51
|
Pereira LR, Alves RPDS, Sales NS, Andreata-Santos R, Venceslau-Carvalho AA, Pereira SS, Castro-Amarante MF, Rodrigues-Jesus MJ, Favaro MTDP, Chura-Chambi RM, Morganti L, Ferreira LCDS. Enhanced Immune Responses and Protective Immunity to Zika Virus Induced by a DNA Vaccine Encoding a Chimeric NS1 Fused With Type 1 Herpes Virus gD Protein. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:604160. [PMID: 35047887 PMCID: PMC8757838 DOI: 10.3389/fmedt.2020.604160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) is a globally-distributed flavivirus transmitted to humans by Aedes mosquitoes, usually causing mild symptoms that may evolve to severe conditions, including neurological alterations, such as neonatal microcephaly and Guillain-Barré syndrome. Due to the absence of specific and effective preventive methods, we designed a new subunit vaccine based on a DNA vector (pgDNS1-ZIKV) encoding the non-structural protein 1 (NS1) genetically fused to the Herpes Simplex Virus (HSV) glycoprotein D (gD) protein. Recombinant plasmids were replicated in Escherichia coli and the expression of the target protein was confirmed in transfected HEK293 cells. C57BL/6 and AB6 (IFNAR1-/-) mice were i.m. immunized by electroporation in order to evaluate pgDNS1-ZIKV immunogenicity. After two doses, high NS1-specific IgG antibody titers were measured in serum samples collected from pgDNS1-ZIKV-immunized mice. The NS1-specific antibodies were capable to bind the native protein expressed in infected mammalian cells. Immunization with pgDNS1-ZIKV increased both humoral and cellular immune responses regarding mice immunized with a ZIKV NS1 encoding vaccine. Immunization with pgDNS1-ZIKV reduced viremia and morbidity scores leading to enhanced survival of immunodeficient AB6 mice challenged with a lethal virus load. These results give support to the use of ZIKV NS1 as a target antigen and further demonstrate the relevant adjuvant effects of HSV-1 gD.
Collapse
Affiliation(s)
- Lennon Ramos Pereira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rúbens Prince dos Santos Alves
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natiely Silva Sales
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Santos Pereira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Fernanda Castro-Amarante
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mônica Josiane Rodrigues-Jesus
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marianna Teixeira de Pinho Favaro
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ligia Morganti
- Biotechnology Center, Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Luís Carlos de Souza Ferreira
| |
Collapse
|
52
|
Zhan Y, Pang Z, Du Y, Wang W, Yang Y, Wang W, Gao GF, Huang B, Deng Y, Tan W. NS1-based DNA vaccination confers mouse protective immunity against ZIKV challenge. INFECTION GENETICS AND EVOLUTION 2020; 85:104521. [DOI: 10.1016/j.meegid.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
|
53
|
Whitbeck JC, Thomas A, Kadash-Edmondson K, Grinyo-Escuer A, Stafford LJ, Cheng C, Liao GC, Holtsberg FW, Aman MJ, Simmons G, Davidson E, Doranz BJ. Antigenicity, stability, and reproducibility of Zika reporter virus particles for long-term applications. PLoS Negl Trop Dis 2020; 14:e0008730. [PMID: 33206639 PMCID: PMC7673510 DOI: 10.1371/journal.pntd.0008730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/17/2020] [Indexed: 01/16/2023] Open
Abstract
The development of vaccines against flaviviruses, including Zika virus (ZIKV) and dengue virus (DENV), continues to be a major challenge, hindered by the lack of efficient and reliable methods for screening neutralizing activity of sera or antibodies. To address this need, we previously developed a plasmid-based, replication-incompetent DENV reporter virus particle (RVP) production system as an efficient and safe alternative to the Plaque Reduction Neutralization Test (PRNT). As part of the response to the 2015-2016 ZIKV outbreak, we developed pseudo-infectious ZIKV RVPs by modifying our DENV RVP system. The use of ZIKV RVPs as critical reagents in human clinical trials requires their further validation using stability and reproducibility metrics for large-scale applications. In the current study, we validated ZIKV RVPs using infectivity, neutralization, and enhancement assays with monoclonal antibodies (MAbs) and human ZIKV-positive patient serum. ZIKV RVPs are antigenically equivalent to live virus based on binding ELISA and neutralization results and are nonreplicating based on the results of live virus replication assays. We demonstrate reproducible neutralization titer data (NT50 values) across different RVP production lots, volumes, time frames, and laboratories. We also show RVP stability across experimentally relevant time intervals and temperatures. Our results demonstrate that ZIKV RVPs provide a safe, high-throughput, and reproducible reagent for large-scale, long-term studies of neutralizing antibodies and sera, which can facilitate large-scale screening and epidemiological studies to help expedite ZIKV vaccine development.
