51
|
Hu Y, Buehler MJ. Nanomechanical analysis of SARS-CoV-2 variants and predictions of infectiousness and lethality. SOFT MATTER 2022; 18:5833-5842. [PMID: 35899933 PMCID: PMC9364333 DOI: 10.1039/d1sm01181b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As variants of the pathogen that causes COVID-19 spread around the world, estimates of infectiousness and lethality of newly emerging strains are important. Here we report a predictive model that associates molecular motions and vibrational patterns of the virus spike protein with infectiousness and lethality. The key finding is that most SARS-CoV-2 variants are predicted to be more infectious and less lethal compared to the original spike protein. However, lineage B.1.351 (Beta variant) is predicted to be less infectious and more lethal, and lineage B.1.1.7 (Alpha variant) is predicted to have both higher infectivity and lethality, showing the potential of the virus to mutate towards different performance regimes. The relatively more recent lineage B.1.617.2 (Delta variant), although contains a few key spike mutations other than D614G, behaves quite similar to the single D614G mutation in both vibrational and predicted epidemiological aspects, which might explain its rapid circulation given the prevalence of D614G. This work may provide a tool to estimate the epidemiological effects of new variants, and offer a pathway to screen mutations against high threat levels. Moreover, the nanomechanical approach, as a novel tool to predict virus-cell interactions, may further open up the door towards better understanding other viruses.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
52
|
Tai JH, Sun HY, Tseng YC, Li G, Chang SY, Yeh SH, Chen PJ, Chaw SM, Wang HY. Contrasting patterns in the early stage of SARS-CoV-2 evolution between humans and minks. Mol Biol Evol 2022; 39:6658056. [PMID: 35934827 PMCID: PMC9384665 DOI: 10.1093/molbev/msac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor binding domain and receptor binding motif. An excess of high frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies the virus may not be pre-adapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.
Collapse
Affiliation(s)
- Jui Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Hsiao Yu Sun
- Taipei Municipal Zhongshan Girls High School, Taipei 10490, Taiwan
| | - Yi Cheng Tseng
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guanghao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sui Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shiou Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Pei Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shu Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hurng Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
53
|
Vassilaki N, Papadimitriou K, Ioannidis A, Papandreou NC, Milona RS, Iconomidou VA, Chatzipanagiotou S. SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms 2022; 10:microorganisms10071430. [PMID: 35889149 PMCID: PMC9322066 DOI: 10.3390/microorganisms10071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins’ structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.
Collapse
Affiliation(s)
- Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Sehi Area, 22100 Tripoli, Greece;
| | - Nikos C. Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Eginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, 72–74 Vasilissis Sofias Avenue, 11528 Athens, Greece
- Correspondence:
| |
Collapse
|
54
|
Gaiarsa S, Giardina F, Batisti Biffignandi G, Ferrari G, Piazza A, Tallarita M, Novazzi F, Bandi C, Paolucci S, Rovida F, Campanini G, Piralla A, Baldanti F. Comparative analysis of SARS-CoV-2 quasispecies in the upper and lower respiratory tract shows an ongoing evolution in the spike cleavage site. Virus Res 2022; 315:198786. [PMID: 35429618 PMCID: PMC9008095 DOI: 10.1016/j.virusres.2022.198786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Studies are needed to better understand the genomic evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to describe viral quasispecies population of upper and lower respiratory tract by next-generation sequencing in patients admitted to intensive care unit. A deep sequencing of the S gene of SARS-CoV-2 from 109 clinical specimens, sampled from the upper respiratory tract (URT) and lower respiratory tract (LRT) of 77 patients was performed. A higher incidence of non-synonymous mutations and indels was observed in the LRT among minority variants. This might be explained by the ability of the virus to invade cells without interacting with ACE2 (e.g. exploiting macrophage phagocytosis). Minority variants are highly concentrated around the gene portion encoding for the Spike cleavage site, with a higher incidence in the URT; four mutations are highly recurring among samples and were found associated with the URT. Interestingly, 55.8% of minority variants detected in this locus were T>G and G>T transversions. Results from this study evidenced the presence of selective pressure and suggest that an evolutionary process is still ongoing in one of the crucial sites of spike protein associated with the spillover to humans.
Collapse
Affiliation(s)
- Stefano Gaiarsa
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | - Federica Giardina
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | | | - Guglielmo Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | - Aurora Piazza
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Monica Tallarita
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | - Federica Novazzi
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Stefania Paolucci
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | - Francesca Rovida
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giulia Campanini
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy.
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Via Tamelli 5, Pavia 27100, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
55
|
Ginex T, Marco-Marín C, Wieczór M, Mata CP, Krieger J, Ruiz-Rodriguez P, López-Redondo ML, Francés-Gómez C, Melero R, Sánchez-Sorzano CÓ, Martínez M, Gougeard N, Forcada-Nadal A, Zamora-Caballero S, Gozalbo-Rovira R, Sanz-Frasquet C, Arranz R, Bravo J, Rubio V, Marina A, The IBV-Covid19-Pipeline, Geller R, Comas I, Gil C, Coscolla M, Orozco M, Llácer JL, Carazo JM. The structural role of SARS-CoV-2 genetic background in the emergence and success of spike mutations: The case of the spike A222V mutation. PLoS Pathog 2022; 18:e1010631. [PMID: 35816514 PMCID: PMC9302720 DOI: 10.1371/journal.ppat.1010631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.
Collapse
Affiliation(s)
- Tiziana Ginex
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miłosz Wieczór
- Molecular Modeling and Bioinformatics, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos P. Mata
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Centro Nacional de Microbiología (CNM-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - James Krieger
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Paula Ruiz-Rodriguez
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | | | - Clara Francés-Gómez
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Marta Martínez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nadine Gougeard
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | - Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Ron Geller
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Mireia Coscolla
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Modesto Orozco
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - José Luis Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
56
|
Singh B, Avula K, Chatterjee S, Datey A, Ghosh A, De S, Keshry SS, Ghosh S, Suryawanshi AR, Dash R, Senapati S, Beuria TK, Prasad P, Raghav S, Swain R, Parida A, Hussain Syed G, Chattopadhyay S. Isolation and Characterization of Five Severe Acute Respiratory Syndrome Coronavirus 2 Strains of Different Clades and Lineages Circulating in Eastern India. Front Microbiol 2022; 13:856913. [PMID: 35847066 PMCID: PMC9279865 DOI: 10.3389/fmicb.2022.856913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India. The viral isolates were adapted to in vitro cultures and further characterized to identify strain-specific variations in viral growth characteristics. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government-run vaccine drive in India. The major goal was to isolate and adapt SARS-CoV-2 viruses in cell culture with minimum modifications to facilitate research activities involved in the understanding of the molecular virology, host-virus interactions, drug discovery, and animal challenge models that eventually contribute toward the development of reliable therapeutics.
Collapse
Affiliation(s)
- Bharati Singh
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | | | | | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, India
| | | | | |
Collapse
|
57
|
Genomic surveillance of SARS-CoV-2 in patients presenting neurological manifestations. PLoS One 2022; 17:e0270024. [PMID: 35771751 PMCID: PMC9246207 DOI: 10.1371/journal.pone.0270024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.
