51
|
Gut Microbiota Profile in Adults Undergoing Bariatric Surgery: A Systematic Review. Nutrients 2022; 14:nu14234979. [PMID: 36501007 PMCID: PMC9738914 DOI: 10.3390/nu14234979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Gut microbiota (GM) after bariatric surgery (BS) has been considered as a factor associated with metabolic improvements and weight loss. In this systematic review, we evaluate changes in the GM, characterized by 16S rRNA and metagenomics techniques, in obese adults who received BS. The PubMed, Scopus, Web of Science, and LILACS databases were searched. Two independent reviewers analyzed articles published in the last ten years, using Rayyan QCRI. The initial search resulted in 1275 documents, and 18 clinical trials were included after the exclusion criteria were applied. The predominance of intestinal bacteria phyla varied among studies; however, most of them reported a greater amount of Bacteroidetes (B), Proteobacteria (P), and diversity (D) after BS. Firmicutes (F), B, and the (F/B) ratio was inconsistent, increasing or decreasing after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) were conducted, compared to before surgery. There was a reduction in the relative proportion of F. Moreover, a higher proportion of Actinobacteria (A) was observed after RYGB was conducted. However, the same was not identified when SG procedures were applied. Genera abundance and bacteria predominance varied according to the surgical procedure, with limited data regarding the impact on phyla. The present study was approved by PROSPERO, under registration number CRD42020209509.
Collapse
|
52
|
Sun D, Xiang H, Yan J, He L. Intestinal microbiota: A promising therapeutic target for hypertension. Front Cardiovasc Med 2022; 9:970036. [PMID: 36457803 PMCID: PMC9705378 DOI: 10.3389/fcvm.2022.970036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Hypertension has developed into an escalating serious global public health problem with multiple and unclear pathophysiological mechanisms. Recent studies have identified intestinal microbiota as a key perpetrator of hypertension through a variety of mechanisms. In this review, we highlight the potential roles of the intestinal microbiota and its metabolites in the development of hypertension, as well as the therapeutic potential for targeting intestinal microbiomes. We also shed light on the main limitations and challenges of the current research and suggest directions for future investigations. Finally, we discuss the development of accurate and personalized preventive and therapeutic strategies for hypotension by the modulation of intestinal microbes and metabolites.
Collapse
Affiliation(s)
- Dating Sun
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Hui Xiang
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqun He
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
53
|
Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel) 2022; 11:1584. [PMID: 36358236 PMCID: PMC9686891 DOI: 10.3390/antibiotics11111584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2023] Open
Abstract
Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host.
Collapse
Affiliation(s)
- Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Dan Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiyang Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Qi Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Fan Xiao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zhaoyi Liang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Sijia Zheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yongning Wu
- Food Safety Research Unit (2019RU014), Chinese Academy of Medical Science, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
54
|
Shi Y, Chen C, Wu X, Han Z, Zhang S, Chen K, Qiu X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109417. [PMID: 35872240 DOI: 10.1016/j.cbpc.2022.109417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Amitriptyline (AMI), the most commonly prescribed tricyclic antidepressant, is widely detected in water environments. Exposure to AMI may lead to diverse adverse effects on aquatic organisms, but little is known about the effect of short-term exposure to AMI on the gut microbiota of aquatic organisms and their recovery characteristics. In the present study, adult zebrafish (Danio rerio) were exposed to AMI (0, 2.5, 10, and 40 μg/L) for seven days, and then allowed to recover in AMI-free culture water for 21 days. The exposure caused gut damages in all the AMI treated groups of zebrafish, which became more severe after recovery compared to the control group. AMI exposure also disturbed the microbiota of zebrafish guts and rearing water even after the 21-day recovery period. Furthermore, AMI exposure affected microbes involved in the substance and energy metabolic functions in zebrafish guts and tended to increase the abundance of microbial genera associated with opportunistic pathogens. In addition, the microbial predicted metabolic functions in AMI-exposed guts of zebrafish were significantly altered after the 21-day recovery period, explaining the persistent effects of short-term exposure to AMI. The results of this study suggest that acute exposure to AMI may have persistent impacts on the gut histomorphology and the gut microbiota in aquatic organisms.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanshuo Zhang
- Henan Division GRG Metrology and Test Co., Ltd, Zhengzhou 450001, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
55
|
Ordoñez-Vázquez AL, Juárez-Hernández E, Zuarth-Vázquez JM, Ramos-Ostos MH, Uribe M, Castro-Narro G, López-Méndez I. Impact on Prevalence of the Application of NAFLD/MAFLD Criteria in Overweight and Normal Weight Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12221. [PMID: 36231529 PMCID: PMC9565949 DOI: 10.3390/ijerph191912221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome. Recently, the term metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed and adapted to body mass index (BMI). This study describes the impact on prevalence of the application of both criteria in overweight and lean patients. METHODS Patients who were evaluated for liver steatosis by transient elastography were included and divided according to BMI (≥25 kg/m2 and <25 kg/m2) and classified as NAFLD or MAFLD, according to metabolic abnormalities. Differences in prevalence were evaluated applying both criteria. A multivariate analysis was performed to evaluate independent associations of metabolic abnormalities and liver steatosis in lean patients. RESULTS 3847 patients were included. In overweight patients (61%), the prevalence NAFLD was 63.6% and 65.3% for MAFLD (p = 0.22). In contrast, the prevalence of MAFLD was lower (7.9% vs. 18.3%, p ≤ 0.001) in lean patients. In this group, higher age, fasting glucose, triglycerides, and waist circumference showed independent association with liver steatosis. CONCLUSION The application of NAFLD/MAFLD criteria did not show prevalence differences in overweight patients. With MAFLD criteria, the prevalence is lower in lean patients, but patients with high risk of progression of liver disease for steatosis were identified, according to their metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | | | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | - Graciela Castro-Narro
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | - Iván López-Méndez
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| |
Collapse
|
56
|
Wang C, Wang Y, Yang H, Tian Z, Zhu M, Sha X, Ran J, Li L. Uygur type 2 diabetes patient fecal microbiota transplantation disrupts blood glucose and bile acid levels by changing the ability of the intestinal flora to metabolize bile acids in C57BL/6 mice. BMC Endocr Disord 2022; 22:236. [PMID: 36151544 PMCID: PMC9503279 DOI: 10.1186/s12902-022-01155-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Our epidemiological study showed that the intestinal flora of Uygur T2DM patients differed from that of normal glucose-tolerant people. However, whether the Uygur T2DM fecal microbiota transplantation could reproduce the glucose metabolism disorder and the mechanism behind has not been reported. This study was designed to explore whether Uygur T2DM fecal microbiota transplantation could reproduce the glucose metabolism disorder and its mechanism. METHODS The normal diet and high fat diet group consisted of C57BL/6 mice orally administered 0.2 mL sterile normal saline. For the MT (microbiota transplantation) intervention groups, C57BL/6 mice received oral 0.2 mL faecal microorganisms from Uygur T2DM. All mice were treated daily for 8 weeks and Blood glucose levels of mice were detected. Mice faecal DNA samples were sequenced and quantified using 16S rDNA gene sequencing. Then we detected the ability of the intestinal flora to metabolize bile acids (BAs) through co-culture of fecal bacteria and BAs. BA levels in plasma were determined by UPLC-MS. Further BA receptors and glucagon-like peptide-1 (GLP-1) expression levels were determined with RT-q PCR and western blotting. RESULTS MT impaired insulin and oral glucose tolerance. Deoxycholic acid increased and tauro-β-muricholic acid and the non-12-OH BA:12-OH BA ratio decreased in plasma. MT improved the ability of intestinal flora to produce deoxycholic acid. Besides, the vitamin D receptor in the liver and ileum and GLP-1 in the ileum decreased significantly. CONCLUSIONS Uygur T2DM fecal microbiota transplantation disrupts glucose metabolism by changing the ability of intestinal flora to metabolize BAs and the BAs/GLP-1 pathway.
Collapse
Affiliation(s)
- Chanyue Wang
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ye Wang
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Yang
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zirun Tian
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Manli Zhu
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoting Sha
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ju Ran
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Linlin Li
- Pharmacological Department, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China.
- Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, Xinjiang, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
57
|
Cooper TE, Scholes-Robertson N, Craig JC, Hawley CM, Howell M, Johnson DW, Teixeira-Pinto A, Jaure A, Wong G. Synbiotics, prebiotics and probiotics for solid organ transplant recipients. Cochrane Database Syst Rev 2022; 9:CD014804. [PMID: 36126902 PMCID: PMC9489278 DOI: 10.1002/14651858.cd014804.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Solid organ transplantation has seen improvements in both surgical techniques and immunosuppression, achieving prolonged survival. Essential to graft acceptance and post-transplant recovery, immunosuppressive medications are often accompanied by a high prevalence of gastrointestinal (GI) symptoms and side effects. Apart from GI side effects, long-term exposure to immunosuppressive medications has seen an increase in drug-related morbidities such as diabetes mellitus, hyperlipidaemia, hypertension, and malignancy. Non-adherence to immunosuppression can lead to an increased risk of graft failure. Recent research has indicated that any microbial imbalances (otherwise known as gut dysbiosis or leaky gut) may be associated with cardiometabolic diseases in the long term. Current evidence suggests a link between the gut microbiome and the production of putative uraemic toxins, increased gut permeability, and transmural movement of bacteria and endotoxins and inflammation. Early observational and intervention studies have been investigating food-intake patterns, various synbiotic interventions (antibiotics, prebiotics, or probiotics), and faecal transplants to measure their effects on microbiota in treating cardiometabolic diseases. It is believed high doses of synbiotics, prebiotics and probiotics are able to modify and improve dysbiosis of gut micro-organisms by altering the population of the micro-organisms. With the right balance in the gut flora, a primary benefit is believed to be the suppression of pathogens through immunostimulation and gut barrier enhancement (less permeability of the gut). OBJECTIVES To assess the benefits and harms of synbiotics, prebiotics, and probiotics for recipients of solid organ transplantation. SEARCH METHODS We searched the Cochrane Kidney and Transplant Specialised Register up to 9 March 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials measuring and reporting the effects of synbiotics, prebiotics, or probiotics, in any combination and any formulation given to solid organ transplant recipients (any age and setting). Two authors independently assessed the retrieved titles and abstracts and, where necessary, the full text to determine which satisfied the inclusion criteria. DATA COLLECTION AND ANALYSIS Data extraction was independently carried out by two authors using a standard data extraction form. The methodological quality of included studies was assessed using the Cochrane risk of bias tool. Data entry was carried out by one author and cross-checked by another. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Five studies (250 participants) were included in this review. Study participants were adults with a kidney (one study) or liver (four studies) transplant. One study compared a synbiotic to placebo, two studies compared a probiotic to placebo, and two studies compared a synbiotic to a prebiotic. Overall, the quality of the evidence is poor. Most studies were judged to have unclear (or high) risk of bias across most domains. Of the available evidence, meta-analyses undertaken were of limited data from small studies. Across all comparisons, GRADE evaluations for all outcomes were judged to be very low certainty evidence. Very low certainty evidence implies that we are very uncertain about results (not estimable due to lack of data or poor quality). Synbiotics had uncertain effects on the change in microbiota composition (total plasma p-cresol), faecal characteristics, adverse events, kidney function or albumin concentration (1 study, 34 participants) compared to placebo. Probiotics had uncertain effects on GI side effects, infection rates immediately post-transplant, liver function, blood pressure, change in fatty liver, and lipids (1 study, 30 participants) compared to placebo. Synbiotics had uncertain effects on graft health (acute liver rejection) (2 studies, 129 participants: RR 0.73, 95% CI 0.43 to 1.25; 2 studies, 129 participants; I² = 0%), the use of immunosuppression, infection (2 studies, 129 participants: RR 0.18, 95% CI 0.03 to 1.17; I² = 66%), GI function (time to first bowel movement), adverse events (2 studies, 129 participants: RR 0.79, 95% CI 0.40 to 1.59; I² = 20%), serious adverse events (2 studies, 129 participants: RR 1.49, 95% CI 0.42 to 5.36; I² = 81%), death (2 studies, 129 participants), and organ function measures (2 studies; 129 participants) compared to prebiotics. AUTHORS' CONCLUSIONS This review highlights the severe lack of high-quality RCTs testing the efficacy of synbiotics, prebiotics or probiotics in solid organ transplant recipients. We have identified significant gaps in the evidence. Despite GI symptoms and postoperative infection being the most common reasons for high antibiotic use in this patient population, along with increased morbidity and the growing antimicrobial resistance, we found very few studies that adequately tested these as alternative treatments. There is currently no evidence to support or refute the use of synbiotics, prebiotics, or probiotics in solid organ transplant recipients, and findings should be viewed with caution. We have identified an area of significant uncertainty about the efficacy of synbiotics, prebiotics, or probiotics in solid organ transplant recipients. Future research in this field requires adequately powered RCTs comparing synbiotics, prebiotics, and probiotics separately and with placebo measuring a standard set of core transplant outcomes. Six studies are currently ongoing (822 proposed participants); therefore, it is possible that findings may change with their inclusion in future updates.
Collapse
Affiliation(s)
- Tess E Cooper
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Nicole Scholes-Robertson
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
- Translational Research Institute, Brisbane , Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia
| | - Martin Howell
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Allison Jaure
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Germaine Wong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
58
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
59
|
Associations of Diet with Urinary Trimethylamine-N-Oxide (TMAO) and Its Precursors among Free-Living 10-Year-Old Children: Data from SMBCS. Nutrients 2022; 14:nu14163419. [PMID: 36014922 PMCID: PMC9413070 DOI: 10.3390/nu14163419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a diet-derived cometabolite linked to cardiometabolic disease, has been associated with elevated dietary status, particularly in people with kidney failure and adults with dietary modulations. However, the influence of the current diet on TMAO levels in free-living children has not been adequately described. This study was to explore associations of food compositions and dietary diversity with urinary TMAO and its precursor concentrations. Urinary TMAO and its precursor concentrations of 474 healthy children from the Sheyang Mini Birth Cohort were quantified by ultra-performance liquid chromatography−Q Exactive high-resolution mass spectrometer (UPLC-Q Exactive HRMS). Individual food compositions from 24 h dietary recall data were classified into 20 groups and diversity scores were calculated according to the guidelines of the Food and Agriculture Organization of the United Nations (FAO). Associations of urinary TMAO and its precursors with food compositions and dietary diversity scores were assessed by generalized linear regression models. In models adjusted for potential confounders, urinary TMAO was significantly associated with intakes of fish (β, regression coefficient = 0.155, p < 0.05) and vegetables (β = 0.120, p < 0.05). Eggs intake showed positive associations with TMAO’s precursors (trimethylamine: β = 0.179, p < 0.05; choline: β = 0.181, p < 0.05). No association between meat intake and TMAO was observed, whereas meat and poultry intakes were related to the levels of acetyl-L-carnitine and L-carnitine (β: 0.134 to 0.293, p < 0.05). The indicators of dietary diversity were positively correlated to TMAO concentration (β: 0.027 to 0.091, p < 0.05). In this free-living children-based study, dietary factors were related to urinary TMAO and its precursors, especially fish, meat, and eggs. As such, dietary diversity was positively related to the level of TMAO.
Collapse
|
60
|
Koppe L, Soulage CO. The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney Int 2022; 102:728-739. [PMID: 35870642 DOI: 10.1016/j.kint.2022.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) has been associated with changes in the function and composition of the gut microbiota. The ecosystem of the human gut consists of trillions of microorganisms forming an authentic metabolically active organ that is fueled by nutrients to produce bioactive compounds. These microbiota-derived metabolites may be protective for kidney function (e.g. short-chain fatty acids from fermentation of dietary fibers) or deleterious (e.g. gut-derived uremic toxins such as trimethylamine N-oxide, p-cresyl sulfate, and indoxyl sulfate from fermentation of amino acids). Although diet is the cornerstone of the management of the patient with CKD, it remains a relatively underused component of the clinician's armamentarium. In this review, we describe the latest advances in understanding diet-microbiota crosstalk in a uremic context, and how this communication might contribute to CKD progression and complications. We then discuss how this knowledge could be harnessed for personalized nutrition strategies to prevent patients with CKD progressing to end-stage kidney disease and its detrimental consequences.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, F-69495 Pierre-Bénite, France; Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| | - Christophe O Soulage
- Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| |
Collapse
|
61
|
Zhang Y, Chen H, Lu M, Cai J, Lu B, Luo C, Dai M. Habitual Diet Pattern Associations with Gut Microbiome Diversity and Composition: Results from a Chinese Adult Cohort. Nutrients 2022; 14:nu14132639. [PMID: 35807820 PMCID: PMC9268000 DOI: 10.3390/nu14132639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The influence of long-term diet on gut microbiota is an active area of investigation. The present work aimed to explore the associations between habitual diet patterns and gut microbiota in a large sample of asymptomatic Chinese adults. The gut microbiome was profiled through the sequencing of the 16S rRNA gene in stool samples from 702 Chinese adults aged 50–75 years who underwent colonoscopies and were diagnosed to be free of colorectal neoplasm. Long-term dietary consumption was assessed through a food-frequency questionnaire. The microbial associations with specific food groups and the posteriori dietary pattern were tested using the Kruskal–Wallis H test, permutational ANOVAs, and multivariate analyses with linear models. The Shannon indexes generally shared similar levels across different food intake frequency groups. Whole grain and vegetable intakes totally explained 1.46% of the microbiota compositional variance. Using the data-driven posteriori approach, a general dietary pattern characterized by lower intakes of refined grains was highlighted to be associated with higher abundances of the genus Anaerostipes and a species of it. We also observed 17 associations between various food group intakes and specific genera and species. For instance, the relative abundances of the genus Weissella and an uncultured species of it were negatively associated with red meat intake. The results of this study support the idea that the usual dietary consumption measured by certain food items or summary indexes is associated with gut microbial features. These results deepen the understanding of complex relationships of diet and gut microbiota, as well as their implications for gut microbiome studies of human chronic diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Hongda Chen
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
- Correspondence: (H.C.); (M.D.); Tel.: +86-10-6915-4660 (H.C.); +86-10-6915-4651 (M.D.)
