
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| |
Collapse
|
52
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Doranz BJ, Duran V, Sanchez DE, Sanz AM, Rosso F, Einav S, Matsen FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536175. [PMID: 37090561 PMCID: PMC10120628 DOI: 10.1101/2023.04.09.536175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasure strategies that avoid infection enhancement associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following secondary DENV infection. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
|
53
|
Dafalla O, Abdulhaq AA, Almutairi H, Noureldin E, Ghzwani J, Mashi O, Shrwani KJ, Hobani Y, Sufyani O, Ayed R, Alamri A, Al-Mekhlafi HM, Eisa ZM. The emergence of an imported variant of dengue virus serotype 2 in the Jazan region, southwestern Saudi Arabia. Trop Dis Travel Med Vaccines 2023; 9:5. [PMID: 36922890 PMCID: PMC10018863 DOI: 10.1186/s40794-023-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is a global economic and public health concern, particularly in tropical and subtropical countries where it is endemic. Saudi Arabia has seen an increase in DENV infections, especially in the western and southwestern regions. This study aims to investigate the genetic variants of DENV-2 that were circulating during a serious outbreak in Jazan region in 2019. METHODS A total of 482 serum samples collected during 2019 from Jazan region were tested with reverse transcription-polymerase chain reaction (RT-PCR) to detect and classify DENV; positive samples underwent sequencing and bioinformatics analyses. RESULTS Out of 294 positive samples, type-specific RT-PCR identified 58.8% as DENV-2 but could not identify 41.2%. Based on sequencing and bioinformatics analyses, the samples tested PCR positive in the first round but PCR negative in the second round were found to be imported genetic variant of DENV-2. The identified DENV-2 imported variant showed similarities to DENV-2 sequences reported in Malaysia, Singapore, Korea and China. The results revealed the imported genetic variant of DENV-2 was circulating in Jazan region that was highly prevalent and it was likely a major factor in this outbreak. CONCLUSIONS The emergence of imported DENV variants is a serious challenge for the dengue fever surveillance and control programmes in endemic areas. Therefore, further investigations and continuous surveillance of existing and new viral strains in the region are warranted.
Collapse
Affiliation(s)
- Ommer Dafalla
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Hatim Almutairi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Jaber Ghzwani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Omar Mashi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Yahya Hobani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Ohood Sufyani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Reem Ayed
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Abdullah Alamri
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Zaki M Eisa
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
54
|
Thi Hue Kien D, Edenborough K, da Silva Goncalves D, Thuy Vi T, Casagrande E, Thi Le Duyen H, Thi Long V, Thi Dui L, Thi Tuyet Nhu V, Thi Giang N, Thi Xuan Trang H, Lee E, Donovan-Banfield I, Thi Thuy Van H, Minh Nguyet N, Thanh Phong N, Van Vinh Chau N, Wills B, Yacoub S, Flores H, Simmons C. Genome evolution of dengue virus serotype 1 under selection by Wolbachia pipientis in Aedes aegypti mosquitoes. Virus Evol 2023; 9:vead016. [PMID: 37744653 PMCID: PMC10517695 DOI: 10.1093/ve/vead016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 09/26/2023] Open
Abstract
The introgression of antiviral strains of Wolbachia into Aedes aegypti mosquito populations is a public health intervention for the control of dengue. Plausibly, dengue virus (DENV) could evolve to bypass the antiviral effects of Wolbachia and undermine this approach. Here, we established a serial-passage system to investigate the evolution of DENV in Ae. aegypti mosquitoes infected with the wMel strain of Wolbachia. Using this system, we report on virus genetic outcomes after twenty passages of serotype 1 of DENV (DENV-1). An amino acid substitution, E203K, in the DENV-1 envelope protein was more frequently detected in the consensus sequence of virus populations passaged in wMel-infected Ae. aegypti than wild-type counterparts. Positive selection at residue 203 was reproducible; it occurred in passaged virus populations from independent DENV-1-infected patients and also in a second, independent experimental system. In wild-type mosquitoes and human cells, the 203K variant was rapidly replaced by the progenitor sequence. These findings provide proof of concept that wMel-associated selection of virus populations can occur in experimental conditions. Field-based studies are needed to explore whether wMel imparts selective pressure on DENV evolution in locations where wMel is established.
Collapse
Affiliation(s)
| | - Kathryn Edenborough
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Daniela da Silva Goncalves
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Tran Thuy Vi
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Etiene Casagrande
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vo Thi Long
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Le Thi Dui
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vu Thi Tuyet Nhu
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Giang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Huynh Thi Xuan Trang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Elvina Lee
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - I’ah Donovan-Banfield
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Thuy Van
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | | | - Nguyen Thanh Phong
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Vinh Chau
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Heather Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Cameron Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| |
Collapse
|
55
|
Genomic Characterization of Dengue Virus Outbreak in 2022 from Pakistan. Vaccines (Basel) 2023; 11:vaccines11010163. [PMID: 36680008 PMCID: PMC9867254 DOI: 10.3390/vaccines11010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Pakistan, a dengue-endemic country, has encountered several outbreaks during the past decade. The current study aimed to explore the serotype and genomic diversity of dengue virus responsible for the 2022 outbreak in Pakistan. From August to October 2022, NS-1 positive blood samples (n = 343) were collected from dengue patients, among which, (85%; n = 293) were positive based on RT-PCR. In terms of gender and age, dengue infection was more prevalent in male patients (63%; n = 184), with more adults (21-30 years; n = 94) being infected. The serotyping results revealed DENV-2 to be the most predominant serotype (62%; n = 183), followed by DENV-1 (37%; n = 109) and DENV-3 (0.32%; n = 1). Moreover, a total of 10 samples (DENV-2; n = 8, DENV-1; n = 2) were subjected to whole-genome sequencing. Among these, four were collected in early 2022, and six were collected between August and October 2022. Phylogenetic analysis of DENV-2 sequenced samples (n = 8) revealed a monophyletic clade of cosmopolitan genotype IVA, which is closely related to sequences from China and Singapore 2018, and DENV-1 samples (n = 2) show genotype III, which is closely related to Pakistan isolates from 2019. We also reported the first whole genome sequence of a coinfection case (DENV1-DENV2) in Pakistan detected through a meta-genome approach. Thus, dengue virus dynamics reported in the current study warrant large-scale genomic surveillance to better respond to future outbreaks.
Collapse
|
56
|
Li D, Long M, Li T, Shu Y, Shan X, Zhang J, Ma D, Long S, Wang X, Jia F, Pan Y, Chen J, Liu P, Sun Q. The whole-genome sequencing of prevalent DENV-1 strains during the largest dengue virus outbreak in Xishuangbanna Dai autonomous prefecture in 2019. J Med Virol 2023; 95:e28115. [PMID: 36059257 DOI: 10.1002/jmv.28115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
In 2019, a serious dengue virus (DENV) infection broke out in the Xishuangbanna Dai Autonomous Prefecture, China. Therefore, we conducted a molecular epidemiological analysis in people that contracted DENV serotype 1 (DENV-1) during this year. We analyzed the molecular epidemiology of six DENV-1 epidemic strains in 2019 by full-length genome sequencing, amino acid mutation site analysis, evolutionary tree analysis, and recombination site comparison analysis. Through the analysis of amino acid mutation sites, it was found that DENV-1 strain (MW386867) was different from the other five epidemic DENV-1 strains in Xishuangbanna in 2019. MW386867 had unique mutation sites at six loci. The six epidemic DENV-1 strains in Xishuangbanna in 2019 were divided into two clusters. MW386867 was highly similar to the MG679800 (Myanmar 2017), MG679801 (Myanmar 2017), and KC172834 (Laos 2008), and the other five strains were highly similar to JQ045660 (Vietnam 2011), FJ176780 (GuangDong 2006). Genetic recombination analysis revealed that there was no recombination signal in the six epidemic DENV-1 strains in Xishuangbanna in 2019. We speculate that the DENV-1 epidemic in 2019 has a co-epidemic of local strains and cross-border strains.
Collapse
Affiliation(s)
- Daiying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - MingWang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Tingting Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Yun Shu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Shuying Long
- Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Fan Jia
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Pinghua Liu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| |
Collapse
|
57
|
Aggarwal C, Ramasamy V, Garg A, Shukla R, Khanna N. Cellular T-cell immune response profiling by tetravalent dengue subunit vaccine (DSV4) candidate in mice. Front Immunol 2023; 14:1128784. [PMID: 36926350 PMCID: PMC10011089 DOI: 10.3389/fimmu.2023.1128784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
While most vaccines aim to develop a solid humoral and neutralizing antibody response against the pathogen, an effective vaccine candidate should be able to stimulate both the B-cell mediated humoral immunity, and T-cell mediated cellular immunity. The focus of vaccinology is rapidly gaining to generate T cell responses, which can mediate pathogen clearance and help B cells leading to protective antibody responses. Here we evaluate the cellular immune response of the pre-clinical tetravalent dengue subunit vaccine candidate, DSV4, in mice. While we have shown previously that DSV4 induces type-specific neutralizing antibody responses in mice, in this study, we show that the vaccine candidate DSV4 well induces dengue-specific T- cell responses evaluated by their ability to produce IFN-γ. In addition to IFN-γ secretion by both CD4+ and CD8+ T-cells in immunized mice, we observed that DSV4 also induces a higher frequency and cytokine functions of follicular CD4+ helper T-cells (TFH). These cytokines lead to an efficient germinal center reaction and potent B cell antibody response. Apart from TFH response, DSV4 stimulated Type 1 T helper cells (TH1) which is characteristic of a viral infection leading to secretion of pro-inflammatory cytokines and phagocyte-dependent protective immune responses. Our study highlights that DSV4 can mediate both arms of adaptive immunity-humoral and cell-mediated immunity in mice. By elucidating vaccine-specific T cell response, our work has implications in showing DSV4 as an effective, type-specific and safe dengue vaccine candidate.