Collapse
Affiliation(s)
| | - Anu Thomas
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | | | | | - Lewis J. Stafford
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Celine Cheng
- Vitalant Research Institute, San Francisco, CA, United States of America
| | - Grant C. Liao
- Integrated Biotherapeutics, 4 Research Court, Rockville, MD, United States of America
| | | | - M. Javad Aman
- Integrated Biotherapeutics, 4 Research Court, Rockville, MD, United States of America
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | | |
Collapse
|
54
|
Bos S, Poirier-Beaudouin B, Seffer V, Manich M, Mardi C, Desprès P, Gadea G, Gougeon ML. Zika Virus Inhibits IFN-α Response by Human Plasmacytoid Dendritic Cells and Induces NS1-Dependent Triggering of CD303 (BDCA-2) Signaling. Front Immunol 2020; 11:582061. [PMID: 33193389 PMCID: PMC7655658 DOI: 10.3389/fimmu.2020.582061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) dramatically emerged in French Polynesia and subsequently in the Americas where it has been associated with severe neurological complications in adults and newborns, respectively. Although plasmacytoid dendritic cells (pDCs) are a key sensor of viral infection and are critical for initiating an antiviral response, little is known about the impact of ZIKV infection on pDCs. Here, we investigated the susceptibility of human pDCs to infection with multiple strains of ZIKV and further investigated the impact of infection on pDCs functions. We observed that pDCs were refractory to cell-free ZIKV virions but were effectively infected when co-cultured with ZIKV-infected cells. However, exposure of pDCs to ZIKV-infected cells resulted in limited maturation/activation with significant down regulation of CD303 expression, a severe impairment of inflammatory cytokine production, and an inability to mount an IFN-α response. We show that ZIKV developed a strategy to inhibit the IFN-α response in primary human pDCs likely mediated through NS1-dependent CD303 signaling, thus suggesting a new mechanism of immune evasion.
Collapse
Affiliation(s)
- Sandra Bos
- Institut Pasteur, Innate Immunity and Viruses Unit, Global Health Department, Paris, France.,Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | | | - Valérie Seffer
- Institut Pasteur, Innate Immunity and Viruses Unit, Global Health Department, Paris, France
| | - Maria Manich
- Institut Pasteur, Biological Image Analysis Unit, Cell Biology and Infection Department, Paris, France
| | - Cartini Mardi
- Institut Pasteur, Innate Immunity and Viruses Unit, Global Health Department, Paris, France
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Marie-Lise Gougeon
- Institut Pasteur, Innate Immunity and Viruses Unit, Global Health Department, Paris, France
| |
Collapse
|
55
|
Wessel AW, Kose N, Bombardi RG, Roy V, Chantima W, Mongkolsapaya J, Edeling MA, Nelson CA, Bosch I, Alter G, Screaton GR, Fremont DH, Crowe JE, Diamond MS. Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nat Commun 2020; 11:5278. [PMID: 33077712 PMCID: PMC7572419 DOI: 10.1038/s41467-020-19096-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
There are no licensed therapeutics or vaccines available against Zika virus (ZIKV) to counteract its potential for congenital disease. Antibody-based countermeasures targeting the ZIKV envelope protein have been hampered by concerns for cross-reactive responses that induce antibody-dependent enhancement (ADE) of heterologous flavivirus infection. Nonstructural protein 1 (NS1) is a membrane-associated and secreted glycoprotein that functions in flavivirus replication and immune evasion but is absent from the virion. Although some studies suggest that antibodies against ZIKV NS1 are protective, their activity during congenital infection is unknown. Here we develop mouse and human anti-NS1 monoclonal antibodies that protect against ZIKV in both non-pregnant and pregnant mice. Avidity of antibody binding to cell-surface NS1 along with Fc effector functions engagement correlate with protection in vivo. Protective mAbs map to exposed epitopes in the wing domain and loop face of the β-platform. Anti-NS1 antibodies provide an alternative strategy for protection against congenital ZIKV infection without causing ADE.
Collapse
Affiliation(s)
- Alex W Wessel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nurgun Kose
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, 02139, USA
| | - Warangkana Chantima
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Dengue Hemorrhagic Fever Unit, Faculty of Medicine, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Irene Bosch
- E25Bio, Inc., The Engine of MIT, Cambridge, MA, 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, 02139, USA
| | - Gavin R Screaton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - David H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James E Crowe
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
56
|
Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue Virus Nonstructural Protein 1. Vaccines (Basel) 2020; 8:vaccines8040565. [PMID: 33019498 PMCID: PMC7712967 DOI: 10.3390/vaccines8040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.
Collapse
|
57
|
Zhou D, Pei C, Liu Z, Yang K, Li Q, Chen H, Cao S, Song Y. Identification of a protective epitope in Japanese encephalitis virus NS1 protein. Antiviral Res 2020; 182:104930. [PMID: 32898585 DOI: 10.1016/j.antiviral.2020.104930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
Japanese encephalitis virus (JEV) is one of the most important culex transmitted-flaviviruses, which can cause encephalitis in humans. Although non-structural protein 1 (NS1) of JEV does not stimulate neutralizing antibodies, this protein can provide high immunoprotection in vivo. The protective epitopes and the protective mechanism of NS1 still remain unclear. In this study, we generated five different monoclonal antibodies (mAbs) targeting the NS1 protein of JEV. In vitro experiments revealed that none of these five antibodies neutralized the JEV infection. In mouse protection studies, one of these mAbs, designated 2B8, provided a therapeutic effect against JEV lethal challenge (70% survival rate). Using peptide mapping analysis, we found that mAb 2B8 reacted with the epitope 225PETHTLWGD233 in the NS1 protein, in which any mutations among amino acid residues T228, H229, L231 or W232 could cause binding failure of 2B8 to the NS1 protein. Furthermore, mice immunized with KLH-polypeptide (225PETHTLWGD233) showed reduced mortality following JEV challenge. Collectively, we found a new protective epitope in the JEV NS1 protein. These results may facilitate the development of therapeutic agent and subunit-based vaccines based on the NS1 protein.