| | - Ming Lu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Jie Cai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Bin Lu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Chenyu Luo
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Min Dai
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
- Correspondence: (H.C.); (M.D.); Tel.: +86-10-6915-4660 (H.C.); +86-10-6915-4651 (M.D.)
| |
Collapse
|
62
|
Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, Meem AFK, Sutradhar PR, Mitra S, Mimi AA, Emran TB, Fatimawali, Idroes R, Tallei TE, Ahmed M, Cavalu S. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:903570. [PMID: 35795187 PMCID: PMC9251340 DOI: 10.3389/fcimb.2022.903570] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbiota and its relation to stroke pathogenesis and its consequences can provide new therapeutic prospects. This review highlights the interplay between the microbiota and its metabolites and addresses related interventions for the treatment of CVDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Harun -Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Anjuman Ara Mimi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, University of Sam Ratulangi, Manado, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sam Ratulangi, Manado, Indonesia
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
63
|
Wan M, Li Q, Lei Q, Zhou D, Wang S. Polyphenols and Polysaccharides from Morus alba L. Fruit Attenuate High-Fat Diet-Induced Metabolic Syndrome Modifying the Gut Microbiota and Metabolite Profile. Foods 2022; 11:foods11121818. [PMID: 35742014 PMCID: PMC9223293 DOI: 10.3390/foods11121818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Morus alba L. fruit, a medicinal and edible fruit in East Asia, showed potential health-promoting effects against metabolic syndrome (MetS). However, both the protective effects and mechanisms of different fractions extracted from Morus alba L. fruit against MetS remain unclear. Additionally, the gut microbiota and its metabolites are regarded as key factors in the development of MetS. This study aimed to investigate the potential role of polyphenols and polysaccharides derived from Morus alba L. fruit against MetS in high-fat diet (HFD)-fed mice, individually and in combination, focusing on remodeling effects on gut microbiota and metabolite profiles. In the study, polyphenols and polysaccharides derived from Morus alba L. fruit improved the traditional pharmacodynamic parameters of MetS, including reductions in body weight (BW) and fat accumulation, improvement in insulin resistance, regulation of dyslipidemia, prevention of pathological changes in liver, kidney and proximal colon tissue, and suppressive actions against oxidative stress. In particular, the group treated with polyphenols and polysaccharides in combination showed better efficacy. The relative abundance of beneficial bacterial genera Muribaculum and Lachnospiraceae_NK4A136_group were increased to various degrees, while opportunistic pathogens such as Prevotella_2, Bacteroides, Faecalibacterium and Fusobacterium were markedly decreased after treatments. Moreover, fecal metabolite profiles revealed 23 differential metabolites related to treatments with polyphenols and polysaccharides derived from Morus alba L. fruit, individually and in combination. Altogether, these results demonstrated that polyphenols and polysaccharides derived from Morus alba L. fruit attenuated MetS in HFD-fed mice, and improved the gut microbiota composition and fecal metabolite profiles.
Collapse
Affiliation(s)
- Meixia Wan
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
- Qibo College of Medicine, Longdong University, Qingyang 745000, China
| | - Qing Li
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Qianya Lei
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Dan Zhou
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
- Correspondence: ; Tel.: +86-028-85-503-950
| |
Collapse
|
64
|
Ratiner K, Shapiro H, Goldenberg K, Elinav E. Time-limited diets and the gut microbiota in cardiometabolic disease. J Diabetes 2022; 14:377-393. [PMID: 35698246 PMCID: PMC9366560 DOI: 10.1111/1753-0407.13288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, intermittent fasting (IF), including periodic fasting and time-restricted feeding (TRF), has been increasingly suggested to constitute a promising treatment for cardiometabolic diseases (CMD). A deliberate daily pause in food consumption influences the gut microbiome and the host circadian clock, resulting in improved cardiometabolic health. Understanding the molecular mechanisms by which circadian host-microbiome interactions affect host metabolism and immunity may add a potentially important dimension to effective implementation of IF diets. In this review, we discuss emerging evidence potentially linking compositional and functional alterations of the gut microbiome with IF impacts on mammalian metabolism and risk of development of hypertension, type 2 diabetes (T2D), obesity, and their long-term micro- and macrovascular complications. We highlight the challenges and unknowns in causally linking diurnal bacterial signals with dietary cues and downstream metabolic consequences and means of harnessing these signals toward future microbiome integration into precision medicine.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Hagit Shapiro
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Kim Goldenberg
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Eran Elinav
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
- Microbiome & Cancer Division, DKFZHeidelbergGermany
| |
Collapse
|
65
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
66
|
Sumida K, Han Z, Chiu CY, Mims TS, Bajwa A, Demmer RT, Datta S, Kovesdy CP, Pierre JF. Circulating Microbiota in Cardiometabolic Disease. Front Cell Infect Microbiol 2022; 12:892232. [PMID: 35592652 PMCID: PMC9110890 DOI: 10.3389/fcimb.2022.892232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
The rapid expansion of microbiota research has significantly advanced our understanding of the complex interactions between gut microbiota and cardiovascular, metabolic, and renal system regulation. Low-grade chronic inflammation has long been implicated as one of the key mechanisms underlying cardiometabolic disease risk and progression, even before the insights provided by gut microbiota research in the past decade. Microbial translocation into the bloodstream can occur via different routes, including through the oral and/or intestinal mucosa, and may contribute to chronic inflammation in cardiometabolic disease. Among several gut-derived products identifiable in the systemic circulation, bacterial endotoxins and metabolites have been extensively studied, however recent advances in microbial DNA sequencing have further allowed us to identify highly diverse communities of microorganisms in the bloodstream from an -omics standpoint, which is termed "circulating microbiota." While detecting microorganisms in the bloodstream was historically considered as an indication of infection, evidence on the circulating microbiota is continually accumulating in various patient populations without clinical signs of infection and even in otherwise healthy individuals. Moreover, both quantitative and compositional alterations of the circulating microbiota have recently been implicated in the pathogenesis of chronic inflammatory conditions, potentially through their immunostimulatory, atherogenic, and cardiotoxic properties. In this mini review, we aim to provide recent evidence on the characteristics and roles of circulating microbiota in several cardiometabolic diseases, such as type 2 diabetes, cardiovascular disease, and chronic kidney disease, with highlights of our emerging findings on circulating microbiota in patients with end-stage kidney disease undergoing hemodialysis.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Keiichi Sumida,
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chi-Yang Chiu
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tahliyah S. Mims
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,Nephrology Section, Memphis Veterans Affairs (VA) Medical Center, Memphis, TN, United States
| | - Joseph F. Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
67
|
Yan R, Ho CT, Zhang X. Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
Du L, Wang Q, Ji S, Sun Y, Huang W, Zhang Y, Li S, Yan S, Jin H. Metabolomic and Microbial Remodeling by Shanmei Capsule Improves Hyperlipidemia in High Fat Food-Induced Mice. Front Cell Infect Microbiol 2022; 12:729940. [PMID: 35573781 PMCID: PMC9094705 DOI: 10.3389/fcimb.2022.729940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia refers to a chronic disease caused by systemic metabolic disorder, and its pathophysiology is very complex. Shanmei capsule (SM) is a famous preparation with a long tradition of use for anti-hyperlipidemia treatment in China. However, the regulation mechanism of SM on hyperlipidemia has not been elucidated so far. In this study, a combination of UPLC-Q-TOF/MS techniques and 16S rDNA gene sequencing was performed to investigate the effects of SM treatment on plasma metabolism-mediated change and intestinal homeostasis. The results indicated that SM potently ameliorated high-fat diet-induced glucose and lipid metabolic disorders and reduced the histopathological injury. Pathway analysis indicated that alterations of differential metabolites were mainly involved in glycerophospholipid metabolism, linolenic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism. These changes were accompanied by a significant perturbation of intestinal microbiota characterized by marked increased microbial richness and changed microbiota composition. There were many genera illustrating strong correlations with hyperlipidemia-related markers (e.g., weight gains, GLU, and total cholesterol), including the Lachnospiraceae NK4A136 group and the Lachnospiraceae NK4B4 group. Overall, this study initially confirmed that hyperlipidemia is associated with metabolic disturbance and intestinal microbiota disorders, and SM can be employed to help decrease hyperlipidemia risk, including improving the abnormal metabolic profile and maintaining the gut microbial environment.
Collapse
Affiliation(s)
- Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjing Huang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiping Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| |
Collapse
|
69
|
Lin JR, Wang ZT, Sun JJ, Yang YY, Li XX, Wang XR, Shi Y, Zhu YY, Wang RT, Wang MN, Xie FY, Wei P, Liao ZH. Gut microbiota and diabetic kidney diseases: Pathogenesis and therapeutic perspectives. World J Diabetes 2022; 13:308-318. [PMID: 35582668 PMCID: PMC9052008 DOI: 10.4239/wjd.v13.i4.308] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/09/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major chronic complications of diabetes mellitus (DM), as well as a main cause of end-stage renal disease. Over the last few years, substantial research studies have revealed a contributory role of gut microbiota in the process of DM and DKD. Metabolites of gut microbiota like lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide are key mediators of microbial–host crosstalk. However, the underlying mechanisms of how gut microbiota influences the onset and progression of DKD are relatively unknown. Besides, strategies to remodel the composition of gut microbiota or to reduce the metabolites of microbiota have been found recently, representing a new potential remedial target for DKD. In this mini-review, we will address the possible contribution of the gut microbiota in the pathogenesis of DKD and its role as a therapeutic target.