Collapse
Affiliation(s)
- Charu Aggarwal
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Garg
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Shukla
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Navin Khanna
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
58
|
Li NK, Corander J, Grad YH, Chang HH. Discovering recent selection forces shaping the evolution of dengue viruses based on polymorphism data across geographic scales. Virus Evol 2022; 8:veac108. [PMID: 36601300 PMCID: PMC9789396 DOI: 10.1093/ve/veac108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Incomplete selection makes it challenging to infer selection on genes at short time scales, especially for microorganisms, due to stronger linkage between loci. However, in many cases, the selective force changes with environment, time, or other factors, and it is of great interest to understand selective forces at this level to answer relevant biological questions. We developed a new method that uses the change in dN /dS , instead of the absolute value of dN /dS , to infer the dominating selective force based on sequence data across geographical scales. If a gene was under positive selection, dN /dS was expected to increase through time, whereas if a gene was under negative selection, dN /dS was expected to decrease through time. Assuming that the migration rate decreased and the divergence time between samples increased from between-continent, within-continent different-country, to within-country level, dN /dS of a gene dominated by positive selection was expected to increase with increasing geographical scales, and the opposite trend was expected in the case of negative selection. Motivated by the McDonald-Kreitman (MK) test, we developed a pairwise MK test to assess the statistical significance of detected trends in dN /dS . Application of the method to a global sample of dengue virus genomes identified multiple significant signatures of selection in both the structural and non-structural proteins. Because this method does not require allele frequency estimates and uses synonymous mutations for comparison, it is less prone to sampling error, providing a way to infer selection forces within species using publicly available genomic data from locations over broad geographical scales.
Collapse
Affiliation(s)
- Nien-Kung Li
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Jukka Corander
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Yliopistonkatu 3, Helsinki 00014, Finland,Department of Biostatistics, University of Oslo, Domus Medica Gaustad Sognsvannsveien 9, Oslo 0372, Norway,Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | |
Collapse
|
59
|
Engineering Modified mRNA-Based Vaccine against Dengue Virus Using Computational and Reverse Vaccinology Approaches. Int J Mol Sci 2022; 23:ijms232213911. [PMID: 36430387 PMCID: PMC9698390 DOI: 10.3390/ijms232213911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus belonging to the family Flaviviridae and its four serotypes are responsible for dengue infections, which extend over 60 countries in tropical and subtropical areas of the world including Pakistan. During the ongoing dengue outbreak in Pakistan (2022), over 30,000 cases have been reported, and over 70 lives have been lost. The only commercialized vaccine against DENV, Dengvaxia, cannot be administered as a prophylactic measure to cure this infection due to various complications. Using machine learning and reverse vaccinology approaches, this study was designed to develop a tetravalent modified nucleotide mRNA vaccine using NS1, prM, and EIII sequences of dengue virus from Pakistani isolates. Based on high antigenicity, non-allergenicity, and toxicity profiling, B-cell epitope, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) putative vaccine targets were predicted. Molecular docking confirmed favorable interactions between T-cell epitopes and their respective HLA alleles, while normal mode analysis validated high-affinity interactions of vaccine proteins with immune receptors. In silico immune simulations confirmed adequate immune responses to eliminate the antigen and generate memory. Codon optimization, physicochemical features, nucleotide modifications, and suitable vector availability further ensured better antigen expression and adaptive immune responses. We predict that this vaccine construct may prove to be a good vaccinal candidate against dengue virus in vitro as well.
Collapse
|
60
|
Dieng I, Diallo A, Ndiaye M, Mhamadi M, Diagne MM, Sankhe S, Ndione MHD, Gaye A, Sagne SN, Heraud JM, Sall AA, Fall G, Loucoubar C, Faye O, Faye O. Full genome analysis of circulating DENV-2 in Senegal reveals a regional diversification into separate clades. J Med Virol 2022; 94:5593-5600. [PMID: 35879861 DOI: 10.1002/jmv.28027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
To assess the genetic diversity of circulating dengue virus 2 (DENV-2) in Senegal, we analyzed nine newly generated complete genomes of strains isolated during the 2018 outbreaks and 06 sequences obtained in 2018 and 2019 from Thiès and Rosso, respectively. Phylogenetic analyses revealed that Senegalese strains belonged to the cosmopolitan genotype of DENV-2, but we observed intragenotype variability leading to a divergence in two clades associated with specific geographic distribution. We report two DENV-2 variants belonging to two distinct clades. Isolates from the "Northern clade" (n = 8) harbored three nonsynonymous mutations (V1183M, R1405K, P2266T) located respectively on NS2A, NS2B, and NS4A, while isolates from the "Western clade" (n = 7) had two nonsynonymous mutations (V1185E, V3214E) located respectively in the NS2A and NS5 genes. These findings call for phylogeographic analysis to investigate routes of introductions, dispersal patterns, and in-depth in vitro and functional study to elucidate the impact of observed mutations on viral fitness, spread, epidemiology, and pathology.
Collapse
Affiliation(s)
- Idrissa Dieng
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moufid Mhamadi
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa Moïse Diagne
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Safietou Sankhe
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Marie Henriette Dior Ndione
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Jean Michel Heraud
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou Alpha Sall
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
61
|
Su W, Jiang L, Lu W, Xie H, Cao Y, Di B, Li Y, Nie K, Wang H, Zhang Z, Xu S. A Serotype-Specific and Multiplex PCR Method for Whole-Genome Sequencing of Dengue Virus Directly from Clinical Samples. Microbiol Spectr 2022; 10:e0121022. [PMID: 36094197 PMCID: PMC9602986 DOI: 10.1128/spectrum.01210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/16/2022] [Indexed: 12/30/2022] Open
Abstract
Dengue virus (DENV) is the most globally prevalent member of the genus Flavivirus in the family Flaviviridae, which can be classified into four serotypes. Historically, molecular epidemiological studies of DENV depended on E gene sequencing. The development of next-generation sequencing (NGS) allowed its application to viral whole-genome sequencing (WGS). In this study, we report the improvement of the existing WGS process for DENV by optimizing the primer design procedure, designing serotype-specific primer panels and reducing the sizes of amplicons. A total of 31 DENV-positive serum samples belonging to 4 serotypes and 9 genotypes of DENV were involved in the validation of the primer panels. The threshold cycle (CT) values of these samples ranged from 23.91 to 35.11. The validation results showed that the length of consensus sequences generated at a coverage depth of 20× or more ranged from 10,370 to 10,672 bp, with 100.00% coverage of the open reading frames and 97.34% to 99.52% coverage of the DENV genome. The amplification efficiency varied across amplicons, genotypes, and serotypes of DENVs. These results indicate that the serotype-specific primer panels allow users to obtain the whole genome of DENV directly from clinical samples, providing a universal, rapid, and effective tool for the integration of genomics with dengue surveillance. IMPORTANCE Dengue virus (DENV) is becoming the most globally prevalent arbovirus. The number of people living under the threat of DENV is increasing year by year. With the development of next-generation sequencing (NGS) technology, whole-genome sequencing (WGS) has been more and more widely used in infectious disease surveillance and molecular epidemiological studies. DENV population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of the DENV genome at the molecular level, which demands universal primer panels and combination with NGS platforms. Multiplex PCR with a short-amplicon approach proved superior for amplifying viral genomes from clinical samples, particularly when the viral RNA was present at low concentrations. Additionally, DENV are known for their genetic diversity within serotype groups and geographical regions, so the primer panels we designed focused on universality, which would be useful in future local DENV outbreaks.
Collapse
Affiliation(s)
- Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Liyun Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Weizhi Lu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Huaping Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yimin Cao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Kai Nie
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Control and Prevention, Beijing, China
| | - Zhoubin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Songtao Xu
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Control and Prevention, Beijing, China
| |
Collapse
|
62
|
Cabrera M, Leake J, Naranjo-Torres J, Valero N, Cabrera JC, Rodríguez-Morales AJ. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Trop Med Infect Dis 2022; 7:322. [PMID: 36288063 PMCID: PMC9611387 DOI: 10.3390/tropicalmed7100322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Dengue fever is a serious and growing public health problem in Latin America and elsewhere, intensified by climate change and human mobility. This paper reviews the approaches to the epidemiological prediction of dengue fever using the One Health perspective, including an analysis of how Machine Learning techniques have been applied to it and focuses on the risk factors for dengue in Latin America to put the broader environmental considerations into a detailed understanding of the small-scale processes as they affect disease incidence. Determining that many factors can act as predictors for dengue outbreaks, a large-scale comparison of different predictors over larger geographic areas than those currently studied is lacking to determine which predictors are the most effective. In addition, it provides insight into techniques of Machine Learning used for future predictive models, as well as general workflow for Machine Learning projects of dengue fever.
