51
|
Sherchan SP, Thakali O, Ikner LA, Gerba C, Haramoto E. Survivability of Delta and Omicron variants of SARS-CoV-2 in wastewater. WATER RESEARCH 2023; 246:120644. [PMID: 37844338 DOI: 10.1016/j.watres.2023.120644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023]
Abstract
Concerns of fecal-aerosol transmission of coronavirus disease 2019 (COVID-2019) coupled with increased transmissibility and disease severity of Delta and Omicron variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggest studies on survival of VOC in wastewater are warranted. To the best of our knowledge, this is the first study to investigate the survivability of Delta and Omicron VOC in filtered and unfiltered raw wastewater, and secondary effluent at room temperature (23 °C). The time required for 90 % inactivation (T90) of Delta and Omicron VOC in unfiltered raw wastewater was calculated as 17.7 and 15.3 h, respectively. Rapid inactivation of VOC in wastewater and inability to isolate SARS-CoV-2 in wastewater suggest risks from fecal-aerosol transmission are low. Nevertheless, high transmissibility of VOC cautions overruling fecal-aerosol transmission of COVID-19. Future studies on survival of SARS-CoV-2 in wastewater should attempt viral culture by spiking feces collected from COVID-19 infected patients into wastewater to match the real-world scenario.
Collapse
Affiliation(s)
- Samendra P Sherchan
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal; Department of Environmental Science, University of Arizona, Tucson, AZ, United States; WEST Center, University of Arizona, Tucson, AZ, United States; Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan; Department of Environmental Health, Tulane University, New Orleans, LA 70112, United States; Center of Research Excellence in Wastewater-based Epidemiology, Morgan State University, Baltimore, MD 21251, United States.
| | - Ocean Thakali
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Luisa A Ikner
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States; WEST Center, University of Arizona, Tucson, AZ, United States
| | - Charles Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States; WEST Center, University of Arizona, Tucson, AZ, United States
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| |
Collapse
|
52
|
Thapar I, Langan LM, Davis H, Norman RS, Bojes HK, Brooks BW. Influence of storage conditions and multiple freeze-thaw cycles on N1 SARS-CoV-2, PMMoV, and BCoV signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165098. [PMID: 37392884 PMCID: PMC10307669 DOI: 10.1016/j.scitotenv.2023.165098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Wastewater-based epidemiology/wastewater-based surveillance (WBE/WBS) continues to serve as an effective means of monitoring various diseases, including COVID-19 and the emergence of SARS-CoV-2 variants, at the population level. As the use of WBE expands, storage conditions of wastewater samples will play a critical role in ensuring the accuracy and reproducibility of results. In this study, the impacts of water concentration buffer (WCB), storage temperature, and freeze-thaw cycles on the detection of SARS-CoV-2 and other WBE-related gene targets were examined. Freeze-thawing of concentrated samples did not significantly affect (p > 0.05) crossing/cycle threshold (Ct) value for any of the gene targets studied (SARS-CoV-2 N1, PMMoV, and BCoV). However, use of WCB during concentration resulted in a significant (p < 0.05) decrease in Ct for all targets, and storage at -80 °C (in contrast to -20 °C) appeared preferable for wastewater storage signal stability based on decreased Ct values, although this was only significantly different (p < 0.05) for the BCoV target. Interestingly, when Ct values were converted to gene copies per influent sample, no significant differences (p > 0.05) were observed in any of the targets examined. Stability of RNA targets in concentrated wastewater against freeze-thaw degradation supports archiving of concentrated samples for use in retrospective examination of COVID-19 trends and tracing SARS-CoV-2 variants and potentially other viruses, and provides a starting point for establishing a consistent procedure for specimen collection and storage for the WBE/WBS community.
Collapse
Affiliation(s)
- Isha Thapar
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA.
| | - Haley Davis
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, FL 34946, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, South Carolina, 921 Assembly St., Columbia, SC 29208, USA
| | - Heidi K Bojes
- Environmental Epidemiology and Disease Registries Section, Texas Department of State Health Services, Austin, TX 78756, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA
| |
Collapse
|
53
|
Alamin M, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Tanaka H, Watanabe T, Honda R. Reduction of SARS-CoV-2 by biological nutrient removal and disinfection processes in full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165097. [PMID: 37356766 PMCID: PMC10290167 DOI: 10.1016/j.scitotenv.2023.165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; College of Environment, Hohai University, Nanjing 210098, China
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; Faculty of Agriculture and Marine Science, Kochi University, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan.
| |
Collapse
|
54
|
Yinda CK, Morris DH, Fischer RJ, Gallogly S, Weishampel ZA, Port JR, Bushmaker T, Schulz JE, Bibby K, van Doremalen N, Lloyd-Smith JO, Munster VJ. Stability of Monkeypox Virus in Body Fluids and Wastewater. Emerg Infect Dis 2023; 29:2065-2072. [PMID: 37735747 PMCID: PMC10521604 DOI: 10.3201/eid2910.230824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes.
Collapse
|
55
|
Harrison K, Snead D, Kilts A, Ammerman ML, Wigginton KR. The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13757-13766. [PMID: 37656816 PMCID: PMC10516120 DOI: 10.1021/acs.est.3c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Collapse
Affiliation(s)
- Katherine
R. Harrison
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Delaney Snead
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Kilts
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Michelle L. Ammerman
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Krista R. Wigginton
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
56
|
de Araújo Rolo C, Machado BAS, Dos Santos MC, Dos Santos RF, Fonseca MS, Hodel KVS, Silva JR, Nunes DDG, Dos Santos Almeida E, de Andrade JB. Long-term monitoring of COVID-19 prevalence in raw and treated wastewater in Salvador, the largest capital of the Brazilian Northeast. Sci Rep 2023; 13:15238. [PMID: 37709804 PMCID: PMC10502096 DOI: 10.1038/s41598-023-41060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Wastewater-based epidemiology (WBE) becomes an interesting epidemiological approach to monitoring the prevalence of SARS-CoV-2 broadly and non-invasively. Herein, we employ for the first time WBE, associated or not with the PEG 8000 precipitation method, for the detection of SARS-CoV-2 in samples of raw or treated wastewater from 22 municipal wastewater treatment stations (WWTPs) located in Salvador, the fourth most populous city in Brazil. Our results demonstrate the success of the application of WBE for detecting SARS-CoV-2 in both types of evaluated samples, regardless of the usage of PEG 8000 concentration procedure. Further, an increase in SARS-CoV-2 positivity rate was observed in samples collected in months that presented the highest number of confirmed COVID-19 cases (May/2021, June/2021 and January/2022). While PEG 8000 concentration step was found to significantly increase the positivity rate in treated wastewater samples (p < 0.005), a strong positive correlation (r: 0.84; p < 0.002) between non-concentrated raw wastewater samples with the number of new cases of COVID-19 (April/2021-February/2022) was observed. In general, the present results reinforce the efficiency of WBE approach to monitoring the presence of SARS-CoV-2 in either low- or high-capacity WWTPs. The successful usage of WBE even in raw wastewater samples makes it an interesting low-cost tool for epidemiological surveillance.
Collapse
Affiliation(s)
- Carolina de Araújo Rolo
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
| | - Matheus Carmo Dos Santos
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Rosângela Fernandes Dos Santos
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Maísa Santos Fonseca
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Jéssica Rebouças Silva
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Danielle Devequi Gomes Nunes
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Edna Dos Santos Almeida
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
| | - Jailson Bittencourt de Andrade
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil.
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, 41650-010, Brazil.
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil.
| |
Collapse
|
57
|
Li D, Quon H, Ervin J, Jiang S, Rosso D, Van De Werfhorst LC, Steets B, Holden PA. Modeled and measured SARS-CoV-2 virus in septic tank systems for wastewater surveillance. JOURNAL OF WATER AND HEALTH 2023; 21:1242-1256. [PMID: 37756192 PMCID: wh_2023_128 DOI: 10.2166/wh.2023.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
SARS-CoV-2 wastewater surveillance (WWS) at wastewater treatment plants (WWTPs) can reveal sewered community COVID-19 prevalence. For unsewered areas using septic tank systems (STSs) or holding tanks, how to conduct WWS remains unexplored. Here, two large STSs serving Zuma Beach (Malibu, CA) were studied. Supernatant and sludge SARS-CoV-2 concentrations from the directly-sampled STSs parameterized a dynamic solid-liquid separation, mass balance-based model for estimating the infection rate of users. Pumped septage before hauling and upon WWTP disposal was also sampled and assessed. Most (96%) STS sludge samples contained SARS-CoV-2 N1 and N2 genes, with concentrations exceeding the supernatant and increasing with depth while correlating with total suspended solids (TSS). The trucked septage contained N1 and N2 genes which decayed (coefficients: 0.09-0.29 h-1) but remained detectable. Over approximately 5 months starting in December 2020, modeled COVID-19 prevalence estimations among users ranged from 8 to 18%, mirroring a larger metropolitan area for the first 2 months. The approaches herein can inform public health intervention and augment conventional WWS in that: (1) user infection rates for communal holding tanks are estimable and (2) pumped and hauled septage can be assayed to infer where disease is spreading in unsewered areas.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93016, USA E-mail:
| | - Hunter Quon
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA 93101, USA
| | - Sunny Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93016, USA
| | | | - Patricia A Holden
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93016, USA
| |
Collapse
|
58
|
Phan T, Brozak S, Pell B, Oghuan J, Gitter A, Hu T, Ribeiro RM, Ke R, Mena KD, Perelson AS, Kuang Y, Wu F. Making waves: Integrating wastewater surveillance with dynamic modeling to track and predict viral outbreaks. WATER RESEARCH 2023; 243:120372. [PMID: 37494742 DOI: 10.1016/j.watres.2023.120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Wastewater surveillance has proved to be a valuable tool to track the COVID-19 pandemic. However, most studies using wastewater surveillance data revolve around establishing correlations and lead time relative to reported case data. In this perspective, we advocate for the integration of wastewater surveillance data with dynamic within-host and between-host models to better understand, monitor, and predict viral disease outbreaks. Dynamic models overcome emblematic difficulties of using wastewater surveillance data such as establishing the temporal viral shedding profile. Complementarily, wastewater surveillance data bypasses the issues of time lag and underreporting in clinical case report data, thus enhancing the utility and applicability of dynamic models. The integration of wastewater surveillance data with dynamic models can enhance real-time tracking and prevalence estimation, forecast viral transmission and intervention effectiveness, and most importantly, provide a mechanistic understanding of infectious disease dynamics and the driving factors. Dynamic modeling of wastewater surveillance data will advance the development of a predictive and responsive monitoring system to improve pandemic preparedness and population health.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, MI 48075, USA
| | - Jeremiah Oghuan
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna Gitter
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tao Hu
- Department of Geography, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Fuqing Wu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA.
