51
|
Ribeiro de Almeida C, Heath H, Krpic S, Dingjan GM, van Hamburg JP, Bergen I, van de Nobelen S, Sleutels F, Grosveld F, Galjart N, Hendriks RW. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. THE JOURNAL OF IMMUNOLOGY 2009; 182:999-1010. [PMID: 19124743 DOI: 10.4049/jimmunol.182.2.999] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Differentiation of naive CD4+ cells into Th2 cells is accompanied by chromatin remodeling at the Th2 cytokine locus allowing the expression of the IL-4, IL-5, and IL-13 genes. In this report, we investigated the role in Th2 differentiation of the transcription regulator CCCTC-binding factor (CTCF). Chromatin immunoprecipitation analysis revealed multiple CTCF binding sites in the Th2 cytokine locus. Conditional deletion of the Ctcf gene in double-positive thymocytes allowed development of peripheral T cells, but their activation and proliferation upon anti-CD3/anti-CD28 stimulation in vitro was severely impaired. Nevertheless, when TCR signaling was circumvented with phorbol ester and ionomycin, we observed proliferation of CTCF-deficient T cells, enabling the analysis of Th2 differentiation in vitro. We found that in CTCF-deficient Th2 polarization cultures, transcription of IL-4, IL-5, and IL-13 was strongly reduced. By contrast, CTCF deficiency had a moderate effect on IFN-gamma production in Th1 cultures and IL-17 production in Th17 cultures was unaffected. Consistent with a Th2 cytokine defect, CTCF-deficient mice had very low levels of IgG1 and IgE in their serum, but IgG2c was close to normal. In CTCF-deficient Th2 cultures, cells were polarized toward the Th2 lineage, as substantiated by induction of the key transcriptional regulators GATA3 and special AT-rich binding protein 1 (SATB1) and down-regulation of T-bet. Also, STAT4 expression was low, indicating that in the absence of CTCF, GATA3 still operated as a negative regulator of STAT4. Taken together, these findings show that CTCF is essential for GATA3- and SATB1-dependent regulation of Th2 cytokine gene expression.
Collapse
|
52
|
Morley SC, Weber KS, Kao H, Allen PM. Protein kinase C-theta is required for efficient positive selection. THE JOURNAL OF IMMUNOLOGY 2008; 181:4696-708. [PMID: 18802072 DOI: 10.4049/jimmunol.181.7.4696] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C-theta (PKCtheta) is critical for TCR-initiated signaling in mature T cells, but initial reports found no requirement for PKCtheta in thymocyte development. Thymocytes and peripheral T cells utilize many of the same signaling components and, given the significant role of PKCtheta in peripheral T cells, it was surprising that it was not involved at all in TCR signaling in thymocytes. We decided to re-evaluate the role of PKCtheta in thymocyte development using the well-characterized class II-restricted n3.L2 TCR-transgenic TCR model. Analysis of n3.L2 PKCtheta(-/-) mice revealed a defect in thymocyte-positive selection, resulting in a 50% reduction in the generation of n3.L2 CD4 single-positive thymocytes and n3.L2 CD4 mature T cells. Competition between n3.L2 WT and n3.L2 PKCtheta(-/-) thymocytes in bone marrow chimeras revealed a more dramatic defect, with a >80% reduction in generation of n3.L2 CD4 single-positive thymocytes derived from PKCtheta(-/-) mice. Inefficient positive selection of n3.L2 PKCtheta(-/-) CD4 single-positive cells resulted from "weaker" signaling through the TCR and correlated with diminished ERK activation. The defect in positive selection was not complete in the PKCtheta(-/-) mice, most likely accounted for by compensation by other PKC isoforms not evident in peripheral cells. Similar decreased positive selection of both CD4 and CD8 single-positive thymocytes was also seen in nontransgenic PKCtheta(-/-) mice. These findings now place PKCtheta as a key signaling molecule in the positive selection of thymocytes as well as in the activation of mature T cells.
Collapse
Affiliation(s)
- Sharon Celeste Morley
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
53
|
Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z. Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 2008; 46:213-24. [PMID: 18842300 PMCID: PMC2700121 DOI: 10.1016/j.molimm.2008.08.275] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/27/2008] [Indexed: 01/25/2023]
Abstract
CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-theta-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-theta had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-theta-regulated survival, as transgenic Bcl-x(L) could not restore the Treg cell population in PKC-theta(-/-) mice. Active and WT PKC-theta markedly stimulated, whereas inactive PKC-theta and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Abeta had a decreased Treg cell population, similar to that observed in PKC-theta deficient mice. It is likely that PKC-theta promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-theta were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-theta was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-theta plays in conventional T cell and natural Treg cell function.
Collapse
Affiliation(s)
- Sonal Gupta
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Santhakumar Manicassamy
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Chenthamarakshan Vasu
- Department of Surgery, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Anvita Kumar
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Weirong Shang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30308
| | - Zuoming Sun
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
54
|
Hermann-Kleiter N, Gruber T, Lutz-Nicoladoni C, Thuille N, Fresser F, Labi V, Schiefermeier N, Warnecke M, Huber L, Villunger A, Eichele G, Kaminski S, Baier G. The nuclear orphan receptor NR2F6 suppresses lymphocyte activation and T helper 17-dependent autoimmunity. Immunity 2008; 29:205-16. [PMID: 18701084 DOI: 10.1016/j.immuni.2008.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/06/2008] [Accepted: 06/02/2008] [Indexed: 12/16/2022]
Abstract
The protein kinase C (PKC) family of serine-threonine kinases plays a central role in T lymphocyte activation. Here, we identify NR2F6, a nuclear zinc-finger orphan receptor, as a critical PKC substrate and essential regulator of CD4(+) T cell activation responses. NR2F6 potently antagonized the ability of T helper 0 (Th0) and Th17 CD4(+) T cells to induce expression of key cytokine genes such as interleukin-2 (IL-2) and IL-17. Mechanistically, NR2F6 directly interfered with the DNA binding of nuclear factor of activated T cells (NF-AT):activator protein 1 (AP-1) but not nuclear factor kappaB (NF-kappa B) and, subsequently, transcriptional activity of the NF-AT-dependent IL-17A cytokine promoter. Consistent with our model, Nr2f6-deficient mice had hyperreactive lymphocytes, developed a late-onset immunopathology, and were hypersusceptible to Th17-dependent experimental autoimmune encephalomyelitis. Our study establishes NR2F6 as a transcriptional repressor of IL-17 expression in Th17-differentiated CD4(+) T cells in vitro and in vivo.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Cai Q, Li J, Gao T, Xie J, Evers BM. Protein kinase Cdelta negatively regulates hedgehog signaling by inhibition of Gli1 activity. J Biol Chem 2008; 284:2150-8. [PMID: 19015273 DOI: 10.1074/jbc.m803235200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Constitutive activation of the hedgehog pathway is implicated in the development of many human malignancies; hedgehog targets, PTCH1 and Gli1, are markers of hedgehog signaling activation and are expressed in most hedgehog-associated tumors. Protein kinase Cdelta (PKCdelta) generally slows proliferation and induces cell cycle arrest of various cell lines. In this study, we show that activated PKCdelta (wild-type PKCdelta stimulated by phorbol 12-myristate 13-acetate or constitutively active PKCdelta) decreased Gli-luciferase reporter activity in NIH/3T3 cells, as well as the endogenous hedgehog-responsive gene PTCH1. In human hepatoma (i.e. Hep3B) cells, wild-type PKCdelta and constitutively active PKCdelta decreased the expression levels of endogenous Gli1 and PTCH1. In contrast, PKCdelta siRNA increased the expression levels of these target genes. Silencing of PKCdelta by siRNA rescued the inhibition of cell growth by KAAD-cyclopamine, an antagonist of hedgehog signaling element Smoothened, suggesting that PKCdelta acts downstream of Smoothened. The biological relevance of our study is shown in hepatocellular carcinoma where we found that hepatocellular carcinoma with detectable hedgehog signaling had weak or no detectable expression of PKCdelta, whereas PKCdelta highly expressing tumors had no detectable hedgehog signaling. Our results demonstrate that PKCdelta alters hedgehog signaling by inhibition of Gli protein transcriptional activity. Furthermore, our findings suggest that, in certain cancers, PKCdelta plays a role as a negative regulator of tumorigenesis by regulating hedgehog signaling.
Collapse
Affiliation(s)
- Qingsong Cai
- Department of Surgery, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-0536, USA
| | | | | | | | | |
Collapse
|
56
|
Abstract
The antigen-specific interaction of a T cell with an antigen-presenting cell (APC) results in the formation of an immunologic synapse (IS) between the membranes of the 2 cells. beta(2) integrins on the T cell, namely, leukocyte function-associated antigen 1 (LFA-1) and its counter ligand, namely, immunoglobulin-like cell adhesion molecule 1 (ICAM-1) on the APC, critically stabilize this intercellular interaction. The small GTPase Rap1 controls T-cell adhesion through modulating the affinity and/or spatial organization of LFA-1; however, the upstream regulatory components triggered by the T-cell receptor (TCR) have not been resolved. In the present study, we identified a previously unknown function of a protein kinase C- theta (PKC-theta)/RapGEF2 complex in LFA-1 avidity regulation in T lymphocytes. After T-cell activation, the direct phosphorylation of RapGEF2 at Ser960 by PKC- theta regulates Rap1 activation as well as LFA-1 adhesiveness to ICAM-1. In OT-II TCR-transgenic CD4(+) T cells, clustering of LFA-1 after antigen activation was impaired in the absence of PKC- theta. These data define that, among other pathways acting on LFA-1 regulation, PKC- theta and its effector RapGEF2 are critical factors in TCR signaling to Rap1. Taken together, PKC- theta sets the threshold for T-cell activation by positively regulating both the cytokine responses and the adhesive capacities of T lymphocytes.