Collapse
Affiliation(s)
- Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Pei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaoxia Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kelu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuyan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
58
|
Vesicular Stomatitis Virus and DNA Vaccines Expressing Zika Virus Nonstructural Protein 1 Induce Substantial but Not Sterilizing Protection against Zika Virus Infection. J Virol 2020; 94:JVI.00048-20. [PMID: 32554698 DOI: 10.1128/jvi.00048-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022] Open
Abstract
The nonstructural protein 1 (NS1) of several flaviviruses, including West Nile, dengue, and yellow fever viruses, is capable of inducing variable degrees of protection against flavivirus infection in animal models. However, the immunogenicity of NS1 protein of Zika virus (ZIKV) is less understood. Here, we determined the efficacy of ZIKV NS1-based vaccine candidates using two delivery platforms, methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV) and a DNA vaccine. We first show that expression of ZIKV NS1 could be significantly enhanced by optimizing the signal peptide. A single dose of mtdVSV-NS1-based vaccine or two doses of DNA vaccine induced high levels of NS1-specfic antibody and T cell immune responses but provided only partial protection against ZIKV viremia in BALB/c mice. In Ifnar1-/- mice, neither NS1-based vaccine provided protection against a lethal high dose (105 PFU) ZIKV challenge, but mtdVSV-NS1-based vaccine prevented deaths from a low dose (103 PFU) challenge, though they experienced viremia and body weight loss. We conclude that ZIKV NS1 alone conferred substantial, but not complete, protection against ZIKV infection. Nevertheless, these results highlight the value of ZIKV NS1 for vaccine development.IMPORTANCE Most Zika virus (ZIKV) vaccine research has focused on the E or prM-E proteins and the induction of high levels of neutralizing antibodies. However, these ZIKV neutralizing antibodies cross-react with other flaviviruses, which may aggravate the disease via an antibody-dependent enhancement (ADE) mechanism. ZIKV NS1 protein may be an alternative antigen for vaccine development, since antibodies to NS1 do not bind to the virion, thereby eliminating the risk of ADE. Here, we show that recombinant VSV and DNA vaccines expressing NS1, alone, confer partial protection against ZIKV infection in both immunocompetent and immunodeficient mice, highlighting the value of NS1 as a potential vaccine candidate.
Collapse
|
59
|
Chen RE, Diamond MS. Dengue mouse models for evaluating pathogenesis and countermeasures. Curr Opin Virol 2020; 43:50-58. [PMID: 32950933 PMCID: PMC7774505 DOI: 10.1016/j.coviro.2020.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) causes the most prevalent arbovirus illness worldwide and is responsible for many debilitating epidemics. The four circulating DENV serotypes infect humans and can cause asymptomatic, mild, moderate, or severe Dengue. Because of the global morbidity and mortality due to Dengue, deployment of a safe and effective tetravalent vaccine has been a high priority, and to date, a partially realized goal. The study of pathogenesis and development of DENV therapeutics and vaccines has been limited by few animal models that recapitulate key features of human disease. Over the past two decades, mouse models of DENV infection have evolved with increasing success. Here, we review the utilization and limitations of mice for studying DENV pathogenesis and evaluating countermeasures.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
60
|
In HJ, Lee YH, Jang S, Lim HJ, Kim MY, Kim JA, Yoo JS, Chung GT, Kim YJ. Enhanced effect of modified Zika virus E antigen on the immunogenicity of DNA vaccine. Virology 2020; 549:25-31. [PMID: 32818729 DOI: 10.1016/j.virol.2020.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023]
Abstract
It has been reported worldwide that the Zika virus (ZIKV) could be transmitted through placentas and sexual contact. ZIKV can also cause Guillain-Barre syndrome, microcephaly and neurological abnormalities. However, there are no approved vaccines available. We constructed six DNA vaccine candidates and tested the immunogenicity. Tandem repeated envelope domain Ⅲ (ED Ⅲ × 3) induced highly total IgG and neutralization antibody, as well as CD8+ T cell responses. Also, stem region-removed envelope (E ΔSTEM) elicited a robust production of IFN-γ in mice. To examine in vivo protection, we used mice treated with an IFNAR1 blocking antibody before and after the challenge. Vaccination with the two candidates led to a decline in the level of viral RNAs in organs. Moreover, the sera from the vaccinated mice did not enhance the infection of Dengue virus in K562 cells. These findings suggest the potential for the development of a novel ZIKV DNA vaccine.
Collapse
Affiliation(s)
- Hyun Ju In
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Yun Ha Lee
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Sundong Jang
- College of Pharmacy, Chungbuk National University, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Hee Ji Lim
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Mi Young Kim
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Joo Ae Kim
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Jung-Sik Yoo
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Gyung Tae Chung
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea
| | - You-Jin Kim
- Division of Vaccine Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
61
|
Cimica V, Williams S, Adams-Fish D, McMahon C, Narayanan A, Rashid S, Stedman TT. Zika Virus-Like Particle (VLP) vaccine displaying Envelope (E) protein CD loop antigen elicits protective and specific immune response in a murine model. Biochem Biophys Res Commun 2020; 529:805-811. [PMID: 32736711 DOI: 10.1016/j.bbrc.2020.05.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with Congenital Zika Syndrome (CZS), reflecting a wide range of congenital abnormalities in fetuses and infants infected with ZIKV before birth. ZIKV infections have also been associated with the neurological autoimmune disorder known as Guillian-Barré syndrome (GBS). To date, no vaccines or antiviral strategies are licensed for ZIKV. We used rational design to develop a novel ZIKV vaccine candidate using a Woodchuck Hepatitis core Antigen (WHcAg) Virus-Like Particle (VLP) scaffold for displaying selected antigens from the ZIKV Envelope (E) protein. A Zika-VLP vaccine candidate containing the CD Loop sub-structural domain from ZIKV E protein Domain III (WHcAg CD Loop) elicited a strong immune response in a murine model. Analysis of serum immunoglobulins demonstrated induction of both Th1- and Th2- mediated immune response. No cross-reacting antibodies were detected between Zika, dengue and yellow fever virus, demonstrating a high level of specificity for the ZIKV CD Loop antigen. Immunization with the WHcAg CD Loop vaccine candidate demonstrated immunoprotection in a murine model of ZIKV infection, stimulating protective antibodies associated with antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities. The WHcAg CD Loop candidate may represent a safer vaccine for preventing antibody dependent enhancement (ADE).