| |
Collapse
|
59
|
Breulmann M, Kallies R, Bernhard K, Gasch A, Müller RA, Harms H, Chatzinotas A, van Afferden M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164143. [PMID: 37182773 PMCID: PMC10181866 DOI: 10.1016/j.scitotenv.2023.164143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Wastewater-based monitoring of SARS-CoV-2 has become a promising and useful tool in tracking the potential spread or dynamics of the virus. Its recording can be used to predict how the potential number of infections in a population will develop. Recent studies have shown that the use of passive samplers is also suitable for the detection of SARS-CoV-2 genome copies (GC) in wastewater. They can be used at any site, provide timely data and may collect SARS-CoV-2 GC missed by traditional sampling methods. Therefore, the aim of this study was to evaluate the suitability of passive samplers for the detection of SARS-CoV-2 GC in wastewater in the long-term at two different scales. Polyethylene-based plastic passive samplers were deployed at the city-scale level of Leipzig at 13 different locations, with samples being taken from March 2021 to August 2022. At the smaller city district level, three types of passive samplers (cotton-cloth, unravelled polypropylene plastic rope and polyethylene-based plastic strips) were used and sampled on a weekly basis from March to August 2022. The results are discussed in relation to wastewater samples taken at the individual passive sampling point. Our results show that passive samplers can indicate at a city-scale level an accurate level of positive infections in the population (positive-rate: 86 %). On a small-scale level, the use of passive samplers was also feasible and effective to detect SARS-CoV-2 GC easily and cost-effectively, mirroring a similar trend to that at a city-scale level. Thus, this study demonstrated that passive samplers provide reproducible SARS-CoV-2 GC signals from wastewater and a time-integrated measurement of the sampled matrix with greater sensitivity compared to wastewater. We thus recommend the use of passive samplers as an alternative method for wastewater-based epidemiology. Passive samplers can in particular be considered for a better estimation of infections compared to incidence levels.
Collapse
Affiliation(s)
- Marc Breulmann
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katy Bernhard
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Gasch
- Wastewater Monitoring Department, Kommunale Wasserwerke Leipzig GmbH, Johannisgasse 7-9, 04103 Leipzig, Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
60
|
Contrant M, Bigault L, Andraud M, Desdouits M, Rocq S, Le Guyader FS, Blanchard Y. Porcine Epidemic Diarrhea Virus, Surrogate for Coronavirus Decay Measurement in French Coastal Waters and Contribution to Coronavirus Risk Evaluation. Microbiol Spectr 2023; 11:e0184423. [PMID: 37395665 PMCID: PMC10433961 DOI: 10.1128/spectrum.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.
Collapse
Affiliation(s)
- Maud Contrant
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Lionel Bigault
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Mathieu Andraud
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Marion Desdouits
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | - Sophie Rocq
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | | | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| |
Collapse
|
61
|
Mattei M, Pintó RM, Guix S, Bosch A, Arenas A. Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases. WATER RESEARCH 2023; 242:120223. [PMID: 37354838 PMCID: PMC10265495 DOI: 10.1016/j.watres.2023.120223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. The average correlation between genome copies and reported cases was 0.85, with an average delay of 8.8 days. The model estimated that 53% of the population was infected, compared to the 19% reported cases. The under-reporting was highest in November and December 2021. The maximum genome copies shed in feces by an infected individual was estimated to range from 1.4×108 gc/g to 4.4×108 gc/g. Our framework demonstrates the potential of wastewater data as a leading indicator for daily new infections, particularly in contexts with low detection rates. It also serves as a complementary tool for prevalence estimation and offers a general approach for integrating wastewater data into compartmental models.
Collapse
Affiliation(s)
- Mattia Mattei
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, School of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, School of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, School of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
62
|
Zhu K, Hill C, Muirhead A, Basu M, Brown J, Brinton MA, Hayat MJ, Venegas-Vargas C, Reis MG, Casanovas-Massana A, Meschke JS, Ko AI, Costa F, Stauber CE. Zika virus RNA persistence and recovery in water and wastewater: An approach for Zika virus surveillance in resource-constrained settings. WATER RESEARCH 2023; 241:120116. [PMID: 37270953 PMCID: PMC10330535 DOI: 10.1016/j.watres.2023.120116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
During the 2015-2016 Zika virus (ZIKV) epidemic in the Americas, serological cross-reactivity with other flaviviruses and relatively high costs of nucleic acid testing in the region hindered the capacity for widespread diagnostic testing. In such cases where individual testing is not feasible, wastewater monitoring approaches may offer a means of community-level public health surveillance. To inform such approaches, we characterized the persistence and recovery of ZIKV RNA in experiments where we spiked cultured ZIKV into surface water, wastewater, and a combination of both to examine the potential for detection in open sewers serving communities most affected by the ZIKV outbreak, such as those in Salvador, Bahia, Brazil. We used reverse transcription droplet digital PCR to quantify ZIKV RNA. In our persistence experiments, we found that the persistence of ZIKV RNA decreased with increasing temperature, significantly decreased in surface water versus wastewater, and significantly decreased when the initial concentration of virus was lowered by one order of magnitude. In our recovery experiments, we found higher percent recovery of ZIKV RNA in pellets versus supernatants from the same sample, higher recoveries in pellets using skimmed milk flocculation, lower recoveries of ZIKV RNA in surface water versus wastewater, and lower recoveries from a freeze thaw. We also analyzed samples collected from Salvador, Brazil during the ZIKV outbreak (2015-2016) that consisted of archived samples obtained from open sewers or environmental waters thought to be contaminated by sewage. Although we did not detect any ZIKV RNA in the archived Brazil samples, results from these persistence and recovery experiments serve to inform future wastewater monitoring efforts in open sewers, an understudied and important application of wastewater monitoring.
Collapse
Affiliation(s)
- Kevin Zhu
- Department of Civil and Environmental Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cailee Hill
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron Muirhead
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA
| | - Mausumi Basu
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 303034, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margo A Brinton
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 303034, USA
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA
| | - Cristina Venegas-Vargas
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mitermayer G Reis
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Rua Waldemar Falcão, 121, Salvador Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - J Scott Meschke
- Department of Environmental and Occupational Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - Albert I Ko
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Rua Waldemar Falcão, 121, Salvador Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Federico Costa
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Rua Waldemar Falcão, 121, Salvador Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA; Institute of Collective Health, Federal University of Bahia, Canela, Salvador 40110-040, Brazil
| | - Christine E Stauber
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
63
|
McManus O, Christiansen LE, Nauta M, Krogsgaard LW, Bahrenscheer NS, von Kappelgaard L, Christiansen T, Hansen M, Hansen NC, Kähler J, Rasmussen A, Richter SR, Rasmussen LD, Franck KT, Ethelberg S. Predicting COVID-19 Incidence Using Wastewater Surveillance Data, Denmark, October 2021-June 2022. Emerg Infect Dis 2023; 29:1589-1597. [PMID: 37486168 PMCID: PMC10370843 DOI: 10.3201/eid2908.221634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Analysis of wastewater is used in many settings for surveillance of SARS-CoV-2, but it remains unclear how well wastewater testing results reflect incidence. Denmark has had an extensive wastewater analysis system that conducts 3 weekly tests in ≈200 sites and has 85% population coverage; the country also offers free SARS-CoV-2 PCR tests to all residents. Using time series analysis for modeling, we found that wastewater data, combined with information on circulating variants and the number of human tests performed, closely fitted the incidence curve of persons testing positive. The results were consistent at a regional level and among a subpopulation of frequently tested healthcare personnel. We used wastewater analysis data to estimate incidence after testing was reduced to a minimum after March 2022. These results imply that data from a large-scale wastewater surveillance system can serve as a good proxy for COVID-19 incidence and for epidemic control.