Collapse
|
58
|
Contrasting Epidemiology and Population Genetics of COVID-19 Infections Defined by Multilocus Genotypes in SARS-CoV-2 Genomes Sampled Globally. Viruses 2022; 14:v14071434. [PMID: 35891414 PMCID: PMC9316073 DOI: 10.3390/v14071434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022] Open
Abstract
Since its emergence in 2019, SARS-CoV-2 has spread and evolved globally, with newly emerged variants of concern (VOCs) accounting for more than 500 million COVID-19 cases and 6 million deaths. Continuous surveillance utilizing simple genetic tools is needed to measure the viral epidemiological diversity, risk of infection, and distribution among different demographics in different geographical regions. To help address this need, we developed a proof-of-concept multilocus genotyping tool and demonstrated its utility to monitor viral populations sampled in 2020 and 2021 across six continents. We sampled globally 22,164 SARS-CoV-2 genomes from GISAID (inclusion criteria: available clinical and demographic data). They comprised two study populations, “2020 genomes” (N = 5959) sampled from December 2019 to September 2020 and “2021 genomes” (N = 16,205) sampled from 15 January to 15 March 2021. All genomes were aligned to the SARS-CoV-2 reference genome and amino acid polymorphisms were called with quality filtering. Thereafter, 74 codons (loci) in 14 genes including orf1ab polygene (N = 9), orf3a, orf8, nucleocapsid (N), matrix (M), and spike (S) met the 0.01 minimum allele frequency criteria and were selected to construct multilocus genotypes (MLGs) for the genomes. At these loci, 137 mutant/variant amino acids (alleles) were detected with eight VOC-defining variant alleles, including N KR203&204, orf1ab (I265, F3606, and L4715), orf3a H57, orf8 S84, and S G614, being predominant globally with > 35% prevalence. Their persistence and selection were associated with peaks in the viral transmission and COVID-19 incidence between 2020 and 2021. Epidemiologically, older patients (≥20 years) compared to younger patients (<20 years) had a higher risk of being infected with these variants, but this association was dependent on the continent of origin. In the global population, the discriminant analysis of principal components (DAPC) showed contrasting patterns of genetic clustering with three (Africa, Asia, and North America) and two (North and South America) continental clusters being observed for the 2020 and 2021 global populations, respectively. Within each continent, the MLG repertoires (range 40−199) sampled in 2020 and 2021 were genetically differentiated, with ≤4 MLGs per repertoire accounting for the majority of genomes sampled. These data suggested that the majority of SARS-CoV-2 infections in 2020 and 2021 were caused by genetically distinct variants that likely adapted to local populations. Indeed, four GISAID clade-defined VOCs - GRY (Alpha), GH (Beta), GR (Gamma), and G/GK (Delta variant) were differentiated by their MLG signatures, demonstrating the versatility of the MLG tool for variant identification. Results from this proof-of-concept multilocus genotyping demonstrates its utility for SARS-CoV-2 genomic surveillance and for monitoring its spatiotemporal epidemiology and evolution, particularly in response to control interventions including COVID-19 vaccines and chemotherapies.
Collapse
|
59
|
Ghosh N, Saha I, Sharma N, Sarkar JP. Human miRNAs to Identify Potential Regions of SARS-CoV-2. ACS OMEGA 2022; 7:21086-21101. [PMID: 35755383 PMCID: PMC9219091 DOI: 10.1021/acsomega.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
It is two years now but the world is still struggling against COVID-19 due to the havoc created by the SARS-CoV-2 virus and its multiple variants. Considering this perspective, in this work, we have hypothesized a new approach in order to identify potential regions in SARS-CoV-2 similar to the human miRNAs. Thus, they may have similar consequences as caused by the human miRNAs in human body. Therefore, the same way by which human miRNAs are inhibited can be applied for such potential regions of virus as well by administering drugs to the interacting human proteins. In this regard, the multiple sequence alignment technique Clustal Omega is used to align 2656 human miRNAs with the SARS-CoV-2 reference genome to identify the potential regions within the virus reference genome which have high similarities with the human miRNAs. The potential regions in virus genome are identified based on the highest number of nucleotide match, greater than or equal to 5 at a genomic position, for the aligned miRNAs. As a result, 38 potential SARS-CoV-2 regions are identified consisting of 249 human miRNAs. Among these 38 potential regions, some top regions belong to nucleocapsid, RdRp, helicase, and ORF8. To understand the biological significance of these potential regions, the targets of the human miRNAs are considered for KEGG pathways and protein-protein and drug-protein interaction analysis as the human miRNAs are similar to the potential regions of SARS-CoV-2. Significant pathways are found which lead to comorbidities. Subsequently, drugs like emodin, bicalutamide, vorinostat, etc. are identified that may be used for clinical trials.
Collapse
Affiliation(s)
- Nimisha Ghosh
- Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
- Department
of Computer Science and Information Technology, Institute of Technical
Education and Research, Siksha ‘O’
Anusandhan (Deemed to be) University, Jagamara Road, Bhubaneswar 751030, Odisha, India
| | - Indrajit Saha
- Department
of Computer Science and Engineering, National
Institute of Technical Teachers’ Training and Research, FC Block, Sector III, Kolkata 700106, West Bengal, India
| | - Nikhil Sharma
- Department
of Electronics and Communication Engineering, Jaypee Institute of Information Technology, A 10, A Block, Block A, Industrial
Area, Sector 62, Noida 201309, Uttar Pradesh, India
| | - Jnanendra Prasad Sarkar
- Department
of Computer Science and Engineering, Jadavpur
University, 188, Raja
S.C. Mallick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
60
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
61
|
McBroome J, Martin J, de Bernardi Schneider A, Turakhia Y, Corbett-Detig R. Identifying SARS-CoV-2 regional introductions and transmission clusters in real time. Virus Evol 2022; 8:veac048. [PMID: 35769891 PMCID: PMC9214145 DOI: 10.1093/ve/veac048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 12/31/2022] Open
Abstract
The unprecedented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global sequencing effort has suffered from an analytical bottleneck. Many existing methods for phylogenetic analysis are designed for sparse, static datasets and are too computationally expensive to apply to densely sampled, rapidly expanding datasets when results are needed immediately to inform public health action. For example, public health is often concerned with identifying clusters of closely related samples, but the sheer scale of the data prevents manual inspection and the current computational models are often too expensive in time and resources. Even when results are available, intuitive data exploration tools are of critical importance to effective public health interpretation and action. To help address this need, we present a phylogenetic heuristic that quickly and efficiently identifies newly introduced strains in a region, resulting in clusters of infected individuals, and their putative geographic origins. We show that this approach performs well on simulated data and yields results largely congruent with more sophisticated Bayesian phylogeographic modeling approaches. We also introduce Cluster-Tracker (https://clustertracker.gi.ucsc.edu/), a novel interactive web-based tool to facilitate effective and intuitive SARS-CoV-2 geographic data exploration and visualization across the USA. Cluster-Tracker is updated daily and automatically identifies and highlights groups of closely related SARS-CoV-2 infections resulting from the transmission of the virus between two geographic areas by travelers, streamlining public health tracking of local viral diversity and emerging infection clusters. The site is open-source and designed to be easily configured to analyze any chosen region, making it a useful resource globally. The combination of these open-source tools will empower detailed investigations of the geographic origins and spread of SARS-CoV-2 and other densely sampled pathogens.
Collapse
Affiliation(s)
- Jakob McBroome
- Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz 1156 High St, Santa Cruz, CA 95064, USA
| | - Jennifer Martin
- Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz 1156 High St, Santa Cruz, CA 95064, USA
| | - Adriano de Bernardi Schneider
- Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz 1156 High St, Santa Cruz, CA 95064, USA
| | - Yatish Turakhia
- Electrical and Computer Engineering, University of California, San Diego 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Russell Corbett-Detig
- Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz 1156 High St, Santa Cruz, CA 95064, USA
| |
Collapse
|
62
|
Truong Nguyen P, Kant R, Van den Broeck F, Suvanto MT, Alburkat H, Virtanen J, Ahvenainen E, Castren R, Hong SL, Baele G, Ahava MJ, Jarva H, Jokiranta ST, Kallio-Kokko H, Kekäläinen E, Kirjavainen V, Kortela E, Kurkela S, Lappalainen M, Liimatainen H, Suchard MA, Hannula S, Ellonen P, Sironen T, Lemey P, Vapalahti O, Smura T. The phylodynamics of SARS-CoV-2 during 2020 in Finland. COMMUNICATIONS MEDICINE 2022; 2:65. [PMID: 35698660 PMCID: PMC9187640 DOI: 10.1038/s43856-022-00130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and fatalities globally since its emergence in late 2019. The virus was first detected in Finland in January 2020, after which it rapidly spread among the populace in spring. However, compared to other European nations, Finland has had a low incidence of SARS-CoV-2. To gain insight into the origins and turnover of SARS-CoV-2 lineages circulating in Finland in 2020, we investigated the phylogeographic and -dynamic history of the virus. Methods The origins of SARS-CoV-2 introductions were inferred via Travel-aware Bayesian time-measured phylogeographic analyses. Sequences for the analyses included virus genomes belonging to the B.1 lineage and with the D614G mutation from countries of likely origin, which were determined utilizing Google mobility data. We collected all available sequences from spring and fall peaks to study lineage dynamics. Results We observed rapid turnover among Finnish lineages during this period. Clade 20C became the most prevalent among sequenced cases and was replaced by other strains in fall 2020. Bayesian phylogeographic reconstructions suggested 42 independent introductions into Finland during spring 2020, mainly from Italy, Austria, and Spain. Conclusions A single introduction from Spain might have seeded one-third of cases in Finland during spring in 2020. The investigations of the original introductions of SARS-CoV-2 to Finland during the early stages of the pandemic and of the subsequent lineage dynamics could be utilized to assess the role of transboundary movements and the effects of early intervention and public health measures.