Collapse
Affiliation(s)
- Maritza Cabrera
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3480094, Chile
- Facultad Ciencias de la Salud, Universidad Católica del Maule, Talca 3480094, Chile
| | - Jason Leake
- Department of Engineering Design and Mathematics, Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, UK
| | - José Naranjo-Torres
- Academic and ML Consulting Department, Global Consulting H&G, 8682 Sorrento Street, Orlando, FL 32819, USA
| | - Nereida Valero
- Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Zulia, Venezuela
| | - Julio C. Cabrera
- Faculty of Engineering, Computing Engineering, Universidad Rafael Belloso Chacín, Maracaibo 4005, Zulia, Venezuela
| | - Alfonso J. Rodríguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira 660003, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima 156104, Peru
- Faculty of Medicine, Institución Universitaria Visión de las Américas, Pereira 660003, Colombia
| |
Collapse
|
63
|
Yu X, Cheng G. Contribution of phylogenetics to understanding the evolution and epidemiology of dengue virus. Animal Model Exp Med 2022; 5:410-417. [PMID: 36245335 PMCID: PMC9610151 DOI: 10.1002/ame2.12283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is one of the most important arboviral pathogens in the tropics and subtropics, and nearly one‐third of the world's population is at risk of infection. The transmission of DENV involves a sylvatic cycle between nonhuman primates (NHP) and Aedes genus mosquitoes, and an endemic cycle between human hosts and predominantly Aedes aegypti. DENV belongs to the genus Flavivirus of the family Flaviviridae and consists of four antigenically distinct serotypes (DENV‐1‐4). Phylogenetic analyses of DENV have revealed its origin, epidemiology, and the drivers that determine its molecular evolution in nature. This review discusses how phylogenetic research has improved our understanding of DENV evolution and how it affects viral ecology and improved our ability to analyze and predict future DENV emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
64
|
Ali A, Nisar S, Khan MA, Mohsan SAH, Noor F, Mostafa H, Marey M. A Privacy-Preserved Internet-of-Medical-Things Scheme for Eradication and Control of Dengue Using UAV. MICROMACHINES 2022; 13:1702. [PMID: 36296055 PMCID: PMC9609698 DOI: 10.3390/mi13101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Dengue is a mosquito-borne viral infection, found in tropical and sub-tropical climates worldwide, mostly in urban and semi-urban areas. Countries like Pakistan receive heavy rains annually resulting in floods in urban cities due to poor drainage systems. Currently, different cities of Pakistan are at high risk of dengue outbreaks, as multiple dengue cases have been reported due to poor flood control and drainage systems. After heavy rain in urban areas, mosquitoes are provided with a favorable environment for their breeding and transmission through stagnant water due to poor maintenance of the drainage system. The history of the dengue virus in Pakistan shows that there is a closed relationship between dengue outbreaks and a rainfall. There is no specific treatment for dengue; however, the outbreak can be controlled through internet of medical things (IoMT). In this paper, we propose a novel privacy-preserved IoMT model to control dengue virus outbreaks by tracking dengue virus-infected patients based on bedding location extracted using call data record analysis (CDRA). Once the bedding location of the patient is identified, then the actual infected spot can be easily located by using geographic information system mapping. Once the targeted spots are identified, then it is very easy to eliminate the dengue by spraying the affected areas with the help of unmanned aerial vehicles (UAVs). The proposed model identifies the targeted spots up to 100%, based on the bedding location of the patient using CDRA.
Collapse
Affiliation(s)
- Amir Ali
- Military College of Signals (MCS), National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Shibli Nisar
- Military College of Signals (MCS), National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Asghar Khan
- Department of Electrical Engineering, Hamdard University, Islamabad 44000, Pakistan
- Smart Systems Engineering Laboratory, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | | | - Fazal Noor
- Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 400411, Saudi Arabia
| | - Hala Mostafa
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Marey
- Smart Systems Engineering Laboratory, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
65
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, Rodríguez MH. Three highly variable genome regions of the four dengue virus serotypes can accurately recapitulate the CDS phylogeny. MethodsX 2022; 9:101859. [PMID: 36187156 PMCID: PMC9516459 DOI: 10.1016/j.mex.2022.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022] Open
Abstract
The circulation of the four-dengue virus (DENV) serotypes has significantly increased in recent years, accompanied by an increase in viral genetic diversity. In order to conduct disease surveillance and understand DENV evolution and its effects on virus transmission and disease, efficient and accurate methods for phylogenetic classification are required. Phylogenetic analysis of different viral genes sequences is the most used method, the envelope gene (E) being the most frequently selected target. We explored the genetic variability of the four DENV serotypes throughout their complete coding sequence (CDS) of sequences available in GenBank and used genomic regions of different variability rate to recapitulate the phylogeny obtained with the DENV CDS. Our results indicate that the use of high or low variable regions accurately recapitulate the phylogeny obtained with CDS of sequences from different DENV genotypes. However, when analyzing the phylogeny of a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny. The use of three concatenated highly variable regions was not statistically different in distance branch length and support to that obtained in CDS phylogeny.•This study demonstrated the ability of highly variable regions of the DENV genome to recapitulate the phylogeny obtained with the full coding sequence (CDS).•The use of genomic regions of high or low variability did not affect the performance in recapitulating the phylogeny obtained with CDS from different genotypes. However, when phylogeny was analyzed for sequences from a single genotype, highly variable regions performed better in recapitulating the distance branch length, topology, and support of the CDS phylogeny.•The use of concatenated highly variable genome regions represent a useful option for recapitulating genome-wide phylogenies in analyses of sequences belonging to the same DENV genotype.
Collapse
|
66
|
Moras E, Achappa B, Murlimanju BV, Raj GMN, Holla R, Madi D, D’Souza NV, Mahalingam S. Early diagnostic markers in predicting the severity of dengue disease. 3 Biotech 2022; 12:268. [PMID: 36091089 PMCID: PMC9461388 DOI: 10.1007/s13205-022-03334-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/26/2022] [Indexed: 11/01/2022] Open
Abstract
AbstractThe aim of the present study was to determine whether the serum ferritin, the biomarker of an acute phase reactant and the gall bladder wall edema, an early indicator of capillary leakage can predict the severity of dengue fever. This study included 131 patients, who were between the age group of 18–80 years. The patients presented to our department with an acute illness, within the first four days of high temperature. The statistical analysis of this study was performed by using the Chi-square and independent Student’s t tests. The diagnostic markers are considered statistically significant, if the serum ferritin level is higher than 500 ng/ml and the gall bladder wall thickness is more than 3 mm. The present study observed that, 39 patients (89%) who had severe dengue (n = 44) revealed a significant gall bladder wall thickening, and this correlation was significant statistically (p < 0.000). It was also observed that, the ferritin levels have a highly significant positive correlation with the severity of dengue. The severe dengue patients had a mean ferritin level of 9125.34 μg/l, whereas the non-severe group had 4271 μg/l. This comparison was also statistically significant, as the p value was 0.003. We report that the serum ferritin levels have a highly significant positive correlation with the severity of dengue. The gall bladder wall edema during the third and fourth day of the illness was also associated with severe dengue. However, diffuse gall bladder wall thickening and high serum ferritin levels are also reported in various other conditions and their exact cause have to be determined by the correlation of associated clinical findings and imaging features.
Collapse
|
67
|
Development and Characterization of a Genetically Stable Infectious Clone for a Genotype I Isolate of Dengue Virus Serotype 1. Viruses 2022; 14:v14092073. [PMID: 36146879 PMCID: PMC9501529 DOI: 10.3390/v14092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is primarily transmitted by the bite of an infected mosquito of Aedes aegypti and Aedes albopictus, and symptoms caused may range from mild dengue fever to severe dengue hemorrhagic fever and dengue shock syndrome. Reverse genetic system represents a valuable tool for the study of DENV virology, infection, pathogenesis, etc. Here, we generated and characterized an eukaryotic-activated full-length infectious cDNA clone for a DENV serotype 1 (DENV-1) isolate, D19044, collected in 2019. Initially, nearly the full genome was determined by sequencing overlapping RT-PCR products, and was classified to be genotype I DENV-1. D19044 wild-type cDNA clone (D19044_WT) was assembled by four subgenomic fragments, in a specific order, into a low-copy vector downstream the CMV promoter. D19044_WT released the infectious virus at a low level (1.26 × 103 focus forming units per milliliter [FFU/mL]) following plasmid transfection of BHK-21 cells. Further adaptation by consecutive virus passages up to passage 37, and seven amino acid substitutions (7M) were identified from passage-recovered viruses. The addition of 7M (D19044_7M) greatly improved viral titer (7.5 × 104 FFU/mL) in transfected BHK-21 culture, and virus infections in 293T, Huh7.5.1, and C6/36 cells were also efficient. D19044_7M plasmid was genetically stable in transformant bacteria after five transformation-purification cycles, which did not change the capacity of producing infectious virus. Moreover, the D19044_7M virus was inhibited by mycophenolic acid in a dose-dependent manner. In conclusion, we have developed a DNA-launched full-length infectious clone for a genotype I isolate of DENV-1, with genetic stability in transformant bacteria, thus providing a useful tool for the study of DENV-1.
Collapse
|
68
|
Sayfullin MA, Zvereva NN, Karan LS, Grigoreva YE, Akinshina YA, Larichev VF, Shamsheva OV, Bazarova MV, Smetanina SV. [Characteristics of imported cases of Dengue fever and hemorrhagic Dengue fever in 2009-2019]. Vopr Virusol 2022; 67:322-330. [PMID: 36097713 DOI: 10.36233/0507-4088-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION In Russia, the approved morbidity statistics system is represented by the International Classification of Diseases of the 10th revision (ICD-10). This classification provides two forms of dengue fever (DF): dengue fever (A90) and hemorrhagic dengue (A91). Official statistics on the ratio of forms of DF is not published in open sources and this lack of information about the real ratio of the forms of DF makes it difficult to objectively assess the factors that determine the severity of this disease. THE AIM compare the clinical and epidemiological features of dengue fever and hemorrhagic dengue fever in patients hospitalized in 2009-2019 to the City Infectious Clinical Hospital No. 1, Moscow. MATERIALS AND METHODS A retrospective cohort study. We analyzed the patient database and reviewed 391 medical records of patients with diagnosed dengue fever. We compared gender, age characteristics, travel geography including information about previous visits of patients to endemic regions and dengue virus serotype. To determine the primary and re-infection rate, an analysis of IgG for the dengue virus was carried out on days 1-5 of the disease. To compare indicators, 95% confidence intervals for proportions, medians, and interquartile ranges were calculated. The significance of differences between independent samples for assessing qualitative characteristics was carried out using the criteria χ2, the odds ratio. To assess the quantitative characteristics, the Mann-Whitney test was used. Differences were considered statistically significant at p ≤ 0.05. RESULTS The proportion of patients with dengue fever was 14.9% of all hospitalized with febrile illnesses that developed after international travel. Hemorrhagic dengue fever (DHF) was diagnosed in 15.7% of patients with dengue fever. DHF developed significantly more often in women, as well as in those who had history of repeated visits to endemic regions. However, DHF was also diagnosed in 10.9% of first-time travelers to tropical countries. We did not find significant differences in the rates of DHF development depending on age and dengue virus serotype. In a number of patients who had not previously traveled to endemic regions, IgG to the dengue virus were detected, which may indicate a previous infection with related flaviviruses. CONCLUSION It has been established that in the regions most visited by Russians, there is a circulation of all serotypes of the dengue virus with an annual change in the predominant serotype.