Collapse
|
64
|
Li X, Liu H, Gao L, Sherchan SP, Zhou T, Khan SJ, van Loosdrecht MCM, Wang Q. Wastewater-based epidemiology predicts COVID-19-induced weekly new hospital admissions in over 150 USA counties. Nat Commun 2023; 14:4548. [PMID: 37507407 PMCID: PMC10382499 DOI: 10.1038/s41467-023-40305-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Although the coronavirus disease (COVID-19) emergency status is easing, the COVID-19 pandemic continues to affect healthcare systems globally. It is crucial to have a reliable and population-wide prediction tool for estimating COVID-19-induced hospital admissions. We evaluated the feasibility of using wastewater-based epidemiology (WBE) to predict COVID-19-induced weekly new hospitalizations in 159 counties across 45 states in the United States of America (USA), covering a population of nearly 100 million. Using county-level weekly wastewater surveillance data (over 20 months), WBE-based models were established through the random forest algorithm. WBE-based models accurately predicted the county-level weekly new admissions, allowing a preparation window of 1-4 weeks. In real applications, periodically updated WBE-based models showed good accuracy and transferability, with mean absolute error within 4-6 patients/100k population for upcoming weekly new hospitalization numbers. Our study demonstrated the potential of using WBE as an effective method to provide early warnings for healthcare systems.
Collapse
Affiliation(s)
- Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC, 3199, Australia
| | - Samendra P Sherchan
- Department of Biology, Morgan State University, Baltimore, MD, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
65
|
Kazenelson J, Jefferson T, Rhodes RG, Cahoon LB, Frampton AR. Detection of SARS-CoV-2 RNA in wastewater from an enclosed college campus serves as an early warning surveillance system. PLoS One 2023; 18:e0288808. [PMID: 37471346 PMCID: PMC10358889 DOI: 10.1371/journal.pone.0288808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
SARS-CoV-2, the causative agent of Covid-19, is shed from infected persons in respiratory droplets, feces, and urine. Using quantitative PCR (qPCR), our group hypothesized that we could detect SARS-CoV-2 in wastewater samples collected on a university campus prior to the detection of the virus in individuals on campus. Wastewater samples were collected 3 times a week from 5 locations on the main campus of the University of North Carolina Wilmington (UNCW) from July 24, 2020 to December 21, 2020. Post-collection, total RNA was extracted and SARS-CoV-2 RNA in the samples was detected by qPCR. SARS-CoV-2 signal was detected on campus beginning on August 19 as classes began and the signal increased in both intensity and breadth as the Fall semester progressed. A comparison of two RNA extraction methods from wastewater showed that SARS-CoV-2 was detected more frequently on filter samples versus the direct extracts. Aligning our wastewater data with the reported SARS-CoV-2 cases on the campus Covid-19 dashboard showed the virus signal was routinely detected in the wastewater prior to clusters of individual cases being reported. These data support the testing of wastewater for the presence of SARS-CoV-2 and may be used as part of a surveillance program for detecting the virus in a community prior to an outbreak occurring and could ultimately be incorporated with other SARS-CoV-2 metrics to better inform public health enabling a quick response to contain or mitigating spread of the virus.
Collapse
Affiliation(s)
- Jacob Kazenelson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Tori Jefferson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Ryan G. Rhodes
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Lawrence B. Cahoon
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Arthur R. Frampton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
66
|
Sherchan S, Thakali O, Ikner LA, Gerba CP. Survival of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163049. [PMID: 36990233 PMCID: PMC10041870 DOI: 10.1016/j.scitotenv.2023.163049] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 05/28/2023]
Abstract
The ongoing pandemic of Coronavirus disease 2019 (COVID-19) has affected >600 million people with >6 million deaths. Although Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiologic agent of COVID-19, is transmitted via respiratory droplets or direct contact, isolation of viable SARS-CoV-2 in feces has been reported. Therefore, there is a need for understanding the persistence of SARS-CoV-2 and emerging variants in wastewater. In this study, the survival of SARS-CoV-2 isolate hCoV-19/USA-WA1/2020 was observed in three wastewater matrices - filtered and unfiltered raw wastewater, and secondary effluent. All experiments were conducted within a BSL-3 laboratory at room temperature. The time required for inactivation of 90 % (T90) of SARS-CoV-2 was 10.4, 10.8, and 18.3 h for unfiltered raw, filtered raw, and secondary effluent, respectively. Progressive decline in infectivity of the virus following first order kinetics was noted in these wastewater matrices. To the best of our knowledge, this is the first study to describe the survival of SARS-CoV-2 in secondary effluent.
Collapse
Affiliation(s)
- Samendra Sherchan
- Department of Environmental Health, Tulane University, New Orleans, LA 70112, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America; WEST Center, University of Arizona, Tucson, AZ, United States of America.
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Luisa A Ikner
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States of America; WEST Center, University of Arizona, Tucson, AZ, United States of America
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States of America; WEST Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
67
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
68
|
Ahmed W, Smith WJM, Sirikanchana K, Kitajima M, Bivins A, Simpson SL. Influence of membrane pore-size on the recovery of endogenous viruses from wastewater using an adsorption-extraction method. J Virol Methods 2023; 317:114732. [PMID: 37080396 PMCID: PMC10111872 DOI: 10.1016/j.jviromet.2023.114732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060 -8628, Japan
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
69
|
Nadzirah S, Mohamad Zin N, Khalid A, Abu Bakar NF, Kamarudin SS, Zulfakar SS, Kon KW, Muhammad Azami NA, Low TY, Roslan R, M Nassir MNH, Alim AA, Menon PS, Soin N, Gopinath SCB, Abdullah H, Sampe J, Zainal Abidin HE, Mohd Noor SN, Ismail AG, Dee CF, Hamzah AA. Detection of SARS-CoV-2 in Environment: Current Surveillance and Effective Data Management of COVID-19. Crit Rev Anal Chem 2023; 54:3083-3094. [PMID: 37358486 DOI: 10.1080/10408347.2023.2224433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Since diagnostic laboratories handle large COVID-19 samples, researchers have established laboratory-based assays and developed biosensor prototypes. Both share the same purpose; to ascertain the occurrence of air and surface contaminations by the SARS-CoV-2 virus. However, the biosensors further utilize internet-of-things (IoT) technology to monitor COVID-19 virus contamination, specifically in the diagnostic laboratory setting. The IoT-capable biosensors have great potential to monitor for possible virus contamination. Numerous studies have been done on COVID-19 virus air and surface contamination in the hospital setting. Through reviews, there are abundant reports on the viral transmission of SARS-CoV-2 through droplet infections, person-to-person close contact and fecal-oral transmission. However, studies on environmental conditions need to be better reported. Therefore, this review covers the detection of SARS-CoV-2 in airborne and wastewater samples using biosensors with comprehensive studies in methods and techniques of sampling and sensing (2020 until 2023). Furthermore, the review exposes sensing cases in public health settings. Then, the integration of data management together with biosensors is well explained. Last, the review ended with challenges to having a practical COVID-19 biosensor applied for environmental surveillance samples.
Collapse
Affiliation(s)
- Sh Nadzirah
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Malaysia
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arif Khalid
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Faizah Abu Bakar
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Syafiqah Kamarudin
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Shahara Zulfakar
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ken Wong Kon
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roharsyafinaz Roslan
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - M Nizar Hadi M Nassir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Anis Amirah Alim
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - P Susthitha Menon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Norhayati Soin
- Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Malaysia
| | - Huda Abdullah
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Jahariah Sampe
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Siti Nurfadhlina Mohd Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Ahmad Ghadafi Ismail
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|
70
|
Ren H, Ling Y, Cao R, Wang Z, Li Y, Huang T. Early warning of emerging infectious diseases based on multimodal data. BIOSAFETY AND HEALTH 2023; 5:S2590-0536(23)00074-5. [PMID: 37362865 PMCID: PMC10245235 DOI: 10.1016/j.bsheal.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has dramatically increased the awareness of emerging infectious diseases. The advancement of multiomics analysis technology has resulted in the development of several databases containing virus information. Several scientists have integrated existing data on viruses to construct phylogenetic trees and predict virus mutation and transmission in different ways, providing prospective technical support for epidemic prevention and control. This review summarized the databases of known emerging infectious viruses and techniques focusing on virus variant forecasting and early warning. It focuses on the multi-dimensional information integration and database construction of emerging infectious viruses, virus mutation spectrum construction and variant forecast model, analysis of the affinity between mutation antigen and the receptor, propagation model of virus dynamic evolution, and monitoring and early warning for variants. As people have suffered from COVID-19 and repeated flu outbreaks, we focused on the research results of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses. This review comprehensively viewed the latest virus research and provided a reference for future virus prevention and control research.
Collapse
Affiliation(s)
- Haotian Ren
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunchao Ling
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruifang Cao
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Guangzhou Laboratory, Guangzhou 510005, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
71
|
Picó Y, Barceló D. Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: The need of global reconnaissance studies. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100468. [PMID: 37139099 PMCID: PMC10085870 DOI: 10.1016/j.coesh.2023.100468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Evidence of the increase of emerging contaminants in the environment due to the COVID-19 pandemic, such as personal protective equipment (PPE), disinfectants, pharmaceuticals, etc., has enlarged. Here we explain the variety of pathways of these emerging contaminants to enter the environment, including wastewater treatment plants, improper disposal of PPE, and runoff from surfaces treated with disinfectants. We also discuss the current state-of-art of the toxicological implications of these emerging contaminants. Initial research suggests that they may have harmful effects on aquatic organisms and human health. Future directions are suggested as further research is needed to fully understand the impacts of these contaminants on the environment and humans, as well as to develop effective approaches to mitigate their potential negative effects.