Collapse
Affiliation(s)
- Phuoc Truong Nguyen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Frederik Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maija T. Suvanto
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hussein Alburkat
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Virtanen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ella Ahvenainen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robert Castren
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samuel L. Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maarit J. Ahava
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Jarva
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi Tuulia Jokiranta
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Hannimari Kallio-Kokko
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Vesa Kirjavainen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kortela
- Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Kurkela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maija Lappalainen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Liimatainen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marc A. Suchard
- Departments of Biomathematics, Biostatistics and Human Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Sari Hannula
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
63
|
Focosi D, Maggi F. Recombination in Coronaviruses, with a Focus on SARS-CoV-2. Viruses 2022; 14:1239. [PMID: 35746710 PMCID: PMC9228924 DOI: 10.3390/v14061239] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Recombination is a common evolutionary tool for RNA viruses, and coronaviruses are no exception. We review here the evidence for recombination in SARS-CoV-2 and reconcile nomenclature for recombinants, discuss their origin and fitness, and speculate how recombinants could make a difference in the future of the COVID-19 pandemics.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
64
|
Alhamo MA, Boley PA, Liu M, Niu X, Yadav KK, Lee C, Saif LJ, Wang Q, Kenney SP. Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry. Viruses 2022; 14:1225. [PMID: 35746696 PMCID: PMC9230012 DOI: 10.3390/v14061225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.
Collapse
Affiliation(s)
- Moyasar A. Alhamo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
- UC Davis Institute for Regenerative Cures, Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 85817, USA
| | - Patricia A. Boley
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Carolyn Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| |
Collapse
|
65
|
Cai H, Liu X, Zheng X. RNA editing detection in SARS-CoV-2 transcriptome should be different from traditional SNV identification. J Appl Genet 2022; 63:587-594. [PMID: 35661108 PMCID: PMC9166928 DOI: 10.1007/s13353-022-00706-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Houhao Cai
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Xiantao Liu
- Pulmonary and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xin Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
66
|
Tan CCS, Lam SD, Richard D, Owen CJ, Berchtold D, Orengo C, Nair MS, Kuchipudi SV, Kapur V, van Dorp L, Balloux F. Transmission of SARS-CoV-2 from humans to animals and potential host adaptation. Nat Commun 2022; 13:2988. [PMID: 35624123 PMCID: PMC9142586 DOI: 10.1038/s41467-022-30698-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the spillback of animal-adapted SARS-CoV-2 into humans poses. We compare the genomic landscapes of SARS-CoV-2 isolated from animal species to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focus on viral genomes isolated from mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which multiple independent outbreaks driven by onward animal-to-animal transmission have been reported. We identify five candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_L219V), and one in deer (NSP3a_L1035F), though they appear to confer a minimal advantage for human-to-human transmission. No considerable changes to the mutation rate or evolutionary trajectory of SARS-CoV-2 has resulted from circulation in mink and deer thus far. Our findings suggest that minimal adaptation was required for onward transmission in mink and deer following human-to-animal spillover, highlighting the 'generalist' nature of SARS-CoV-2 as a mammalian pathogen.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, London, UK.
- Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
- Department of Animal Science, The Pennsylvania State University, PA, Pennsylvania, USA
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | | |
Collapse
|
67
|
Detecting Potentially Adaptive Mutations from the Parallel and Fixed Patterns in SARS-CoV-2 Evolution. Viruses 2022; 14:v14051087. [PMID: 35632828 PMCID: PMC9147038 DOI: 10.3390/v14051087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Early identification of adaptive mutations could provide timely help for the control and prevention of the COVID-19 pandemic. The fast accumulation of SARS-CoV-2 sequencing data provides important support, while also raising a great challenge for the recognition of adaptive mutations. Here, we proposed a computational strategy to detect potentially adaptive mutations from their fixed and parallel patterns in the phylogenetic trajectory. We found that the biological meanings of fixed substitution and parallel mutation are highly complementary, and can reasonably be integrated as a fixed and parallel (paraFix) mutation, to identify potentially adaptive mutations. Tracking the dynamic evolution of SARS-CoV-2, 37 sites in spike protein were identified as having experienced paraFix mutations. Interestingly, 70% (26/37) of them have already been experimentally confirmed as adaptive mutations. Moreover, most of the mutations could be inferred as paraFix mutations one month earlier than when they became regionally dominant. Overall, we believe that the concept of paraFix mutations will help researchers to identify potentially adaptive mutations quickly and accurately, which will provide invaluable clues for disease control and prevention.
Collapse
|
68
|
Kim J, Cheon S, Ahn I. NGS data vectorization, clustering, and finding key codons in SARS-CoV-2 variations. BMC Bioinformatics 2022; 23:187. [PMID: 35581558 PMCID: PMC9113074 DOI: 10.1186/s12859-022-04718-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
The rapid global spread and dissemination of SARS-CoV-2 has provided the virus with numerous opportunities to develop several variants. Thus, it is critical to determine the degree of the variations and in which part of the virus those variations occurred. Therefore, in this study, methods that could be used to vectorize the sequence data, perform clustering analysis, and visualize the results were proposed using machine learning methods. To conduct this study, a total of 224,073 cases of SARS-CoV-2 sequence data were collected through NCBI and GISAID, and the data were visualized using dimensionality reduction and clustering analysis models such as T-SNE and DBSCAN. The SARS-CoV-2 virus, which was first detected, was distinguished from different variations, including Omicron and Delta, in the cluster results. Furthermore, it was possible to examine which codon changes in the spike protein caused the variants to be distinguished using feature importance extraction models such as Random Forest or Shapely Value. The proposed method has the advantage of being able to analyse and visualize a large amount of data at once compared to the existing tree-based sequence data analysis. The proposed method was able to identify and visualize significant changes between the SARS-CoV-2 virus, which was first detected in Wuhan, China, in December 2019, and the newly formed mutant virus group. As a result of clustering analysis using sequence data, it was possible to confirm the formation of clusters among various variants in a two-dimensional graph, and by extracting the importance of variables, it was possible to confirm which codon changes played a major role in distinguishing variants. Furthermore, since the proposed method can handle a variety of data sequences, it can be used for all kinds of diseases, including influenza and SARS-CoV-2. Therefore, the proposed method has the potential to become widely used for the effective analysis of disease variations.
Collapse
Affiliation(s)
- Juhyeon Kim
- Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea.,Department of Industrial Engineering, Ajou University, Suwon, South Korea
| | - Saeyeon Cheon
- Applied Artificial Intelligence Major, University of Science & Technology, Yuseong-gu, Daejeon, Korea
| | - Insung Ahn
- Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea. .,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea. .,Applied Artificial Intelligence Major, University of Science & Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
69
|
Vimalajeewa D, Balasubramaniam S, Berry DP, Barry G. Virus particle propagation and infectivity along the respiratory tract and a case study for SARS-CoV-2. Sci Rep 2022; 12:7666. [PMID: 35538182 PMCID: PMC9088735 DOI: 10.1038/s41598-022-11816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory viruses including Respiratory Syncytial Virus, influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause serious and sometimes fatal disease in thousands of people annually. Understanding virus propagation dynamics within the respiratory system is critical because new insights will increase our understanding of virus pathogenesis and enable infection patterns to be more predictable in vivo, which will enhance our ability to target vaccine and drug delivery. This study presents a computational model of virus propagation within the respiratory tract network. The model includes the generation network branch structure of the respiratory tract, biophysical and infectivity properties of the virus, as well as air flow models that aid the circulation of the virus particles. As a proof of principle, the model was applied to SARS-CoV-2 by integrating data about its replication-cycle, as well as the density of Angiotensin Converting Enzyme expressing cells along the respiratory tract network. Using real-world physiological data associated with factors such as the respiratory rate, the immune response and virus load that is inhaled, the model can improve our understanding of the concentration and spatiotemporal dynamics of the virus. We collected experimental data from a number of studies and integrated them with the model in order to show in silico how the virus load propagates along the respiratory network branches.