Collapse
Affiliation(s)
- Jia-Ran Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zi-Ting Wang
- Department of Environmental Medicine, Karolinska Institutet, Stockholm 17165, Sweden
| | - Jiao-Jiao Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying-Ying Yang
- Clinical Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna 17165, Sweden
| | - Xue-Xin Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17121, Sweden
| | - Xin-Ru Wang
- Department of Acupuncture and Moxibustion, First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Shi
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan-Yuan Zhu
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Ting Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mi-Na Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Fei-Yu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze-Huan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
70
|
Huang Y, Xin W, Xiong J, Yao M, Zhang B, Zhao J. The Intestinal Microbiota and Metabolites in the Gut-Kidney-Heart Axis of Chronic Kidney Disease. Front Pharmacol 2022; 13:837500. [PMID: 35370631 PMCID: PMC8971625 DOI: 10.3389/fphar.2022.837500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Emerging evidences demonstrate the involvement of gut microbiota in the progression of chronic kidney disease (CKD) and CKD-associated complications including cardiovascular disease (CVD) and intestinal dysfunction. In this review, we discuss the interactions between the gut, kidney and heart in CKD state, and elucidate the significant role of intestinal microbiota in the gut-kidney-heart axis hypothesis for the pathophysiological mechanisms of these diseases, during which process mitochondria may serve as a potential therapeutic target. Dysregulation of this axis will lead to a vicious circle, contributing to CKD progression. Recent studies suggest novel therapies targeting gut microbiota in the gut-kidney-heart axis, including dietary intervention, probiotics, prebiotics, genetically engineered bacteria, fecal microbiota transplantation, bacterial metabolites modulation, antibiotics, conventional drugs and traditional Chinese medicine. Further, the identification of specific microbial communities and their corresponding pathophysiological metabolites and the illumination of the gut-kidney-heart axis may contribute to innovative basic research, clinical trials and therapeutic strategies against CKD progression and uremic complications in CKD patients.
Collapse
|
71
|
Zhang Y, Cheng L, Liu Y, Zhang R, Wu Z, Cheng K, Zhang X. Omics Analyses of Intestinal Microbiota and Hypothalamus Clock Genes in Circadian Disturbance Model Mice Fed with Green Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1890-1901. [PMID: 35112849 DOI: 10.1021/acs.jafc.1c07594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Green tea polyphenols (GTP) have similar activities as prebiotics, which effectively regulate the structure of intestinal flora and affect their metabolic pathways. The intestinal flora is closely related to the host's circadian rhythm, and the supplementation with GTP may be an effective way to improve circadian rhythm disorders. In this study, we established a mouse model of circadian rhythm disturbance of anthropogenic flora to investigate the regulation mechanism of GTP on the host circadian rhythms. After 4 weeks of GTP administration, the results showed that GTP significantly alleviated the structural disorder of intestinal microbiota, thus effectively regulating related metabolites associated with brain nerves and circadian rhythms. Moreover, single-cell transcription of the mouse hypothalamus suggested that GTP up-regulated the number of astrocytes and oligodendrocytes and adjusted the expression of core clock genes Csnk1d, Clock, Per3, Cry2, and BhIhe41 caused by circadian disruption. Therefore, this study provided evidence that GTP can improve the physiological health of hosts with the circadian disorder by positively affecting intestinal flora and related metabolites and regulating circadian gene expression.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
72
|
|
73
|
Kim ES, Yoon BH, Lee SM, Choi M, Kim EH, Lee BW, Kim SY, Pack CG, Sung YH, Baek IJ, Jung CH, Kim TB, Jeong JY, Ha CH. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp Mol Med 2022; 54:103-114. [PMID: 35115674 PMCID: PMC8894390 DOI: 10.1038/s12276-022-00728-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the strong influence of the gut microbiota on atherosclerosis, a causal relationship between atherosclerosis pathophysiology and gut microbiota is still unverified. This study was performed to determine the impact of the gut microbiota on the pathogenesis of atherosclerosis caused by genetic deficiency. To elucidate the influence of the gut microbiota on atherosclerosis pathogenesis, an atherosclerosis-prone mouse model (C1q/TNF-related protein 9-knockout (CTRP9-KO) mice) was generated. The gut microbial compositions of CTRP9-KO and WT control mice were compared. Fecal microbiota transplantation (FMT) was performed to confirm the association between gut microbial composition and the progression of atherosclerosis. FMT largely affected the gut microbiota in both CTRP9-KO and WT mice, and all transplanted mice acquired the gut microbiotas of the donor mice. Atherosclerotic lesions in the carotid arteries were decreased in transplanted CTRP9-KO mice compared to CTRP9-KO mice prior to transplantation. Conversely, WT mice transplanted with the gut microbiotas of CTRP9-KO mice showed the opposite effect as that of CTRP9-KO mice transplanted with the gut microbiotas of WT mice. Here, we show that CTRP9 gene deficiency is related to the distribution of the gut microbiota in subjects with atherosclerosis. Transplantation of WT microbiotas into CTRP9-KO mice protected against the progression of atherosclerosis. Conversely, the transplantation of CTRP9-KO microbiotas into WT mice promoted the progression of atherosclerosis. Treating atherosclerosis by restoring gut microbial homeostasis may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Eun Sil Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bo Hyun Yoon
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Choi
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong-Wook Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
74
|
Moldovan DC, Ismaiel A, Fagoonee S, Pellicano R, Abenavoli L, Dumitrascu DL. Gut microbiota and cardiovascular diseases axis. Minerva Med 2022; 113:189-199. [PMID: 33969961 DOI: 10.23736/s0026-4806.21.07527-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gut microbiota, a term that includes microorganisms present in the gastrointestinal tract, has become very attractive lately due to its propensity to act as a virtual organ with endocrine functions, generating various bio-active metabolites, while playing an important role in human health and diseases, including cardiovascular diseases (CVDs). Focusing on the latter field, gastrointestinal dysbiosis that is the imbalance in the gut microbiota composition has been linked to various pathologies such as hypertension, atherosclerosis, myocardial infarction and heart failure. Several pathways were demonstrated to play a role in the complex and intertwined association between the gut microbiota and host, including metabolic endotoxemia, alteration of pattern recognition receptors and short-chain fatty acids, uremic toxins, bile acids and trimethylamine-N-oxide levels, leading to CVDs. Understanding these pathways can allow the identification of metabolites that could be useful predictors for detecting incipient CVDs stages and potential therapeutic targets. In this review, we summarize the pathways associating the gut microbiota with CVDs.
Collapse
Affiliation(s)
- Dora C Moldovan
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Regional Institute of Gastroenterology and Hepatology Prof. Dr. "O. Fodor", Cluj-Napoca, Romania
| | - Abdulrahman Ismaiel
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania -
- Second Department of Internal Medicine, Cluj-Napoca, Romania
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Second Department of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
75
|
Callender C, Attaye I, Nieuwdorp M. The Interaction between the Gut Microbiome and Bile Acids in Cardiometabolic Diseases. Metabolites 2022; 12:65. [PMID: 35050187 PMCID: PMC8778259 DOI: 10.3390/metabo12010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cardio-metabolic diseases (CMD) are a spectrum of diseases (e.g., type 2 diabetes, atherosclerosis, non-alcohol fatty liver disease (NAFLD), and metabolic syndrome) that are among the leading causes of morbidity and mortality worldwide. It has long been known that bile acids (BA), which are endogenously produced signalling molecules from cholesterol, can affect CMD risk and progression and directly affect the gut microbiome (GM). Moreover, studies focusing on the GM and CMD risk have dramatically increased in the past decade. It has also become clear that the GM can function as a "new" endocrine organ. BA and GM have a complex and interdependent relationship with several CMD pathways. This review aims to provide a comprehensive overview of the interplay between BA metabolism, the GM, and CMD risk and progression.
Collapse
Affiliation(s)
- Cengiz Callender
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
76
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
77
|
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a prime example of a systems disease. In the initial phase, apolipoprotein B-containing cholesterol-rich lipoproteins deposit excess cholesterol in macrophage-like cells that subsequently develop into foam cells. A multitude of systemic as well as environmental factors are involved in further progression of atherosclerotic plaque formation. In recent years, both oral and gut microbiota have been proposed to play an important role in the process at different stages. Particularly bacteria from the oral cavity may easily reach the circulation and cause low-grade inflammation, a recognized risk factor for ASCVD. Gut-derived microbiota on the other hand can influence host metabolism on various levels. Next to translocation across the intestinal wall, these prokaryotes produce a great number of specific metabolites such as trimethylamine and short-chain fatty acids but can also metabolize endogenously formed bile acids and convert these into metabolites that may influence signal transduction pathways. In this overview, we critically discuss the novel developments in this rapidly emerging research field.