Collapse
Affiliation(s)
- Yolanda Picó
- Food and Environmental Research Group (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-University of Valencia-GV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Valencia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
| |
Collapse
|
72
|
Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. CHEMOSPHERE 2023; 327:138503. [PMID: 36965534 PMCID: PMC10035368 DOI: 10.1016/j.chemosphere.2023.138503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Mohammad Saud Afzal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
73
|
Kalankesh LR, Rezaei Z, Mohammadpour A, Taghavi M. COVID-19 pandemic and socio-environmental inequality: A narrative review. Health Sci Rep 2023; 6:e1372. [PMID: 37388271 PMCID: PMC10300242 DOI: 10.1002/hsr2.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Background and Aims The COVID-19 pandemic has provided preliminary evidence of the existence of health, social, and environmental inequalities. This inequality encompasses inadequate access to safe water, clean air, and wastewater management, as well as limited socioeconomic and educational opportunities. These issues have not received sufficient attention during the pandemic. The purpose of this narrative review is to provide a comprehensive summary and analysis of the existing literature on a specific topic, ultimately leading to a conclusion based on the evidence presented. Methods The search methodology for this study involved conducting comprehensive searches of scientific databases, including PubMed, ScienceDirect, LILACS, and Google Scholar, from 2019 to 2023. The study focused on a specific theme and its relevant aspects related to global environmental health and society. Keywords such as COVID-19, inequities, and environmental health were used for searching. Additionally, the Boolean operator "AND" was used to combine these descriptors. Results Unequal exposure to air pollution has been reported in Africa, as well as in large parts of Asia and Latin America, according to the data that has been obtained. The pandemic has also resulted in a surge in healthcare waste generation, exacerbating the environmental impact of solid waste. Furthermore, there is evidence indicating significant disparities in the severe lack of access to sanitation services between developing nations and low-income regions. The issues related to water availability, accessibility, and quality are subject to debate. It has been reported that SARS-CoV-2 is present not only in untreated/raw water, but also in water bodies that act as reservoirs. Moreover, insufficient education, poverty, and low household income have been identified as the most significant risk factors for COVID-19 infection and mortality. Conclusion It is evident that addressing socio-environmental inequality and striving to narrow the gap by prioritizing vulnerable populations are imperative.
Collapse
Affiliation(s)
- Laleh R. Kalankesh
- Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Zahed Rezaei
- Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mohammadpour
- Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mahmoud Taghavi
- Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
74
|
Reyes-Calderón A, Mindreau-Ganoza E, Pardo-Figueroa B, Garcia-Luquillas KR, Yufra SP, Romero PE, Antonini C, Renom JM, Mota CR, Santa-Maria MC. Evaluation of low-cost SARS-CoV-2 RNA purification methods for viral quantification by RT-qPCR and next-generation sequencing analysis: Implications for wider wastewater-based epidemiology adoption. Heliyon 2023; 9:e16130. [PMID: 37228686 PMCID: PMC10188194 DOI: 10.1016/j.heliyon.2023.e16130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Based Epidemiology (WBE) consists of quantifying biomarkers in sewerage systems to derive real-time information on the health and/or lifestyle of the contributing population. WBE usefulness was vastly demonstrated in the context of the COVID-19 pandemic. Many methods for SARS-CoV-2 RNA determination in wastewater were devised, which vary in cost, infrastructure requirements and sensitivity. For most developing countries, implementing WBE for viral outbreaks, such as that of SARS-CoV-2, proved challenging due to budget, reagent availability and infrastructure constraints. In this study, we assessed low-cost methods for SARS-CoV-2 RNA quantification by RT-qPCR, and performed variant identification by NGS in wastewater samples. Results showed that the effect of adjusting pH to 4 and/or adding MgCl2 (25 mM) was negligible when using the adsorption-elution method, as well as basal physicochemical parameters in the sample. In addition, results supported the standardized use of linear rather than plasmid DNA for a more accurate viral RT-qPCR estimation. The modified TRIzol-based purification method in this study yielded comparable RT-qPCR estimation to a column-based approach, but provided better NGS results, suggesting that column-based purification for viral analysis should be revised. Overall, this work provides evaluation of a robust, sensitive and cost-effective method for SARS-CoV-2 RNA analysis that could be implemented for other viruses, for a wider WEB adoption.
Collapse
Affiliation(s)
- Alonso Reyes-Calderón
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Elías Mindreau-Ganoza
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Braulio Pardo-Figueroa
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Katherine R. Garcia-Luquillas
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Sonia P. Yufra
- Departamento de Ingeniería Metalúrgica e Ingeniería Ambiental, Universidad Nacional de San Agustín, Av. Independencia s/n, Arequipa, 04001, Peru
| | - Pedro E. Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Claudia Antonini
- Departamento de Ingeniería Industrial, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Jose-Miguel Renom
- Departamento de Ciencias, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Cesar R. Mota
- Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, Belo Horizonte, 6.627, 31270-901, Brazil
| | - Monica C. Santa-Maria
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| |
Collapse
|
75
|
Robinson SJ, Kotwa JD, Jeeves SP, Himsworth CG, Pearl DL, Weese JS, Lindsay LR, Dibernardo A, Toledo NPL, Pickering BS, Goolia M, Chee HY, Blais-Savoie J, Chien E, Yim W, Yip L, Mubareka S, Jardine CM. Surveillance for SARS-CoV-2 in Norway Rats ( Rattus norvegicus) from Southern Ontario. Transbound Emerg Dis 2023; 2023:7631611. [PMID: 40303769 PMCID: PMC12016840 DOI: 10.1155/2023/7631611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 01/05/2025]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from wildlife has raised concerns about spillover from humans to animals, the establishment of novel wildlife reservoirs, and the potential for future outbreaks caused by variants of wildlife origin. Norway rats (Rattus norvegicus) are abundant in urban areas and live in close proximity to humans, providing the opportunity for spillover of SARS-CoV-2. Evidence of SARS-CoV-2 infection and exposure has been reported in Norway rats. We investigated SARS-CoV-2 infection and exposure in Norway rats from Southern Ontario, Canada. From October 2019 to June 2021, 224 rats were submitted by collaborating pest control companies. The majority of samples were collected in Windsor (79.9%; n = 179), Hamilton (13.8%; n = 31), and the Greater Toronto Area (5.8%; n = 13). Overall, 50.0% (n = 112) were female and most rats were sexually mature (55.8%; n = 125). Notably, 202 samples were collected prior to the emergence of variants of concern (VOC) and 22 were collected while the Alpha variant (B.1.1.7) was the predominant circulating VOC in humans. Nasal turbinate (n = 164) and small intestinal (n = 213) tissue samples were analyzed for SARS-CoV-2 RNA by RT-PCR. Thoracic cavity fluid samples (n = 213) were tested for neutralizing antibodies using a surrogate virus neutralization test (sVNT) (GenScript cPass); confirmatory plaque reduction neutralization test (PRNT) was conducted on presumptive positive samples. We did not detect SARS-CoV-2 RNA in any samples tested. Two out of eleven samples positive on sVNT had neutralizing antibodies confirmed positive by PRNT (1 : 40 and 1 : 320 PRNT70); both were collected prior to the emergence of VOC. It is imperative that efforts to control and monitor SARS-CoV-2 include surveillance of rats and other relevant wildlife species as novel variants continue to emerge.
Collapse
Affiliation(s)
- Sarah J. Robinson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | - Simon P. Jeeves
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Chelsea G. Himsworth
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J. Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - L. Robbin Lindsay
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Nikki P. L. Toledo
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Hsien-Yao Chee
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | | | - Emily Chien
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Winfield Yim
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
76
|
Lee W, Choi S, Kim H, Lee W, Lee M, Son H, Lee C, Cho M, Lee Y. Efficiency of ozonation and O 3/H 2O 2 as enhanced wastewater treatment processes for micropollutant abatement and disinfection with minimized byproduct formation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131436. [PMID: 37146328 DOI: 10.1016/j.jhazmat.2023.131436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
Ozonation, a viable option for improving wastewater effluent quality, requires process optimization to ensure the organic micropollutants (OMPs) elimination and disinfection under minimized byproduct formation. This study assessed and compared the efficiencies of ozonation (O3) and ozone with hydrogen peroxide (O3/H2O2) for 70 OMPs elimination, inactivation of three bacteria and three viruses, and formation of bromate and biodegradable organics during the bench-scale O3 and O3/H2O2 treatment of municipal wastewater effluent. 39 OMPs were fully eliminated, and 22 OMPs were considerably eliminated (54 ± 14%) at an ozone dosage of 0.5 gO3/gDOC for their high reactivity to ozone or •OH. The chemical kinetics approach accurately predicted the OMP elimination levels based on the rate constants and exposures of ozone and •OH, where the quantum chemical calculation and group contribution method successfully predicted the ozone and •OH rate constants, respectively. Microbial inactivation levels increased with increasing ozone dosage up to ∼3.1 (bacteria) and ∼2.6 (virus) log10 reductions at 0.7 gO3/gDOC. O3/H2O2 minimized bromate formation but significantly decreased bacteria/virus inactivation, whereas its impact on OMP elimination was insignificant. Ozonation produced biodegradable organics that were removed by a post-biodegradation treatment, achieving up to 24% DOM mineralization. These results can be useful for optimizing O3 and O3/H2O2 processes for enhanced wastewater treatment.