Collapse
Affiliation(s)
- M A Sayfullin
- Pirogov Russian National Research Medical University; Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Healthcare of the Russian Federation
| | - N N Zvereva
- Pirogov Russian National Research Medical University
| | - L S Karan
- Central Research Institute of Epidemiology» of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - Ya E Grigoreva
- Central Research Institute of Epidemiology» of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - Yu A Akinshina
- Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Healthcare of the Russian Federation; CJSC "EcoLab"
| | - V F Larichev
- Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Healthcare of the Russian Federation
| | - O V Shamsheva
- Pirogov Russian National Research Medical University
| | | | | |
Collapse
|
69
|
Arguni E, Indriani C, Rahayu A, Supriyati E, Yohan B, Hayati RF, Wardana S, Tantowijoyo W, Anshari MR, Rahayu E, Ahmad RA, Utarini A, Simmons CP, Sasmono RT. Dengue virus population genetics in Yogyakarta, Indonesia prior to city-wide Wolbachia deployment. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105308. [PMID: 35644356 DOI: 10.1016/j.meegid.2022.105308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Dengue has been endemic in Yogyakarta, Indonesia for decades. Here, we report the dengue epidemiology, entomology, and virology in Yogyakarta in 2016-2017, prior to the commencement of the Applying Wolbachia to Eliminate Dengue (AWED) randomized trial. Dengue epidemiological data were compiled and blood samples from dengue-suspected patients were tested for dengue virus (DENV). Ae. aegypti mosquito samples were caught from the field using BG-Sentinel traps and tested for the presence of DENV infection. Sequencing of the DENV E gene was used to determine the phylogeny and genotypes of circulating DENV. Within the last decade, the 2016-2017 dengue incidence was considered very high. Among the 649 plasma samples collected between March 2016-February 2017; and 36,910 mosquito samples collected between December 2016-May 2017, a total of 197 and 38 samples were DENV-positive by qRT-PCR, respectively. All four DENV serotypes were detected, with DENV-3 (n = 88; 44.67%) and DENV-1 (n = 87; 44.16%) as the predominant serotype, followed by DENV-4 (n = 12; 6.09%) and DENV-2 (n = 10; 5.08%). The Yogyakarta DENV-1 isolates were classified into Genotype I and IV, while DENV-2, DENV-3, and DENV-4 isolates were classified into the Cosmopolitan genotype, Genotype I, and Genotype II, respectively. Yogyakarta DENV isolates were closely related to Indonesian strains from neighboring Javanese cities, consistent with the endemic circulation of DENV on this highly populous island. Our study provides comprehensive baseline information on the DENV population genetic characteristics in Yogyakarta, which are useful as baseline data for the AWED trial and the future DENV surveillance in the city in the presence of a Wolbachia-infected Ae. aegypti population.
Collapse
Affiliation(s)
- Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Citra Indriani
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ayu Rahayu
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Rahma F Hayati
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Satrio Wardana
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Warsito Tantowijoyo
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Ridwan Anshari
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endang Rahayu
- Disease Control Department, Yogyakarta District Health Office, Yogyakarta, Indonesia
| | - Riris Andono Ahmad
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adi Utarini
- World Mosquito Program Yogyakarta, Centre of Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Health Policy and Management, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cameron P Simmons
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Victoria 3800, Australia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| |
Collapse
|
70
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, Juárez-Palma L, Alvarado-Delgado A, González-Bonilla CR, Rodríguez MH. Genetic diversity and spatiotemporal dynamics of DENV-1 and DENV-2 infections during the 2012-2013 outbreak in Mexico. Virology 2022; 573:141-150. [PMID: 35779336 DOI: 10.1016/j.virol.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022]
Abstract
Dengue fever is caused by four related dengue virus serotypes, DENV-1 to DENV-4, where each serotype comprises distinct genotypes and lineages. The last major outbreak in Mexico occurred during 2012 and 2013, when 112,698 confirmed cases were reported (DENV-1 and DENV-2 were predominant). Following partial E, NS2A and NS5 gene sequencing, based on the virus genome variability, we analyzed 396 DENV-1 and 248 DENV-2 gene sequences from serum samples from dengue acute clinical cases from 13 Mexican states, Mutations were identified, and their genetic variability estimated, along with their evolutionary relationship with DENV sequences sampled globally. DENV-1 genotype V and DENV-2 Asian-American genotype V were the only genotypes circulating during the outbreak. Mutations in NS2A and NS5 proteins were widely disseminated and suggested local emergence of new lineages. Phylogeographic analysis suggested viral spread occurred from coastal regions, and tourist destinations, such as Yucatan and Quintana Roo, which played important roles in disseminating these lineages.
Collapse
Affiliation(s)
- Eduardo D Rodríguez-Aguilar
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Lilia Juárez-Palma
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| | - Cesar R González-Bonilla
- Universidad Nacional Autónoma de México and Instituto Mexicano del Seguro Social, Mexico City, 04510, Mexico.
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, 62100, Mexico.
| |
Collapse
|
71
|
Gallichotte EN, Henein S, Nivarthi U, Delacruz M, Scobey T, Bonaparte M, Moser J, Munteanu A, Baric R, de Silva AM. Vaccine-induced antibodies to contemporary strains of dengue virus type 4 show a mechanistic correlate of protective immunity. Cell Rep 2022; 39:110930. [PMID: 35675766 DOI: 10.1016/j.celrep.2022.110930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/18/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The four dengue virus serotypes (DENV1-4) are mosquito-borne flaviviruses of humans. Several live-attenuated tetravalent DENV vaccines are at different stages of clinical development and approval. In children with no baseline immunity to DENVs, a leading vaccine (Dengvaxia) is efficacious against vaccine-matched DENV4 genotype II (GII) strains but not vaccine-mismatched DENV4 GI viruses. We use a panel of recombinant DENV4 viruses displaying GI or GII envelope (E) proteins to map Dengvaxia-induced neutralizing antibodies (NAbs) linked to protection. The vaccine stimulated antibodies that neutralize the DENV4 GII virus better than the GI virus. The neutralization differences map to 5 variable amino acids on the E protein located within a region targeted by DENV4 NAbs, supporting a mechanistic role for these epitope-specific NAbs in protection. In children with no baseline immunity to DENVs, levels of DENV4 serotype- and genotype-specific NAbs induced by vaccination are predictive of vaccine efficacy.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Usha Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Matthew Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill, NC, USA
| | | | | | | | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill, NC, USA.
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
72
|
Letizia AG, Pratt CB, Wiley MR, Fox AT, Mosore M, Agbodzi B, Yeboah C, Kumordjie S, Di Paola N, Assana KC, Coulidiaty D, Ouedraogo C, Bonney JHK, Ampofo W, Tarnagda Z, Sangaré L. Retrospective Genomic Characterization of a 2017 Dengue Virus Outbreak, Burkina Faso. Emerg Infect Dis 2022; 28:1198-1210. [PMID: 35608626 PMCID: PMC9155902 DOI: 10.3201/eid2806.212491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of contemporary genetic composition of dengue virus (DENV) in Africa is lacking. By using next-generation sequencing of samples from the 2017 DENV outbreak in Burkina Faso, we isolated 29 DENV genomes (5 serotype 1, 16 serotype 2 [DENV-2], and 8 serotype 3). Phylogenetic analysis demonstrated the endemic nature of DENV-2 in Burkina Faso. We noted discordant diagnostic results, probably related to genetic divergence between these genomes and the Trioplex PCR. Forward and reverse1 primers had a single mismatch when mapped to the DENV-2 genomes, probably explaining the insensitivity of the molecular test. Although we observed considerable homogeneity between the Dengvaxia and TetraVax-DV-TV003 vaccine strains as well as B cell epitopes compared with these genomes, we noted unique divergence. Continual surveillance of dengue virus in Africa is needed to clarify the ongoing novel evolutionary dynamics of circulating virus populations and support the development of effective diagnostic, therapeutic, and preventive countermeasures.
Collapse
|
73
|
Coutinho-da-Silva MS, Sucupira PHF, Bicalho KA, Campi-Azevedo AC, Brito-de-Sousa JP, Peruhype-Magalhães V, Rios M, Teixeira-Carvalho A, Coelho-dos-Reis JGA, Antonelli LRDV, de Rezende VB, de Melo FLR, Garcia CC, Silva-Andrade JC, da Costa-Rocha IA, Bastos MDS, da Rocha LA, Silva VA, Ferreira EDS, Marinho EPM, Costa AG, Gomes MDS, Amaral LR, Furtado ECDS, da Silva EVP, Ramos BA, dos Santos ÉB, Freitas MNO, Vasconcelos PFDC, Martins-Filho OA, Araújo MSS, Ferreira MS, Martins LC. Serum Soluble Mediator Profiles and Networks During Acute Infection With Distinct DENV Serotypes. Front Immunol 2022; 13:892990. [PMID: 35711447 PMCID: PMC9193801 DOI: 10.3389/fimmu.2022.892990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
A panoramic analysis of chemokines, pro-inflammatory/regulatory cytokines, and growth factors was performed in serum samples from patients with acute DENV infection (n=317) by a high-throughput microbeads array. Most soluble mediators analyzed were increased in DENV patients regardless of the DENV serotype. The substantial increase (≥10-fold) of CXCL10, IL-6, and IFN-γ, and decreased levels of PDGF (<0.4-fold) was universally identified in all DENV serotypes. Of note, increased levels of CXCL8, CCL4, and IL-12 (≥3-9-fold) were selectively observed in DENV2 as compared to DENV1 and DENV4. Heatmap and biomarker signatures further illustrated the massive release of soluble mediators observed in DENV patients, confirming the marked increase of several soluble mediators in DENV2. Integrative correlation matrices and networks showed that DENV infection exhibited higher connectivity among soluble mediators. Of note, DENV2 displayed a more complex network, with higher connectivity involving a higher number of soluble mediators. The timeline kinetics (Day 0-1, D2, D3, D4-6) analysis additionally demonstrated differences among DENV serotypes. While DENV1 triggers a progressive increase of soluble mediators towards D3 and with a decline at D4-6, DENV2 and DENV4 develop with a progressive increase towards D4-6 with an early plateau observed in DENV4. Overall, our results provided a comprehensive overview of the immune response elicited by DENV infection, revealing that infection with distinct DENV serotypes causes distinct profiles, rhythms, and dynamic network connectivity of soluble mediators. Altogether, these findings may provide novel insights to understand the pathogenesis of acute infection with distinct DENV serotypes.