Collapse
Affiliation(s)
- Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Albert K Groen
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
78
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
79
|
Xin Y, Xie J, Nan B, Tang C, Xiao Y, Wu Q, Lin Y, Zhang X, Shen H. Freeze-Thaw Pretreatment Can Improve Efficiency of Bacterial DNA Extraction From Meconium. Front Microbiol 2021; 12:753688. [PMID: 34956118 PMCID: PMC8695897 DOI: 10.3389/fmicb.2021.753688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Although the presence of live microbes in utero remains under debate, newborn gastrointestinal bacteria are undoubtedly important to infant health. Measuring bacteria in meconium is an ideal strategy to understand this issue; however, the low efficiency of bacterial DNA extraction from meconium has limited its utilization. This study aims to improve the efficiency of bacterial DNA extraction from meconium, which generally has low levels of microflora but high levels of PCR inhibitors in the viscous matrix. The research was approved by the ethical committee of the Xiamen Maternity and Child Health Care Hospital, Xiamen, China. All the mothers delivered naturally, and their newborns were healthy. Meconium samples passed by the newborns within 24 h were collected. Each sample was scraped off of a sterile diaper, transferred to a 5-ml sterile tube, and stored at −80°C. For the assay, a freeze-thawing sample preparation protocol was designed, in which a meconium-InhibitEX buffer mixture was intentionally frozen 1–3 times at −20°C, −80°C, and (or) in liquid nitrogen. Then, DNA was extracted using a commercial kit and sequenced by 16S rDNA to verify the enhanced bacterial DNA extraction efficiency. Ultimately, we observed the following: (1) About 30 mg lyophilized meconium was the optimal amount for DNA extraction. (2) Freezing treatment for 6 h improved DNA extraction at −20°C. (3) DNA extraction efficiency was significantly higher with the immediate thaw strategy than with gradient thawing at −20°C, −80°C, and in liquid nitrogen. (4) Among the conditions of −20°C, −80°C, and liquid nitrogen, −20°C was the best freezing condition for both improving DNA extraction efficiency and preserving microbial species diversity in meconium, while liquid nitrogen was the worst condition. (5) Three freeze-thaw cycles could markedly enhance DNA extraction efficiency and preserve the species diversity of meconium microflora. We developed a feasible freeze-thaw pretreatment protocol to improve the extraction of microbial DNA from meconium, which may be beneficial for newborn bacterial colonization studies.
Collapse
Affiliation(s)
- Yuntian Xin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jingxian Xie
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yunshan Xiao
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
80
|
Trinei M, Carpi A, Menabo' R, Storto M, Fornari M, Marinelli A, Minardi S, Riboni M, Casciaro F, DiLisa F, Petroni K, Tonelli C, Giorgio M. Dietary intake of cyanidin-3-glucoside induces a long-lasting cardioprotection from ischemia/reperfusion injury by altering the microbiota. J Nutr Biochem 2021; 101:108921. [PMID: 34864150 DOI: 10.1016/j.jnutbio.2021.108921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The anthocyanin class of flavonoids, including cyanidin-3-glucoside (C3G) present in berries, blood oranges and pigmented cereal crops, are food bioactives with antioxidant and anti-inflammatory action, capable to reduce myocardial ischemia/reperfusion (I/R) injury by unclear mechanism. Assessing the value of sporadic beneficial diet is critical for practical application. We aimed to determine whether and how the cardioptotective effect of dietary intake of anthocyanins persists. Gene expression, histology and resistance to I/R were investigated ex vivo in hearts from mice after a month beyond the cease of the C3G-enriched diet. Cardiac injury, oxidative stress and mitochondrial damage following I/R was effectively reduced in mice fed C3G-enriched diet, even after a month of wash out with standard diet. Cardioprotection was observed also in immune-deficient mice lacking mature B and T cells indicating the anti-inflammatory activity of C3G was not involved. Moreover, the transcription reprogramming induced by the C3G-enriched diets was rescued by the wash out treatment. Instead, we found C3G-enriched diet changed the microbiome and the transplantation of the fecal microbiota transferred the cardioprotection from mice fed C3G-enriched diet to mice fed standard diet. These findings established the effect of C3G dietary intake on gut microbiota determines long lasting cardioprotection.
Collapse
Affiliation(s)
- Mirella Trinei
- Department of Experimental Oncology, European Institute of Oncology - IEO IRCCS, Milan, Italy
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Roberta Menabo'
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mariangela Storto
- Department of Experimental Oncology, European Institute of Oncology - IEO IRCCS, Milan, Italy
| | - Monica Fornari
- Department of BioSciences, University of Milano, Milan, Italy
| | | | - Simone Minardi
- Genomics Unit, Firc Institute for Molecular Oncology, Milan, Italy
| | - Mirko Riboni
- Genomics Unit, Firc Institute for Molecular Oncology, Milan, Italy
| | | | - Fabio DiLisa
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Katia Petroni
- Department of BioSciences, University of Milano, Milan, Italy
| | - Chiara Tonelli
- Department of BioSciences, University of Milano, Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology - IEO IRCCS, Milan, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
81
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
82
|
Melekoglu E, Samur FG. Dietary strategies for gut-derived protein-bound uremic toxins and cardio-metabolic risk factors in chronic kidney disease: A focus on dietary fibers. Crit Rev Food Sci Nutr 2021:1-15. [PMID: 34704501 DOI: 10.1080/10408398.2021.1996331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic kidney disease (CKD) is associated with altered composition and function of gut microbiota. The cause of gut dysbiosis in CKD is multifactorial and encompasses the following: uremic state, metabolic acidosis, slow colonic transit, dietary restrictions of plant-based fiber-rich foods, and pharmacological therapies. Dietary restriction of potassium-rich fruits and vegetables, which are common sources of fermentable dietary fibers, inhibits the conversion of dietary fibers to short-chain fatty acids (SCFA), which are the primary nutrient source for the symbiotic gut microbiota. Reduced consumption of fermentable dietary fibers limits the population of SCFA-forming bacteria and causes dysbiosis of gut microbiota. Gut dysbiosis induces colonic fermentation of protein and formation of gut-derived uremic toxins. In this review, we discuss the roles and benefits of dietary fiber on gut-derived protein-bound uremic toxins and plant-based dietary patterns that could be recommended to decrease uremic toxin formation in CKD patients. Recent studies have indicated that dietary fiber supplementation may be useful to decrease gut-derived uremic toxin formation and slow CKD progression. However, research on associations between adherence of healthy dietary patterns and gut-derived uremic toxins formation in patients with CKD is lacking.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Faculty of Health Sciences, Nutrition and Dietetics Department, Hacettepe University, Ankara, Turkey.,Faculty of Health Sciences, Nutrition and Dietetics Department, Cukurova University, Adana, Turkey
| | - F Gulhan Samur
- Faculty of Health Sciences, Nutrition and Dietetics Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
83
|
The Search for the Elixir of Life: On the Therapeutic Potential of Alkaline Reduced Water in Metabolic Syndromes. Processes (Basel) 2021. [DOI: 10.3390/pr9111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our body composition is enormously influenced by our lifestyle choices, which affect our health and longevity. Nutrition and physical activities both impact overall metabolic condition, thus, a positive energy balance causes oxidative stress and inflammation, hastening the development of metabolic syndrome. With this knowledge, boosting endogenous and exogenous antioxidants has emerged as a therapeutic strategy for combating metabolic disorders. One of the promising therapeutic inventions is the use of alkaline reduced water (ARW). Aside from its hydrating and non-caloric properties, ARW has demonstrated strong antioxidant and anti-inflammatory properties that can help stabilize physiologic turmoil caused by oxidative stress and inflammation. This review article is a synthesis of studies where we elaborate on the intra- and extracellular effects of drinking ARW, and relate these to the pathophysiology of common metabolic disorders, such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, and some cancers. Highlighting the health-promoting benefits of ARW, we also emphasize the importance of maintaining a healthy lifestyle by incorporating exercise and practicing a balanced diet as forms of habit.
Collapse
|
84
|
Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, Podbielska H, Kunin AA, Evsevyeva ME, Shapira N, Paul F, Erb C, Dietrich DE, Felbel D, Karabatsiakis A, Bubnov R, Polivka J, Polivka J, Birkenbihl C, Fröhlich H, Hofmann-Apitius M, Kubatka P. Caution, "normal" BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J 2021; 12:243-264. [PMID: 34422142 PMCID: PMC8368050 DOI: 10.1007/s13167-021-00251-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters-all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Alena Liskova
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Anatolij A. Kunin
- Departments of Maxillofacial Surgery and Hospital Dentistry, Voronezh N.N. Burdenko State Medical University, Voronezh, Russian Federation
| | | | - Niva Shapira
- Nutrition Department, Ashkelon Academic College, Ashkelon, Tel Aviv, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Centre, Experimental and Clinical Research Centre, Max Delbrueck Centre for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Detlef E. Dietrich
- European Depression Association, Brussels, Belgium
- AMEOS Clinical Centre for Psychiatry and Psychotherapy, 31135 Hildesheim, Germany
| | - Dieter Felbel
- Fachklinik Kinder und Jugendliche Psychiatrie, AMEOS Klinikum Hildesheim, Akademisches Lehrkrankenhaus für Pflege der FOM Hochschule Essen, Hildesheim, Germany
| | - Alexander Karabatsiakis
- Institute of Psychology, Department of Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Rostyslav Bubnov
- Ultrasound Department, Clinical Hospital “Pheophania”, Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jiri Polivka
- Department of Neurology, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Staré Město, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Staré Město, Czech Republic
| | - Colin Birkenbihl
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- UCB Biosciences GmbH, Alfred-Nobel Str. 10, 40789 Monheim am Rhein, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
85
|
Witkowski M, Witkowski M, Friebel J, Buffa JA, Li XS, Wang Z, Sangwan N, Li L, DiDonato JA, Tizian C, Haghikia A, Kirchhofer D, Mach F, Räber L, Matter CM, Tang WHW, Landmesser U, Lüscher TF, Rauch U, Hazen SL. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2021; 118:2367-2384. [PMID: 34352109 PMCID: PMC9890461 DOI: 10.1093/cvr/cvab263] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.