Collapse
Affiliation(s)
- Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Hyunjin Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Woorim Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongsangnam 621-813, Republic of Korea
| | - Minju Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, Gyeongsangnam 621-813, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Min Cho
- SELS Center, Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| |
Collapse
|
77
|
Schill R, Nelson KL, Harris-Lovett S, Kantor RS. The dynamic relationship between COVID-19 cases and SARS-CoV-2 wastewater concentrations across time and space: Considerations for model training data sets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162069. [PMID: 36754324 PMCID: PMC9902279 DOI: 10.1016/j.scitotenv.2023.162069] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
During the COVID-19 pandemic, wastewater-based surveillance has been used alongside diagnostic testing to monitor infection rates. With the decline in cases reported to public health departments due to at-home testing, wastewater data may serve as the primary input for epidemiological models, but training these models is not straightforward. We explored factors affecting noise and bias in the ratio between wastewater and case data collected in 26 sewersheds in California from October 2020 to March 2022. The strength of the relationship between wastewater and case data appeared dependent on sampling frequency and population size, but was not increased by wastewater normalization to flow rate or case count normalization to testing rates. Additionally, the lead and lag times between wastewater and case data varied over time and space, and the ratio of log-transformed individual cases to wastewater concentrations changed over time. This ratio decreased between the Epsilon/Alpha and Delta variant surges of COVID-19 and increased during the Omicron BA.1 variant surge, and was also related to the diagnostic testing rate. Based on this analysis, we present a framework of scenarios describing the dynamics of the case to wastewater ratio to aid in data handling decisions for ongoing modeling efforts.
Collapse
Affiliation(s)
- Rebecca Schill
- TUM School of Engineering and Design, Technical University of Munich, Germany
| | - Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | | | - Rose S Kantor
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
78
|
Tang L, Wu J, Liu R, Feng Z, Zhang Y, Zhao Y, Li Y, Yang K. Exploration on wastewater-based epidemiology of SARS-CoV-2: Mimic relative quantification with endogenous biomarkers as internal reference. Heliyon 2023; 9:e15705. [PMID: 37124340 PMCID: PMC10122556 DOI: 10.1016/j.heliyon.2023.e15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Wastewater-based epidemiology has become a powerful surveillance tool for monitoring the pandemic of COVID-19. Although it is promising to quantitatively correlate the SARS-CoV-2 RNA concentration in wastewater with the incidence of community infection, there is still no consensus on whether the viral nucleic acid concentration in sewage should be normalized against the abundance of endogenous biomarkers and which biomarker should be used as a reference for the normalization. Here, several candidate endogenous reference biomarkers for normalization of SARS-CoV-2 signal in municipal sewage were evaluated. The human fecal indicator virus (crAssphage) is a promising candidate of endogenous reference biomarker for data normalization of both DNA and RNA viruses for its intrinsic viral nature and high and stable content in sewage. Without constructing standard curves, the relative quantification of sewage viral nucleic acid against the abundance of the reference biomarker can be used to correlate with community COVID-19 incidence, which was proved via mimic experiments by spiking pseudovirus of different concentrations in sewage samples. Dilution of pseudovirus-seeded wastewater did not affect the relative abundance of viral nucleic acid, demonstrating that relative quantification can overcome the sewage dilution effects caused by the greywater input, precipitation and/or groundwater infiltration. The process of concentration, recovery and detection of the endogenous biomarker was consistent with that of SARS-CoV-2 RNA. Thus, it is necessary to co-quantify the endogenous biomarker because it can be not only an internal reference for data normalization, but also a process control.
Collapse
Affiliation(s)
- Langjun Tang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongxi Feng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanan Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingzhe Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yonghong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
79
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Green BM, Kara-Murdoch F, Swift CM, Hazen TC. Decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA in raw sewage from university dormitories. Front Microbiol 2023; 14:1144026. [PMID: 37187532 PMCID: PMC10175580 DOI: 10.3389/fmicb.2023.1144026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA has been frequently detected in sewage from many university dormitories to inform public health decisions during the COVID-19 pandemic, a clear understanding of SARS-CoV-2 RNA persistence in site-specific raw sewage is still lacking. To investigate the SARS-CoV-2 RNA persistence, a field trial was conducted in the University of Tennessee dormitories raw sewage, similar to municipal wastewater. Methods The decay of enveloped SARS-CoV-2 RNA and non-enveloped Pepper mild mottle virus (PMMoV) RNA was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in raw sewage at 4°C and 20°C. Results Temperature, followed by the concentration level of SARS-CoV-2 RNA, was the most significant factors that influenced the first-order decay rate constants (k) of SARS-CoV-2 RNA. The mean k values of SARS-CoV-2 RNA were 0.094 day-1 at 4°C and 0.261 day-1 at 20°C. At high-, medium-, and low-concentration levels of SARS-CoV-2 RNA, the mean k values were 0.367, 0.169, and 0.091 day-1, respectively. Furthermore, there was a statistical difference between the decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA at different temperature conditions. Discussion The first decay rates for both temperatures were statistically comparable for SARS-CoV-2 RNA, which showed sensitivity to elevated temperatures but not for PMMoV RNA. This study provides evidence for the persistence of viral RNA in site-specific raw sewage at different temperature conditions and concentration levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - K. T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Department of Facilities Services, The University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
80
|
Hart JJ, Jamison MN, McNair JN, Szlag DC. Frequency and degradation of SARS-CoV-2 markers N1, N2, and E in sewage. JOURNAL OF WATER AND HEALTH 2023; 21:514-524. [PMID: 37119151 DOI: 10.2166/wh.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.
Collapse
Affiliation(s)
- John J Hart
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail:
| |
Collapse
|
81
|
Babler KM, Sharkey ME, Abelson S, Amirali A, Benitez A, Cosculluela GA, Grills GS, Kumar N, Laine J, Lamar W, Lamm ED, Lyu J, Mason CE, McCabe PM, Raghavender J, Reding BD, Roca MA, Schürer SC, Stevenson M, Szeto A, Tallon JJ, Vidović D, Zarnegarnia Y, Solo-Gabriele HM. Degradation rates influence the ability of composite samples to represent 24-hourly means of SARS-CoV-2 and other microbiological target measures in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161423. [PMID: 36623667 PMCID: PMC9817413 DOI: 10.1016/j.scitotenv.2023.161423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The utility of using severe-acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA for assessing the prevalence of COVID-19 within communities begins with the design of the sample collection program. The objective of this study was to assess the utility of 24-hour composites as representative samples for measuring multiple microbiological targets in wastewater, and whether normalization of SARS-CoV-2 by endogenous targets can be used to decrease hour to hour variability at different watershed scales. Two sets of experiments were conducted, in tandem with the same wastewater, with samples collected at the building, cluster, and community sewershed scales. The first set of experiments focused on evaluating degradation of microbiological targets: SARS-CoV-2, Simian Immunodeficiency Virus (SIV) - a surrogate spiked into the wastewater, plus human waste indicators of Pepper Mild Mottle Virus (PMMoV), Beta-2 microglobulin (B2M), and fecal coliform bacteria (FC). The second focused on the variability of these targets from samples, collected each hour on the hour. Results show that SARS-CoV-2, PMMoV, and B2M were relatively stable, with minimal degradation over 24-h. SIV, which was spiked-in prior to analysis, degraded significantly and FC increased significantly over the course of 24 h, emphasizing the possibility for decay and growth within wastewater. Hour-to-hour variability of the source wastewater was large between each hour of sampling relative to the variability of the SARS-CoV-2 levels calculated between sewershed scales; thus, differences in SARS-CoV-2 hourly variability were not statistically significant between sewershed scales. Results further provided that the quantified representativeness of 24-h composite samples (i.e., statistical equivalency compared against hourly collected grabs) was dependent upon the molecular target measured. Overall, improvements made by normalization were minimal within this study. Degradation and multiplication for other targets should be evaluated when deciding upon whether to collect composite or grab samples in future studies.
Collapse
Affiliation(s)
- Kristina M Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samantha Abelson
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Aymara Benitez
- Miami-Dade Water and Sewer Department, Miami, FL 33149, USA
| | - Gabriella A Cosculluela
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Naresh Kumar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Erik D Lamm
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Jiangnan Lyu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip M McCabe
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | | - Brian D Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Matthew A Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL 33146, USA
| | - Dusica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yalda Zarnegarnia
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
82
|
Lucansky V, Samec M, Burjanivova T, Lukacova E, Kolkova Z, Holubekova V, Turyova E, Hornakova A, Zaborsky T, Podlesniy P, Reizigova L, Dankova Z, Novakova E, Pecova R, Calkovska A, Halasova E. Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Front Public Health 2023; 11:1116636. [PMID: 36960362 PMCID: PMC10028190 DOI: 10.3389/fpubh.2023.1116636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.