Collapse
Affiliation(s)
| | | | - Kelly Alves Bicalho
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
| | | | | | | | - Maria Rios
- Office of Blood Research and Review (OBRR), Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, United States
| | | | | | | | | | - Fernanda Ludolf Ribeiro de Melo
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Couto Garcia
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Michele de Souza Bastos
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Lucia Alves da Rocha
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Valderjane Aprigio Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Ewerton da Silva Ferreira
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | - Allyson Guimarães Costa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia (UFU), Patos de Minas, Brazil
| | - Laurence Rodrigues Amaral
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia (UFU), Patos de Minas, Brazil
| | | | | | - Bruna Alves Ramos
- Departamento de Arboviroses e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Éder Barros dos Santos
- Departamento de Arboviroses e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
- *Correspondence: Olindo Assis Martins-Filho, ; Márcio Sobreira Silva Araújo,
| | - Márcio Sobreira Silva Araújo
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
- *Correspondence: Olindo Assis Martins-Filho, ; Márcio Sobreira Silva Araújo,
| | | | - Livia Carício Martins
- Departamento de Arboviroses e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil
| |
Collapse
|
74
|
Lineage Replacement Associated with Fitness Gain in Mammalian Cells and Aedes aegypti: A Catalyst for Dengue Virus Type 2 Transmission. Microorganisms 2022; 10:microorganisms10061100. [PMID: 35744618 PMCID: PMC9231088 DOI: 10.3390/microorganisms10061100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Shifting of virus serotypes and clade replacement events are known to drive dengue epidemics. However, only a few studies have attempted to elucidate the virus attributes that contribute to such epidemics. In 2007, Singapore experienced a dengue outbreak affecting more than 8000 individuals. The outbreak ensued with the shuffling of dominant clades (from clade I to clade II) of Dengue virus 2 (DENV-2) cosmopolitan genotype, at a time when the Aedes premise index was significantly low. Therefore, we hypothesized that clade II had higher epidemic potential and fitness than clade I. To test this hypothesis, we tested the replication and apoptotic qualities of clade I and II isolates in mammalian cells and their ability to infect and disseminate in a field strain of Ae. Aegypti. Our findings indicated that clade II replicated more efficiently in mammalian cells than clade I and possessed higher transmission potential in local vectors. This could collectively improve the epidemic potential of clade II, which dominated during the outbreak in 2007. The findings exemplify complex interactions between the emergence, adaptation and transmission potential of DENV, and testify the epidemiological importance of a deeper understanding of virus and vector dynamics in endemic regions.
Collapse
|
75
|
Taslem Mourosi J, Awe A, Jain S, Batra H. Nucleic Acid Vaccine Platform for DENGUE and ZIKA Flaviviruses. Vaccines (Basel) 2022; 10:834. [PMID: 35746442 PMCID: PMC9229673 DOI: 10.3390/vaccines10060834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Dengue virus and Zika virus are mosquito-borne, single-stranded, positive-sense RNA viruses that belong to the Flaviviridae family. Both the viruses are closely related and have similarities with other flaviviruses. Dengue virus (DENV) causes a severe febrile illness with fever, joint pain, and rash leading to a life-threatening condition in severe cases. While Zika virus (ZIKV) primarily causes mild fever, it can be passed from a pregnant mother to her fetus, resulting in severe birth defect microcephaly and even causing a rare autoimmune disease-Guillain-Barre syndrome. To date, there are no approved DENV and ZIKA vaccines available, except a Dengue vaccine (Dengvaxia, Sanofi Pasteur Inc., Lyon, France) recently approved to be used only for 9-16 years of age groups living in endemic areas and having a previous record of confirmed dengue infection. There are several potential vaccine candidates in the clinical trials based on multiple vaccine platforms, such as live attenuated, subunit, nucleic acid, and viral vector-based vaccines. In the current review, we have focused exclusively on the nucleic acid vaccine platform and discussed the progress of all the DNA/RNA vaccine candidates under preclinical and clinical studies for DENV and ZIKA viruses. Additionally, we have described a brief history of the emergence of these flaviviruses, major structural similarities between them, prominent vaccine targets, and the mechanism of virus entry and infection.
Collapse
Affiliation(s)
- Jarin Taslem Mourosi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (J.T.M.); (A.A.)
| | - Ayobami Awe
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (J.T.M.); (A.A.)
| | - Swati Jain
- Department of Surgery (Head and Neck Service), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Himanshu Batra
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
76
|
Han A, Sun B, Sun Z, Xu X, Yang Q, Xie D, Guan W, Lou Y. Molecular Characterization and Phylogenetic Analysis of the 2019 Dengue Outbreak in Wenzhou, China. Front Cell Infect Microbiol 2022; 12:829380. [PMID: 35663472 PMCID: PMC9161089 DOI: 10.3389/fcimb.2022.829380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
In 2019, a dengue outbreak occurred with 290 confirmed cases in Wenzhou, a coastal city in southeast China. To identify the origin of the dengue virus (DENV) from this outbreak, viral RNA was extracted from four serum samples and sequenced for whole genome analysis. Then, phylogenetic analysis, gene mutation, secondary structure prediction, selection pressure analysis, and recombination analysis were performed. DENV strains Cam-03 and Cam-11 were isolated from patients traveling from Cambodia, while ZJWZ-18 and ZJWZ-62 strains were isolated from local patients without a record of traveling abroad. The whole genome sequence of all four strains was 10,735 nucleotides long. Phylogenetic tree analysis showed that the four strains belonged to genotype 1 of DENV-1, but the local Wenzhou strains and imported strains clustered in different branches. ZJWZ-18 and ZJWZ-62 were closely related to strain MF033254-Singapore-2016, and Cam-03 and Cam-11 were closely related to strain AB608788-China : Taiwan-1994. A comparison of the coding regions between the local strains and the DENV-1 standard strain (EU848545-Hawaii-1944) showed 82 amino acid mutations between the two strains. A total of 55 amino acid mutations were found between the coding regions of the local and imported strains. The overall secondary structure of the 3' UTR of the local strains had changed: apparent changes in the head and tail position were observed when compared to DENV-1 standard strain. Furthermore, selection pressure analysis and recombination detection using the 4 isolates and 41 reference strains showed two credible positive selection sites and eight credible recombination events, which warrant further studies. This study may enhance the understanding of viral replication, infection, evolution, virulence, and pathogenicity of DENV.
Collapse
Affiliation(s)
- Axiang Han
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Baochang Sun
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Zhewei Sun
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Danli Xie
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
77
|
Stica CJ, Barrero RA, Murray RZ, Devine GJ, Phillips MJ, Frentiu FD. Global Evolutionary History and Dynamics of Dengue Viruses Inferred from Whole Genome Sequences. Viruses 2022; 14:v14040703. [PMID: 35458433 PMCID: PMC9030598 DOI: 10.3390/v14040703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Dengue is an arboviral disease caused by dengue virus (DENV), leading to approximately 25,000 deaths/year and with over 40% of the world’s population at risk. Increased international travel and trade, poorly regulated urban expansion, and warming global temperatures have expanded the geographic range and incidence of the virus in recent decades. This study used phylogenetic and selection pressure analyses to investigate trends in DENV evolution, using whole genome coding sequences from publicly available databases alongside newly sequenced isolates collected between 1963–1997 from Southeast Asia and the Pacific. Results revealed very similar phylogenetic relationships when using the envelope gene and the whole genome coding sequences. Although DENV evolution is predominantly driven by negative selection, a number of amino acid sites undergoing positive selection were found across the genome, with the majority located in the envelope and NS5 genes. Some genotypes appear to be diversifying faster than others within each serotype. The results from this research improve our understanding of DENV evolution, with implications for disease control efforts such as Wolbachia-based biocontrol and vaccine design.
Collapse
Affiliation(s)
- Caleb J. Stica
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia;
| | - Roberto A. Barrero
- eResearch Office, Division of Research and Innovation, Queensland University of Technology, P Block, 2 George Street, Brisbane, QLD 4000, Australia;
| | - Rachael Z. Murray
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, KG-Q Block, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia;
| | - Gregor J. Devine
- Mosquito Control Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
| | - Matthew J. Phillips
- School of Biology and Environmental Science, Queensland University of Technology, R Block, 2 George Street, Brisbane, QLD 4000, Australia;
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia;
- Correspondence:
| |
Collapse
|
78
|
Gandy M. THE ZOONOTIC CITY: Urban Political Ecology and the Pandemic Imaginary. INTERNATIONAL JOURNAL OF URBAN AND REGIONAL RESEARCH 2022; 46:202-219. [PMID: 35874453 PMCID: PMC9299822 DOI: 10.1111/1468-2427.13080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 05/30/2023]
Abstract
In the context of the Covid-19 pandemic this article takes a longer view of the evolving relationship between urbanization and the range of zoonotic diseases that have spread from animals to humans. I suggest that the existing interpretation of epidemiological transitions remains overly Eurocentric and requires a more nuanced conception of global environmental history. Similarly, the conceptualization of urban space within these teleological schemas has relied on a narrow range of examples and has failed to fully engage with networked dimensions to urbanization. At an analytical level I consider the potential for extending the conceptual framework offered by urban political ecology to take greater account of the epidemiological dimensions to contemporary urbanization and its associated pandemic imaginary. I examine how contemporary health threats intersect with complex patterns of environmental change, including the destruction of biodiversity (and trade in live animals), the co-evolutionary dynamics of viruses and other pathogens, and wider dimensions to the global technosphere, including food production, infrastructure networks, and the shifting topographies of peri- or ex-urban contact zones.