Collapse
Affiliation(s)
- Velasco Cimica
- American Type Culture Collection (ATCC®), Manassas, VA, USA.
| | | | | | - Conor McMahon
- American Type Culture Collection (ATCC®), Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | - Sujatha Rashid
- American Type Culture Collection (ATCC®), Manassas, VA, USA
| | | |
Collapse
|
62
|
Chu H, Yuen TTT, Chik KKH, Yuan S, Shuai H, Zou Z, Wang Y, Zhu Z, Yang D, Poon VKM, Chan CCS, Zhou J, Yin F, Kok KH, Yuen KY, Chan JFW. Targeting the Inositol-Requiring Enzyme-1 Pathway Efficiently Reverts Zika Virus-Induced Neurogenesis and Spermatogenesis Marker Perturbations. ACS Infect Dis 2020; 6:1745-1758. [PMID: 32329611 DOI: 10.1021/acsinfecdis.9b00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that may be associated with congenital anomalies in infected fetuses and severe neurological and genital tract complications in infected adults. Currently, antiviral treatments to revert these ZIKV-induced complications are lacking. ZIKV infection has recently been suggested to upregulate the host unfolded protein response, which may contribute to the congenital neurological anomalies. As an extension from these findings, we thoroughly investigated the ZIKV-induced unfolded protein response using a combination of the neuronal cell line, induced pluripotent stem cell-derived human neuronal stem and progenitor cells, and an interferon receptor-deficient A129 mouse model. Our results revealed a critical contribution of the inositol-requiring enzyme-1 (IRE1) arm of the unfolded protein response to ZIKV-induced neurological and testicular complications. Importantly, the inhibition of the IRE1 signaling pathway activation with KIRA6 (kinase-inhibiting RNAse attenuator 6), a selective small molecule IRE1 inhibitor that promotes cell survival, potently reverted the ZIKV-induced perturbations of the key gene expressions associated with neurogenesis and spermatogenesis in vitro and in vivo, highlighting the potential of IRE1 inhibition as a novel host-targeting antiviral strategy in combating against ZIKV-induced neurological and testicular pathologies.
Collapse
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Terrence T. T. Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Kenn K. H. Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Zijiao Zou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Vincent K. M. Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Chris C. S. Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Jasper F. W. Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| |
Collapse
|
63
|
Pattnaik A, Sahoo BR, Pattnaik AK. Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines (Basel) 2020; 8:vaccines8020266. [PMID: 32486368 PMCID: PMC7349928 DOI: 10.3390/vaccines8020266] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
The recently emerged Zika virus (ZIKV) spread to the Americas, causing a spectrum of congenital diseases including microcephaly in newborn and Guillain-Barré syndrome (GBS) in adults. The unprecedented nature of the epidemic and serious diseases associated with the viral infections prompted the global research community to understand the immunopathogenic mechanisms of the virus and rapidly develop safe and efficacious vaccines. This has led to a number of ZIKV vaccine candidates that have shown significant promise in human clinical trials. These candidates include nucleic acid vaccines, inactivated vaccines, viral-vectored vaccines, and attenuated vaccines. Additionally, a number of vaccine candidates have been shown to protect animals in preclinical studies. However, as the epidemic has waned in the last three years, further development of the most promising vaccine candidates faces challenges in clinical efficacy trials, which is needed before a vaccine is brought to licensure. It is important that a coalition of government funding agencies and private sector companies is established to move forward with a safe and effective vaccine ready for deployment when the next ZIKV epidemic occurs.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-1067
| |
Collapse
|
64
|
TRiC/CCT Complex, a Binding Partner of NS1 Protein, Supports the Replication of Zika Virus in Both Mammalians and Mosquitoes. Viruses 2020; 12:v12050519. [PMID: 32397176 PMCID: PMC7290343 DOI: 10.3390/v12050519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 11/23/2022] Open
Abstract
Mosquito-borne Zika virus (ZIKV) can cause congenital microcephaly and Guillain–Barré syndrome, among other symptoms. Specific treatments and vaccines for ZIKV are not currently available. To further understand the host factors that support ZIKV replication, we used mass spectrometry to characterize mammalian proteins that associate with the ZIKV NS1 protein and identified the TRiC/CCT complex as an interacting partner. Furthermore, the suppression of CCT2, one of the critical components of the TRiC/CCT complex, inhibited ZIKV replication in both mammalian cells and mosquitoes. These results highlight an important role for the TRiC/CCT complex in ZIKV infection, suggesting that the TRiC/CCT complex may be a promising therapeutic target.