Collapse
Affiliation(s)
- Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tatiana Burjanivova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukacova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolkova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Tibor Zaborsky
- RÚVZ (Regional Office of Public Health), Martin, Slovakia
| | - Petar Podlesniy
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Lenka Reizigova
- Center for Microbiology and Infection Prevention, Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University, Trnava, Slovakia
| | - Zuzana Dankova
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
83
|
Pozzetto B, Gagnaire J, Berthelot P, Bourlet T, Pillet S. [Viruses present in the environment: virological considerations and examples of their impact on human health]. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2023; 2023:33-43. [PMID: 36879984 PMCID: PMC9978926 DOI: 10.1016/s1773-035x(23)00053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Animal viruses are present in most human environments. Their viability in these media is very variable and the most important element that conditions this viability is the existence or not of a phospholipid envelope surrounding the nucleocapsid. After some general considerations on the structure of viruses, their multiplication cycle and their resistance to different physico-chemical agents, some examples of the impact of animal viruses present in the environment on human health will be presented. The situations that are related concern recent epidemiological events: circulation of type 2 polioviruses derived from the Sabin vaccine strain in the wastewater of New York, London and Jerusalem; risk of transmission of Sars-CoV-2 during the spreading of sludge from wastewater treatment plants on agricultural land in the era of the Covid-19 pandemic; « new » forms of food-borne poisoning of viral origin (hepatitis E, tick-borne encephalitis, Nipah virus infection); contamination by epidemic viruses of mobile phones used by pediatricians; role of fomites in the spread of orthopoxvirus infections (smallpox, cowpox, monkeypox). The risk attached to animal viruses present in the environment must be assessed in a measured way without overestimating or underestimating their potential consequences for human health.
Collapse
Affiliation(s)
- Bruno Pozzetto
- Service des agents infectieux et d'hygiène, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
| | - Julie Gagnaire
- Unité de gestion du risque infectieux (Ugri), Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
| | - Philippe Berthelot
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
- Unité de gestion du risque infectieux (Ugri), Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
| | - Thomas Bourlet
- Service des agents infectieux et d'hygiène, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
| | - Sylvie Pillet
- Service des agents infectieux et d'hygiène, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
| |
Collapse
|
84
|
Henriques TB, Cassini ST, de Pinho Keller R. Contribution of wastewater-based epidemiology to SARS-CoV-2 screening in Brazil and the United States. JOURNAL OF WATER AND HEALTH 2023; 21:343-353. [PMID: 37338314 PMCID: wh_2023_260 DOI: 10.2166/wh.2023.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Wastewater-based epidemiology (WBE) is a valuable tool for investigating the existence, prevalence, and spread of pathogens, such as SARS-CoV-2, in a given population. WBE, proposed as part of the SARS-CoV-2 surveillance strategy for monitoring virus circulation, may complement clinical data and contribute to reducing the spread of the disease through early detection. In developing countries such as Brazil, where clinical data are scarce, information obtained from wastewater monitoring can be crucial for designing public health interventions. In the United States, the country with the largest number of confirmed SARS-CoV-2 cases worldwide, WBE programs have begun to be carried out to investigate correlations with coronavirus disease 2019 (COVID-19) clinical data and support health agencies in decision-making to prevent the spread of the disease. This systematic review aimed to assess the contribution of WBE to SARS-CoV-2 screening in Brazil and the United States and compare studies conducted in a developed and developing country. Studies in Brazil and the United States showed WBE to be an important epidemiological surveillance strategy in the context of the COVID-19 pandemic. WBE approaches are useful for early detection of COVID-19 outbreaks, estimation of clinical cases, and assessment of the effectiveness of vaccination program.
Collapse
Affiliation(s)
- Taciane Barbosa Henriques
- Sanitation Laboratory, Department of Environmental Engineering, Federal University of Espírito Santo, Vitória, Espirito Santo, Brazil E-mail:
| | - Servio Túlio Cassini
- Sanitation Laboratory, Department of Environmental Engineering, Federal University of Espírito Santo, Vitória, Espirito Santo, Brazil E-mail:
| | - Regina de Pinho Keller
- Sanitation Laboratory, Department of Environmental Engineering, Federal University of Espírito Santo, Vitória, Espirito Santo, Brazil E-mail:
| |
Collapse
|
85
|
Kwon T, Osterrieder N, Gaudreault NN, Richt JA. Fomite Transmission of SARS-CoV-2 and Its Contributing Factors. Pathogens 2023; 12:364. [PMID: 36986286 PMCID: PMC10054039 DOI: 10.3390/pathogens12030364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drastically changed our lives, from our personal freedoms and habits to public health and socioeconomics [...].
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nikolaus Osterrieder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
86
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
87
|
Ransome E, Hobbs F, Jones S, Coleman CM, Harris ND, Woodward G, Bell T, Trew J, Kolarević S, Kračun-Kolarević M, Savolainen V. Evaluating the transmission risk of SARS-CoV-2 from sewage pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159161. [PMID: 36191696 PMCID: PMC9525188 DOI: 10.1016/j.scitotenv.2022.159161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/02/2023]
Abstract
The presence of SARS-CoV-2 in untreated sewage has been confirmed in many countries but its incidence and infection risk in contaminated waters is poorly understood. The River Thames in the UK receives untreated sewage from 57 Combined Sewer Overflows (CSOs), with many discharging dozens of times per year. This study investigated if such discharges provide a pathway for environmental transmission of SARS-CoV-2. Samples of wastewater, surface water, and sediment collected close to six CSOs on the River Thames were assayed over eight months for SARS-CoV-2 RNA and infectious virus. Bivalves were also sampled as an indicator species of viral bioaccumulation. Sediment and water samples from the Danube and Sava rivers in Serbia, where raw sewage is also discharged in high volumes, were assayed as a positive control. No evidence of SARS-CoV-2 RNA or infectious virus was found in UK samples, in contrast to RNA positive samples from Serbia. Furthermore, this study shows that infectious SARS-CoV-2 inoculum is stable in Thames water and sediment for <3 days, while SARS-CoV-2 RNA is detectable for at least seven days. This indicates that dilution of wastewater likely limits environmental transmission, and that detection of viral RNA alone is not an indication of pathogen spillover.
Collapse
Affiliation(s)
- E Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK.
| | - F Hobbs
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - S Jones
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - C M Coleman
- Wolfson Centre for Global Virus Research, Department of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - N D Harris
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - G Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - T Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - J Trew
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - S Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - M Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - V Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
88
|
Aziz MA, Norman S, Mohamed Zaid S, Simarani K, Sulaiman R, Mohd Aris A, Chin KB, Mohd Zain R. Environmental surveillance of SARS-CoV-2 in municipal wastewater to monitor COVID-19 status in urban clusters in Malaysia. Arch Microbiol 2023; 205:76. [PMID: 36708390 PMCID: PMC9884128 DOI: 10.1007/s00203-023-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Wastewater monitoring for SARS-CoV-2 has attracted considerable attention worldwide to complement the existing clinical-based surveillance system. In this study, we report our first successful attempt to prove the circulation of SARS-CoV-2 genes in Malaysian urban wastewater. A total of 18 wastewater samples were obtained from a regional sewage treatment plant that received municipal sewage between February 2021 and May 2021. Using the quantitative PCR assay targeting the E and RdRp genes of SARS-CoV-2, we confirmed that both genes were detected in the raw sewage, while no viral RNA was found in the treated sewage. We were also able to show that the trend of COVID-19 cases in Kuala Lumpur and Selangor was related to the changes in SARS-CoV-2 RNA levels in the wastewater samples. Overall, our study highlights that monitoring wastewater for SARS-CoV-2 should help local health professionals to obtain additional information on the rapid and silent circulation of infectious agents in communities at the regional level.
Collapse
Affiliation(s)
- Muhamad Afiq Aziz
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Syuhada Norman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Raha Sulaiman
- Faculty of Built Environment, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alijah Mohd Aris
- Indah Water Konsortium Sdn Bhd, No. 44, Jalan Dungun, Damansara Heights, 50490, Kuala Lumpur, Malaysia
| | - Khor Bee Chin
- Indah Water Konsortium Sdn Bhd, No. 44, Jalan Dungun, Damansara Heights, 50490, Kuala Lumpur, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Institute for Medical Research, Infectious Disease Research Centre, National Institute of Health (NIH), Bandar Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| |
Collapse
|
89
|
Phan T, Brozak S, Pell B, Gitter A, Xiao A, Mena KD, Kuang Y, Wu F. A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159326. [PMID: 36220466 PMCID: PMC9547654 DOI: 10.1016/j.scitotenv.2022.159326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor SARS-CoV-2 transmission. However, epidemiological inference from WBS data remains understudied and limits its application. In this study, we have established a quantitative framework to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission through integrating WBS data into an SEIR-V model. We conceptually divide the individual-level viral shedding course into exposed, infectious, and recovery phases as an analogy to the compartments in a population-level SEIR model. We demonstrated that the effect of temperature on viral losses in the sewer can be straightforwardly incorporated in our framework. Using WBS data from the second wave of the pandemic (Oct 02, 2020-Jan 25, 2021) in the Greater Boston area, we showed that the SEIR-V model successfully recapitulates the temporal dynamics of viral load in wastewater and predicts the true number of cases peaked earlier and higher than the number of reported cases by 6-16 days and 8.3-10.2 folds (R = 0.93). This work showcases a simple yet effective method to bridge WBS and quantitative epidemiological modeling to estimate the prevalence and transmission of SARS-CoV-2 in the sewershed, which could facilitate the application of wastewater surveillance of infectious diseases for epidemiological inference and inform public health actions.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, AZ, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, MI, USA
| | - Anna Gitter
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA 77030
| | - Amy Xiao
- Center for Microbiome Informatics and Therapeutics; Department of Biological Engineering, Massachusetts Institute of Technology
| | - Kristina D Mena
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA 77030
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, AZ, USA.