Collapse
Affiliation(s)
- Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mario Witkowski
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Caroline Tizian
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4 1205, Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Freiburgstrasse 18 CH-3010, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100 8091, Zurich, Switzerland
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, Sydney St, London SW3 6NP, UK
| | - Ursula Rauch
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| | - Stanley L Hazen
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| |
Collapse
|
86
|
Bel Lassen P, Belda E, Prifti E, Dao MC, Specque F, Henegar C, Rinaldi L, Wang X, Kennedy SP, Zucker JD, Calame W, Lamarche B, Claus SP, Clément K. Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: a randomized trial. Sci Rep 2021; 11:15620. [PMID: 34341379 PMCID: PMC8329187 DOI: 10.1038/s41598-021-94916-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
Interactions between diet and gut microbiota are critical regulators of energy metabolism. The effects of fibre intake have been deeply studied but little is known about the impact of proteins. Here, we investigated the effects of high protein supplementation (Investigational Product, IP) in a double blind, randomised placebo-controled intervention study (NCT01755104) where 107 participants received the IP or an isocaloric normoproteic comparator (CP) alongside a mild caloric restriction. Gut microbiota profiles were explored in a patient subset (n = 53) using shotgun metagenomic sequencing. Visceral fat decreased in both groups (IP group: - 20.8 ± 23.2 cm2; CP group: - 14.5 ± 24.3 cm2) with a greater reduction (p < 0.05) with the IP supplementation in the Per Protocol population. Microbial diversity increased in individuals with a baseline low gene count (p < 0.05). The decrease in weight, fat mass and visceral fat mass significantly correlated with the increase in microbial diversity (p < 0.05). Protein supplementation had little effects on bacteria composition but major differences were seen at functional level. Protein supplementation stimulated bacterial amino acid metabolism (90% amino-acid synthesis functions enriched with IP versus 13% in CP group (p < 0.01)). Protein supplementation alongside a mild energy restriction induces visceral fat mass loss and an activation of gut microbiota amino-acid metabolism.Clinical trial registration: NCT01755104 (24/12/2012). https://clinicaltrials.gov/ct2/show/record/NCT01755104?term=NCT01755104&draw=2&rank=1 .
Collapse
Affiliation(s)
- Pierre Bel Lassen
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, 75013, Paris, France
| | - Eugeni Belda
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France
- Integrative Phenomics, Paris, France
| | - Edi Prifti
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, IRD, UMMISCO, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, Sorbonne Université, 93143, Bondy, France
| | - Maria Carlota Dao
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France
| | - Florian Specque
- Sorbonne Université, IRD, UMMISCO, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, Sorbonne Université, 93143, Bondy, France
| | - Corneliu Henegar
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France
| | - Laure Rinaldi
- YSOPIA Bioscience, 17 place de la Bourse, 33076, Bordeaux, France
| | - Xuedan Wang
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, RG6 6AP, UK
| | - Sean P Kennedy
- CNRS, Institut Pasteur, Department of Computational Biology, USR 3756 , CNRS, 75015, Paris, France
| | - Jean-Daniel Zucker
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, IRD, UMMISCO, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, Sorbonne Université, 93143, Bondy, France
| | - Wim Calame
- StatistiCal BV, Strandwal 148, 2241 MN, Wassenaar, The Netherlands
| | - Benoît Lamarche
- Laval University, Institute On Nutrition and Functional Foods, Laval University, Québec, QC, G1V 0A6, Canada
| | - Sandrine P Claus
- YSOPIA Bioscience, 17 place de la Bourse, 33076, Bordeaux, France.
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesity: Systemic Approaches Research Unit, NutriOmics, Sorbonne Université, 91 boulevard de l'Hôpital, 75013, Paris, France.
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, 75013, Paris, France.
| |
Collapse
|
87
|
Abstract
OBJECTIVE Extensive research and important discoveries on the microbiome have led to a growth in media coverage. This study explores how the microbiome has been portrayed in press sources popular among American and Canadian audiences. DESIGN Content analysis. METHODS Using the FACTIVA Database, we compiled a finalised data set of (N=830) articles from press sources popular among American and Canadian audiences which were published between 1 January 2018 and 11 October 2019 and which contained at least one of the following search terms: 'microbiome', 'microbiota', 'gut health', 'healthy gut', 'unhealthy gut', 'gut bacteria', 'probiotic' or 'probiotics.' We performed content analysis on the articles to determine how often ideas of the microbiome were presented as beneficial, in which health contexts, and whether actions could be taken to reap stated benefits. We compared this portrayal of benefits with critical portrayals of the microbiome. RESULTS Almost all of the articles (94%) described health benefits associated with the microbiome with many (79%) describing actions which could be taken to reap stated benefits. Articles most often described health benefits in more broad, general context (34%) and most commonly outlined actions related to food/drug (45%) as well as probiotic (27%) intake. Only some articles (19%) provided microbiome-related critiques or limitations. Some of the articles (22%) were focused on highlighting specific research developments, and in these articles, critiques or limitations were more common. CONCLUSIONS Articles discussing the microbiome published for American and Canadian audiences typically hype the microbiome's impact and popularise gut health trends while only offering a little in the way of communicating microbiome science. Lifestyle choices including nutrition, taking probiotics, stress management and exercise are often promoted as means of reaping the microbiome-related health benefits. The trend of actionable 'gut health' is foregrounded over more evidence-based descriptions of microbiome science.
Collapse
Affiliation(s)
| | - Stuart Turvey
- Division of Allergy and Immunology, Department of Pediatrics Faculty of Medicine, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
88
|
Poll BG, Cheema MU, Pluznick JL. Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO. Physiology (Bethesda) 2021; 35:275-284. [PMID: 32490748 DOI: 10.1152/physiol.00004.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shifts in the gut microbiome play a key role in blood pressure regulation, and changes in the production of gut microbial metabolites are likely to be a key mechanism. Known gut microbial metabolites include short-chain fatty acids, which can signal via G-protein-coupled receptors, and trimethylamine-N oxide. In this review, we provide an overview of gut microbial metabolites documented thus far to play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Brian G Poll
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Umar Cheema
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
89
|
Cooper TE, Scholes-Robertson N, Craig JC, Hawley CM, Howell M, Johnson DW, Teixeira-Pinto A, Tong A, Wong G. Synbiotics, prebiotics and probiotics for solid organ transplant recipients. Hippokratia 2021. [DOI: 10.1002/14651858.cd014804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tess E Cooper
- Cochrane Kidney and Transplant, Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- Sydney School of Public Health; The University of Sydney; Sydney Australia
| | - Nicole Scholes-Robertson
- Cochrane Kidney and Transplant, Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- College of Medicine and Public Health; Flinders University; Adelaide Australia
| | - Carmel M Hawley
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Australia
| | - Martin Howell
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - David W Johnson
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Australia
- Australasian Kidney Trials Network; The University of Queensland; Brisbane Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - Allison Tong
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - Germaine Wong
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- Centre for Transplant and Renal Research; Westmead Hospital; Westmead Australia
| |
Collapse
|
90
|
Lv XJ, Ding F, Wei YJ, Tan RX. Antiosteoporotic Tetrahydroxanthone Dimers from
Aspergillus brunneoviolaceus
FB
‐2 Residing in Human Gut. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao Jing Lv
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Fei Ding
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Ying Jie Wei
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
91
|
Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev 2021; 50:7725-7744. [PMID: 34013918 DOI: 10.1039/d0cs01340d] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food fermentation, antibiotics, and pollutant degradation are closely related to bacteria. Bacteria play an irreplaceable role in life. However, some bacteria seriously threaten human health and cause large-scale infectious diseases. Therefore, there is a pressing need to develop strategies to accurately monitor bacteria. Technology based on molecular probes and fluorescence imaging is noninvasive, results in little damage, and has high specificity and sensitivity, so it has been widely applied in the detection of bacteria. In this review, we summarize the recent progress in bacterial detection using fluorescence. In particular, we generalize the mechanisms commonly used to design organic fluorescent probes for detecting and imaging bacteria. Moreover, a perspective regarding fluorescent probes for bacterial detection is discussed.