Collapse
|
65
|
Steffen T, Hassert M, Hoft SG, Stone ET, Zhang J, Geerling E, Grimberg BT, Roberts MS, Pinto AK, Brien JD. Immunogenicity and Efficacy of a Recombinant Human Adenovirus Type 5 Vaccine against Zika Virus. Vaccines (Basel) 2020; 8:vaccines8020170. [PMID: 32272595 PMCID: PMC7349816 DOI: 10.3390/vaccines8020170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is a significant public health concern due to the pathogen's ability to be transmitted by either mosquito bite or sexual transmission, allowing spread to occur throughout the world. The potential consequences of ZIKV infection to human health, specifically neonates, necessitates the development of a safe and effective Zika virus vaccine. Here, we developed an intranasal Zika vaccine based upon the replication-deficient human adenovirus serotype 5 (hAd5) expressing ZIKV pre-membrane and envelope protein (hAd5-ZKV). The hAd5-ZKV vaccine is able to induce both cell-mediated and humoral immune responses to ZIKV epitopes. Importantly, this vaccine generated CD8+ T cells specific for a dominant ZIKV T cell epitope and is shown to be protective against a ZIKV challenge by using a pre-clinical model of ZIKV disease. We also demonstrate that the vaccine expresses pre-membrane and envelope protein in a confirmation recognized by ZIKV experienced individuals. Our studies demonstrate that this adenovirus-based vaccine expressing ZIKV proteins is immunogenic and protective in mice, and it encodes ZIKV proteins in a conformation recognized by the human antibody repertoire.
Collapse
Affiliation(s)
- Tara Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
| | - Stella G. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
| | - Jianfeng Zhang
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (J.Z.); (M.S.R.)
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
| | - Brian T. Grimberg
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - M. Scot Roberts
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (J.Z.); (M.S.R.)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
- Correspondence: (A.K.P.); (J.D.B.)
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA; (T.S.); (M.H.); (S.G.H.); (E.T.S.); (E.G.)
- Correspondence: (A.K.P.); (J.D.B.)
| |
Collapse
|
66
|
Wang Y, Marin-Lopez A, Jiang J, Ledizet M, Fikrig E. Vaccination with Aedes aegypti AgBR1 Delays Lethal Mosquito-Borne Zika Virus Infection in Mice. Vaccines (Basel) 2020; 8:vaccines8020145. [PMID: 32218189 PMCID: PMC7348886 DOI: 10.3390/vaccines8020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Zika Virus (ZIKV) is transmitted primarily by Aedes aegypti mosquitoes, resulting in asymptomatic infection, or acute illness with a fever and headache, or neurological complications, such as Guillain-Barre syndrome or fetal microcephaly. Previously, we determined that AgBR1, a mosquito salivary protein, induces inflammatory responses at the bite site, and that passive immunization with AgBR1 antiserum influences mosquito-transmitted ZIKV infection. Here, we show that the active immunization of mice with AgBR1 adjuvanted with aluminum hydroxide delays lethal mosquito-borne ZIKV infection, suggesting that AgBR1 may be used as part of a vaccine to combat ZIKV.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, China
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA; (J.J.); (E.F.)
- Correspondence: or (Y.W.); (A.M.-L.)
| | - Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA; (J.J.); (E.F.)
- Correspondence: or (Y.W.); (A.M.-L.)
| | - Junjun Jiang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA; (J.J.); (E.F.)
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | | | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA; (J.J.); (E.F.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
67
|
Duehr J, McMahon M, Williamson B, Amanat F, Durbin A, Hawman DW, Noack D, Uhl S, Tan GS, Feldmann H, Krammer F. Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model. mBio 2020; 11:e00028-20. [PMID: 32209676 PMCID: PMC7157512 DOI: 10.1128/mbio.00028-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023] Open
Abstract
Hantaviruses are the etiological agent of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The latter is associated with case fatality rates ranging from 30% to 50%. HCPS cases are rare, with approximately 300 recorded annually in the Americas. Recently, an HCPS outbreak of unprecedented size has been occurring in and around Epuyén, in the southwestern Argentinian state of Chubut. Since November of 2018, at least 29 cases have been laboratory confirmed, and human-to-human transmission is suspected. Despite posing a significant threat to public health, no treatment or vaccine is available for hantaviral disease. Here, we describe an effort to identify, characterize, and develop neutralizing and protective antibodies against the glycoprotein complex (Gn and Gc) of Andes virus (ANDV), the causative agent of the Epuyén outbreak. Using murine hybridoma technology, we generated 19 distinct monoclonal antibodies (MAbs) against ANDV GnGc. When tested for neutralization against a recombinant vesicular stomatitis virus expressing the Andes glycoprotein (GP) (VSV-ANDV), 12 MAbs showed potent neutralization and 8 showed activity in an antibody-dependent cellular cytotoxicity reporter assay. Escape mutant analysis revealed that neutralizing MAbs targeted both the Gn and the Gc. Four MAbs that bound different epitopes were selected for preclinical studies and were found to be 100% protective against lethality in a Syrian hamster model of ANDV infection. These data suggest the existence of a wide array of neutralizing antibody epitopes on hantavirus GnGc with unique properties and mechanisms of action.IMPORTANCE Infections with New World hantaviruses are associated with high case fatality rates, and no specific vaccine or treatment options exist. Furthermore, the biology of the hantaviral GnGc complex, its antigenicity, and its fusion machinery are poorly understood. Protective monoclonal antibodies against GnGc have the potential to be developed into therapeutics against hantaviral disease and are also great tools to elucidate the biology of the glycoprotein complex.