Collapse
|
57
|
Manicassamy S, Yin D, Zhang Z, Molinero LL, Alegre ML, Sun Z. A critical role for protein kinase C-theta-mediated T cell survival in cardiac allograft rejection. THE JOURNAL OF IMMUNOLOGY 2008; 181:513-20. [PMID: 18566417 DOI: 10.4049/jimmunol.181.1.513] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC)-theta mediates the critical TCR signals required for T cell activation. Previously, we have shown that in response to TCR stimulation, PKC-theta-/- T cells undergo apoptosis due to greatly reduced levels of the anti-apoptotic molecule, Bcl-xL. In this study, we demonstrate that PKC-theta-regulated expression of Bcl-xL is essential for T cell-mediated cardiac allograft rejection. Rag1-/- mice reconstituted with wild-type T cells readily rejected fully mismatched cardiac allografts, whereas Rag1-/- mice reconstituted with PKC-theta-/- T cells failed to promote rejection. Transgenic expression of Bcl-xL in PKC-theta-/- T cells was sufficient to restore cardiac allograft rejection, suggesting that PKC-theta-regulated survival is required for T cell-mediated cardiac allograft rejection in this adoptive transfer model. In contrast to adoptive transfer experiments, intact PKC-theta-/- mice displayed delayed, but successful cardiac allograft rejection, suggesting the potential compensation for PKC-theta function. Finally, a subtherapeutic dose of anti-CD154 Ab or CTLA4-Ig, which was not sufficient to prevent cardiac allograft rejection in the wild-type mice, prevented heart rejection in the PKC-theta-/- mice. Thus, in combination with other treatments, inhibition of PKC-theta may facilitate achieving long-term survival of allografts.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
58
|
PKC isotype functions in T lymphocytes. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2008:29-41. [PMID: 18510097 DOI: 10.1007/2789_2007_061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The main function of mature T cells is to recognize and respond to foreign antigens by a complex activation process involving differentiation of the resting cell to a proliferating lymphoblast actively secreting immunoregulatory lymphokines or displaying targeted cytotoxicity, ultimately leading to recruitment of other cell types and initiation of an effective immune response. In order to understand the physiology and pathophysiology of T lymphocytes, it is necessary to decode the biochemical processes that integrate signals from antigen, cytokine, integrin and death receptors. The principal upon which our work is based is to explore and identify gene products of distinct members of the AGC family of protein serine/threonine kinases as key players mediating cell growth regulation. Given the established important role of PKC theta as regulator of T cell fate and knowing that several other PKC isotypes are also expressed in T cells at a high level, we now summarize the physiological and non-redundant functions of PKC alpha, beta, delta, epsilon, zeta and theta isotypes in T cells. This review describes the current knowledge of the physiological and non-redundant functions of the PKC gene products in T cells.
Collapse
|
59
|
Sakaki K, Wu J, Kaufman RJ. Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 2008; 283:15370-80. [PMID: 18356160 PMCID: PMC2397484 DOI: 10.1074/jbc.m710209200] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/17/2008] [Indexed: 12/25/2022] Open
Abstract
Autophagy is an evolutionally conserved process for the bulk degradation of cytoplasmic proteins and organelles. Recent observations indicate that autophagy is induced in response to cellular insults that result in the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER). However, the signaling mechanisms that activate autophagy under these conditions are not understood. Here, we report that ER stress-induced autophagy requires the activation of protein kinase C (PKC), a member of the novel-type PKC family. Induction of ER stress by treatment with either thapsigargin or tunicamycin activated autophagy in immortalized hepatocytes as monitored by the conversion LC3-I to LC3-II, clustering of LC3 into dot-like cytoplasmic structures, and electron microscopic detection of autophagosomes. Pharmacological inhibition of PKC or small interfering RNA-mediated knockdown of PKC prevented the autophagic response to ER stress. Treatment with ER stressors induced PKC phosphorylation within the activation loop and localization of phospho-PKC to LC3-containing dot structures in the cytoplasm. However, signaling through the known unfolded protein response sensors was not required for PKC activation. PKC activation and stress-induced autophagy were blocked by chelation of intracellular Ca(2+) with BAPTA-AM. PKC was not activated or required for autophagy in response to amino acid starvation. These observations indicate that Ca(2+)-dependent PKC activation is specifically required for autophagy in response to ER stress but not in response to amino acid starvation.
Collapse
Affiliation(s)
- Kenjiro Sakaki
- Departments of Biological Chemistry and Internal Medicine and the Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jun Wu
- Departments of Biological Chemistry and Internal Medicine and the Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Randal J. Kaufman
- Departments of Biological Chemistry and Internal Medicine and the Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
60
|
T-cell receptor-induced NF-kappaB activation is negatively regulated by E3 ubiquitin ligase Cbl-b. Mol Cell Biol 2008; 28:2470-80. [PMID: 18227156 DOI: 10.1128/mcb.01505-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It has previously been shown that E3 ubiquitin ligase Casitas B-lineage lymphoma-b (Cbl-b) negatively regulates T-cell activation, but the molecular mechanism(s) underlying this inhibition is not completely defined. In this study, we report that the loss of Cbl-b selectively results in aberrant activation of NF-kappaB upon T-cell antigen receptor (TCR) ligation, which is mediated by phosphatidylinositol 3-kinase (PI3-K)/Akt and protein kinase C-theta (PKC-theta). TCR-induced hyperactivation of Akt in the absence of Cbl-b may potentiate the formation of caspase recruitment domain-containing membrane-associated guanylate kinase protein 1 (CARMA1)-B-cell lymphoma/leukemia 10 (Bcl10)-mucosa-associated lymphatic tissue 1(MALT1) (CBM) complex, which appears to be independent of PKC-theta. Cbl-b associates with PKC-theta upon TCR stimulation and regulates TCR-induced PKC-theta activation via Vav-1, which couples PKC-theta to PI3-K and allows it to be phosphorylated. PKC-theta then couples IkappaB kinases (IKKs) to the CBM complex, resulting in the activation of the IKK complex. Therefore, our data provide the first evidence to demonstrate that the down-regulation of TCR-induced NF-kappaB activation by Cbl-b is mediated coordinately by both Akt-dependent and PKC-theta-dependent signaling pathways in primary T cells.
Collapse
|
61
|
Cronin SJF, Penninger JM. From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 2008; 220:151-68. [PMID: 17979845 DOI: 10.1111/j.1600-065x.2007.00570.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The activation of resting T cells is crucial to most immune processes. Recognition of foreign antigen by T-cell receptors has to be correctly translated into signal transduction events necessary for the induction of an effective immune response. In this review, we discuss the essential signals, molecules, and processes necessary to achieve full T-cell activation. In addition to describing these key biological events, we also discuss how T-cell receptor signaling may be harnessed to yield new therapeutic targets for a next generation of anti-cancer drugs.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
62
|
Perdomo-Arciniegas AM, Patarroyo ME, Vernot JP. Novel Chimeric Peptide Inhibits Protein Kinase C and Induces Apoptosis in Human Immune Cells. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Teixeira VH, Jacq L, Moore J, Lasbleiz S, Hilliquin P, Resende Oliveira C, Cornelis F, Petit-Teixeira E. Association and Expression Study of PRKCH Gene in a French Caucasian Population with Rheumatoid Arthritis. J Clin Immunol 2007; 28:115-21. [DOI: 10.1007/s10875-007-9143-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/05/2007] [Indexed: 11/24/2022]
|
64
|
Wolf D, Giese SI, Witte V, Krautkrämer E, Trapp S, Sass G, Haller C, Blume K, Fackler OT, Baur AS. Novel (n)PKC kinases phosphorylate Nef for increased HIV transcription, replication and perinuclear targeting. Virology 2007; 370:45-54. [PMID: 17904606 DOI: 10.1016/j.virol.2007.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 05/28/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
The N-terminus of the human immunodeficiency virus (HIV) pathogenicity factor Nef associates with a protein complex (NAKC for Nef-associated kinase complex) that contains at least two kinases: the tyrosine kinase Lck and a serine kinase activity which was found to phosphorylate Lck and the Nef N-terminus. Here we show that this serine kinase activity is mediated by members of the novel Protein Kinase C (nPKC) subfamily, PKCdelta and theta. Association with the Nef N-terminus was sufficient to activate PKC leading to phosphorylation of Nef in vitro on a conserved serine residue at position 6. Mutation of serine 6 or coexpression of a transdominant negative PKC mutant significantly reduced Nef-stimulated HIV transcription and replication in resting PBMC. When analyzing the molecular mechanisms, we found that mutating serine 6 moderately affected myristoylation of Nef and its association with Pak2 activity, whereas CD4 downmodulation was not inhibited. More interestingly, this mutation abolished the typical perinuclear localization of Nef in T cells. We conclude that the activation of nPKCs by Nef is required to increase viral replication/infectivity and direct the subcellular localization of Nef.