Collapse
Affiliation(s)
- Dixon Vimalajeewa
- Department of Statistics, Texas A & M University, College Station, TX, USA.
| | | | - Donagh P Berry
- Teagasc, Animal & Grassland Research and Innovation Center, Moorepark, Cork, Ireland
| | - Gerald Barry
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
70
|
Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Paul GK, Shimu MSS, Uddin MS, Zaman S, Park MN, Siyadatpanah A, Obaidullah AJ, Saleh MA, Simal-Gandara J, Kim B. The Emergence of SARS-CoV-2 Variants With a Lower Antibody Response: A Genomic and Clinical Perspective. Front Med (Lausanne) 2022; 9:825245. [PMID: 35602477 PMCID: PMC9121733 DOI: 10.3389/fmed.2022.825245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The emergence of several novel SARS-CoV-2 variants regarded as variants of concern (VOCs) has exacerbated pathogenic and immunologic prominences, as well as reduced diagnostic sensitivity due to phenotype modification-capable mutations. Furthermore, latent and more virulent strains that have arisen as a result of unique mutations with increased evolutionary potential represent a threat to vaccine effectiveness in terms of incoming and existing variants. As a result, resisting natural immunity, which leads to higher reinfection rates, and avoiding vaccination-induced immunization, which leads to a lack of vaccine effectiveness, has become a crucial problem for public health around the world. This study attempts to review the genomic variation and pandemic impact of emerging variations of concern based on clinical characteristics management and immunization effectiveness. The goal of this study is to gain a better understanding of the link between genome level polymorphism, clinical symptom manifestation, and current vaccination in the instance of VOCs.
Collapse
Affiliation(s)
- Suvro Biswas
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shafi Mahmud
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gobindo Kumar Paul
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Md. Salah Uddin
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahriar Zaman
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Abu Saleh
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Ourense, Spain
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
71
|
Martignano F, Di Giorgio S, Mattiuz G, Conticello SG. Commentary on "Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2". J Appl Genet 2022; 63:423-428. [PMID: 35279801 PMCID: PMC8917825 DOI: 10.1007/s13353-022-00688-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023]
Abstract
Analysis of the SARS-CoV-2 transcriptome has revealed a background of low-frequency intra-host genetic changes with a strong bias towards transitions. A similar pattern is also observed when inter-host variability is considered. We and others have shown that the cellular RNA editing machinery based on ADAR and APOBEC host-deaminases could be involved in the onset of SARS-CoV-2 genetic variability. Our hypothesis is based both on similarities with other known forms of viral genome editing and on the excess of transition changes, which is difficult to explain with errors during viral replication. Zong et al. criticize our analysis on both conceptual and technical grounds. While ultimate proof of an involvement of host deaminases in viral RNA editing will depend on experimental validation, here, we address the criticism to suggest that viral RNA editing is the most reasonable explanation for the observed intra- and inter-host variability.
Collapse
Affiliation(s)
- F Martignano
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy
| | - S Di Giorgio
- German Cancer Research Center (DKFZ), Division of Immune Diversity, Foundation Under Public Law, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - G Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, 50139, Firenze, Italy
| | - S G Conticello
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy.
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy.
| |
Collapse
|
72
|
Cappello L, Kim J, Liu S, Palacios JA. Statistical Challenges in Tracking the Evolution of SARS-CoV-2. Stat Sci 2022; 37:162-182. [PMID: 36034090 PMCID: PMC9409356 DOI: 10.1214/22-sts853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genomic surveillance of SARS-CoV-2 has been instrumental in tracking the spread and evolution of the virus during the pandemic. The availability of SARS-CoV-2 molecular sequences isolated from infected individuals, coupled with phylodynamic methods, have provided insights into the origin of the virus, its evolutionary rate, the timing of introductions, the patterns of transmission, and the rise of novel variants that have spread through populations. Despite enormous global efforts of governments, laboratories, and researchers to collect and sequence molecular data, many challenges remain in analyzing and interpreting the data collected. Here, we describe the models and methods currently used to monitor the spread of SARS-CoV-2, discuss long-standing and new statistical challenges, and propose a method for tracking the rise of novel variants during the epidemic.
Collapse
Affiliation(s)
- Lorenzo Cappello
- Departments of Economics and Business, Universitat Pompeu Fabra, 08005, Spain
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA\
| | - Sifan Liu
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Julia A Palacios
- Departments of Statistics and Biomedical Data Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
73
|
Rochman ND, Faure G, Wolf YI, Freddolino PL, Zhang F, Koonin EV. Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape. mBio 2022; 13:e0013522. [PMID: 35289643 PMCID: PMC9040817 DOI: 10.1128/mbio.00135-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
At the time of this writing, December 2021, potential emergence of vaccine escape variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a grave global concern. The interface between the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein and the host receptor (ACE2) overlaps the binding site of principal neutralizing antibodies (NAb), limiting the repertoire of viable mutations. Nonetheless, variants with multiple RBD mutations have risen to dominance. Nonadditive, epistatic relationships among RBD mutations are apparent, and assessing the impact of such epistasis on the mutational landscape, particularly the risk of vaccine escape, is crucial. We employed protein structure modeling using Rosetta to compare the effects of all single mutants at the RBD-NAb and RBD-ACE2 interfaces for the wild type and Delta, Gamma, and Omicron variants. Overall, epistasis at the RBD interface appears to be limited, and the effects of most multiple mutations are additive. Epistasis at the Delta variant interface weakly stabilizes NAb interaction relative to ACE2 interaction, whereas in Gamma, epistasis more substantially destabilizes NAb interaction. Despite bearing many more RBD mutations, the epistatic landscape of Omicron closely resembles that of Gamma. Thus, although Omicron poses new risks not observed with Delta, structural constraints on the RBD appear to hamper continued evolution toward more complete vaccine escape. The modest ensemble of mutations relative to the wild type that are currently known to reduce vaccine efficacy is likely to contain the majority of all possible escape mutations for future variants, predicting the continued efficacy of the existing vaccines. IMPORTANCE Emergence of vaccine escape variants of SARS-CoV-2 is arguably the most pressing problem during the COVID-19 pandemic as vaccines are distributed worldwide. We employed a computational approach to assess the risk of antibody escape resulting from mutations in the receptor-binding domain of the spike protein of the wild-type SARS-CoV-2 virus as well as the Delta, Gamma, and Omicron variants. The efficacy of the existing vaccines against Omicron could be substantially reduced relative to the wild type, and the potential for vaccine escape is of grave concern. Our results suggest that although Omicron poses new evolutionary risks not observed for Delta, structural constraints on the RBD make continued evolution toward more complete vaccine escape from either Delta or Omicron unlikely. The modest set of escape-enhancing mutations already identified for the wild type likely include the majority of all possible mutations with this effect.
Collapse
Affiliation(s)
- Nash D. Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
74
|
Pei Y, Li J, Xu S, Xu Y. Adaptive Multi-Factor Quantitative Analysis and Prediction Models: Vaccination, Virus Mutation and Social Isolation on COVID-19. Front Med (Lausanne) 2022; 9:828691. [PMID: 35372421 PMCID: PMC8965859 DOI: 10.3389/fmed.2022.828691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Different countries have adopted various control measures for the COVID-19 pandemic in different periods, and as the virus continues to mutate, the progression of the pandemic and preventive measures adopted have varied dynamically over time. Thus, quantitative analysis of the dynamic impact of different factors such as vaccination, mutant virus, social isolation, etc., on transmission and predicting pandemic progress has become a difficult task. To overcome the challenges above and enable governments to formulate reasonable countermeasures against the ongoing COVID-19 pandemic, we integrate several mathematical methods and propose a new adaptive multifactorial and geographically diverse epidemiological model based on a modified version of the classical susceptible-exposed-infectious-recovered (SEIR) model. Based on public datasets, a multi-center study was carried out considering 21 regions. First, a retrospective study was conducted to predict the number of infections over the next 30 days in 13 representative pandemic areas worldwide with an accuracy of 87.53%, confirming the robustness of the proposed model. Second, the impact of three scenarios on COVID-19 was quantified based on the scalability of the model: two different vaccination regimens were analyzed, and it was found that the number of infections would progressively decrease over time after vaccination; variant virus caused a 301.55% increase in infections in the United Kingdom; and 3-tier social lockdown in the United Kingdom reduced the infections by 47.01%. Third, we made short-term prospective predictions for the next 15 and 30 days for six countries with severe COVID-19 transmission and the predicted trend is accurate. This study is expected to inform public health responses. Code and data are publicly available at https://github.com/yuanyuanpei7/covid-19.