Collapse
Affiliation(s)
- James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brandi Williamson
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alan Durbin
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Danny Noack
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
68
|
Sun J, Du S, Zheng Z, Cheng G, Jin X. Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Front Microbiol 2020; 11:362. [PMID: 32265852 PMCID: PMC7100368 DOI: 10.3389/fmicb.2020.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/18/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are two mosquito-borne flaviviruses afflicting nearly half of the world population. Human infection by these viruses can either be asymptomatic or manifest as clinical diseases from mild to severe. Despite more cases are presented as self-limiting febrile illness, severe dengue disease can be manifested as hemorrhagic fever and hemorrhagic shock syndrome, and ZIKV infection has been linked to increased incidence of peripheral neuropathy Guillain-Barre syndrome and central neural disease such as microcephaly. The current prevention and treatment of these infectious diseases are either non-satisfactory or entirely lacking. Because DENV and ZIKV have much similarities in genomic and structural features, almost identical mode of mosquito-mediated transmission, and probably the same pattern of host innate and adaptive immunity toward them, it is reasonable and often desirable to investigate these two viruses side-by-side, and thereby devise common countermeasures against both. Here, we review the existing knowledge on DENV and ZIKV regarding epidemiology, molecular virology, protective immunity and vaccine development, discuss recent new discoveries on the functions of flavivirus NS1 protein in viral pathogenesis and transmission, and propose a one-two punch strategy using vaccine and vector blockade to overcome antibody-dependent enhancement and defeat Dengue and Zika viruses.
Collapse
Affiliation(s)
- Jin Sun
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Senyan Du
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihang Zheng
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xia Jin, ;
| |
Collapse
|
69
|
Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol 2020; 30:e2100. [PMID: 32101633 DOI: 10.1002/rmv.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.
Collapse
Affiliation(s)
- Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
70
|
Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F, Osorio F, Soto-Rifo R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020; 9:E158. [PMID: 32106582 PMCID: PMC7157488 DOI: 10.3390/pathogens9030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus associated with neurological disorders such as Guillain-Barré syndrome and microcephaly. In humans, ZIKV is able to replicate in cell types from different tissues including placental cells, neurons, and microglia. This intricate virus-cell interaction is accompanied by virally induced changes in the infected cell aimed to promote viral replication as well as cellular responses aimed to counteract or tolerate the virus. Early in the infection, the 11-kb positive-sense RNA genome recruit ribosomes in the cytoplasm and the complex is translocated to the endoplasmic reticulum (ER) for viral protein synthesis. In this process, ZIKV replication is known to induce cellular stress, which triggers both the expression of innate immune genes and the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α), shutting-off host protein synthesis. Remodeling of the ER during ZIKV replication also triggers the unfolded protein response (UPR), which induces changes in the cellular transcriptional landscapes aimed to tolerate infection or trigger apoptosis. Alternatively, ZIKV replication induces changes in the adenosine methylation patterns of specific host mRNAs, which have different consequences in viral replication and cellular fate. In addition, the ZIKV RNA genome undergoes adenosine methylation by the host machinery, which results in the inhibition of viral replication. However, despite these relevant findings, the full scope of these processes to the outcome of infection remains poorly elucidated. This review summarizes relevant aspects of the complex crosstalk between RNA metabolism and cellular stress responses against ZIKV and discusses their possible impact on viral pathogenesis.
Collapse
Affiliation(s)
- Aarón Oyarzún-Arrau
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
| | - Luis Alonso-Palomares
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
71
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1260] [Impact Index Per Article: 252.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
72
|
Grubor-Bauk B, Wijesundara DK, Masavuli M, Abbink P, Peterson RL, Prow NA, Larocca RA, Mekonnen ZA, Shrestha A, Eyre NS, Beard MR, Gummow J, Carr J, Robertson SA, Hayball JD, Barouch DH, Gowans EJ. NS1 DNA vaccination protects against Zika infection through T cell-mediated immunity in immunocompetent mice. SCIENCE ADVANCES 2019; 5:eaax2388. [PMID: 31844662 PMCID: PMC6905874 DOI: 10.1126/sciadv.aax2388] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
The causal association of Zika virus (ZIKV) with microcephaly, congenital malformations in infants, and Guillain-Barré syndrome in adults highlights the need for effective vaccines. Thus far, efforts to develop ZIKV vaccines have focused on the viral envelope. ZIKV NS1 as a vaccine immunogen has not been fully explored, although it can circumvent the risk of antibody-dependent enhancement of ZIKV infection, associated with envelope antibodies. Here, we describe a novel DNA vaccine encoding a secreted ZIKV NS1, that confers rapid protection from systemic ZIKV infection in immunocompetent mice. We identify novel NS1 T cell epitopes in vivo and show that functional NS1-specific T cell responses are critical for protection against ZIKV infection. We demonstrate that vaccine-induced anti-NS1 antibodies fail to confer protection in the absence of a functional T cell response. This highlights the importance of using NS1 as a target for T cell-based ZIKV vaccines.
Collapse
Affiliation(s)
- B. Grubor-Bauk
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
- Corresponding author.
| | - D. K. Wijesundara
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - M. Masavuli
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - P. Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - R. L. Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - N. A. Prow
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - R. A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. A. Mekonnen
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - A. Shrestha
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - N. S. Eyre
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - M. R. Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - S. A. Robertson
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. D. Hayball
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - D. H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - E. J. Gowans
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| |
Collapse
|
73
|
Annamalai AS, Pattnaik A, Sahoo BR, Guinn ZP, Bullard BL, Weaver EA, Steffen D, Natarajan SK, Petro TM, Pattnaik AK. An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) and Non-Structural Protein 1 (NS1) Confers Complete Protection against Lethal Challenge in a Mouse Model. Vaccines (Basel) 2019; 7:vaccines7030112. [PMID: 31547297 PMCID: PMC6789518 DOI: 10.3390/vaccines7030112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-transmitted flavivirus, emerged in the last decade causing serious human diseases, including congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Although many vaccine platforms are at various stages of development, no licensed vaccines are currently available. Previously, we described a mutant MR766 ZIKV (m2MR) bearing an E protein mutation (N154A) that prevented its glycosylation, resulting in attenuation and defective neuroinvasion. To further attenuate m2MR for its potential use as a live viral vaccine, we incorporated additional mutations into m2MR by substituting the asparagine residues in the glycosylation sites (N130 and N207) of NS1 with alanine residues. Examination of pathogenic properties revealed that the virus (m5MR) carrying mutations in E (N154A) and NS1 (N130A and N207A) was fully attenuated with no disease signs in infected mice, inducing high levels of humoral and cell-mediated immune responses, and protecting mice from subsequent lethal virus challenge. Furthermore, passive transfer of sera from m5MR-infected mice into naïve animals resulted in complete protection from lethal challenge. The immune sera from m5MR-infected animals neutralized both African and Asian lineage viruses equally well, suggesting that m5MR virus could be developed as a potentially broad live virus vaccine candidate.