Collapse
Affiliation(s)
- Dietlinde Wolf
- University of Miami, Miller School of Medicine, Department of Microbiology and Immunology, BCRI 739, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Golks A, Tran TTT, Goetschy JF, Guerini D. Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J 2007; 26:4368-79. [PMID: 17882263 PMCID: PMC2034663 DOI: 10.1038/sj.emboj.7601845] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 08/10/2007] [Indexed: 01/25/2023] Open
Abstract
The dynamic modification of nuclear and cytoplasmic proteins with O-linked beta-N-acetylglucosamine (O-GlcNAc) by the O-linked N-acetylglucosaminyltransferase (OGT) is a regulatory post-translational modification that is responsive to various stimuli. Here, we demonstrate that OGT is a central factor for T- and B-lymphocytes activation. SiRNA-mediated knockdown of OGT in T cells leads to an impaired activation of the transcription factors NFAT and NFkappaB. This results in a reduction of IL-2 production consistent with prevention of T-cell activation. OGT is also required for the early activation of B cells mediated by stimulation of the B-cell receptor. Mechanistically, we demonstrate that NFkappaB as well as NFAT are glycosylated with O-GlcNAc after direct binding to OGT. Moreover, kinetic experiments show that O-GlcNAc modification prominently increased shortly after activation of lymphoid cells and it might be required for nuclear translocation of the transcription factors NFkappaB and NFAT.
Collapse
Affiliation(s)
- Alexander Golks
- Autoimmunity and Transplantation, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Danilo Guerini
- Autoimmunity and Transplantation, Novartis Pharma AG, Basel, Switzerland
- Autoimmunity and Transplantation, Novartis Pharma AG, Forum 1, Novartis Campus, Basel CH-4056, Switzerland. Tel.: +41 61 3243862; Fax: +41 61 3242488; E-mail:
| |
Collapse
|
66
|
Despouy G, Joiner M, Le Toriellec E, Weil R, Stern MH. The TCL1 oncoprotein inhibits activation-induced cell death by impairing PKCtheta and ERK pathways. Blood 2007; 110:4406-16. [PMID: 17846228 DOI: 10.1182/blood-2006-11-059501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The TCL1/MTCP1 oncogenes were identified on the basis of their involvement in T-cell prolymphocytic leukemia (T-PLL). TCL1 and MTCP1 proteins directly interact with AKT and modulate the AKT signal-transduction pathway, but the relevance of this mechanism in leukemogenesis remains unclear. We investigate the biologic functions of TCL1 in the T-cell lineage using various cell lines, and primary malignant and normal lymphocytes. In the Jurkat cell line, expression of TCL1 had no effect in unstimulated cells, whereas it abrogated activation-induced cell death (AICD). These cellular effects were concomitant with a major inhibition by TCL1 of PKCtheta and ERK pathways. Secondly, the TCL1-driven T-cell leukemia cell line SUP-T11 was shown to have impaired PKCtheta and ERK phosphorylation upon stimulation, which were restored by TCL1 inhibition using RNA interference. Finally, defects in these pathways were also observed in primary malignant (T-PLL) and transduced normal T lymphocytes expressing TCL1. Altogether, our data demonstrated that TCL1 inhibits AICD in T cells by blocking PKCtheta and ERK activation, upon cellular activation.
Collapse
|
67
|
Gruber T, Fresser F, Jenny M, Uberall F, Leitges M, Baier G. PKCtheta cooperates with atypical PKCzeta and PKCiota in NF-kappaB transactivation of T lymphocytes. Mol Immunol 2007; 45:117-26. [PMID: 17588663 DOI: 10.1016/j.molimm.2007.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/01/2007] [Accepted: 05/08/2007] [Indexed: 02/07/2023]
Abstract
Using yeast two-hybrid, we isolated atypical PKCzeta as a PKCtheta-interacting kinase and demonstrated that it selectively interacted with, and was phosphorylated by, PKCtheta. Importantly, however, both atypical PKCzeta and PKCiota were functionally required in TCR/CD28-mediated activation of NF-kappaB downstream of PKCtheta in Jurkat T cells albeit, activation responses of PKCzeta-deficient CD3+ T cells were comparable with wildtype controls. This normal activation thresholds of PKCzeta-/- T cells suggested that PKCiota, the closest structural relative, might play a compensatory role in TCR/CD28-induced signalling. Consistently, both PKCzeta and PKCiota resided in the plasma membrane lipid raft microdomains of Jurkat as well as primary mouse CD3+ T cells. Thus, PKCtheta, the established constituent of the immunological synapse, physically and functionally interacted with PKCzeta and PKCiota. Together, these data demonstrate that atypical PKCzeta/iota isotypes serve as direct downstream targets of PKCtheta in the signalling pathway leading to NF-kappaB activation in T lymphocytes.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
68
|
Skopeliti M, Kratzer U, Altenberend F, Panayotou G, Kalbacher H, Stevanovic S, Voelter W, Tsitsilonis OE. Proteomic exploitation on prothymosin α-induced mononuclear cell activation. Proteomics 2007; 7:1814-24. [PMID: 17474146 DOI: 10.1002/pmic.200600870] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prothymosin alpha (ProTalpha) is an acidic polypeptide associated both with cell proliferation and immune regulation. Although ProTalpha's immunomodulating activity is well established at cellular level, limited information is available regarding the signaling pathways triggered by ProTalpha. Using 2-DE proteomic technology, we investigated changes in protein expression of ProTalpha-stimulated peripheral blood mononuclear cells (PBMC) in the course of a 3-day incubation. Using healthy donor- and cancer patient-derived PBMC, 12 gels were studied, identifying 53 differing protein spots via PMF comparison analysis. Among others, we identified interleukin-1 receptor-associated kinase 4, heat-shock protein 90, lipocalin 2, ribophorin 1, eukaryotic elongation factor 2, 14-3-3 protein, L-plastin, and MX2 protein, all of which were found to be overexpressed upon ProTalpha activation. Based on the physiological role of upregulated proteins, we propose the following model for ProTalpha's immunological mode of action: on day 1, ProTalpha triggers monocyte activation, possibly via toll-like receptor signaling, and enhances antigen presentation, consequently promoting and stabilizing monocyte-T-cell immune synapse; on day 2, activated monocytes produce interleukin (IL)-1, while T-cell receptor triggering promotes T-cell proliferation and IL-2 production; finally, on day 3, ProTalpha-activated PBMC express proteins related to adhesion and cytotoxic effector functions, both contributing to the increase of their lytic activity.
Collapse
Affiliation(s)
- Margarita Skopeliti
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Manicassamy S, Sun Z. The critical role of protein kinase C-theta in Fas/Fas ligand-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2007; 178:312-9. [PMID: 17182568 DOI: 10.4049/jimmunol.178.1.312] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Department of Microbiology and Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
70
|
Hindley A, Kolch W. Raf-1 and B-Raf promote protein kinase C θ interaction with BAD. Cell Signal 2007; 19:547-55. [PMID: 17011751 DOI: 10.1016/j.cellsig.2006.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/13/2006] [Accepted: 08/13/2006] [Indexed: 01/19/2023]
Abstract
PKCtheta regulates the proliferation, survival and differentiation of T-cells. Here we show that PKCtheta interacts with Raf-1 and B-Raf kinases. Raf-1 enhanced the kinase activity of associated PKCtheta, while PKCtheta reduced the catalytic activity of associated Raf-1. In contrast, B-Raf binding did not affect PKCtheta kinase activity, and PKCtheta did not change B-Raf activity. Coexpression of mutationally activated Raf-1 in cells enhanced the phosphorylation of T538 in the PKCtheta activation loop. PKCtheta and Raf cooperated in terms of binding to BAD, a pro-apoptotic Bcl-2 family protein that is inactivated by phosphorylation. While neither Raf-1 nor B-Raf could phosphorylate BAD, they enhanced the ability of PKCtheta to interact with BAD and to phosphorylate BAD in vitro and in vivo, suggesting a new role for Raf proteins in T-cells by targeting PKCtheta to interact with and phosphorylate BAD.