Collapse
|
79
|
Qian W, Xue JX, Xu J, Li F, Zhou GF, Wang F, Luo RH, Liu J, Zheng YT, Zhou GC. Design, synthesis, discovery and SAR of the fused tricyclic derivatives of indoline and imidazolidinone against DENV replication and infection. Bioorg Chem 2022; 120:105639. [DOI: 10.1016/j.bioorg.2022.105639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
80
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
81
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
82
|
Mukhtar MM, Ibrahim SS. Temporal Evaluation of Insecticide Resistance in Populations of the Major Arboviral Vector Aedes Aegypti from Northern Nigeria. INSECTS 2022; 13:187. [PMID: 35206760 PMCID: PMC8876019 DOI: 10.3390/insects13020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
To support evidence-based control measures, two Nigerian Aedes populations (BUK and Pantami) were characterised. Larval bioassay using temephos and deltamethrin revealed a significant increase in deltamethrin resistance, with LC50 of 0.018mg/L (resistance ratio compared to New Orleans, RR = 2.250) in 2018 increasing ~6-fold, by 2019 (LC50 = 0.100mg/L, RR = 12.5), and ~11-fold in 2020 (LC50 = 0.198mg/L, RR = 24.750). For the median deltamethrin concentration (0.05mg/L), a gradual decrease in mortality was observed, from 50.6% in 2018, to 44.9% in 2019, and 34.2% in 2020. Extremely high DDT resistance was observed, with <3% mortalities and LT50s of 352.87 min, 369.19 min and 406.94 min in 2018, 2019 and 2020, respectively. Significant temporal increase in resistance was observed towards ƛ-cyhalothrin (a type II pyrethroid) over three years. Synergist bioassays with diethylmaleate and piperonylbutoxide significantly recovered DDT and ƛ-cyhalothrin susceptibility respectively, implicating glutathione S-transferases and CYP450s. Cone bioassays revealed increased resistance to the PermaNet® 3.0, side panels (mortalities of 94% in 2018, 66.4% in 2019, and 73.6% in 2020), while full susceptibility was obtained with the roof of PermaNet® 3.0. The F1534C kdr mutation occurred in low frequency, with significant correlation between heterozygote genotypes and DDT resistance. This temporal increase in resistance is a major challenge for control of this vector of public health importance.
Collapse
|
83
|
Kim EY, Che Y, Dean HJ, Lorenzo-Redondo R, Stewart M, Keller CK, Whorf D, Mills D, Dulin NN, Kim T, Votoupal M, Walter M, Fernandez-Sesma A, Kim H, Wolinsky SM. Transcriptome-wide changes in gene expression, splicing, and lncRNAs in response to a live attenuated dengue virus vaccine. Cell Rep 2022; 38:110341. [PMID: 35139383 PMCID: PMC8994511 DOI: 10.1016/j.celrep.2022.110341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 01/26/2023] Open
Abstract
The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for both protein-coding and noncoding genes to broaden our understanding of the immune response. Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression changes related to multiple signaling pathways that detect viral infection. Co-expression networks isolate immune cell-type-related and interferon-response modules that represent specific biological processes that correlate with more robust antibody responses. These data provide insights into the early determinants of the variable immune response to the vaccine, highlighting the significance of splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Yan Che
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | | | - Ramon Lorenzo-Redondo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Michael Stewart
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Caroline K Keller
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Daniel Whorf
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Dawson Mills
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Nikita N Dulin
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Tiffany Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Megan Votoupal
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Miriam Walter
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Heejin Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Steven M Wolinsky
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA.
| |
Collapse
|
84
|
Naqvi AAT, Anjum F, Shafie A, Badar S, Elasbali AM, Yadav DK, Hassan MI. Investigating host-virus interaction mechanism and phylogenetic analysis of viral proteins involved in the pathogenesis. PLoS One 2021; 16:e0261497. [PMID: 34914801 PMCID: PMC8675761 DOI: 10.1371/journal.pone.0261497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Since the emergence of yellow fever in the Americas and the devastating 1918 influenza pandemic, biologists and clinicians have been drawn to human infecting viruses to understand their mechanisms of infection better and develop effective therapeutics against them. However, the complex molecular and cellular processes that these viruses use to infect and multiply in human cells have been a source of great concern for the scientific community since the discovery of the first human infecting virus. Viral disease outbreaks, such as the recent COVID-19 pandemic caused by a novel coronavirus, have claimed millions of lives and caused significant economic damage worldwide. In this study, we investigated the mechanisms of host-virus interaction and the molecular machinery involved in the pathogenesis of some common human viruses. We also performed a phylogenetic analysis of viral proteins involved in host-virus interaction to understand the changes in the sequence organization of these proteins during evolution for various strains of viruses to gain insights into the viral origin's evolutionary perspectives.
Collapse
Affiliation(s)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sufian Badar
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, South Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
85
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
86
|
Paradkar PN, Sahasrabudhe PR, Ghag Sawant M, Mukherjee S, Blasdell KR. Towards Integrated Management of Dengue in Mumbai. Viruses 2021; 13:2436. [PMID: 34960705 PMCID: PMC8703503 DOI: 10.3390/v13122436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
With increasing urbanisation, the dengue disease burden is on the rise in India, especially in large cities such as Mumbai. Current dengue surveillance in Mumbai includes municipal corporation carrying out specific activities to reduce mosquito breeding sites and the use of insecticides to suppress the adult mosquito populations. Clinical cases remain either underreported or misreported due to the restriction to government clinics, missing the large private health care sector. There is a need for an integrated approach to manage dengue outbreaks in Mumbai. There are various novel strategies available for use that can be utilised to improve disease detection, mosquito surveillance, and control of mosquito-borne diseases. These novel technologies are discussed in this manuscript. Given the complex ecosystem of mosquito-borne diseases in Mumbai, integrating data obtained from these technologies would support the ongoing mosquito control measures in Mumbai.
Collapse
Affiliation(s)
- Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong 3220, Australia;
| | | | - Mrunal Ghag Sawant
- Department of Zoonosis, Haffkine Institute for Training Research and Testing, Parel, Mumbai 400012, India;
| | - Sandeepan Mukherjee
- Department of Virology, Haffkine Institute for Training Research and Testing, Parel, Mumbai 400012, India;
| | - Kim R. Blasdell
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong 3220, Australia;
| |
Collapse
|
87
|
IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J Immunol Res 2021; 2021:8214656. [PMID: 34840991 PMCID: PMC8626198 DOI: 10.1155/2021/8214656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1β, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.
Collapse
|
88
|
Development of a Dengue Virus Serotype-Specific Non-Structural Protein 1 Capture Immunochromatography Method. SENSORS 2021; 21:s21237809. [PMID: 34883813 PMCID: PMC8659457 DOI: 10.3390/s21237809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Four serotypes of dengue virus (DENV), type 1 to 4 (DENV-1 to DENV-4), exhibit approximately 25–40% of the difference in the encoded amino acid residues of viral proteins. Reverse transcription of RNA extracted from specimens followed by PCR amplification is the current standard method of DENV serotype determination. However, since this method is time-consuming, rapid detection systems are desirable. We established several mouse monoclonal antibodies directed against DENV non-structural protein 1 and integrated them into rapid DENV detection systems. We successfully developed serotype-specific immunochromatography systems for all four DENV serotypes. Each system can detect 104 copies/mL in 15 min using laboratory and clinical isolates of DENV. No cross-reaction between DENV serotypes was observed in these DENV isolates. We also confirmed that there was no cross-reaction with chikungunya, Japanese encephalitis, Sindbis, and Zika viruses. Evaluation of these systems using serum from DENV-infected individuals indicated a serotype specificity of almost 100%. These assay systems could accelerate both DENV infection diagnosis and epidemiologic studies in DENV-endemic areas.
Collapse
|
89
|
Katzelnick LC, Escoto AC, Huang AT, Garcia-Carreras B, Chowdhury N, Berry IM, Chavez C, Buchy P, Duong V, Dussart P, Gromowski G, Macareo L, Thaisomboonsuk B, Fernandez S, Smith DJ, Jarman R, Whitehead SS, Salje H, Cummings DA. Antigenic evolution of dengue viruses over 20 years. Science 2021; 374:999-1004. [PMID: 34793238 PMCID: PMC8693836 DOI: 10.1126/science.abk0058] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infection with one of dengue viruses 1 to 4 (DENV1-4) induces protective antibodies against homotypic infection. However, a notable feature of dengue viruses is the ability to use preexisting heterotypic antibodies to infect Fcγ receptor–bearing immune cells, leading to higher viral load and immunopathological events that augment disease. We tracked the antigenic dynamics of each DENV serotype by using 1944 sequenced isolates from Bangkok, Thailand, between 1994 and 2014 (348 strains), in comparison with regional and global DENV antigenic diversity (64 strains). Over the course of 20 years, the Thailand DENV serotypes gradually evolved away from one another. However, for brief periods, the serotypes increased in similarity, with corresponding changes in epidemic magnitude. Antigenic evolution within a genotype involved a trade-off between two types of antigenic change (within-serotype and between-serotype), whereas genotype replacement resulted in antigenic change away from all serotypes. These findings provide insights into theorized dynamics in antigenic evolution.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ana Coello Escoto
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Angkana T. Huang
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bernardo Garcia-Carreras
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Nayeem Chowdhury
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Chris Chavez
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Philippe Buchy
- GlaxoSmithKline (GSK) Vaccines, 637421 Singapore, Singapore
| | - Veasna Duong
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh 12201, Cambodia
| | - Philippe Dussart
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh 12201, Cambodia
| | - Gregory Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Derek J. Smith
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Stephen S. Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Henrik Salje
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| |
Collapse
|
90
|
Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, Desai C, Handley SA, Dowd KA, Amaro-Carambot E, Cardosa MJ, Sariol CA, Kallas EG, Sékaly RP, Vasilakis N, Fremont DH, Whitehead SS, Pierson TC, Diamond MS. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 2021; 29:1634-1648.e5. [PMID: 34610295 PMCID: PMC8595868 DOI: 10.1016/j.chom.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023]
Abstract
Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Chandni Desai
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emerito Amaro-Carambot
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - M Jane Cardosa
- Institute of Health and Community Medicine, Universiti Sarawak Malaysia (UNIMAS), Kota Samarahan, Sarawak 94300, Malaysia; Integrated Research Associates, San Rafael, CA 94903, USA
| | - Carlos A Sariol
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Esper G Kallas
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Rafick-Pierre Sékaly
- Department of Microbiology and Immunology, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA.