Collapse
Affiliation(s)
- Arun S Annamalai
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Bikash R Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Zack P Guinn
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Brianna L Bullard
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Eric A Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Sathish Kumar Natarajan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
74
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
75
|
Reyes-Sandoval A, Ludert JE. The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol 2019; 10:1651. [PMID: 31379848 PMCID: PMC6657369 DOI: 10.3389/fimmu.2019.01651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
76
|
Hanajiri R, Sani GM, Hanley PJ, Silveira CG, Kallas EG, Keller MD, Bollard CM. Generation of Zika virus-specific T cells from seropositive and virus-naïve donors for potential use as an autologous or "off-the-shelf" immunotherapeutic. Cytotherapy 2019; 21:840-855. [PMID: 31279695 DOI: 10.1016/j.jcyt.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Zika virus (ZIKV) infection can cause severe birth defects in newborns with no effective currently available treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the prevention or treatment of many viral infections, and could represent a novel treatment approach for patients with ZIKV infection. However, extending this strategy to the ZIKV setting has been hampered by limited data on immunogenic T-cell antigens within ZIKV. Hence, we have generated ZIKV-specific T cells and characterized the cellular immune responses against ZIKV antigens. METHODS T-cell products were generated from peripheral blood of ZIKV-exposed donors, ZIKV-naive adult donors and umbilical cord blood by stimulation with pentadecamer (15mer) overlapping peptide libraries spanning four ZIKV polyproteins (C, M, E and NS1) using a Good Manufacturing Practice-compliant protocol. RESULTS We successfully generated T cells targeting ZIKV antigens with clinically relevant numbers. The ex vivo-expanded T cells comprised both CD4+ and CD8+ T cells that were able to produce Th1-polarized effector cytokines and kill ZIKV-infected HLA-matched monocytes, confirming functionality of this unique T-cell product as a potential "off-the-shelf" therapeutic. Epitope mapping using peptide arrays identified several novel HLA class I and class II-restricted epitopes within NS1 antigen, which is essential for viral replication and immune evasion. DISCUSSION Our findings demonstrate that it is feasible to generate potent ZIKV-specific T cells from a variety of cell sources including virus naïve donors for future clinical use in an "off-the-shelf" setting.
Collapse
Affiliation(s)
- Ryo Hanajiri
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Gelina M Sani
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington University, Washington, DC, USA
| | - Cassia G Silveira
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington University, Washington, DC, USA; Division of Allergy and Immunology, Children's National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
77
|
Human Monoclonal Antibodies Potently Neutralize Zika Virus and Select for Escape Mutations on the Lateral Ridge of the Envelope Protein. J Virol 2019; 93:JVI.00405-19. [PMID: 31043537 DOI: 10.1128/jvi.00405-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The mosquito-borne Zika virus (ZIKV) has been causing epidemic outbreaks on a global scale. Virus infection can result in severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Here, we characterized monoclonal antibodies isolated from a patient with an active Zika virus infection that potently neutralized virus infection in Vero cells at the nanogram-per-milliliter range. In addition, these antibodies enhanced internalization of virions into human leukemia K562 cells in vitro, indicating their possible ability to cause antibody-dependent enhancement of disease. Escape variants of the ZIKV MR766 strain to a potently neutralizing antibody, AC10, exhibited an amino acid substitution at residue S368 in the lateral ridge region of the envelope protein. Analysis of publicly availably ZIKV sequences revealed the S368 site to be conserved among the vast majority (97.6%) of circulating strains. We validated the importance of this residue by engineering a recombinant virus with an S368R point mutation that was unable to be fully neutralized by AC10. Four out of the 12 monoclonal antibodies tested were also unable to neutralize the virus with the S368R mutation, suggesting this region to be an important immunogenic epitope during human infection. Last, a time-of-addition infection assay further validated the escape variant and showed that all monoclonal antibodies inhibited virus binding to the cell surface. Thus, the present study demonstrates that the lateral ridge region of the envelope protein is likely an immunodominant, neutralizing epitope.IMPORTANCE Zika virus (ZIKV) is a global health threat causing severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Here, we analyzed the human monoclonal antibody response to acute ZIKV infection and found that neutralizing antibodies could not elicit Fc-mediated immune effector functions but could potentiate antibody-dependent enhancement of disease. We further identified critical epitopes involved with neutralization by generating and characterizing escape variants by whole-genome sequencing. We demonstrate that the lateral ridge region, particularly the S368 amino acid site, is critical for neutralization by domain III-specific antibodies.