Collapse
Affiliation(s)
- Alison Hindley
- Signalling and Proteomics Laboratory, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
71
|
Takata Y, Hamada D, Miyatake K, Nakano S, Shinomiya F, Scafe CR, Reeve VM, Osabe D, Moritani M, Kunika K, Kamatani N, Inoue H, Yasui N, Itakura M. Genetic association between the PRKCH gene encoding protein kinase Ceta isozyme and rheumatoid arthritis in the Japanese population. ACTA ACUST UNITED AC 2007; 56:30-42. [PMID: 17195206 DOI: 10.1002/art.22262] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Analyses of families with rheumatoid arthritis (RA) have suggested the presence of a putative susceptibility locus on chromosome 14q21-23. This large population-based genetic association study was undertaken to examine this region. METHODS A 2-stage case-control association study of 950 unrelated Japanese patients with RA and 950 healthy controls was performed using >400 gene-based common single-nucleotide polymorphisms (SNPs). RESULTS Multiple SNPs in the PRKCH gene encoding the eta isozyme of protein kinase C (PKCeta) showed significant single-locus disease associations, the most significant being SNP c.427+8134C>T (odds ratio 0.72, 95% confidence interval 0.62-0.83, P = 5.9 x 10(-5)). Each RA-associated SNP was consistently mapped to 3 distinct regions of strong linkage disequilibrium (i.e., linkage disequilibrium or haplotype blocks) in the PRKCH gene locus, suggesting that multiple causal variants influence disease susceptibility. Significant SNPs included a novel common missense polymorphism of the PRKCH gene, V374I (rs2230500), which lies within the ATP-binding site that is highly conserved among PKC superfamily members. In circulating lymphocytes, PRKCH messenger RNA was expressed at higher levels in resting T cells (CD4(+) or CD8(+)) than in B cells (CD19(+)) or monocytes (CD14(+)) and was significantly down-regulated through immune responses. CONCLUSION Our results provide evidence of the involvement of PRKCH as a susceptibility gene for RA in the Japanese population. Dysregulation of PKCeta signal transduction pathway(s) may confer increased risk of RA through aberrant T cell-mediated autoimmune responses.
Collapse
|
72
|
Visualizing the Immune Synapse. Biol Blood Marrow Transplant 2007. [DOI: 10.1016/j.bbmt.2006.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Preiss S, Namgaladze D, Brüne B. Critical role for classical PKC in activating Akt by phospholipase A2-modified LDL in monocytic cells. Cardiovasc Res 2006; 73:833-40. [PMID: 17261275 DOI: 10.1016/j.cardiores.2006.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 12/05/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE Modification of low density lipoprotein (LDL) by phospholipases confers pro-atherogenic properties, although signalling pathways of phospholipase-modified LDL (PLA-LDL) remain obscure. We questioned whether members of the protein kinase C (PKC) family are involved in PLA-LDL-induced Akt phosphorylation and survival of THP-1 monocytic cells. METHODS Akt phosphorylation in THP-1 cells was monitored by Western analysis. To modulate PKC expression cells were transfected with dominant-negative enhanced green fluorescent protein linked PKCalpha (PKCalpha-EGFP K368R) and PKCbeta (PKCbeta-EGFP K371M) constructs or with siRNA specific for PKCalpha/PKCbeta using nucleofection technology. Cell survival was assessed by Annexin V/propidium iodide staining or mitochondrial membrane potential measurement with 3,3'-dihexyloxacarbocyanine iodide (DiOC(6)) using flow cytometry. RESULTS Inhibitors of phospholipase C (PLC) or classical PKCs as well as PKC depletion following phorbol ester treatments, blocked Akt phosphorylation in response to PLA-LDL. In contrast, phosphatidylinositol 3-kinase (PI3K) activation by PLA-LDL was insensitive to PKC inhibition. Using RNA interference to knockdown PKCalpha and overexpression of dominant-negative PKCalpha as well as PKCbeta drastically lowered Akt phosphorylation after PLA-LDL. Moreover, inhibition of PKC attenuated a PLA-LDL-induced survival response towards oxidative stress in THP-1 cells. CONCLUSION We show that PKCalpha and PKCbeta are critical for PLA-LDL-induced Akt phosphorylation and survival in THP-1 monocytic cells.
Collapse
Affiliation(s)
- Stefan Preiss
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
74
|
Warnement MR, Faley SL, Wikswo JP, Rosenthal SJ. Quantum Dot Probes for Monitoring Dynamic Cellular Response: Reporters of T Cell Activation. IEEE Trans Nanobioscience 2006; 5:268-72. [PMID: 17181026 DOI: 10.1109/tnb.2006.886573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibody-conjugated quantum dots (QDs) have been used to map the expression dynamics of the cytokine receptor interleukin-2 receptor-alpha (IL-2Ralpha) following Jurkat T cell activation. Maximal receptor expression was observed 48 h after activation, followed by a sharp decrease consistent with IL-2R internalization subsequent to IL-2 engagement. Verification of T cell activation and specificity of QD labeling were demonstrated using fluorescence microscopy, ELISA, and FACS analyses. These antibody conjugates provide a versatile means to rapidly determine cell state and interrogate membrane associated proteins involved in cell signaling pathways. Ultimately, incorporation with a microfluidic platform capable of simultaneously monitoring several cell signaling pathways will aid in toxin detection and discrimination.
Collapse
|
75
|
Yea SS, Jeong HS, Choi CY, Park KR, Oh S, Shin JG, Yun CH. Inhibitory effect of anethole on T-lymphocyte proliferation and interleukin-2 production through down-regulation of the NF-AT and AP-1. Toxicol In Vitro 2006; 20:1098-105. [PMID: 16531003 DOI: 10.1016/j.tiv.2006.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/11/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Anethole is a naturally occurring alkenylbenzene found in a variety of foods and essential oils. In the present study, we investigated the effect of anethole on T-cell function and the regulatory mechanism of its effect. Direct addition of anethole to B6C3F1 mouse splenocyte cultures produced a concentration-dependent inhibition of the lymphoproliferative response to concanavalin A stimulation. Anethole inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced interleukin-2 (IL-2) mRNA expression and protein secretion in EL4 mouse T-cells as determined by quantitative/competitive RT-PCR and ELISA, respectively. To further characterize the mechanism for the transcriptional regulation of IL-2, an electrophoretic mobility shift assay was performed to evaluate the binding activity of the nuclear factor of activated T-cells (NF-AT), activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), and octamer binding protein (Oct) in PMA/Io-stimulated EL4 cells. Anethole decreased the NF-AT and AP-1 binding activity, but no significant effect was observed on NF-kappaB or Oct binding activity. These results suggest that anethole suppress T-cell proliferation and IL-2 production and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT and AP-1.
Collapse
Affiliation(s)
- Sung Su Yea
- Department of Biochemistry, College of Medicine, Inje University, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
76
|
Yasuda T, Kuwabara T, Nakano H, Aritomi K, Onodera T, Lipp M, Takahama Y, Kakiuchi T. Chemokines CCL19 and CCL21 promote activation-induced cell death of antigen-responding T cells. Blood 2006; 109:449-56. [PMID: 16973962 DOI: 10.1182/blood-2006-04-018101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Secondary lymphoid organs (SLOs) provide a niche for the initiation and regulation of T-cell responses, but the mechanisms have been poorly understood. We investigated the influence of chemokines CCL19 and CCL21 constitutively expressed in SLOs on activation-induced cell death (AICD) of CD4+ T cells. When paucity of lymph node T cells (plt) mutant mice lacking expression of CCL19/CCL21 were primed with OVA/CFA, both expansion of OVA-responding CD4+ T cells in the draining lymph nodes and an in vitro recall response were prolonged as compared with responses in wild-type (WT) mice. The apoptotic cell frequency among OVA-responding CD4+ T cells was similarly low in plt/plt and WT mice during the clonal expansion phase. However, during the clonal contraction phase, the frequency never increased in plt/plt mice, whereas in WT mice it continuously increased to a peak 18 days after immunization. The presence of CCL19/CCL21 during the in vitro stimulation of CD4+ T cells with anti-CD3 plus anti-CD28 significantly enhanced in vitro AICD induction of the restimulated T cells, partially through enhancing expression of Fas ligand. Our results suggest that CCL19/CCL21 produced by stromal cells and antigen-presenting cells regulate CD4+ T-cell immune responses in SLOs by promoting AICD.
Collapse
Affiliation(s)
- Takuwa Yasuda
- Department of Immunology, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Yamaguchi T, Suzuki M, Kimura H, Kato M. Role of protein kinase C in eosinophil function. Allergol Int 2006; 55:245-52. [PMID: 17075264 DOI: 10.2332/allergolint.55.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) isoforms are being elucidated as an increasingly diverse family of enzymes involved in the downstream signal transduction and cell function in various types of cells. To date, 11 PKC isoforms have been identified; they are grouped according to their molecular structure and mode of activation: conventional PKCs (alpha, beta I, beta II, and gamma), novel PKCs (delta, epsilon, mu, theta, and eta), and atypical PKCs (zeta, and iota/lambda). Eosinophils are involved in the pathogenesis of allergic diseases such as bronchial asthma, pollinosis, and atopic dermatitis as well as in the inflammatory response to parasitic infections. Recent studies using selective activators and inhibitors of individual PKC isoforms have revealed that this enzyme is involved in eosinophil dynamics such as cell motility and other functions. However, the role of PKCs in eosinophil functions has been not wholly understood. In this review, we have focused upon and summarized the current knowledge regarding the role of PKC isoforms in eosinophil functions.