Collapse
Affiliation(s)
- Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| |
Collapse
|
92
|
Zhang X, Wang S, Xu H, Yi H, Guan J, Yin S. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review. Eur Respir Rev 2021; 30:30/160/200220. [PMID: 33980666 PMCID: PMC9489097 DOI: 10.1183/16000617.0220-2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) is a common sleep disorder with a high social and economic burden. Thus, early prediction and diagnosis of OSA are important. Changes in metabolism and the microbiome may serve as biomarkers for OSA. Herein, we review the literature on the metabolomic and microbiome changes associated with OSA, and identify the metabolites and microorganisms involved. Methods We searched the PUBMED and EMBASE electronic databases using the following terms: “obstructive sleep apnea”, “OSA”, “sleep disordered breathing”, “SDB”, “intermittent hypoxia”, “sleep fragmentation”, and either “metabolomics” or “microbiome”. In total, 273 papers were identified, of which 28 were included in our study. Results Changes in the levels of certain metabolites related to fatty acid, carbohydrate and amino acid metabolism were associated with the incidence of OSA. The diversity and abundance of microflora, particularly Firmicutes and Bacteroidetes, were altered in humans and rodents with OSA. Conclusions Certain changes in metabolism and the microbiota play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complications. Metabolomic and microbiome biomarkers shed light on the pathogenesis of OSA, and facilitate early diagnosis and treatment. Unique alterations in metabolism and the microbiome play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complicationshttps://bit.ly/3mW2rD5
Collapse
Affiliation(s)
- Xiaoman Zhang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Shengming Wang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Huajun Xu
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China .,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
93
|
Yang JJ, Shu XO, Herrington DM, Moore SC, Meyer KA, Ose J, Menni C, Palmer ND, Eliassen H, Harada S, Tzoulaki I, Zhu H, Albanes D, Wang TJ, Zheng W, Cai H, Ulrich CM, Guasch-Ferré M, Karaman I, Fornage M, Cai Q, Matthews CE, Wagenknecht LE, Elliott P, Gerszten RE, Yu D. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr 2021; 113:1145-1156. [PMID: 33826706 PMCID: PMC8106754 DOI: 10.1093/ajcn/nqaa430] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a diet-derived, gut microbial-host cometabolite, has been linked to cardiometabolic diseases. However, the relations remain unclear between diet, TMAO, and cardiometabolic health in general populations from different regions and ethnicities. OBJECTIVES To examine associations of circulating TMAO with dietary and cardiometabolic factors in a pooled analysis of 16 population-based studies from the United States, Europe, and Asia. METHODS Included were 32,166 adults (16,269 white, 13,293 Asian, 1247 Hispanic/Latino, 1236 black, and 121 others) without cardiovascular disease, cancer, chronic kidney disease, or inflammatory bowel disease. Linear regression coefficients (β) were computed for standardized TMAO with harmonized variables. Study-specific results were combined by random-effects meta-analysis. A false discovery rate <0.10 was considered significant. RESULTS After adjustment for potential confounders, circulating TMAO was associated with intakes of animal protein and saturated fat (β = 0.124 and 0.058, respectively, for a 5% energy increase) and with shellfish, total fish, eggs, and red meat (β = 0.370, 0.151, 0.081, and 0.056, respectively, for a 1 serving/d increase). Plant protein and nuts showed inverse associations (β = -0.126 for a 5% energy increase from plant protein and -0.123 for a 1 serving/d increase of nuts). Although the animal protein-TMAO association was consistent across populations, fish and shellfish associations were stronger in Asians (β = 0.285 and 0.578), and egg and red meat associations were more prominent in Americans (β = 0.153 and 0.093). Besides, circulating TMAO was positively associated with creatinine (β = 0.131 SD increase in log-TMAO), homocysteine (β = 0.065), insulin (β = 0.048), glycated hemoglobin (β = 0.048), and glucose (β = 0.023), whereas it was inversely associated with HDL cholesterol (β = -0.047) and blood pressure (β = -0.030). Each TMAO-biomarker association remained significant after further adjusting for creatinine and was robust in subgroup/sensitivity analyses. CONCLUSIONS In an international, consortium-based study, animal protein was consistently associated with increased circulating TMAO, whereas TMAO associations with fish, shellfish, eggs, and red meat varied among populations. The adverse associations of TMAO with certain cardiometabolic biomarkers, independent of renal function, warrant further investigation.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Herrington
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katie A Meyer
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cornelia M Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Robert E Gerszten
- Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
94
|
Vidal-Martinez G, Chin B, Camarillo C, Herrera GV, Yang B, Sarosiek I, Perez RG. A Pilot Microbiota Study in Parkinson's Disease Patients versus Control Subjects, and Effects of FTY720 and FTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models. JOURNAL OF PARKINSONS DISEASE 2021; 10:185-192. [PMID: 31561385 PMCID: PMC7029363 DOI: 10.3233/jpd-191693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Parkinson's disease (PD) and multiple system atrophy (MSA) patients often suffer from gastrointestinal (GI) dysfunction and GI dysbiosis (microbial imbalance). GI dysfunction also occurs in mouse models of PD and MSA. OBJECTIVES To assess gut dysfunction and dysbiosis in PD subjects as compared to controls, identify potential shared microbial taxa in humans and mouse models of PD and MSA, and to assess the effects of potential therapies on mouse GI microbiota. METHODS In this human pilot study, GI function was assessed by fecal consistency/frequency measured using the Bristol Stool Form Scale and GI transit time assessed using Sitzmarks pills and abdominal radiology. Human and mouse microbiota were analyzed by extracting fecal genomic DNA followed by 16S rRNA sequencing. RESULTS In our PD patients genera Akkermansia significantly increased while a trend toward increased Bifidobacterium and decreased Prevotella was observed. Families Bacteroidaceae and Lachnospiraceae and genera Prevotella and Bacteroides were detected in both humans and PD mice, suggesting potential shared biomarkers. In mice treated with the approved multiple sclerosis drug, FTY720, or with our FTY720-Mitoxy-derivative, we saw that FTY720 had little effect while FTY720-Mitoxy increased beneficial Ruminococcus and decreased Rickenellaceae family. CONCLUSION Akkermansia and Prevotellaceae data reported by others were replicated in our human pilot study suggesting the use of those taxa as potential biomarkers for PD diagnosis. The effect of FTY720-Mitoxy on taxa Rikenellaceae and Ruminococcus and the relevance of S24-7 await further evaluation. It also remains to be determined if mouse microbiota have predictive power for human subjects.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Brandon Chin
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Cynthia Camarillo
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Gloria V Herrera
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| | - Irene Sarosiek
- Department of Internal Medicine, Division of Gastroenterology, Paul L Foster School of Medicine, El Paso, TX, USA
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, El Paso, TX, USA
| |
Collapse
|
95
|
Han P, Gu JQ, Li LS, Wang XY, Wang HT, Wang Y, Chang C, Sun JL. The Association Between Intestinal Bacteria and Allergic Diseases-Cause or Consequence? Front Cell Infect Microbiol 2021; 11:650893. [PMID: 33937097 PMCID: PMC8083053 DOI: 10.3389/fcimb.2021.650893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of allergic disorders has been increasing over the past few decades, especially in industrialized countries. Allergies can affect people of any age. The pathogenesis of allergic diseases is complex and involves genetic, epigenetic, and environmental factors, and the response to medication is very variable. For some patients, avoidance is the sole effective therapy, and only when the triggers are identifiable. In recent years, the intestinal microbiota has emerged as a significant contributor to the development of allergic diseases. However, the precise mechanisms related to the effects of the microbiome on the pathogenesis of allergic diseases are unknown. This review summarizes the recent association between allergic disorders and intestinal bacterial dysbiosis, describes the function of gut microbes in allergic disease development from both preclinical and clinical studies, discusses the factors that influence gut microbial diversity and advanced techniques used in microbial analysis. Ultimately, more studies are required to define the host-microbial relationship relevant to allergic disorders and amenable to new therapeutic interventions.
Collapse
Affiliation(s)
- Pei Han
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jian-Qing Gu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Sha Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Tian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
96
|
A cross-sectional study on gut microbiota in prostate cancer patients with prostatectomy or androgen deprivation therapy. Prostate Cancer Prostatic Dis 2021; 24:1063-1072. [PMID: 33850270 DOI: 10.1038/s41391-021-00360-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT), either by medical or surgical castration, is the backbone for standard treatment of locally advanced or metastatic prostate cancer, yet it is also associated with various metabolic and cardiovascular complications. Recent evidence have shown that obesity, insulin resistance, or metabolic disturbances can be associated with changes in the gut microbiome, while animal studies also show that castration is associated with changes in the gut microbiome. This study aims to investigate whether the fecal microbiota in prostate cancer patients who had undergone prostatectomy or ADT are different, and explore changes in phylogeny and pathways that may lead to side effects from ADT. METHODS A total of 86 prostate cancer patients (56 patients on ADT and 30 patients with prostatectomy) were recruited. The fecal microbiota was analyzed by the 16S rRNA gene for alpha- and beta-diversities by QIIME2, as well as the predicted metabolic pathways by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2. RESULTS The alpha-diversity was significantly lower in the ADT group. The beta-diversity was significantly different between the groups, in which Ruminococcus gnavus and Bacteroides spp were having higher relative abundance in the ADT group, whereas Lachnospira and Roseburia were reduced. The Firmicutes-to-Bacteroidetes ratio is noted to be lower in the ADT group as well. The functional pathway prediction showed that the biosynthesis of lipopolysaccharide (endotoxin) and propanoate was enriched in the ADT as well as the energy cycle pathways. This study is limited by the cross-sectional design and the clinical heterogeneity. CONCLUSIONS There is a significant difference in gut microbiome between prostate cancer patients on ADT and prostatectomy. We theorize that this difference may contribute to the development of metabolic complications from ADT. Further longitudinal studies are awaited.