| | - Fuqing Wu
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA 77030.
| |
Collapse
|
90
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
91
|
Maal-Bared R, Qiu Y, Li Q, Gao T, Hrudey SE, Bhavanam S, Ruecker NJ, Ellehoj E, Lee BE, Pang X. Does normalization of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance and clinical data in Alberta (Canada): comparing twelve SARS-CoV-2 normalization approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158964. [PMID: 36167131 PMCID: PMC9508694 DOI: 10.1016/j.scitotenv.2022.158964] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 05/02/2023]
Abstract
Wastewater-based surveillance (WBS) data normalization is an analyte measurement correction that addresses variations resulting from dilution of fecal discharge by non-sanitary sewage, stormwater or groundwater infiltration. No consensus exists on what WBS normalization parameters result in the strongest correlations and lead time between SARS-CoV-2 WBS data and COVID-19 cases. This study compared flow, population size and biomarker normalization impacts on the correlations and lead times for ten communities in twelve sewersheds in Alberta (Canada) between September 2020 and October 2021 (n = 1024) to determine if normalization by Pepper Mild Mottle Virus (PMMoV) provides any advantages compared to other normalization parameters (e.g., flow, reported and dynamic population sizes, BOD, TSS, NH3, TP). PMMoV concentrations (GC/mL) corresponded with plant influent flows and were highest in the urban centres. SARS-CoV-2 target genes E, N1 and N2 were all negatively associated with wastewater influent pH, while PMMoV was positively associated with temperature. Pooled data analysis showed that normalization increased ρ-values by almost 0.1 and was highest for ammonia, TKN and TP followed by PMMoV. Normalization by other parameters weakened associations. None of the differences were statistically significant. Site-specific correlations showed that normalization of SARS-CoV-2 data by PMMoV only improved correlations significantly in two of the twelve systems; neither were large sewersheds or combined sewer systems. In five systems, normalization by traditional wastewater strength parameters and dynamic population estimates improved correlations. Lead time ranged between 1 and 4 days in both pooled and site-specific comparisons. We recommend that WBS researchers and health departments: a) Investigate WWTP influent properties (e.g., pH) in the WBS planning phase and use at least two parallel approaches for normalization only if shown to provide value; b) Explore normalization by wastewater strength parameters and dynamic population size estimates further; and c) Evaluate purchasing an influent flow meter in small communities to support long-term WBS efforts and WWTP management.
Collapse
Affiliation(s)
- Rasha Maal-Bared
- Quality Assurance and Environment, EPCOR Water, Edmonton, Alberta, Canada.
| | - Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Qiaozhi Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Tiejun Gao
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Steve E Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sudha Bhavanam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Norma J Ruecker
- Water Quality Services, City of Calgary, Calgary, Alberta, Canada
| | - Erik Ellehoj
- Ellehoj Redmond Consulting, Edmonton, Alberta, Canada
| | - Bonita E Lee
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Public Health Laboratories (ProvLab), Alberta Precision Laboratories (APL), Edmonton, Alberta, Canada
| |
Collapse
|
92
|
Li X, Zhang S, Sherchan S, Orive G, Lertxundi U, Haramoto E, Honda R, Kumar M, Arora S, Kitajima M, Jiang G. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129848. [PMID: 36067562 PMCID: PMC9420035 DOI: 10.1016/j.jhazmat.2022.129848] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has been considered as a promising approach for population-wide surveillance of coronavirus disease 2019 (COVID-19). Many studies have successfully quantified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater (CRNA). However, the correlation between the CRNA and the COVID-19 clinically confirmed cases in the corresponding wastewater catchments varies and the impacts of environmental and other factors remain unclear. A systematic review and meta-analysis were conducted to identify the correlation between CRNA and various types of clinically confirmed case numbers, including prevalence and incidence rates. The impacts of environmental factors, WBE sampling design, and epidemiological conditions on the correlation were assessed for the same datasets. The systematic review identified 133 correlation coefficients, ranging from -0.38 to 0.99. The correlation between CRNA and new cases (either daily new, weekly new, or future cases) was stronger than that of active cases and cumulative cases. These correlation coefficients were potentially affected by environmental and epidemiological conditions and WBE sampling design. Larger variations of air temperature and clinical testing coverage, and the increase of catchment size showed strong negative impacts on the correlation between CRNA and COVID-19 case numbers. Interestingly, the sampling technique had negligible impact although increasing the sampling frequency improved the correlation. These findings highlight the importance of viral shedding dynamics, in-sewer decay, WBE sampling design and clinical testing on the accurate back-estimation of COVID-19 case numbers through the WBE approach.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Samendrdra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
93
|
Ekanayake A, Rajapaksha AU, Hewawasam C, Anand U, Bontempi E, Kurwadkar S, Biswas JK, Vithanage M. Environmental challenges of COVID-19 pandemic: resilience and sustainability - A review. ENVIRONMENTAL RESEARCH 2023; 216:114496. [PMID: 36257453 PMCID: PMC9576205 DOI: 10.1016/j.envres.2022.114496] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 05/05/2023]
Abstract
The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Choolaka Hewawasam
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
94
|
Amahmid O, El Guamri Y, Rakibi Y, Ouizat S, Yazidi M, Razoki B, Kaid Rassou K, Touloun O, Asmama S, Bouhoum K, Belghyti D. Assessment of SARS-CoV-2 Stability in human and environmental matrices, and potential hazards. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1-14. [PMID: 34702090 DOI: 10.1080/09603123.2021.1996541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In the context of the ongoing pandemic of COVID-19, SARS-CoV-2 was detected in human excreta and environmental matrices. The occurrence of SARS-CoV-2 in environmental compartments raises questions on its fate and stability in these matrices and its potential to spread in the exposed communities. This review focused on the stability of the SARS-CoV-2 in human excreta, wastewater, soils, crops, and other environmental matrices, that may be reached through human excreta and sewage products spreading. Little is known about the persistence and survival of SARS-CoV-2 in the environment. Up to now sewage sludge, soil and crops are seldom investigated implying the convenience of considering future researches focusing on SARS-CoV-2 in soils receiving wastewater and sewage sludge, as well as on grown crops. Information regarding SARS-CoV-2 persistence in environmental media is crucial to establish and implement effective policies and measures for mitigating the transmission of COVID-19 and tackling eventual future outbreaks.