Collapse
Affiliation(s)
- Takafumi Yamaguchi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Gunma, Japan
| | | | | | | |
Collapse
|
78
|
Kim H, Kim BY, Soh JW, Cho EJ, Liu JO, Youn HD. A novel function of Nur77: physical and functional association with protein kinase C. Biochem Biophys Res Commun 2006; 348:950-6. [PMID: 16904076 DOI: 10.1016/j.bbrc.2006.07.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 01/11/2023]
Abstract
Despite the involvement in diverse physiological process and pleiotropic expression profile, the molecular functions of Nur77 are not likely to be fully elucidated. From the effort to find a novel function of Nur77, we detected molecular interaction between Nur77 and PKC. Details of interaction revealed that C-terminal ligand binding domain (LBD) of Nur77 specifically interacted with highly conserved glycine-rich loop of PKC required for catalytic activity. This molecular interaction resulted in inhibition of catalytic activity of PKCtheta by Nur77. C-terminal LBD of Nur77 is sufficient for inhibiting the phosphorylation of substrate by PKCtheta. Ultimately, inhibition of catalytic activity by Nur77 is deeply associated with repression of PKC-mediated activation of AP-1 and NF-kappaB. Therefore, these findings demonstrate a novel function of Nur77 as a PKC inhibitor and give insights into molecular mechanisms of various Nur77-mediated physiological phenomena.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Interdisciplinary Program in Genetic Engineering, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
79
|
Pfeifhofer C, Gruber T, Letschka T, Thuille N, Lutz-Nicoladoni C, Hermann-Kleiter N, Braun U, Leitges M, Baier G. Defective IgG2a/2b class switching in PKC alpha-/- mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:6004-11. [PMID: 16670309 DOI: 10.4049/jimmunol.176.10.6004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using model tumor T cell lines, protein kinase C (PKC) alpha has been implicated in IL-2 cytokine promoter activation in response to Ag receptor stimulation. In this study, for the first time, PKCalpha null mutant mice are analyzed and display normal T and B lymphocyte development. Peripheral CD3(+) PKCalpha-deficient T cells show unimpaired activation-induced IL-2 cytokine secretion, surface expression of CD25, CD44, and CD69, as well as transactivation of the critical transcription factors NF-AT, NF-kappaB, AP-1, and STAT5 in vitro. Nevertheless, CD3/CD28 Ab- and MHC alloantigen-induced T cell proliferation and IFN-gamma production are severely impaired in PKCalpha(-/-) CD3(+) T cells. Consistently, PKCalpha-deficient CD3(+) T cells from OVA-immunized PKCalpha-deficient mice exhibit markedly reduced recall proliferation to OVA in in vitro cultures. In vivo, PKCalpha-deficient mice give diminished OVA-specific IgG2a and IgG2b responses following OVA immunization experiments. In contrast, OVA-specific IgM and IgG1 responses and splenic PKCalpha(-/-) B cell proliferation are unimpaired. Our genetic data, thus, define PKCalpha as the physiological and nonredundant PKC isotype in signaling pathways that are necessary for T cell-dependent IFN-gamma production and IgG2a/2b Ab responses.
Collapse
Affiliation(s)
- Christa Pfeifhofer
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University, Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Bastian P, Posch B, Lang K, Niggemann B, Zaenker KS, Hatt H, Entschladen F. Phosphatidylinositol 3-Kinase in the G Protein-Coupled Receptor–Induced Chemokinesis and Chemotaxis of MDA-MB-468 Breast Carcinoma Cells: A Comparison with Leukocytes. Mol Cancer Res 2006; 4:411-21. [PMID: 16778088 DOI: 10.1158/1541-7786.mcr-06-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The polarization of tumor cells and leukocytes into a front end and a rear end is a crucial prerequisite for their autonomous, directed movement. Phosphatidylinositol 3-kinase (PI3K) is assumed to play an important role in this polarization process, whereas the results obtained with different cell types and different migration assays widely vary. Thus, we conducted a comparative study on the role of the PI3K in the locomotor activity and directionality of the migration of tumor cells on the example of MDA-MB-468 breast carcinoma cells in comparison with CTLs and neutrophil granulocytes. We used our well-established, collagen-based, three-dimensional migration assay for the investigation of the chemokinesis and chemotaxis of these cells. Our results show that the role of the PI3K in the regulation of migratory activity is distinct between the investigated cell types: the migration of CTLs and MDA-MB-468 cells was impaired by the inhibition of the PI3K with wortmannin, whereas neutrophil granulocytes were only slightly affected. However, neither cell type was impaired in the ability to respond chemotactically to gradients of ligands to G protein-coupled receptors. Thus, the PI3K contributes to the regulation of migratory activity but not to the directionality of migration of MDA-MB-468 breast carcinoma cells. As a further conclusion with regard to cancer treatment, the PI3K is not a suitable target for the inhibition of metastasis formation, because the migration of leukocytes is also affected, which leads to a dysfunction of the immune defense.
Collapse
Affiliation(s)
- Philipp Bastian
- Institute of Immunology, Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | | | | | | | | | | | | |
Collapse
|
81
|
von Essen M, Nielsen MW, Bonefeld CM, Boding L, Larsen JM, Leitges M, Baier G, Odum N, Geisler C. Protein Kinase C (PKC)α and PKCθ Are the Major PKC Isotypes Involved in TCR Down-Regulation. THE JOURNAL OF IMMUNOLOGY 2006; 176:7502-10. [PMID: 16751397 DOI: 10.4049/jimmunol.176.12.7502] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is well known that protein kinase C (PKC) plays an important role in regulation of TCR cell surface expression levels. However, eight different PKC isotypes are present in T cells, and to date the particular isotype(s) involved in TCR down-regulation remains to be identified. The aim of this study was to identify the PKC isotype(s) involved in TCR down-regulation and to elucidate the mechanism by which they induce TCR down-regulation. To accomplish this, we studied TCR down-regulation in the human T cell line Jurkat, in primary human T cells, or in the mouse T cell line DO11.10 in which we either overexpressed constitutive active or dominant-negative forms of various PKC isotypes. In addition, we studied TCR down-regulation in PKC knockout mice and by using small interfering RNA-mediated knockdown of specific PKC isotypes. We found that PKCalpha and PKCtheta were the only PKC isotypes able to induce significant TCR down-regulation. Both isotypes mediated TCR down-regulation via the TCR recycling pathway that strictly depends on Ser(126) and the di-leucine-based receptor-sorting motif of the CD3gamma chain. Finally, we found that PKCtheta was mainly implicated in down-regulation of directly engaged TCR, whereas PKCalpha was involved in down-regulation of nonengaged TCR.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- CD3 Complex/physiology
- Cell Line, Tumor
- Cells, Cultured
- Down-Regulation/genetics
- Down-Regulation/immunology
- Humans
- Hybridomas
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/physiology
- Jurkat Cells
- Leucine/metabolism
- Mice
- Mice, Knockout
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/deficiency
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Kinase C-alpha/deficiency
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/physiology
- Protein Kinase C-theta
- RNA, Small Interfering/pharmacology
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Marina von Essen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Tan SL, Zhao J, Bi C, Chen XC, Hepburn DL, Wang J, Sedgwick JD, Chintalacharuvu SR, Na S. Resistance to experimental autoimmune encephalomyelitis and impaired IL-17 production in protein kinase C theta-deficient mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2872-9. [PMID: 16493044 DOI: 10.4049/jimmunol.176.5.2872] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The protein kinase C theta (PKC theta) serine/threonine kinase has been implicated in signaling of T cell activation, proliferation, and cytokine production. However, the in vivo consequences of ablation of PKC theta on T cell function in inflammatory autoimmune disease have not been thoroughly examined. In this study we used PKC theta-deficient mice to investigate the potential involvement of PKC theta in the development of experimental autoimmune encephalomyelitis, a prototypic T cell-mediated autoimmune disease model of the CNS. We found that PKC theta-/- mice immunized with the myelin oligodendrocyte glycoprotein (MOG) peptide MOG(35-55) were completely resistant to the development of clinical experimental autoimmune encephalomyelitis compared with wild-type control mice. Flow cytometric and histopathological analysis of the CNS revealed profound reduction of both T cell and macrophage infiltration and demyelination. Ex vivo MOG(35-55) stimulation of splenic T lymphocytes from immunized PKC theta-/- mice revealed significantly reduced production of the Th1 cytokine IFN-gamma as well as the T cell effector cytokine IL-17 despite comparable levels of IL-2 and IL-4 and similar cell proliferative responses. Furthermore, IL-17 expression was dramatically reduced in the CNS of PKC theta-/- mice compared with wild-type mice during the disease course. In addition, PKC theta-/- T cells failed to up-regulate LFA-1 expression in response to TCR activation, and LFA-1 expression was also significantly reduced in the spleens of MOG(35-55)-immunized PKC theta-/- mice as well as in in vitro-stimulated CD4+ T cells compared with wild-type mice. These results underscore the importance of PKC theta in the regulation of multiple T cell functions necessary for the development of autoimmune disease.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Glycoproteins/immunology
- Immunity, Innate/genetics
- Interferon-gamma/biosynthesis
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/biosynthesis
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/physiology
- Lymphocyte Function-Associated Antigen-1/biosynthesis
- Lymphocyte Function-Associated Antigen-1/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Protein Kinase C/deficiency
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Kinase C-theta
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Seng-Lai Tan
- Lilly Research Laboratories, Eli Lilly, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Gruber T, Freeley M, Thuille N, Heit I, Shaw S, Long A, Baier G. Comment on "PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation". Science 2006. [PMID: 16601177 DOI: 10.1126/science.1122000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We observe that protein kinase C (PKC) is phosphorylated on the activation loop at threonine 538 (Thr-538) before T cell activation. Our results are inconsistent with the conclusions of Lee et al. (Reports, 1 April 2005, p. 114) that the Thr-538 phosphorylation of PKC is regulated by T cell receptor activation. Other mechanisms, such as autophosphorylation of Thr-219, might orchestrate the cellular function of PKC in T cells.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | |
Collapse
|
84
|
Puente LG, He JS, Ostergaard HL. A novel PKC regulates ERK activation and degranulation of cytotoxic T lymphocytes: Plasticity in PKC regulation of ERK. Eur J Immunol 2006; 36:1009-18. [PMID: 16552708 DOI: 10.1002/eji.200535277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stimulation of cytotoxic T lymphocyte (CTL) degranulation with plate-bound anti-CD3 Ab leads to two phases of ERK activation: an early PKC-independent phase followed by a later sustained PKC-dependent phase. Herein, we show that a novel PKC (nPKC) mediates the late phase of ERK activation, upstream of Ras in murine T cells. In contrast, when CTL are activated with cross-linked anti-CD3 Ab, which does not trigger CTL degranulation, there is a requirement for conventional PKC (cPKC) for ERK activation. We detect increased novel PKCtheta activation only when CTL are stimulated with plate-bound Ab and not cross-linked Ab. Interestingly, in T cells from mice lacking PKCtheta, sustained ERK activation requires the activity of cPKC, implying that PKCtheta is required for the nPKC pathway that normally mediates sustained ERK activation. CTL lines derived from PKCtheta-deficient mice degranulate and activate ERK normally, and exhibit altered expression of PKC isozymes, which may compensate for the loss of PKCtheta. Taken together, these data demonstrate that normally an nPKC participates in the sustained activation of ERK. However, if the nPKC pathway is compromised, alternate PKC pathways can compensate, suggesting that considerable plasticity exists with respect to PKC regulation of ERK activation in T cells.