Collapse
Affiliation(s)
- Yuanyuan Pei
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Juan Li
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Songhua Xu
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
75
|
Ruan Y, Wen H, Hou M, He Z, Lu X, Xue Y, He X, Zhang YP, Wu CI. The twin-beginnings of COVID-19 in Asia and Europe-one prevails quickly. Natl Sci Rev 2022; 9:nwab223. [PMID: 35497643 PMCID: PMC9046579 DOI: 10.1093/nsr/nwab223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
In the spread of SARS-CoV-2, there have been multiple waves of replacement between strains, each of which having a distinct set of mutations. The first wave is a group of four mutations (C241T, C3037T, C14408T and A23403G [this being the amino acid change D614G]; all designated 0 to 1 below). This DG (D614G) group, fixed at the start of the pandemic, is the foundation of all subsequent waves of strains. Curiously, the DG group is absent in early Asian samples but present (and likely common) in Europe from the beginning. European data show that the high fitness of DG1111 requires the synergistic effect of all four mutations. However, the European strains would have had no time to evolve the four DG mutations (0 to 1), had they come directly from the early Asian DG0000 strain. Very likely, the European DG1111 strain had acquired the highly adaptive DG mutations in pre-pandemic Europe and had been spreading in parallel with the Asian strains. Two recent reports further support this twin-beginning interpretation. There was a period of two-way spread between Asia and Europe but, by May 2020, the European strains had supplanted the Asian strains globally. This large-scale replacement of one set of mutations for another has since been replayed many times as COVID-19 progresses.
Collapse
Affiliation(s)
- Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - Yongbiao Xue
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing100101, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing100101, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637, USA
| |
Collapse
|
76
|
Geographical prevalence of SARS-CoV-2 variants, August 2020 to July 2021. Sci Rep 2022; 12:4704. [PMID: 35304553 PMCID: PMC8931783 DOI: 10.1038/s41598-022-08684-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
We extracted one-year genomic data (August 2020–July 2021) from GISAID EpiCoV™ database and estimated monthly proportions of 11 SARS-CoV-2 variants in various geographical regions. From continental perspective, Delta VOC predominated in Africa, Asia, Europe, North America and Oceania, with proportions of 67.58–98.31% in July 2021. In South America, proportion of Delta VOC (23.24%) has been approaching the predominant yet diminishing Gamma VOC (56.86%). We further analyzed monthly data on new COVID-19 cases, new deaths, vaccination status and variant proportions of 6 countries. Delta VOC predominated in all countries except Brazil (Gamma VOC) in July 2021. In most occasions, rise and predominance of Alpha, Beta, Gamma, Delta and Zeta variants were accompanied with surges of new cases, especially after the time point of major lineage interchange. The ascending phases of new cases lasted for 1–5 months with 1.69- to 40.63-fold peak growth, whereas new death tolls varied with regional vaccination status. Our data suggested surges of COVID-19 cases might be predicted from variant surveillance data. Despite vaccine breakthroughs by Delta VOC, death tolls were more stable in countries with better immunization coverage. Another takeaway is the urgent need to improve vaccine efficacy against Delta and emerging variants.
Collapse
|
77
|
CovDif, a Tool to Visualize the Conservation between SARS-CoV-2 Genomes and Variants. Viruses 2022; 14:v14030561. [PMID: 35336968 PMCID: PMC8955889 DOI: 10.3390/v14030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
The spread of the newly emerged severe acute respiratory syndrome (SARS-CoV-2) virus has led to more than 430 million confirmed cases, including more than 5.9 million deaths, reported worldwide as of 24 February 2022. Conservation of viral genomes is important for pathogen identification and diagnosis, therapeutics development and epidemiological surveillance to detect the emergence of new viral variants. An intense surveillance of virus variants has led to the identification of Variants of Interest and Variants of Concern. Although these classifications dynamically change as the pandemic evolves, they have been useful to guide public health efforts on containment and mitigation. In this work, we present CovDif, a tool to detect conserved regions between groups of viral genomes. CovDif creates a conservation landscape for each group of genomes of interest and a differential landscape able to highlight differences in the conservation level between groups. CovDif is able to identify loss in conservation due to point mutations, deletions, inversions and chromosomal rearrangements. In this work, we applied CovDif to SARS-CoV-2 clades (G, GH, GR, GV, L, O, S and G) and variants. We identified all regions for any defining SNPs. We also applied CovDif to a group of population genomes and evaluated the conservation of primer regions for current SARS-CoV-2 detection and diagnostic protocols. We found that some of these protocols should be applied with caution as few of the primer-template regions are no longer conserved in some SARS-CoV-2 variants. We conclude that CovDif is a tool that could be widely applied to study the conservation of any group of viral genomes as long as whole genomes exist.
Collapse
|
78
|
Gerdol M, Dishnica K, Giorgetti A. Emergence of a recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike glycoprotein. Virus Res 2022; 310:198674. [PMID: 35021068 PMCID: PMC8743576 DOI: 10.1016/j.virusres.2022.198674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Tracking the evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through genomic surveillance programs is undoubtedly one of the key priorities in the current pandemic situation. Although the genome of SARS-CoV-2 acquires mutations at a slower rate compared with other RNA viruses, evolutionary pressures derived from the widespread circulation of SARS-CoV-2 in the human population have progressively favored the global emergence, though natural selection, of several variants of concern that carry multiple non-synonymous mutations in the spike glycoprotein. These are often placed in key sites within major antibody epitopes and may therefore confer resistance to neutralizing antibodies, leading to partial immune escape, or otherwise compensate infectivity deficits associated with other non-synonymous substitutions. As previously shown by other authors, several emerging variants carry recurrent deletion regions (RDRs) that display a partial overlap with antibody epitopes located in the spike N-terminal domain (NTD). Comparatively, very little attention had been directed towards spike insertion mutations prior to the emergence of the B.1.1.529 (omicron) lineage. This manuscript describes a single recurrent insertion region (RIR1) in the N-terminal domain of SARS-CoV-2 spike protein, characterized by at least 49 independent acquisitions of 1-8 additional codons between Val213 and Leu216 in different viral lineages. Even though RIR1 is unlikely to confer antibody escape, its association with two distinct formerly widespread lineages (A.2.5 and B.1.214.2), with the quickly spreading omicron and with other VOCs and VOIs warrants further investigation concerning its effects on spike structure and viral infectivity.
Collapse
Affiliation(s)
- Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127 Trieste, Italy.
| | - Klevia Dishnica
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
| | | |
Collapse
|
79
|
Hassan SS, Basu P, Redwan EM, Lundstrom K, Choudhury PP, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palu G, Abd El-Aziz TM, Barh D, Uhal BD, Adadi P, Takayama K, Bazan NG, Tambuwala MM, Lal A, Chauhan G, Baetas-da-Cruz W, Sherchan SP, Uversky VN. Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. ENVIRONMENTAL RESEARCH 2022; 204:112092. [PMID: 34562480 PMCID: PMC8457672 DOI: 10.1016/j.envres.2021.112092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/20/2023]
Abstract
Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| | | | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata, 700108, India.
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy.
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Departamento de Geńetica, Ecologia e Evolucao, Instituto de Cîencias Bioĺogicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, 70112, USA.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo Léon, Mexico.
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| |
Collapse
|
80
|
Zhu J, Gouru A, Wu F, Berzofsky JA, Xie Y, Wang T. BepiTBR: T-B reciprocity enhances B cell epitope prediction. iScience 2022; 25:103764. [PMID: 35128358 PMCID: PMC8803616 DOI: 10.1016/j.isci.2022.103764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
The ability to predict B cell epitopes is critical for biomedical research and many clinical applications. Investigators have observed the phenomenon of T-B reciprocity, in which candidate B cell epitopes with nearby CD4+ T cell epitopes have higher chances of being immunogenic. To our knowledge, existing B cell epitope prediction algorithms have not considered this interesting observation. We developed a linear B cell epitope prediction model, BepiTBR, based on T-B reciprocity. We showed that explicitly including the enrichment of putative CD4+ T cell epitopes (predicted HLA class II epitopes) in the model leads to significant enhancement in the prediction of linear B cell epitopes. Curiously, the positive impact on B cell epitope generation is specific to the enrichment of DQ allele binders. Overall, our work provides interesting mechanistic insights into the generation of B cell epitopes and points to a new avenue to improve B cell epitope prediction for the field.