Collapse
Affiliation(s)
- Omar Amahmid
- Department of Life and Earth Sciences, (Biology /Geology Research Units), Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
- Department of Biology, Laboratory of Water, Biodiversity and Climatic Change, Parasitology and Aquatic Biodiversity Research Team, Faculty of Sciences-Semlalia, Cadi Ayyad Univesity, Marrakesh Morocco
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences Kenitra, Ibn Tofail University, Morocco
| | - Youssef El Guamri
- Department of Life and Earth Sciences, (Biology /Geology Research Units), Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences Kenitra, Ibn Tofail University, Morocco
| | - Youness Rakibi
- Department of Life and Earth Sciences, (Biology /Geology Research Units), Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment (Limome), Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez Morocco
| | - Saadia Ouizat
- Chemistry and Didactics Unit, Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
| | - Mohamed Yazidi
- Department of Life and Earth Sciences, (Biology /Geology Research Units), Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
| | - Bouchra Razoki
- Department of Life and Earth Sciences, (Biology /Geology Research Units), Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
| | - Khadija Kaid Rassou
- Department of Life and Earth Sciences, (Biology /Geology Research Units), Regional Centre for Careers of Education and Training Crmef Marrakech-Safi, Marrakesh Morocco
| | - Oulaid Touloun
- Polyvalent Laboratory in Research and Development, Department of Biology, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Souad Asmama
- Laboratory of Biomedical Analysis, University Hospital Centre Mohammad Vi, Marrakech, Morocco
| | - Khadija Bouhoum
- Department of Biology, Laboratory of Water, Biodiversity and Climatic Change, Parasitology and Aquatic Biodiversity Research Team, Faculty of Sciences-Semlalia, Cadi Ayyad Univesity, Marrakesh Morocco
| | - Driss Belghyti
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences Kenitra, Ibn Tofail University, Morocco
| |
Collapse
|
95
|
Yamamoto Y, Nakano Y, Murae M, Shimizu Y, Sakai S, Ogawa M, Mizukami T, Inoue T, Onodera T, Takahashi Y, Wakita T, Fukasawa M, Miyazaki S, Noguchi K. Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. Int J Mol Sci 2022; 24:20. [PMID: 36613459 PMCID: PMC9820423 DOI: 10.3390/ijms24010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Peracetic acid (PAA) disinfectants are effective against a wide range of pathogenic microorganisms, including bacteria, fungi, and viruses. Several studies have shown the efficacy of PAA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, its efficacy in SARS-CoV-2 variants and the molecular mechanism of action of PAA against SARS-CoV-2 have not been investigated. SARS-CoV-2 infection depends on the recognition and binding of the cell receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the spike protein. Here, we demonstrated that PAA effectively suppressed pseudotyped virus infection in the Wuhan type and variants, including Delta and Omicron. Similarly, PAA reduced the authentic viral load of SARS-CoV-2. Computational analysis suggested that the hydroxyl radicals produced by PAA cleave the disulfide bridges in the RBD. Additionally, the PAA treatment decreased the abundance of the Wuhan- and variant-type spike proteins. Enzyme-linked immunosorbent assay showed direct inhibition of RBD-ACE2 interactions by PAA. In conclusion, the PAA treatment suppressed SARS-CoV-2 infection, which was dependent on the inhibition of the interaction between the spike RBD and ACE2 by inducing spike protein destabilization. Our findings provide evidence of a potent disinfection strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yoshio Nakano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Mana Murae
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2, Nakano, Nakano-ku, Tokyo 164-8530, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoharu Mizukami
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Taishi Onodera
- Reseach Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Reseach Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satoru Miyazaki
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
96
|
Materón EM, Gómez FR, Almeida MB, Shimizu FM, Wong A, Teodoro KBR, Silva FSR, Lima MJA, Angelim MKSC, Melendez ME, Porras N, Vieira PM, Correa DS, Carrilho E, Oliveira O, Azevedo RB, Goncalves D. Colorimetric Detection of SARS-CoV-2 Using Plasmonic Biosensors and Smartphones. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54527-54538. [PMID: 36454041 PMCID: PMC9728479 DOI: 10.1021/acsami.2c15407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 μL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
Collapse
Affiliation(s)
- Elsa M. Materón
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Faustino R. Gómez
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Mariana B. Almeida
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Flavio M. Shimizu
- Department of Applied Physics, “Gleb
Wataghin” Institute of Physics (IFGW), University of Campinas
(UNICAMP), 13083-859Campinas, SP, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal
University of São Carlos (UFSCar), 13560-970São Carlos,
São Paulo, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Filipe S. R. Silva
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Manoel J. A. Lima
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Monara Kaelle S. C. Angelim
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Matias E. Melendez
- Molecular Carcinogenesis Program,
National Cancer Institute, 20231-050Rio de Janeiro, RJ,
Brazil
| | - Nelson Porras
- Physics Department, del Valle
University, AA 25360Cali, Colombia
| | - Pedro M. Vieira
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Osvaldo
N. Oliveira
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics
and Morphology, Institute of Biological Sciences, University of
Brasilia, 70910-900Brasilia, DF, Brazil
| | - Débora Goncalves
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| |
Collapse
|
97
|
Wang R, Alamin M, Tsuji S, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Honda R. Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158310. [PMID: 36030862 PMCID: PMC9411102 DOI: 10.1016/j.scitotenv.2022.158310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shohei Tsuji
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Japan
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan.
| |
Collapse
|
98
|
Zhang X, Zhang L, Wang Y, Zhang M, Zhou J, Liu X, Wang Y, Qu C, Han W, Hou M, Deng F, Luo Y, Mao Y, Gu W, Dong Z, Pan Y, Zhang D, Tang S, Zhang L. Detection of the SARS-CoV-2 Delta Variant in the Transboundary Rivers of Yunnan, China. ACS ES&T WATER 2022; 2:2367-2377. [PMID: 37552741 PMCID: PMC9631342 DOI: 10.1021/acsestwater.2c00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 05/30/2023]
Abstract
Ruili and Longchuan, two border counties in southwestern China, are facing epidemic control challenges due to the high rate of COVID-19 infections originating from neighboring Myanmar. Here, we aimed to establish the applicability of wastewater and environmental water surveillance of SARS-CoV-2 and conduct whole-genome sequencing (WGS) to trace the possible infection origin. In August 2021, total 72 wastewater and river water samples were collected from 32 sampling sites. SARS-CoV-2 ORF1ab and N genes were measured by RT-qPCR. We found that 19 samples (26.39%) were positive, and the viral loads of ORF1ab and N genes were 6.62 × 102-2.55×105 and 1.86 × 103-2.32 × 105 copies/L, respectively. WGS further indicated the sequences in two transboundary river samples, and one hospital wastewater sample belonged to the delta variant, suggesting that the infection source might be areas with high COVID-19 delta variant incidence in Southeast Asia (e.g., Myanmar). We reported for the first time the detection and quantification of SARS-CoV-2 RNA in the transboundary rivers of Myanmar-China. Our findings demonstrate that wastewater and environmental water may provide independent and nonintrusive surveillance points to monitor the global spread of emerging COVID-19 variants of concern, particularly in high-risk regions or border areas with considerable epidemic challenges and poor wastewater treatment facilities.
Collapse
Affiliation(s)
- Xiao Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Liang Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Meiling Zhang
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Jienan Zhou
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Xin Liu
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Yan Wang
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Changsheng Qu
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Wenxiang Han
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yueyun Luo
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yixin Mao
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Zhaomin Dong
- School of Space and Environment, Beihang
University, Beijing100191, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| |
Collapse
|
99
|
Verani M, Federigi I, Muzio S, Lauretani G, Calà P, Mancuso F, Salvadori R, Valentini C, La Rosa G, Suffredini E, Carducci A. Calibration of Methods for SARS-CoV-2 Environmental Surveillance: A Case Study from Northwest Tuscany. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16588. [PMID: 36554466 PMCID: PMC9778686 DOI: 10.3390/ijerph192416588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The current pandemic has provided an opportunity to test wastewater-based epidemiology (WBE) as a complementary method to SARS-CoV-2 monitoring in the community. However, WBE infection estimates can be affected by uncertainty factors, such as heterogeneity in analytical procedure, wastewater volume, and population size. In this paper, raw sewage SARS-CoV-2 samples were collected from four wastewater treatment plants (WWTPs) in Tuscany (Northwest Italy) between February and December 2021. During the surveillance period, viral concentration was based on polyethylene glycol (PEG), but its precipitation method was modified from biphasic separation to centrifugation. Therefore, in parallel, the recovery efficiency of each method was evaluated at lab-scale, using two spiking viruses (human coronavirus 229E and mengovirus vMC0). SARS-CoV-2 genome was found in 80 (46.5%) of the 172 examined samples. Lab-scale experiments revealed that PEG precipitation using centrifugation had the best recovery efficiency (up to 30%). Viral SARS-CoV-2 load obtained from sewage data, adjusted by analytical method and normalized by population of each WWTP, showed a good association with the clinical data in the study area. This study highlights that environmental surveillance data need to be carefully analyzed before their use in the WBE, also considering the sensibility of the analytical methods.
Collapse
Affiliation(s)
- Marco Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Ileana Federigi
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Sara Muzio
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Giulia Lauretani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Piergiuseppe Calà
- Tuscany Region-Health, Department of Prevention Local Health Authority Tuscany Center, Via S. Salvi 12, 50135 Firenze, Italy
| | - Fabrizio Mancuso
- Ingegnerie Toscane-Area R&D, Via Bellatalla 1, 56121 Pisa, Italy
| | | | | | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Annalaura Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| |
Collapse
|
100
|
Fonseca MS, Machado BAS, Rolo CDA, Hodel KVS, Almeida EDS, de Andrade JB. Evaluation of SARS-CoV-2 concentrations in wastewater and river water samples. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100214. [PMID: 37520921 PMCID: PMC9055419 DOI: 10.1016/j.cscee.2022.100214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
There are only a few established methods to determine the concentration of encapsulated viruses, such as SARS-CoV-2, in water matrices, limiting the application of wastewater-based epidemiology (WBE)-an important tool for public health research. The present study compared four methods that are commonly used to concentrate non-encapsulated enteric viruses for determining SARS-CoV-2 concentration in wastewater and wastewater-enriched river water samples. The four methods tested were electronegative membrane with Mg+2 addition, aluminum hydroxide-based precipitation, polyethylene glycol (PEG) 8000 precipitation, and ultrafiltration (with porosity of 10 and 50 kDa). Prior to the concentration step, filtration or centrifugation was performed to remove suspended particles from the samples (pretreatment). To evaluate the recovery efficiency (%), samples of SARS-CoV-2 from nasopharyngeal swabs obtained from RT-qPCR-positive patients were used as spiked samples. The second part of the analysis involved the quantification of the SARS-CoV-2 copy number in analytes without SARS-CoV-2-spiked samples. Among the tested methods, pretreatment via centrifugation followed by ultrafiltration with a 50-kDa cut-off was found the most efficient method for wastewater samples with spiked samples (54.3 or 113.01% efficiency). For the wastewater-enriched river samples with spiked samples, pretreatment via centrifugation followed by filtration using an electronegative membrane was the most efficient method (110.8% and 95.9% for N1 and N2 markers, respectively). However, ultrafiltration of the raw river water samples using 10 or 50 kDa cut-off filters and PEG 8000 precipitation showed the best concentration efficiency based on copy number, regardless of the pretreatment approach or sample type (values ranging from 3 × 105 to 6.7 × 103). The effectiveness of the concentration method can vary depending on the type of sample and concentration method. We consider that this study will contribute to more widespread use of WBE for the environmental surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Maísa Santos Fonseca
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Edna Dos Santos Almeida
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Jailson Bittencourt de Andrade
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Federal University of Bahia, Salvador, 40170-115, Brazil
| |
Collapse
|