Collapse
Affiliation(s)
- Lawrence G Puente
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
85
|
Saarela J, Kallio SP, Chen D, Montpetit A, Jokiaho A, Choi E, Asselta R, Bronnikov D, Lincoln MR, Sadovnick AD, Tienari PJ, Koivisto K, Palotie A, Ebers GC, Hudson TJ, Peltonen L. PRKCA and multiple sclerosis: association in two independent populations. PLoS Genet 2006; 2:e42. [PMID: 16596167 PMCID: PMC1420678 DOI: 10.1371/journal.pgen.0020042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 02/07/2006] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system responsible for a large portion of neurological disabilities in young adults. Similar to what occurs in numerous complex diseases, both unknown environmental factors and genetic predisposition are required to generate MS. We ascertained a set of 63 Finnish MS families, originating from a high-risk region of the country, to identify a susceptibility gene within the previously established 3.4-Mb region on 17q24. Initial single nucleotide polymorphism (SNP)-based association implicated PRKCA (protein kinase C alpha) gene, and this association was replicated in an independent set of 148 Finnish MS families (p = 0.0004; remaining significant after correction for multiple testing). Further, a dense set of 211 SNPs evenly covering the PRKCA gene and the flanking regions was selected from the dbSNP database and analyzed in two large, independent MS cohorts: in 211 Finnish and 554 Canadian MS families. A multipoint SNP analysis indicated linkage to PRKCA and its telomeric flanking region in both populations, and SNP haplotype and genotype combination analyses revealed an allelic variant of PRKCA, which covers the region between introns 3 and 8, to be over-represented in Finnish MS cases (odds ratio = 1.34, 95% confidence interval 1.07-1.68). A second allelic variant, covering the same region of the PRKCA gene, showed somewhat stronger evidence for association in the Canadian families (odds ratio = 1.64, 95% confidence interval 1.39-1.94). Initial functional relevance for disease predisposition was suggested by the expression analysis: The transcript levels of PRKCA showed correlation with the copy number of the Finnish and Canadian "risk" haplotypes in CD4-negative mononuclear cells of five Finnish multiplex families and in lymphoblast cell lines of 11 Centre d'Etude du Polymorphisme Humain (CEPH) individuals of European origin.
Collapse
Affiliation(s)
- Janna Saarela
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Warwar N, Efendic S, Ostenson CG, Haber EP, Cerasi E, Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: diabetes-related changes in the GK rat. Diabetes 2006; 55:590-9. [PMID: 16505220 DOI: 10.2337/diabetes.55.03.06.db05-0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose metabolism affects most major signal pathways in pancreatic beta-cells. Multiple protein kinases, including protein kinase C (PKC) isoenzymes, are involved in these effects; however, their role is poorly defined. Moreover, the dynamics of kinase isoenzyme activation in reference to the biphasic insulin secretion is unknown. In perfused pancreas of Wistar rats, PKCalpha staining was strongly associated with insulin staining, jointly accumulating in the vicinity of the plasma membrane during early first-phase insulin response. The signal declined before the onset of second phase and reappeared during second-phase insulin release as foci, only weekly associated with insulin staining; this signal persisted for at least 15 min after glucose stimulation. In the GK rat, glucose had minimal effect on beta-cell PKCalpha. In control beta-cells, PKCdelta stained as granulated foci with partial association with insulin staining; however, no glucose-dependent translocation was observed. In the GK rat, only minimal staining for PKCdelta was observed, increasing exclusively during early first-phase secretion. In Wistar beta-cells, PKCepsilon concentrated near the nucleus, strongly associated with insulin staining, with dynamics resembling that of biphasic insulin response, but persisting for 15 min after cessation of stimulation. In GK rats, PKCepsilon staining lacked glucose-dependent changes or association with insulin. PKCzeta exhibited bimodal dynamics in control beta-cells: during early first phase, accumulation near the cell membrane was observed, dispersing thereafter. This was followed by a gradual accumulation near the nucleus; 15 min after glucose stimulus, clear PKCzeta staining was observed within the nucleus. In the GK rat, a similar response was only occasionally observed. In control beta-cells, glucose stimulation led to a transient recruitment of PKCtheta, associated with first-phase insulin release, not seen in GK beta-cell. Data from this and related studies support a role for PKCalpha in glucose-induced insulin granule recruitment for exocytosis; a role for PKCepsilon in activation of insulin granules for exocytosis and/or in the glucose-generated time-dependent potentiation signal for insulin release; and a dual function for PKCzeta in initiating insulin release and in a regulatory role in the transcriptional machinery. Furthermore, diminished levels and/or activation of PKCalpha, PKCepsilon, PKCtheta, and PKCzeta could be part of the defective signals downstream to glucose metabolism responsible for the deranged insulin secretion in the GK rat.