Collapse
Affiliation(s)
- James Zhu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anagha Gouru
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
81
|
Evolutionary Shift from Purifying Selection towards Divergent Selection of SARS-CoV2 Favors its Invasion into Multiple Human Organs. Virus Res 2022; 313:198712. [PMID: 35176330 PMCID: PMC8843322 DOI: 10.1016/j.virusres.2022.198712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 01/07/2023]
Abstract
SARS-CoV2 virus is believed to be originated from a closely related bat Coronavirus RaTG13 lineage and uses its key entry-point residues in S1 protein to attach with human ACE2 receptor. SARS-CoV2 could enter human from bat with its poorly developed entry-point residues much before its known appearance with slower mutation rate or recently with efficiently developed entry-point residues with higher mutation rate or through an intermediate host. Temporal analysis of SARS-CoV2 genome shows that its nucleotide substitution rate is as low as 27nt/year with an evolutionary rate of 9×10−4/site/year, which is well within the range of other RNA virus (10−4 to 10−6/site/year). TMRCA of SARS-CoV2 from bat RaTG13 lineage appears to be in between 9 and 14 years. Evolution of a critical entry-point residue Y493Q needs two substitutions with an intermediate virus carrying Y493H (Y>H>Q) but has not been identified in known twenty-nine bat CoV virus. Genetic codon analysis indicates that SARS-CoV2 evolution during propagation in human disobeys neutral evolution as nonsynonymous mutations surpass synonymous mutations with the increase of ω (dn/ds). Taken together, genetic data suggests that SARS-CoV2 is originated long time back before its appearance in human in 2019. Increase of ω signifies that SARs-CoV2 evolution is approaching towards diversifying selection from purifying selection predictably for its infection power to evade multiple human organs.
Collapse
|
82
|
Ghorbani A, Samarfard S, Jajarmi M, Bagheri M, Karbanowicz TP, Afsharifar A, Eskandari MH, Niazi A, Izadpanah K. Highlight of potential impact of new viral genotypes of SARS-CoV-2 on vaccines and anti-viral therapeutics. GENE REPORTS 2022; 26:101537. [PMID: 35128175 PMCID: PMC8808475 DOI: 10.1016/j.genrep.2022.101537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the coronavirus disease (COVID-19) pandemic, has infected millions of people globally. Genetic variation and selective pressures lead to the accumulation of single nucleotide polymorphism (SNP) within the viral genome that may affect virulence, transmission rate, viral recognition and the efficacy of prophylactic and interventional measures. To address these concerns at the genomic level, we assessed the phylogeny and SNPs of the SARS-CoV-2 mutant population collected to date in Iran in relation to globally reported variants. Phylogenetic analysis of mutant strains revealed the occurrence of the variants known as B.1.1.7 (Alpha), B.1.525 (Eta), and B.1.617 (Delta) that appear to have delineated independently in Iran. SNP analysis of the Iranian sequences revealed that the mutations were predominantly positioned within the S protein-coding region, with most SNPs localizing to the S1 subunit. Seventeen S1-localizing SNPs occurred in the RNA binding domain that interacts with ACE2 of the host cell. Importantly, many of these SNPs are predicted to influence the binding of antibodies and anti-viral therapeutics, indicating that the adaptive host response appears to be imposing a selective pressure that is driving the evolution of the virus in this closed population through enhancing virulence. The SNPs detected within these mutant cohorts are addressed with respect to current prophylactic measures and therapeutic interventions.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- Antiviral drugs
- Bioinformatics
- CSSE, Center for Systems Science and Engineering
- E, Envelope
- FP, Fusion peptide
- HR1, Heptad repeat 1
- HR2, Heptad repeat 2
- IC, Intracellular domain
- JHU, Johns Hopkins University
- M, Membrane
- Mutation detection
- N, Nucleocapsid
- NAG, N-acetylglucosamine
- NSP, Non-structural proteins
- NTD, N-terminal domain
- Phylogenetic analysis
- RBD, Receptor-binding domain
- S, Spike glycoprotein
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2;
- SD1, Subdomain 1
- SD2, Subdomain 2
- SNP, Single nucleotide polymorphism
- SP, Structural proteins
- TM, Transmembrane region
- UTRs, Untranslated regions
- Viral vaccines
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Samira Samarfard
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT 0828 Australia
| | - Maziar Jajarmi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahboube Bagheri
- Department of Food Science and Technology, Bardsir Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
83
|
Colson P, Fournier PE, Chaudet H, Delerce J, Giraud-Gatineau A, Houhamdi L, Andrieu C, Brechard L, Bedotto M, Prudent E, Gazin C, Beye M, Burel E, Dudouet P, Tissot-Dupont H, Gautret P, Lagier JC, Million M, Brouqui P, Parola P, Fenollar F, Drancourt M, La Scola B, Levasseur A, Raoult D. Analysis of SARS-CoV-2 Variants From 24,181 Patients Exemplifies the Role of Globalization and Zoonosis in Pandemics. Front Microbiol 2022; 12:786233. [PMID: 35197938 PMCID: PMC8859183 DOI: 10.3389/fmicb.2021.786233] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
After the end of the first epidemic episode of SARS-CoV-2 infections, as cases began to rise again during the summer of 2020, we at IHU Méditerranée Infection in Marseille, France, intensified the genomic surveillance of SARS-CoV-2, and described the first viral variants. In this study, we compared the incidence curves of SARS-CoV-2-associated deaths in different countries and reported the classification of SARS-CoV-2 variants detected in our institute, as well as the kinetics and sources of the infections. We used mortality collected from a COVID-19 data repository for 221 countries. Viral variants were defined based on ≥5 hallmark mutations along the whole genome shared by ≥30 genomes. SARS-CoV-2 genotype was determined for 24,181 patients using next-generation genome and gene sequencing (in 47 and 11% of cases, respectively) or variant-specific qPCR (in 42% of cases). Sixteen variants were identified by analyzing viral genomes from 9,788 SARS-CoV-2-diagnosed patients. Our data show that since the first SARS-CoV-2 epidemic episode in Marseille, importation through travel from abroad was documented for seven of the new variants. In addition, for the B.1.160 variant of Pangolin classification (a.k.a. Marseille-4), we suspect transmission from farm minks. In conclusion, we observed that the successive epidemic peaks of SARS-CoV-2 infections are not linked to rebounds of viral genotypes that are already present but to newly introduced variants. We thus suggest that border control is the best mean of combating this type of introduction, and that intensive control of mink farms is also necessary to prevent the emergence of new variants generated in this animal reservoir.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- French Armed Forces Center for Epidemiology and Public Health, Marseille, France
| | | | - Audrey Giraud-Gatineau
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- French Armed Forces Center for Epidemiology and Public Health, Marseille, France
| | | | | | | | | | | | | | | | | | - Pierre Dudouet
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Hervé Tissot-Dupont
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Gautret
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Brouqui
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Florence Fenollar
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- *Correspondence: Didier Raoult,
| |
Collapse
|
84
|
Ignatieva A, Hein J, Jenkins PA. Ongoing Recombination in SARS-CoV-2 Revealed through Genealogical Reconstruction. Mol Biol Evol 2022; 39:msac028. [PMID: 35106601 PMCID: PMC8841603 DOI: 10.1093/molbev/msac028] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The evolutionary process of genetic recombination has the potential to rapidly change the properties of a viral pathogen, and its presence is a crucial factor to consider in the development of treatments and vaccines. It can also significantly affect the results of phylogenetic analyses and the inference of evolutionary rates. The detection of recombination from samples of sequencing data is a very challenging problem and is further complicated for SARS-CoV-2 by its relatively slow accumulation of genetic diversity. The extent to which recombination is ongoing for SARS-CoV-2 is not yet resolved. To address this, we use a parsimony-based method to reconstruct possible genealogical histories for samples of SARS-CoV-2 sequences, which enables us to pinpoint specific recombination events that could have generated the data. We propose a statistical framework for disentangling the effects of recurrent mutation from recombination in the history of a sample, and hence provide a way of estimating the probability that ongoing recombination is present. We apply this to samples of sequencing data collected in England and South Africa and find evidence of ongoing recombination.