Collapse
|
97
|
Liu G, Li J, Li Y, Hu Y, Franke AA, Liang L, Hu FB, Chan AT, Mukamal KJ, Rimm EB, Sun Q. Gut microbiota-derived metabolites and risk of coronary artery disease: a prospective study among US men and women. Am J Clin Nutr 2021; 114:238-247. [PMID: 33829245 PMCID: PMC8277432 DOI: 10.1093/ajcn/nqab053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating evidence has suggested that human gut microbiota metabolize certain dietary compounds and subsequently produce bioactive metabolites that may exert beneficial or harmful effects on coronary artery disease (CAD) risk. OBJECTIVES This study examined the joint association of 2 gut microbiota metabolites, enterolactone and trimethylamine N-oxide (TMAO), that originate from intake of plant-based foods and animal products, respectively, in relation to CAD risk. METHODS A prospective nested case-control study of CAD was conducted among participants who were free of diabetes, cardiovascular disease, and cancer in the Nurses' Health Study II and the Health Professionals Follow-up Study. Plasma concentrations of enterolactone and TMAO, as well as choline and L-carnitine, were assayed among 608 CAD case-control pairs. RESULTS A high enterolactone and low TMAO profile was associated with better diet quality, especially higher intake of whole grains and fiber and lower intake of red meats, as well as lower concentrations of plasma triglycerides and C-reactive protein. Participants with a high enterolactone/low TMAO profile had a significantly lower risk of CAD: the multivariate-adjusted OR was 0.58 (95% CI: 0.38, 0.90), compared with participants with a low enterolactone/high TMAO profile. No significant interaction between enterolactone and TMAO on CAD risk was observed. Neither TMAO nor enterolactone alone were associated with CAD risk in pooled analyses. In women, a higher enterolactone concentration was significantly associated with a 54% lower CAD risk (P trend = 0.03), although the interaction by sex was not significant. CONCLUSIONS Our results show that a profile characterized by high enterolactone and low TMAO concentrations in plasma is linked to a healthful dietary pattern and significantly associated with a lower risk of CAD. Overall, these data suggest that, compared with individual markers, multiple microbiota-derived metabolites may facilitate better differentiation of CAD risk and characterization of the relations between diet, microbiota, and CAD risk.
Collapse
Affiliation(s)
- Gang Liu
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA,Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food
Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School
of Public Health, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Jun Li
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Yang Hu
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Adrian A Franke
- Department of Food Science and Human Nutrition, College of Tropical
Agriculture and Human Resources, University of Hawaii at Manoa,
Honolulu, HI, USA
| | - Liming Liang
- Department of Epidemiology, Harvard TH Chan School of Public
Health, Boston, MA, USA,Department of Biostatistics, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA,Department of Epidemiology, Harvard TH Chan School of Public
Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and
Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and
Women's Hospital and Harvard Medical School, Boston, MA, USA,Clinical and Translational Epidemiology Unit, Massachusetts General
Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and
Harvard, Cambridge, MA, USA
| | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard
Medical School, Boston, MA, USA
| | | | - Qi Sun
- Address correspondence to QS (e-mail: )
| |
Collapse
|
98
|
Yu D, Yang Y, Long J, Xu W, Cai Q, Wu J, Cai H, Zheng W, Shu XO. Long-term Diet Quality and Gut Microbiome Functionality: A Prospective, Shotgun Metagenomic Study among Urban Chinese Adults. Curr Dev Nutr 2021; 5:nzab026. [PMID: 33937616 PMCID: PMC8068758 DOI: 10.1093/cdn/nzab026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diet is known to affect human gut microbiome composition; yet, how diet affects gut microbiome functionality remains unclear. OBJECTIVE We compared the diversity and abundance/presence of fecal microbiome metabolic pathways among individuals according to their long-term diet quality. METHODS In 2 longitudinal cohorts, we assessed participants' usual diets via repeated surveys during 1996-2011 and collected a stool sample in 2015-2018. Participants who maintained a healthy or unhealthy diet (i.e., stayed in the highest or lowest quintile of a healthy diet score throughout follow-up) were selected. Participants were excluded if they reported a history of cancer, cardiovascular disease, diabetes, or hypertension; had diarrhea or constipation in the last 7 d; or used antibiotics in the last 6 mo before stool collection. Functional profiling of shotgun metagenomics was performed using HUMAnN2. Associations of dietary variables and 420 microbial metabolic pathways were evaluated via multivariable-adjusted linear or logistic regression models. RESULTS We included 144 adults (mean age = 64 y; 55% female); 66 had an unhealthy diet and 78 maintained a healthy diet. The healthy diet group had higher Shannon α-diversity indexes of microbial gene families and metabolic pathways (both P < 0.02), whereas β-diversity, as evaluated by Bray-Curtis distance, did not differ between groups (both P > 0.50). At P < 0.01 [false discovery rate (FDR) <0.15], the healthy diet group showed enriched pathways for vitamin and carrier biosynthesis (e.g., tetrahydrofolate, acetyl-CoA, and l-methionine) and tricarboxylic acid (TCA) cycle, and increased degradation (or reduced biosynthesis) of certain sugars [e.g., cytidine monophosphate (CMP)-legionaminate, deoxythymidine diphosphate (dTDP)-l-rhamnose, and sucrose], nucleotides, 4-aminobutanoate, methylglyoxal, sulfate, and aromatic compounds (e.g., catechol and toluene). Meanwhile, several food groups were associated with the CMP-legionaminate biosynthesis pathway at FDR <0.05. CONCLUSIONS In a small longitudinal study of generally healthy, older Chinese adults, we found long-term healthy eating was associated with increased α-diversity of microbial gene families and metabolic pathways and altered symbiotic functions relevant to human nutrition and health.
Collapse
Affiliation(s)
- Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wanghong Xu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are strongly associated. Both also associate with an increased risk of cardiovascular disease (CVD). RECENT FINDINGS Several studies have provided evidence that NAFLD could be an independent CVD risk factor. Given the strong association between NAFLD and T2DM, assessing the independent CV effect of these two conditions remains challenging. However, patients with T2DM and NAFLD exhibit higher risk of CVD compared with T2DM without NAFLD suggesting a potential synergistic increase of CV risk in patients with both T2DM and NAFLD supported by several shared pathophysiological pathways. Several anti-diabetic therapies have shown beneficial effect on both NAFLD and CVD. Patients with T2DM and NAFLD should be considered at high risk of CVD and could benefit from more intensive CV prevention. Additional long-term follow-up is needed to demonstrate that the treatment of NAFLD effectively reduces the risk of CVD.
Collapse
Affiliation(s)
- Cyrielle Caussy
- Hôpital Lyon Sud, Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, 69495, Pierre-Bénite, France.
| | - Adrien Aubin
- Hôpital Lyon Sud, Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Rohit Loomba
- Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, CA, USA.
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
- Division of Epidemiology, Department of Family and Preventive Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
100
|
Salvadori M, Tsalouchos A. Microbiota, renal disease and renal transplantation. World J Transplant 2021; 11:16-36. [PMID: 33816144 PMCID: PMC8009061 DOI: 10.5500/wjt.v11.i3.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Aim of this frontier review has been to highlight the role of microbiota in healthy subjects and in patients affected by renal diseases with particular reference to renal transplantation. The microbiota has a relevant role in conditioning the healthy status and the diseases. In particular gut microbiota is essential in the metabolism of food and has a relevant role for its relationship with the immune system. The indigenous microbiota in patients with chronic renal failure is completely different than that of the healthy subjects and pathobionts appear. This abnormality in microbiota composition is called dysbiosis and may cause a rapid deterioration of the renal function both for activating the immune system and producing large quantity of uremic toxins. Similarly, after renal trans-plantation the microbiota changes with the appearance of pathobionts, principally in the first period because of the assumption of immunosuppressive drugs and antibiotics. These changes may deeply interfere with the graft outcome causing acute rejection, renal infections, diarrhea, and renal interstitial fibrosis. In addition, change in the microbiota may modify the metabolism of immuno-suppressive drugs causing in some patients the need of modifying the immunosuppressant dosing. The restoration of the indigenous microbiota after transplantation is important, either to avoiding the complications that impair the normal renal graft, and because recent studies have documented the role of an indigenous microbiota in inducing tolerance towards the graft. The use of prebiotics, probiotics, smart bacteria and diet modification may restore the indigenous microbiota, but these studies are just at their beginning and more data are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Transplantation Renal Unit, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|