Collapse
Affiliation(s)
- Nasim Warwar
- Endocrinology and Metabolism Service, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
87
|
Nakagawa R, Soh JW, Michie AM. Subversion of protein kinase C alpha signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Res 2006; 66:527-34. [PMID: 16397269 DOI: 10.1158/0008-5472.can-05-0841] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived mature B cells with the distinctive phenotype CD19(hi) CD5+ CD23+ IgM(lo), which are refractory to apoptosis. An increased level of apoptosis has been observed on treatment of human B-CLL cells with protein kinase C (PKC) inhibitors, suggesting that this family of protein kinases mediate survival signals within B-CLL cells. Therefore, to investigate the ability of individual PKC isoforms to transform developing B cells, we stably expressed plasmids encoding PKC mutants in fetal liver-derived hematopoietic progenitor cells (HPC) from wild-type mice and then cultured them in B-cell generation systems in vitro and in vivo. Surprisingly, we noted that expression of a plasmid-encoding dominant-negative PKC alpha (PKC alpha-KR) in HPCs and subsequent culture both in vitro and in vivo resulted in the generation of a population of cells that displayed an enhanced proliferative capacity over untransfected cells and phenotypically resemble human B-CLL cells. In the absence of growth factors and stroma, these B-CLL-like cells undergo cell cycle arrest and, consistent with their ability to escape growth factor withdrawal-induced apoptosis, exhibited elevated levels of Bcl-2 expression. These studies therefore identify a unique oncogenic trigger for the development of a B-CLL-like disease resulting from the subversion of PKC alpha signaling. Our findings uncover novel avenues not only for the study of the induction of leukemic B cells but also for the development of therapeutic drugs to combat PKC alpha-regulated transformation events.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Division of Immunology, Infection and Inflammation, Western Infirmary, University of Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|
88
|
Thuille N, Heit I, Fresser F, Krumböck N, Bauer B, Leuthaeusser S, Dammeier S, Graham C, Copeland TD, Shaw S, Baier G. Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCtheta in T lymphocytes. EMBO J 2005; 24:3869-80. [PMID: 16252004 PMCID: PMC1283955 DOI: 10.1038/sj.emboj.7600856] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022] Open
Abstract
Phosphopeptide mapping identified a major autophosphorylation site, phospho (p)Thr-219, between the tandem C1 domains of the regulatory fragment in protein kinase C (PKC)theta. Confirmation of this identification was derived using (p)Thr-219 antisera that reacted with endogenous PKCtheta in primary CD3+ T cells after stimulation with phorbol ester, anti-CD3 or vanadate. The T219A mutation abrogated the capacity of PKCtheta to mediate NF-kappaB, NF-AT and interleukin-2 promoter transactivation, and reduced PKCtheta's ability in Jurkat T cells to phosphorylate endogenous cellular substrates. In particular, the T219A mutation impaired crosstalk of PKCtheta with Akt/PKBalpha in NF-kappaB activation. Yet, this novel (p)Thr-219 site did not affect catalytic activity or second-messenger lipid-binding activity in vitro. Instead, the T219A mutation prevented proper recruitment of PKCtheta in activated T cells. The PKCthetaT219A mutant defects were largely rescued by addition of a myristoylation signal to force its proper membrane localization. We conclude that autophosphorylation of PKCtheta at Thr-219 plays an important role in the correct targeting and cellular function of PKCtheta upon antigen receptor ligation.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Friedrich Fresser
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Nina Krumböck
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Birgit Bauer
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | - Caroline Graham
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Terry D Copeland
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Steve Shaw
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- Section for Human Genetics, Innsbruck Medical University, Schoepfstraβe 41, 6020 Innsbruck, Austria. Tel.: +43 512 507 3451; Fax: +43 512 507 2861; E-mail:
| |
Collapse
|
89
|
Freeley M, Volkov Y, Kelleher D, Long A. Stimulus-induced phosphorylation of PKC theta at the C-terminal hydrophobic-motif in human T lymphocytes. Biochem Biophys Res Commun 2005; 334:619-30. [PMID: 16009340 DOI: 10.1016/j.bbrc.2005.06.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases whose activity is controlled, in part, by phosphorylation on three conserved residues that are located on the catalytic domain of the enzyme, known as the activation-loop, the turn-motif, and the C-terminal hydrophobic-motif sites. Using a panel of phospho-specific antibodies, we have determined that PKC beta(I) and delta are constitutively phosphorylated on all three sites in unstimulated and activated T cells. Although PKC theta is constitutively phosphorylated at the activation-loop and turn-motif sites in T cells, PMA or anti-CD3/CD28 stimulation results in an increase in phosphorylation at the hydrophobic-motif (Ser695), an event that coincides with translocation of the enzyme from the cytosol/cytoskeleton to the membrane. Studies on the stimulus-induced phosphorylation of PKC theta demonstrate that an upstream kinase activity involving a conventional PKC isoform(s) and the PI3-kinase pathway, rather than autophosphorylation or the rapamycin-sensitive mTOR pathway, regulates this site in T lymphocytes. However, hydrophobic-motif phosphorylation does not appear to control membrane translocation, suggesting that this site may control other aspects of PKC theta signalling.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Biochemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | | | | | | |
Collapse
|
90
|
Hoyer KK, Herling M, Bagrintseva K, Dawson DW, French SW, Renard M, Weinger JG, Jones D, Teitell MA. T Cell Leukemia-1 Modulates TCR Signal Strength and IFN-γ Levels through Phosphatidylinositol 3-Kinase and Protein Kinase C Pathway Activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:864-73. [PMID: 16002684 DOI: 10.4049/jimmunol.175.2.864] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A signaling role for T cell leukemia-1 (TCL1) during T cell development or in premalignant T cell expansions and mature T cell tumors is unknown. In this study, TCL1 is shown to regulate the growth and survival of peripheral T cells but not precursor thymocytes. Proliferation is increased by TCL1-induced lowering of the TCR threshold for CD4(+) and CD8(+) T cell activation through both PI3K-Akt and protein kinase C-MAPK-ERK signaling pathways. This effect is submaximal as CD28 costimulation coupled to TCL1 expression additively accelerates dose-dependent T cell growth. In addition to its role in T cell proliferation, TCL1 also increases IFN-gamma levels from Th1-differentiated T cells, an effect that may provide a survival advantage during premalignant T cell expansions and in clonal T cell tumors. Combined, these data indicate a role for TCL1 control of growth and effector T cell functions, paralleling features provided by TCR-CD28 costimulation. These results also provide a more detailed mechanism for TCL1-augmented signaling and help explain the delayed occurrence of mature T cell expansions and leukemias despite tumorigenic TCL1 dysregulation that begins in early thymocytes.
Collapse
MESH Headings
- Animals
- Antigens, Surface/metabolism
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/immunology
- Cells, Cultured
- Enzyme Activation/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Jurkat Cells
- Leukemia, T-Cell/enzymology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- MAP Kinase Signaling System/immunology
- Mice
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Kinase C/metabolism
- Protein Kinase C/physiology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/physiology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Stem Cells/cytology
- Stem Cells/enzymology
- Stem Cells/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th1 Cells/cytology
- Th1 Cells/enzymology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Katrina K Hoyer
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Michie AM, Nakagawa R. The link between PKCalpha regulation and cellular transformation. Immunol Lett 2005; 96:155-62. [PMID: 15585319 DOI: 10.1016/j.imlet.2004.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 08/24/2004] [Accepted: 08/25/2004] [Indexed: 02/04/2023]
Abstract
Protein kinase Calpha (PKCalpha) is a serine/threonine protein kinase that has been implicated in the regulation of a variety of cellular functions such as proliferation, differentiation and apoptosis in response to a diverse range of stimuli. In order to execute these biological events PKCalpha activity is modulated by, and functionally interacts with, a number of proto-oncogenes, therefore it is perhaps unsurprising that dysregulation of PKCalpha is associated with a diverse range of cancers. Recently, PKCalpha has become a target for a number of anti-cancer therapies. The purpose of this review is to describe how PKCalpha regulates key biological events, to gain an insight into how PKCalpha-mediated cellular transformation may occur. In this way, it may be possible to design therapeutic tools to combat cancers specifically associated with PKCalpha dysfunction.
Collapse
Affiliation(s)
- Alison M Michie
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, Scotland, UK.
| | | |
Collapse
|
92
|
Fazal N, Choudhry MA, Sayeed MM. Inhibition of T cell MAPKs (Erk 1/2, p38) with thermal injury is related to down-regulation of Ca2+ signaling. Biochim Biophys Acta Mol Basis Dis 2005; 1741:113-9. [PMID: 15955454 DOI: 10.1016/j.bbadis.2004.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/08/2004] [Accepted: 10/14/2004] [Indexed: 01/27/2023]
Abstract
We evaluated MAPK (Erk 1/2 and p38) signaling mechanisms of altered T-cell-mediated immune responses in thermal injury condition. Rats were subjected to 30% body surface scald burn, and their mesenteric lymph node (MLN) and Peyer's patch (PP) T cells were purified using nylon wool method. Activation of MAPKs, Erk 1/2 and p38 was assessed in T cells by determining its phosphorylation using immunoblot analysis, intracellular immunostaining and confocal microscopy. The results showed a down-regulation of Erk 1/2 and p38 activation in anti-CD3-stimulated T cells from thermally injured animals, compared to Erk 1/2 and p38 in sham rat T cells. The down-regulation of MAPKs in T cells was reversed by treatment of T cells with calcium agonist, ionomycin. These data indicate that attenuated MAPKs (Erk 1/2, p38) activation in thermally injured animals' T cells could result from derangement of Ca(2+) mobilization. This finding suggests that T cell signaling derangements with thermal injury involve an altered cross-talk between Ca(2+) mobilization and MAPK signaling mechanisms.
Collapse
Affiliation(s)
- Nadeem Fazal
- Burn and Shock Trauma Institute, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| | | | | |
Collapse
|
93
|
von Knethen A, Tautenhahn A, Link H, Lindemann D, Brüne B. Activation-Induced Depletion of Protein Kinase Cα Provokes Desensitization of Monocytes/Macrophages in Sepsis. THE JOURNAL OF IMMUNOLOGY 2005; 174:4960-5. [PMID: 15814724 DOI: 10.4049/jimmunol.174.8.4960] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis accounts for the majority of fatal casualties in critically ill patients, because extensive research failed to significantly improve appropriate therapy strategies. Thus, understanding molecular mechanisms initiating the septic phenotype is important. Symptoms of septic disease are often associated with monocyte/macrophage desensitization. In this study, we provide evidence that a desensitized cellular phenotype is characterized by an attenuated oxidative burst. Inhibition of the oxidative burst and depletion of protein kinase C alpha (PKC alpha) were correlated in septic patients. To prove that PKC alpha down-regulation indeed attenuated the oxidative burst, we set up a cell culture model to mimic desensitized monocytes/macrophages. We show that LPS/IFN-gamma-treatment of RAW264.7 and U937 cells lowered PKC alpha expression and went on to confirm these data in primary human monocyte-derived macrophages. To establish a role of PKC alpha in cellular desensitization, we overexpressed PKC alpha in RAW264.7 and U937 cells and tested for phorbolester-elicited superoxide formation following LPS/IFN-gamma-pretreatment. Inhibition of the oxidative burst, i.e., cellular desensitization, was clearly reversed in cells overexpressing PKC alpha, pointing to PKC alpha as the major transmitter in eliciting the oxidative burst in monocytes/macrophages. However, PKC alpha inactivation by transfecting a catalytically inactive PKC alpha mutant attenuated superoxide formation. We suggest that depletion of PKC alpha in monocytes from septic patients contributes to cellular desensitization, giving rise to clinical symptoms of sepsis.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Cell Biology, University Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
94
|
T'sas F, Brenner C, Mauen S, Putmans P, Monté D, Van Lint C, Moser M, Baert JL, de Launoit Y. Expression of the Ets transcription factor Erm is regulated through a conventional PKC signaling pathway in the Molt4 lymphoblastic cell line. FEBS Lett 2005; 579:66-70. [PMID: 15620692 DOI: 10.1016/j.febslet.2004.11.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/15/2004] [Accepted: 11/10/2004] [Indexed: 11/22/2022]
Abstract
Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.