Collapse
|
78
|
Xu D, Li C, Qin CF, Xu Z. Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annu Rev Virol 2019; 6:459-479. [PMID: 31206355 DOI: 10.1146/annurev-virology-092818-015740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The circulation of Zika virus (ZIKV) in nearly 80 countries and territories poses a significant global threat to public health. ZIKV is causally linked to severe developmental defects in the brain, recognized as congenital Zika syndrome (CZS), which includes microcephaly and other serious congenital neurological complications. Since the World Health Organization declared the ZIKV outbreak a public health emergency of international concern, remarkable progress has been made in the generation of different ZIKV infection animal models to gain insight into cellular targets and pathogenesis and to explore the associated underlying mechanisms. Here we focus on summarizing our current understanding of the effects of ZIKV on mammalian brain development in different developmental stages and discuss the potential underlying mechanisms of ZIKV-induced CZS, as well as future perspectives.
Collapse
Affiliation(s)
- Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China;
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
79
|
Bailey MJ, Broecker F, Duehr J, Arumemi F, Krammer F, Palese P, Tan GS. Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus. mBio 2019; 10:e02861-18. [PMID: 30940710 PMCID: PMC6445944 DOI: 10.1128/mbio.02861-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus which can cause severe disease in humans, including microcephaly and other congenital malformations in newborns and Guillain-Barré syndrome in adults. There are currently no approved prophylactics or therapeutics for Zika virus; the development of a safe and effective vaccine is an urgent priority. Preclinical studies suggest that the envelope glycoprotein can elicit potently neutralizing antibodies. However, such antibodies are implicated in the phenomenon of antibody-dependent enhancement of disease. We have previously shown that monoclonal antibodies targeting the Zika virus nonstructural NS1 protein are protective without inducing antibody-dependent enhancement of disease. Here, we investigated whether the NS1 protein itself is a viable vaccine target. Wild-type mice were vaccinated with an NS1-expressing DNA plasmid followed by two adjuvanted protein boosters, which elicited high antibody titers. Passive transfer of the immune sera was able to significantly protect STAT2 knockout mice against lethal challenge by Zika virus. In addition, long-lasting NS1-specific IgG responses were detected in serum samples from patients in either the acute or the convalescent phase of Zika virus infection. These NS1-specific antibodies were able to functionally engage Fcγ receptors. In contrast, envelope-specific antibodies did not activate Fc-mediated effector functions on infected cells. Our data suggest that the Zika virus NS1 protein, which is expressed on infected cells, is critical for Fc-dependent cell-mediated immunity. The present study demonstrates that the Zika virus NS1 protein is highly immunogenic and can elicit protective antibodies, underscoring its potential for an effective Zika virus vaccine.IMPORTANCE Zika virus is a global public health threat that causes microcephaly and congenital malformations in newborns and Guillain-Barré syndrome in adults. Currently, no vaccines or treatments are available. While antibodies targeting the envelope glycoprotein can neutralize virus, they carry the risk of antibody-dependent enhancement of disease (ADE). In contrast, antibodies generated against the NS1 protein can be protective without eliciting ADE. The present study demonstrates the effectiveness of an NS1-based vaccine in eliciting high titers of protective antibodies against Zika virus disease in a mouse model. Sera generated by this vaccine can elicit Fc-mediated effector functions against Zika virus-infected cells. Lastly, we provide human data suggesting that the antibody response against the Zika virus NS1 protein is long-lasting and functionally active. Overall, our work will inform the development of a safe and effective Zika virus vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cell Line
- Disease Models, Animal
- Humans
- Immunity, Cellular
- Immunization Schedule
- Immunization, Passive
- Immunoglobulin G/blood
- Mice
- Mice, Knockout
- Receptors, Fc/metabolism
- Survival Analysis
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Nonstructural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Mark J Bailey
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fortuna Arumemi
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
80
|
Salvo MA, Aliota MT, Moncla LH, Velez ID, Trujillo AI, Friedrich TC, Osorio JE. Tracking dengue virus type 1 genetic diversity during lineage replacement in an hyperendemic area in Colombia. PLoS One 2019; 14:e0212947. [PMID: 30845200 PMCID: PMC6405123 DOI: 10.1371/journal.pone.0212947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is a flavivirus responsible for the most common and burdensome arthropod-borne viral disease of humans[1]. DENV evolution has been extensively studied on broad geographic and time scales, using sequences from a single gene[2,3]. It is believed that DENV evolution in humans is dominated primarily by purifying selection due to the constraint of maintaining fitness in both humans and mosquitoes[4,5]. Few studies have explored DENV evolutionary dynamics using whole genome sequences, nor have they explored changes in viral diversity that occur during intra-epidemic periods. We used deep sequencing of the viral coding region to characterize DENV-1 evolution in a Colombian population sampled during two high-prevalence dengue seasons in which serotype dominance shifted. Our data demonstrate patterns of strain extinction and replacement within DENV-1 as its prevalence waned and DENV-3 became established. A comparison of whole-genome versus single-gene-based phylogenetic analyses highlights an important difference in evolutionary patterns. We report a trend of higher nonsynonymous to synonymous diversity ratios among non-structural (NS) genes, and statistically significantly higher values among these ratios in the NS1 gene after DENV-1 strain replacement. These results suggest that positive selection could be driving DENV evolution within individual communities. Signals of positive selection coming from distinct samples may be drowned out when combining multiple regions with differing patterns of endemic transmission as commonly done by large-scale geo-temporal assessments. Here, we frame our findings within a small, local transmission history which aids significance. Moreover, these data suggest that the NS1 gene, rather than the E gene, may be a target of positive selection, although not mutually exclusive, and potentially useful sentinel of adaptive changes at the population level.
Collapse
Affiliation(s)
- Mauricio A. Salvo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Louise H. Moncla
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ivan D. Velez
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellin, Colombia
| | - Andrea I. Trujillo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellin, Colombia
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|