| |
Collapse
|
91
|
Nadugala MN, Jeewandara C, Jadi RS, Malavige GN, de Silva AM, Premaratne PH, Goonasekara CL. Natural immunogenic properties of bioinformatically predicted linear B-cell epitopes of dengue envelope and pre-membrane proteins. BMC Immunol 2021; 22:71. [PMID: 34732126 PMCID: PMC8567598 DOI: 10.1186/s12865-021-00462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background The natural antibody responses to B-cell epitopes from dengue structural proteins were assessed using immune sera from people having well-defined past dengue infections with one of the four serotypes. Method Based on an immune-computational analysis previously conducted, nineteen epitopes from the envelope (E) and eight epitopes from pre-membrane (prM), which were more than 50% conserved across all the four DENV serotypes, were selected. Peptides to represent these B-cell epitopes were obtained from commercially available arrays, and were subjected to enzyme linked immunosorbent assay with sera obtained from dengue seropositive healthy volunteers (DENV1 n = 12: DENV2 n = 12: DENV3 n = 12 and DENV4 n = 12), and 10 dengue seronegative healthy volunteers from Sri Lanka. The cut-off value for the positive antibody response was set by taking the mean response of a peptide to the negative sera plus three standard deviations. The peptides (N = 7) showing the broad immune responses were used to generate antibodies in three mice (Balb/c) batches. The mice antisera were then subjected to microneutralization assays against all the four DENV serotypes. An EC50 viral neutralization ≥ 40 times the serum dilution was considered as neutralizing. Results Five of the E-peptide and two prM peptides were recognised by most individuls exposed to infections with each of the four serotypes, showing a serotype cross-reactive broad antibody response. The mice immune sera against the peptides representing the five E protein epitopes neutralized all the four DENV serotypes. Two of these five epitopes are from the Domain II, whereas one of them includes the whole bc-loop region. Conclusion The antibody responses of highly conserved epitopes across the serotypes, were broadly responsive with sera of all four DENV serotypes collected from individuals infected with only one DENV serotype. Weakly conserved epitopes showed rather specific antibody responses dominated by one or few serotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00462-4.
Collapse
Affiliation(s)
- Mahesha N Nadugala
- Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, University of Sri Jayewardanapura, Gangodawila, Sri Lanka
| | - Ramesh S Jadi
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gathsaurie N Malavige
- Centre for Dengue Research, University of Sri Jayawardanapura, Gangodawila, Sri Lanka
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Prasad H Premaratne
- Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Charitha L Goonasekara
- Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka.
| |
Collapse
|
92
|
Calvez E, Bounmany P, Balière C, Somlor S, Viengphouthong S, Xaybounsou T, Keosenhom S, Fangkham K, Brey PT, Caro V, Lacoste V, Grandadam M. Using Background Sequencing Data to Anticipate DENV-1 Circulation in the Lao PDR. Microorganisms 2021; 9:microorganisms9112263. [PMID: 34835389 PMCID: PMC8617722 DOI: 10.3390/microorganisms9112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Since its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People’s Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010–2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreaks.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Correspondence:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Charlotte Balière
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Kitphithak Fangkham
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Lao Army Institute for Preventive Medicine, Vientiane 01030, Laos
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | - Valérie Caro
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| |
Collapse
|
93
|
Capeding MR, de Boer M, Damaso S, Guignard A. Assessing the burden of dengue among household members in Alaminos, Laguna, the Philippines: a prospective cohort study. ASIAN BIOMED 2021; 15:213-222. [PMID: 37551324 PMCID: PMC10388797 DOI: 10.2478/abm-2021-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background The incidence of dengue is increasing rapidly and is a challenging health issue in the Philippines. Epidemiological data are largely based on a passive-surveillance reporting system, which leads to substantial under-reporting of cases. Objectives To estimate dengue infection and disease incidence prospectively at the community level in an endemic area of the Philippines using an active surveillance strategy. Methods We implemented active surveillance in the highly endemic community of Alaminos, Laguna. The study consisted of a 1-year follow-up with 2 visits scheduled at the start and end of the study, as well as regular active surveillance in between and unscheduled visits for suspected cases. Blood samples were collected and analyzed to detect dengue during the first scheduled visit and all unscheduled visits, and clinical examination was performed at all visits (registered at clinicaltrials.gov NCT02766088). Results We enrolled 500 participants, aged from 6 months to 50 years; 76.2% were found positive for immunoglobulin G (95% confidence interval [CI], 71.9-80.0), with 92.0% among those aged 9-17 years. Active (weekly) surveillance identified 4 virologically confirmed cases of dengue (incidence proportion 0.8; 95% CI 0.3-2.1); all in participants aged ≤14 years. Conclusions Routine surveillance programs such as sentinel sites are needed to characterize the entire clinical spectrum of symptomatic dengue, disease incidence, and transmission in the community.
Collapse
Affiliation(s)
- Maria Rosario Capeding
- Department of Microbiology, Research Institute for Tropical Medicine, Muntinlupa, 1781Metro Manila, Philippines
| | | | | | | |
Collapse
|
94
|
Lahon A, Arya RP, Banerjea AC. Dengue Virus Dysregulates Master Transcription Factors and PI3K/AKT/mTOR Signaling Pathway in Megakaryocytes. Front Cell Infect Microbiol 2021; 11:715208. [PMID: 34513730 PMCID: PMC8427595 DOI: 10.3389/fcimb.2021.715208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023] Open
Abstract
Dengue virus (DENV) infection can cause either self-limited dengue fever or hemorrhagic complications. Low platelet count is one of the manifestations of dengue fever. Megakaryocytes are the sole producers of platelets. However, the role of both host and viral factors in megakaryocyte development, maturation, and platelet production is largely unknown in DENV infection. PI3K/AKT/mTOR pathway plays a significant role in cell survival, maturation, and megakaryocyte development. We were interested to check whether pathogenic insult can impact this pathway. We observed decreased expression of most of the major key molecules associated with the PI3K/AKT/mTOR pathway in DENV infected MEG-01 cells. In this study, the involvement of PI3K/AKT/mTOR pathway in megakaryocyte development and maturation was confirmed with the use of specific inhibitors in infected MEG-01 cells. Our results showed that direct pharmacologic inhibition of this pathway greatly impacted megakaryopoiesis associated molecule CD61 and some essential transcription factors (GATA-1, GATA-2, and NF-E2). Additionally, we observed apoptosis in megakaryocytes due to DENV infection. Our results may suggest that DENV impairs PI3K/AKT/mTOR axis and molecules involved in the development and maturation of megakaryocytes. It is imperative to investigate the role of these molecules in the context of megakaryopoiesis during DENV infection to better understand the pathways and mechanisms, which in turn might provide insights into the development of antiviral strategies.
Collapse
Affiliation(s)
- Anismrita Lahon
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Ravi P Arya
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Akhil C Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.,Institute of Advanced Virology, Kerala, India
| |
Collapse
|
95
|
Poltep K, Phadungsombat J, Nakayama EE, Kosoltanapiwat N, Hanboonkunupakarn B, Wiriyarat W, Shioda T, Leaungwutiwong P. Genetic Diversity of Dengue Virus in Clinical Specimens from Bangkok, Thailand, during 2018-2020: Co-Circulation of All Four Serotypes with Multiple Genotypes and/or Clades. Trop Med Infect Dis 2021; 6:tropicalmed6030162. [PMID: 34564546 PMCID: PMC8482112 DOI: 10.3390/tropicalmed6030162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue is an arboviral disease highly endemic in Bangkok, Thailand. To characterize the current genetic diversity of dengue virus (DENV), we recruited patients with suspected DENV infection at the Hospital for Tropical Diseases, Bangkok, during 2018-2020. We determined complete nucleotide sequences of the DENV envelope region for 111 of 276 participant serum samples. All four DENV serotypes were detected, with the highest proportion being DENV-1. Although all DENV-1 sequences were genotype I, our DENV-1 sequences were divided into four distinct clades with different distributions in Asian countries. Two genotypes of DENV-2 were identified, Asian I and Cosmopolitan, which were further divided into two and three distinct clades, respectively. In DENV-3, in addition to the previously dominant genotype III, a cluster of 6 genotype I viruses only rarely reported in Thailand was also observed. All of the DENV-4 viruses belonged to genotype I, but they were separated into three distinct clades. These results indicated that all four serotypes of DENV with multiple genotypes and/or clades co-circulate in Bangkok. Continuous investigation of DENV is warranted to further determine the relationship between DENV within Thailand and neighboring countries in Southeast Asia and Asia.