Collapse
Affiliation(s)
| | - Jotun Hein
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
| | - Paul A Jenkins
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
85
|
Sarubbo F, El Haji K, Vidal-Balle A, Bargay Lleonart J. Neurological consequences of COVID-19 and brain related pathogenic mechanisms: A new challenge for neuroscience. Brain Behav Immun Health 2022; 19:100399. [PMID: 34870247 PMCID: PMC8629776 DOI: 10.1016/j.bbih.2021.100399] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the infection by the SARS-CoV-2 virus (COVID-19) there were also reported neurological symptoms, being the most frequent and best cited those that affect the cerebrovascular, sensorial, cognitive and motor functions, together with the neurological diffuse symptoms as for examples headache or dizziness. Besides, some of them behave high risk of mortality. Consequently, it is crucial to elucidate the mechanisms of action in brain of SARS-CoV-2 virus in order to create new therapeutic targets to fight against this new disease. Since now the mechanisms of arrival to the brain seems to be related with the following processes: blood brain barrier (BBB) disruption together with nervous or axonal transport of the virus by the trigeminal nerve, the vagus nerve, or the brain-gut-axis. Being two the mechanisms of brain affectation most cited: a direct affectation of the virus in the brain through neuroinvasion and an indirect mechanism of action due to the effects of the systemic infection. Both processes include the triggering of inflammation, hypoxia and the increased likelihood of secondary infections. This topic supposes a major novel challenge for neuroscience. Therefore, the aim of this review is to provide summarized information about the neurological symptomatology and the brain pathogenic mechanisms involved and reported in COVID-19.
Collapse
Affiliation(s)
- Fiorella Sarubbo
- Research Unit, University Hospital Son Llàtzer, Health Research Institute of the Balearic Islands (IdISBa), Crta, Manacor Km 4, 07198, Palma, Spain
- University of the Balearic Islands (UIB), Biology Department, Mallorca, Spain
- University of the Balearic Islands (UIB), Medicine Faculty, Mallorca, Spain
| | - Khaoulah El Haji
- Research Unit, University Hospital Son Llàtzer, Health Research Institute of the Balearic Islands (IdISBa), Crta, Manacor Km 4, 07198, Palma, Spain
| | - Aina Vidal-Balle
- Research Unit, University Hospital Son Llàtzer, Health Research Institute of the Balearic Islands (IdISBa), Crta, Manacor Km 4, 07198, Palma, Spain
| | - Joan Bargay Lleonart
- Research Unit, University Hospital Son Llàtzer, Health Research Institute of the Balearic Islands (IdISBa), Crta, Manacor Km 4, 07198, Palma, Spain
- University of the Balearic Islands (UIB), Medicine Faculty, Mallorca, Spain
- Hematology Department, University Hospital Son Llàtzer, Crta, Manacor Km 4, 07198, Palma, Spain
| |
Collapse
|
86
|
Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect 2022; 28:202-221. [PMID: 34715347 PMCID: PMC8548286 DOI: 10.1016/j.cmi.2021.10.005] [Citation(s) in RCA: 600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vaccines are critical cost-effective tools to control the coronavirus disease 2019 (COVID-19) pandemic. However, the emergence of variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may threaten the global impact of mass vaccination campaigns. AIMS The objective of this study was to provide an up-to-date comparative analysis of the characteristics, adverse events, efficacy, effectiveness and impact of the variants of concern for 19 COVID-19 vaccines. SOURCES References for this review were identified through searches of PubMed, Google Scholar, BioRxiv, MedRxiv, regulatory drug agencies and pharmaceutical companies' websites up to 22nd September 2021. CONTENT Overall, all COVID-19 vaccines had a high efficacy against the original strain and the variants of concern, and were well tolerated. BNT162b2, mRNA-1273 and Sputnik V after two doses had the highest efficacy (>90%) in preventing symptomatic cases in phase III trials. mRNA vaccines, AZD1222, and CoronaVac were effective in preventing symptomatic COVID-19 and severe infections against Alpha, Beta, Gamma or Delta variants. Regarding observational real-life data, full immunization with mRNA vaccines and AZD1222 seems to effectively prevent SARS-CoV-2 infection against the original strain and Alpha and Beta variants but with reduced effectiveness against the Delta strain. A decline in infection protection was observed at 6 months for BNT162b2 and AZD1222. Serious adverse event rates were rare for mRNA vaccines-anaphylaxis 2.5-4.7 cases per million doses, myocarditis 3.5 cases per million doses-and were similarly rare for all other vaccines. Prices for the different vaccines varied from $2.15 to $29.75 per dose. IMPLICATIONS All vaccines appear to be safe and effective tools to prevent severe COVID-19, hospitalization, and death against all variants of concern, but the quality of evidence greatly varies depending on the vaccines considered. Questions remain regarding a booster dose and waning immunity, the duration of immunity, and heterologous vaccination. The benefits of COVID-19 vaccination outweigh the risks, despite rare serious adverse effects.
Collapse
Affiliation(s)
- Thibault Fiolet
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussy, 'Exposome and Heredity' team, CESP UMR1018, Villejuif, France.
| | - Yousra Kherabi
- Université de Paris, IAME, INSERM, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Conor-James MacDonald
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussy, 'Exposome and Heredity' team, CESP UMR1018, Villejuif, France
| | - Jade Ghosn
- Université de Paris, IAME, INSERM, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Nathan Peiffer-Smadja
- Université de Paris, IAME, INSERM, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College, London, UK
| |
Collapse
|
87
|
Genomic Characterization of SARS-CoV-2 Isolated from Patients with Distinct Disease Outcomes in Mexico. Microbiol Spectr 2022; 10:e0124921. [PMID: 35019701 PMCID: PMC8754132 DOI: 10.1128/spectrum.01249-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has shown a wide spectrum of clinical manifestations ranging from asymptomatic infections to severe disease and death. Pre-existing medical conditions and age have been mainly linked to the development of severe disease; however, the potential association of viral genetic characteristics with different clinical conditions remains unclear. SARS-CoV-2 variants with increased transmissibility were detected early in the pandemics, and several variants with potential relevance for public health are currently circulating around the world. In this study, we characterized 57 complete SARS-CoV-2 genomes during the exponential growth phase of the early epidemiological curve in Mexico, in April 2020. Patients were categorized under distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors, the patients were less than 60 years old and with no diagnosed comorbidities A trait-association phylogenomic approach was used to explore genotype–phenotype associations, represented by the co-occurrence of mutations, disease severity outcome categories, and clusters of Mexican sequences. Phylogenetic results revealed a higher genomic diversity compared to the initial viruses detected during the early stage of the local epidemic. We identified a total of 90 single nucleotide variants compared to the Wuhan-Hu-1 genome, including 54 nonsynonymous mutations. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors. IMPORTANCE The genetic association of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with different clinical conditions remains unclear and needs further investigation. In this study, we characterized 57 complete SARS-CoV-2 genomes from patients in Mexico with distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors the patients were less than 60 years old and with no diagnosed comorbidities. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors.
Collapse
|
88
|
Zepeda-Cervantes J, Martínez-Flores D, Ramírez-Jarquín JO, Tecalco-Cruz ÁC, Alavez-Pérez NS, Vaca L, Sarmiento-Silva RE. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022; 14:94. [PMID: 35062298 PMCID: PMC8778858 DOI: 10.3390/v14010094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current pandemic affecting almost all countries in the world. SARS-CoV-2 is the agent responsible for coronavirus disease 19 (COVID-19), which has claimed millions of lives around the world. In most patients, SARS-CoV-2 infection does not cause clinical signs. However, some infected people develop symptoms, which include loss of smell or taste, fever, dry cough, headache, severe pneumonia, as well as coagulation disorders. The aim of this work is to report genetic factors of SARS-CoV-2 and host-associated to severe COVID-19, placing special emphasis on the viral entry and molecules of the immune system involved with viral infection. Besides this, we analyze SARS-CoV-2 variants and their structural characteristics related to the binding to polymorphic angiotensin-converting enzyme type 2 (ACE2). Additionally, we also review other polymorphisms as well as some epigenetic factors involved in the immunopathogenesis of COVID-19. These factors and viral variability could explain the increment of infection rate and/or in the development of severe COVID-19.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ángeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City 06720, Mexico;
| | - Noé Santiago Alavez-Pérez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
89
|
Lou J, Zhao S, Cao L, Zheng H, Chen Z, Chan RWY, Chong MKC, Zee BCY, Chan PKS, Wang MH. Temporal Patterns in the Evolutionary Genetic Distance of SARS-CoV-2 during the COVID-19 Pandemic. Public Health Genomics 2022; 25:1-4. [PMID: 34986485 DOI: 10.1159/000520837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
During coronavirus disease 2019 (COVID-19) pandemic, the genetic mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred frequently. Some mutations in the spike protein are considered to promote transmissibility of the virus, while the mutation patterns in other proteins are less studied and may also be important in understanding the characteristics of SARS-CoV-2. We used the sequencing data of SARS-CoV-2 strains in California to investigate the time-varying patterns of the evolutionary genetic distance. The accumulative genetic distances were quantified across different time periods and in different viral proteins. The increasing trends of genetic distance were observed in spike protein (S protein), the RNA-dependent RNA polymerase (RdRp) region and nonstructural protein 3 (nsp3) of open reading frame 1 (ORF1), and nucleocapsid protein (N protein). The genetic distances in ORF3a, ORF8, and nsp2 of ORF1 started to diverge from their original variants after September 2020. By contrast, mutations in other proteins appeared transiently, and no evident increasing trend was observed in the genetic distance to the original variants. This study presents distinct patterns of the SARS-CoV-2 mutations across multiple proteins from the aspect of genetic distance. Future investigation shall be conducted to study the effects of accumulative mutations on epidemics characteristics.