Collapse
Affiliation(s)
- France T'sas
- Laboratoire de Virologie Moléculaire, Faculté de médecine, ULB, CP 614, 808 route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Cippitelli M, Fionda C, Di Bona D, Piccoli M, Frati L, Santoni A. Hyperthermia enhances CD95-ligand gene expression in T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 174:223-32. [PMID: 15611244 DOI: 10.4049/jimmunol.174.1.223] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperthermia represents an interesting therapeutic strategy for the treatment of tumors. Moreover, it is able to regulate several aspects of the immune response. Fas (APO-1/CD95) and its ligand (FasL) are cell surface proteins whose interaction activates apoptosis of Fas-expressing targets. In T cells, the Fas-Fas-L system regulates activation-induced cell death, is implicated in diseases in which lymphocyte homeostasis is compromised, and plays an important role during cytotoxic and regulatory actions mediated by these cells. In this study we describe the effect of hyperthermia on activation of the fas-L gene in T lymphocytes. We show that hyperthermic treatment enhances Fas-L-mediated cytotoxicity, fas-L mRNA expression, and fas-L promoter activity in activated T cell lines. Our data indicate that hyperthermia enhances the transcriptional activity of AP-1 and NF-kappaB in activated T cells, and this correlates with an increased expression/nuclear translocation of these transcription factors. Moreover, we found that heat shock factor-1 is a transactivator of fas-L promoter in activated T cells, and the overexpression of a dominant negative form of heat shock factor-1 may attenuate the effect of hyperthermia on fas-L promoter activity. Furthermore, overexpression of dominant negative mutants of protein kinase Cepsilon (PKCepsilon) and PKCtheta; partially inhibited the promoter activation and, more importantly, could significantly reduce the enhancement mediated by hyperthermia, indicating that modulation of PKC activity may play an important role in this regulation. These results add novel information on the immunomodulatory action of heat, in particular in the context of its possible use as an adjuvant therapeutic strategy to consider for the treatment of cancer.
Collapse
Affiliation(s)
- Marco Cippitelli
- Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
96
|
Gruber T, Barsig J, Pfeifhofer C, Ghaffari-Tabrizi N, Tinhofer I, Leitges M, Baier G. PKCδ is involved in signal attenuation in CD3+ T cells. Immunol Lett 2005; 96:291-3. [PMID: 15585335 DOI: 10.1016/j.imlet.2004.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/21/2004] [Accepted: 08/24/2004] [Indexed: 11/25/2022]
Abstract
PKCdelta has been implicated in the signalling events after engagement of the antigen specific receptor on B cells and the Fc-epsilon receptor on mast cells. Employing our recently established PKCdelta null mice , we here investigate the physiological function of PKCdelta in CD3+ T cells. As result, administration of anti-CD3 antibodies in vivo induced markedly increased blood plasma IL-2 levels (but not IL-4, IFN-gamma, TNF-alpha and IL-6 levels) in the PKCdelta null mice, when compared to wild-type sibling controls. Additionally, in vitro T cell proliferative responses to allogenic MHC are significantly enhanced in PKCdelta-deficient CD3+ T cells. These findings suggest that PKCdelta serves a so far unrecognized role in TCR-induced negative regulation of IL-2 cytokine production and T cell proliferation.
Collapse
Affiliation(s)
- Thomas Gruber
- Department of Medical Biology and Human Genetics, Innsbruck Medical University, Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
97
|
Brose N, Betz A, Wegmeyer H. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr Opin Neurobiol 2004; 14:328-40. [PMID: 15194113 DOI: 10.1016/j.conb.2004.05.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diacylglycerol is an essential second messenger in mammalian cells. The most prominent intracellular targets of diacylglycerol and the functionally analogous phorbol esters belong to the protein kinase C family, but at least five alternative types of high affinity diacylglycerol/phorbol ester receptors are known: protein kinase D, diacylglycerol kinases alpha, beta, and gamma, RasGRPs, chimaerins, and Munc13s. These function independently of protein kinase C isozymes, and form a network of signaling pathways in the diacylglycerol second messenger system that regulates processes as diverse as gene transcription, lipid signaling, cytoskeletal dynamics, intracellular membrane trafficking, or neurotransmitter release.
Collapse
Affiliation(s)
- Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine and Deutsche Forschungsgemeinschaft Center for Molecular Physiology of the Brain, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
98
|
Spitaler M, Cantrell DA. Protein kinase C and beyond. Nat Immunol 2004; 5:785-90. [PMID: 15282562 DOI: 10.1038/ni1097] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/07/2004] [Indexed: 11/08/2022]
Abstract
Protein kinase C molecules regulate both positive and negative signal transduction pathways essential for the initiation and homeostasis of immune responses. There are multiple isoforms of protein kinase C that are activated differently by calcium and diacylglycerol, and these are activated mainly by antigen receptors in T cells, B cells and mast cells. Additionally, mammals express several other diacylglycerol binding proteins that are linked to a network of key signal transduction pathways that control lymphocyte biology. Diacylglycerol and protein kinase C regulate a broad range of gene transcription programs but also modulate integrins, chemokine responses and antigen receptors, thereby regulating lymphocyte adhesion, migration, differentiation and proliferation.
Collapse
Affiliation(s)
- Martin Spitaler
- School of Life Sciences, Division of Cell Biology & Immunology, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
99
|
Berg-Brown NN, Gronski MA, Jones RG, Elford AR, Deenick EK, Odermatt B, Littman DR, Ohashi PS. PKCtheta signals activation versus tolerance in vivo. ACTA ACUST UNITED AC 2004; 199:743-52. [PMID: 15024044 PMCID: PMC2212730 DOI: 10.1084/jem.20031022] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Understanding the pathways that signal T cell tolerance versus activation is key to regulating immunity. Previous studies have linked CD28 and protein kinase C-θ (PKCθ) as a potential signaling pathway that influences T cell activation. Therefore, we have compared the responses of T cells deficient for CD28 and PKCθ in vivo and in vitro. Here, we demonstrate that the absence of PKCθ leads to the induction of T cell anergy, with a phenotype that is comparable to the absence of CD28. Further experiments examined whether PKCθ triggered other CD28-dependent responses. Our data show that CD4 T cell–B cell cooperation is dependent on CD28 but not PKCθ, whereas CD28 costimulatory signals that augment proliferation can be uncoupled from signals that regulate anergy. Therefore, PKCθ relays a defined subset of CD28 signals during T cell activation and is critical for the induction of activation versus tolerance in vivo.
Collapse
Affiliation(s)
- Nancy N Berg-Brown
- Ontario Cancer Institute, University Health Network, 610 University Ave., Toronto, M5G 2M9 Canada
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Marsland BJ, Soos TJ, Späth G, Littman DR, Kopf M. Protein kinase C theta is critical for the development of in vivo T helper (Th)2 cell but not Th1 cell responses. ACTA ACUST UNITED AC 2004; 200:181-9. [PMID: 15263025 PMCID: PMC2212016 DOI: 10.1084/jem.20032229] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serine/threonine-specific protein kinase C (PKC)-θ is predominantly expressed in T cells and localizes to the center of the immunological synapse upon T cell receptor (TCR) and CD28 signaling. T cells deficient in PKC-θ exhibit reduced interleukin (IL)-2 production and proliferative responses in vitro, however, its significance in vivo remains unclear. We found that pkc-θ−/− mice were protected from pulmonary allergic hypersensitivity responses such as airway hyperresponsiveness, eosinophilia, and immunoglobulin E production to inhaled allergen. Furthermore, T helper (Th)2 cell immune responses against Nippostrongylus brasiliensis were severely impaired in pkc-θ−/− mice. In striking contrast, pkc-θ−/− mice on both the C57BL/6 background and the normally susceptible BALB/c background mounted protective Th1 immune responses and were resistant against infection with Leishmania major. Using in vitro TCR transgenic T cell–dendritic cell coculture systems and antigen concentration-dependent Th polarization, PKC-θ–deficient T cells were found to differentiate into Th1 cells after activation with high concentrations of specific peptide, but to have compromised Th2 development at low antigen concentration. The addition of IL-2 partially reconstituted Th2 development in pkc-θ−/− T cells, consistent with an important role for this cytokine in Th2 polarization. Taken together, our results reveal a central role for PKC-θ signaling during Th2 responses.
Collapse
Affiliation(s)
- Benjamin J Marsland
- Molecular Biomedicine, Swiss Federal Institute of Technology, Wagistr. 27, CH8952 Zurich-Schlieren, Switzerland
| | | | | | | | | |
Collapse
|