Collapse
Affiliation(s)
- Kanaporn Poltep
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
- Correspondence: (T.S.); (P.L.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
- Correspondence: (T.S.); (P.L.)
| |
Collapse
|
96
|
Dieng I, Ndione MHD, Fall C, Diagne MM, Diop M, Gaye A, Barry MA, Diop B, Ndiaye M, Bousso A, Fall G, Loucoubar C, Faye O, Sall AA, Faye O. Multifoci and multiserotypes circulation of dengue virus in Senegal between 2017 and 2018. BMC Infect Dis 2021; 21:867. [PMID: 34429064 PMCID: PMC8383925 DOI: 10.1186/s12879-021-06580-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background Dengue fever is a mosquito born disease associated with self-limited to life threatening illness. First detected in Senegal in the nineteenth century, and despite its growing incidence this last decade, significant knowledge gaps exist in our knowledge of genetic diversity of circulating strains. This study highlights the circulating serotypes and genotypes between January 2017 and December 2018 and their spatial and temporal distribution throughout all regions of Senegal. Methods We used 56 dengue virus (DENV) strains for the analysis collected from 11 sampling areas: 39 from all regions of Senegal, and 17 isolates from Thiès, a particular area of the country. Two real time RT-qPCR systems were used to confirm dengue infection and corresponding serotypes. For molecular characterization, CprM gene was sequenced and submitted to phylogenetic analysis for serotypes and genotypes assignment. Results Three dengue virus serotypes (DENV-1–3) were detected by all used methods. DENV-3 was detected in 50% (28/56) of the isolates, followed by DENV-1 and DENV-2, each representing 25% (14/56) of the isolates. DENV-3 belongs to genotype III, DENV-1 to genotype V and DENV-2 to Cosmopolitan genotype. Serotype 3 was detected in 7 sampling locations and a co-circulation of different serotypes was observed in Thiès, Fatick and Richard-toll. Conclusions These results emphasize the need of continuous DENV surveillance in Senegal to detect DENV cases, to define circulating serotypes/genotypes and to prevent the spread and the occurrence of severe cases. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06580-z.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal.
| | - Marie Henriette Dior Ndione
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Cheikh Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Moussa Moïse Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Mamadou Diop
- Epidemiology, Clinical Research and Data Science Unit, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Unit, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Unit, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Boly Diop
- Prevention Department, Ministry of Health, Dakar, Senegal
| | - Mamadou Ndiaye
- Prevention Department, Ministry of Health, Dakar, Senegal
| | | | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Unit, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, 220, Dakar, Senegal
| |
Collapse
|
97
|
Landau LJB, Fam BSDO, Yépez Y, Caldas-Garcia GB, Pissinatti A, Falótico T, Reales G, Schüler-Faccini L, Sortica VA, Bortolini MC. Evolutionary analysis of the anti-viral STAT2 gene of primates and rodents: Signature of different stages of an arms race. INFECTION GENETICS AND EVOLUTION 2021; 95:105030. [PMID: 34384937 DOI: 10.1016/j.meegid.2021.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
STAT2 plays a strategic role in defending viral infection through the signaling cascade involving the immune system initiated after type I interferon release. Many flaviviruses target the inactivation or degradation of STAT2 as a strategy to impair this host's line of defense. Primates are natural reservoirs for a range of disease-causing flaviviruses (e.g., Zika, Dengue, and Yellow Fever virus), while rodents appear less susceptible. We analyzed the STAT2 coding sequence of 28 Rodentia species and 49 Primates species. Original data from 19 Platyrrhini species were sequenced for the SH2 domain of STAT2 and included in the analysis. STAT2 has many sites whose variation can be explained by positive selection, measurement by two methods (PALM indicated 12, MEME 61). Both evolutionary tests significantly marked sites 127, 731, 739, 766, and 780. SH2 is under evolutionary constraint but presents episodic positive selection events within Rodentia: in one of them, a moderately radical change (serine > arginine) at position 638 is found in Peromyscus species, and can be implicated in the difference in susceptibility to flaviviruses within Rodentia. Some other positively selected sites are functional such as 5, 95, 203, 251, 782, and 829. Sites 251 and 287 regulate the signaling mediated by the JAK-STAT2 pathway, while 782 and 829 create a stable tertiary structure of STAT2, facilitating its connection with transcriptional co-activators. Only three positively selected sites, 5, 95, and 203, are recognized members who act on the interface between STAT2 and flaviviruses NS5 protein. We suggested that due to the higher evolutionary rate, rodents are, at this moment, taking some advantage in the battle against infections for some well-known Flaviviridae, in particular when compared to primates. Our results point to dynamics that fit with a molecular evolutionary scenario shaped by a thought-provoking virus-host arms race.
Collapse
Affiliation(s)
- Luane Jandira Bueno Landau
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana Sampaio de Oliveira Fam
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yuri Yépez
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alcides Pissinatti
- Rio de Janeiro's Primatology Center (RJPC - INEA), Rio de Janeiro, RJ, Brazil
| | - Tiago Falótico
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Albuquerque Sortica
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
98
|
Sanchez-Vargas LA, Anderson KB, Srikiatkhachorn A, Currier JR, Friberg H, Endy TP, Fernandez S, Mathew A, Rothman AL. Longitudinal Analysis of Dengue Virus-Specific Memory T Cell Responses and Their Association With Clinical Outcome in Subsequent DENV Infection. Front Immunol 2021; 12:710300. [PMID: 34394112 PMCID: PMC8355709 DOI: 10.3389/fimmu.2021.710300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Memory T cells resulting from primary dengue virus (DENV) infection are hypothesized to influence the clinical outcome of subsequent DENV infection. However, the few studies involving prospectively collected blood samples have found weak and inconsistent associations with outcome and variable temporal trends in DENV-specific memory T cell responses between subjects. This study used both ex-vivo and cultured ELISPOT assays to further evaluate the associations between DENV serotype-cross-reactive memory T cells and severity of secondary infection. Using ex-vivo ELISPOT assays, frequencies of memory T cells secreting IFN-γ in response to DENV structural and non-structural peptide pools were low in PBMC from multiple time points prior to symptomatic secondary DENV infection and showed a variable response to infection. There were no differences in responses between subjects who were not hospitalized (NH, n=6) and those who were hospitalized with dengue hemorrhagic fever (hDHF, n=4). In contrast, responses in cultured ELISPOT assays were more reliably detectable prior to secondary infection and showed more consistent increases after infection. Responses in cultured ELISPOT assays were higher in individuals with hDHF (n=8) compared to NH (n=9) individuals before the secondary infection, with no difference between these groups after infection. These data demonstrate an association of pre-existing DENV-specific memory responses with the severity of illness in subsequent DENV infection, and suggest that frequencies of DENV-reactive T cells measured after short-term culture may be of particular importance for assessing the risk for more severe dengue disease.
Collapse
Affiliation(s)
- Luis Alberto Sanchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Kathryn B Anderson
- Department of Medicine, Department of Microbiology and Immunology, Institute for Global Health and Translational Sciences, State University of New York-Upstate Medical University, Syracuse, NY, United States
| | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States.,Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Timothy P Endy
- Department of Medicine, Department of Microbiology and Immunology, Institute for Global Health and Translational Sciences, State University of New York-Upstate Medical University, Syracuse, NY, United States
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anuja Mathew
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| |
Collapse
|
99
|
Fibriansah G, Lim XN, Lok SM. Morphological Diversity and Dynamics of Dengue Virus Affecting Antigenicity. Viruses 2021; 13:v13081446. [PMID: 34452312 PMCID: PMC8402850 DOI: 10.3390/v13081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/30/2023] Open
Abstract
The four serotypes of the mature dengue virus can display different morphologies, including the compact spherical, the bumpy spherical and the non-spherical clubshape morphologies. In addition, the maturation process of dengue virus is inefficient and therefore some partially immature dengue virus particles have been observed and they are infectious. All these viral particles have different antigenicity profiles and thus may affect the type of the elicited antibodies during an immune response. Understanding the molecular determinants and environmental conditions (e.g., temperature) in inducing morphological changes in the virus and how potent antibodies interact with these particles is important for designing effective therapeutics or vaccines. Several techniques, including cryoEM, site-directed mutagenesis, hydrogen-deuterium exchange mass spectrometry, time-resolve fluorescence resonance energy transfer, and molecular dynamic simulation, have been performed to investigate the structural changes. This review describes all known morphological variants of DENV discovered thus far, their surface protein dynamics and the key residues or interactions that play important roles in the structural changes.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Xin-Ni Lim
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Correspondence:
| |
Collapse
|
100
|
Ngwe Tun MM, Pandey K, Nabeshima T, Kyaw AK, Adhikari M, Raini SK, Inoue S, Dumre SP, Pandey BD, Morita K. An Outbreak of Dengue Virus Serotype 2 Cosmopolitan Genotype in Nepal, 2017. Viruses 2021; 13:v13081444. [PMID: 34452310 PMCID: PMC8402744 DOI: 10.3390/v13081444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is one of the most prevalent neglected tropical diseases, with half of the world's population at risk of infection. In Nepal, DENV was first reported in 2004, and its prevalence is increasing every year. The present study aimed to obtain and characterize the full-length genome sequence of DENV from the 2017 outbreak. Hospital-based surveillance was conducted in two provinces of Nepal during the outbreak. Acute-phase serum samples were collected from 141 clinically suspected dengue patients after the rainy season. By serological and molecular techniques, 37 (26.9%) and 49 (34.8%), respectively, were confirmed as dengue patients. The cosmopolitan genotype of DENV-2 was isolated from 27 laboratory-confirmed dengue patients. Genomic analysis showed many amino acid substitutions distributed mainly among the E, NS3, and NS5 genes. Phylogenetic analyses of the whole genome sequence revealed two clades (Asian and Indian) among DENV-2 isolates from Nepal. The DENV isolates from hilly and Terai areas were similar to Asian and Indian strains, respectively. Further genomic study on different DENV serotypes is warranted to understand DENV epidemics in Nepal, where there are limited scientific resources and infrastructure.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (T.N.); (A.K.K.); (S.K.R.); (S.I.)
| | - Kishor Pandey
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44060, Nepal;
| | - Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (T.N.); (A.K.K.); (S.K.R.); (S.I.)
| | - Aung Kyaw Kyaw
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (T.N.); (A.K.K.); (S.K.R.); (S.I.)
| | - Mandira Adhikari
- Shi-Gan International College of Science and Technology, Kathmandu 44060, Nepal;
| | - Sandra Kendra Raini
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (T.N.); (A.K.K.); (S.K.R.); (S.I.)
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (T.N.); (A.K.K.); (S.K.R.); (S.I.)
| | - Shyam Prakash Dumre
- Central Department of Microbiology, Institute of Science and Technology, Tribhuvan University, Kirtipur 44618, Nepal;
| | - Basu Dev Pandey
- Ministry of Health and Population, Kathmandu 44060, Nepal
- Correspondence: (B.D.P.); (K.M.); Tel.: +977-9851065451 (B.D.P.); +81-95-819-7827 (K.M.)
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.M.N.T.); (T.N.); (A.K.K.); (S.K.R.); (S.I.)
- Correspondence: (B.D.P.); (K.M.); Tel.: +977-9851065451 (B.D.P.); +81-95-819-7827 (K.M.)
| |
Collapse
|