Collapse
Affiliation(s)
- Jingzhi Lou
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Lirong Cao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zheng
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Renee W Y Chan
- Department of Paediatric, The Chinese University of Hong Kong, Hong Kong, China
| | - Marc K C Chong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Benny C Y Zee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
90
|
Prathiviraj R, Chellapandi P, Begum A, Kiran GS, Selvin J. Identification of genotypic variants and its proteomic mutations of Brazilian SARS-CoV-2 isolates. Virus Res 2022; 307:198618. [PMID: 34740719 PMCID: PMC8563081 DOI: 10.1016/j.virusres.2021.198618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The second wave of COVID-19 caused by severe acute respiratory syndrome virus (SARS-CoV-2) is rapidly spreading over the world. Mechanisms behind the flee from current antivirals are still unclear due to the continuous occurrence of SARS-CoV-2 genetic variants. Brazil is the world's second-most COVID-19 affected country. In the present study, we identified the genomic and proteomic variants of Brazilian SARS-CoV-2 isolates. We identified 16 different genotypic variants were found among the 27 isolates. The genotypes of three isolates such as Bra/1236/2021 (G15), Bra/MASP2C844R2/2020 (G11), and Bra/RJ-DCVN5/2020 (G9) have a unique mutant in NSP4 (S184N), 2'O-Mutase (R216N), membrane protein (A2V) and Envelope protein (V5A). A mutation in RdRp of SARS-CoV-2, particularly the change of Pro-to Leu-at 323 resulted in the stabilization of the structure in BRA/CD1739-P4/2020. NSP4, NSP5 protein mutants are more virulent in genotype 15 and 16. A fast protein folding rate changes the structural stability and leads to escape for current antivirals. Thus, our findings help researchers to develop the best potent antivirals based on the new mutant of Brazilian isolates.
Collapse
Affiliation(s)
| | - Paulchamy Chellapandi
- Department of Bioinformatics, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ajima Begum
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
91
|
Wang S, Xu X, Wei C, Li S, Zhao J, Zheng Y, Liu X, Zeng X, Yuan W, Peng S. Molecular evolutionary characteristics of SARS-CoV-2 emerging in the United States. J Med Virol 2022; 94:310-317. [PMID: 34506640 PMCID: PMC8662038 DOI: 10.1002/jmv.27331] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is a newly discovered beta coronavirus at the end of 2019, which is highly pathogenic and poses a serious threat to human health. In this paper, 1875 SARS-CoV-2 whole genome sequences and the sequence coding spike protein (S gene) sampled from the United States were used for bioinformatics analysis to study the molecular evolutionary characteristics of its genome and spike protein. The MCMC method was used to calculate the evolution rate of the whole genome sequence and the nucleotide mutation rate of the S gene. The results showed that the nucleotide mutation rate of the whole genome was 6.677 × 10-4 substitution per site per year, and the nucleotide mutation rate of the S gene was 8.066 × 10-4 substitution per site per year, which was at a medium level compared with other RNA viruses. Our findings confirmed the scientific hypothesis that the rate of evolution of the virus gradually decreases over time. We also found 13 statistically significant positive selection sites in the SARS-CoV-2 genome. In addition, the results showed that there were 101 nonsynonymous mutation sites in the amino acid sequence of S protein, including seven putative harmful mutation sites. This paper has preliminarily clarified the evolutionary characteristics of SARS-CoV-2 in the United States, providing a scientific basis for future surveillance and prevention of virus variants.
Collapse
Affiliation(s)
- Shihang Wang
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Xuanyu Xu
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Cai Wei
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Sicong Li
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Jingying Zhao
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
- Department of Health Care, School of Physical Education & Health CareEast China Normal UniversityShanghaiChina
| | - Yin Zheng
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Xiaoyu Liu
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Xiaomin Zeng
- Department of Biostatistics, Central South UniversityXiangya Public Health SchoolChangshaChina
| | - Wenliang Yuan
- Department of Mathematics, College of Mathematics and Information EngineeringJiaxing UniversityJiaxingChina
| | - Sihua Peng
- Department of Virology, National Pathogen Collection Center for Aquatic AnimalsMinistry of Agriculture of ChinaShanghaiChina
- Department of Developmental Biology, College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
92
|
Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs 2022; 14:2057832. [PMID: 35380919 PMCID: PMC8986284 DOI: 10.1080/19420862.2022.2057832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Anti-SARS-CoV-2 monoclonal antibodies and vaccines have shown improvement in lowering viral burden and hospitalization. However, emerging SARS-CoV-2 variants contain neutralizing antibody-escape mutations. Therefore, several reports have suggested the administration of recombinant angiotensin-converting enzyme 2 (rACE2) as a soluble receptor trap to block SARS-CoV-2 infection and limit viral escape potential. Several strategies have been implemented to enhance the efficacy of rACE2 as a therapeutic agent. Fc fusions have been used to improve pharmacokinetics and boost the affinity and avidity of ACE2 decoys for the virus spike protein. Furthermore, the intrinsic catalytic activity of ACE2 can be eliminated by introducing point mutations on the catalytic site of ACE2 to obtain an exclusive antiviral activity. This review summarizes different evolution platforms that have been used to enhance ACE2-Fc (i.e., immunoadhesins) as potential therapeutics for the current pandemic or future outbreaks of SARS-associated betacoronaviruses.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia
| | - Ayat Zawawi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah Saudi Arabia
| | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah Saudi Arabia
| |
Collapse
|
93
|
Balasco N, Damaggio G, Esposito L, Villani F, Berisio R, Colonna V, Vitagliano L. A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion. Sci Rep 2021; 11:24495. [PMID: 34969951 PMCID: PMC8718531 DOI: 10.1038/s41598-021-04147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
The ability of SARS-CoV-2 to rapidly mutate represents a remarkable complicancy. Quantitative evaluations of the effects that these mutations have on the virus structure/function is of great relevance and the availability of a large number of SARS-CoV-2 sequences since the early phases of the pandemic represents a unique opportunity to follow the adaptation of the virus to humans. Here, we evaluated the SARS-CoV-2 amino acid mutations and their progression by analyzing publicly available viral genomes at three stages of the pandemic (2020 March 15th and October 7th, 2021 February 7th). Mutations were classified in conservative and non-conservative based on the probability to be accepted during the evolution according to the Point Accepted Mutation substitution matrices and on the similarity of the encoding codons. We found that the most frequent substitutions are T > I, L > F, and A > V and we observe accumulation of hydrophobic residues. These findings are consistent among the three stages analyzed. We also found that non-conservative mutations are less frequent than conservative ones. This finding may be ascribed to a progressive adaptation of the virus to the host. In conclusion, the present study provides indications of the early evolution of the virus and tools for the global and genome-specific evaluation of the possible impact of mutations on the structure/function of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Gianluca Damaggio
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Flavia Villani
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy.
| |
Collapse
|
94
|
Dorp CHV, Goldberg EE, Hengartner N, Ke R, Romero-Severson EO. Estimating the strength of selection for new SARS-CoV-2 variants. Nat Commun 2021; 12:7239. [PMID: 34907182 PMCID: PMC8671537 DOI: 10.1038/s41467-021-27369-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Controlling the SARS-CoV-2 pandemic becomes increasingly challenging as the virus adapts to human hosts through the continual emergence of more transmissible variants. Simply observing that a variant is increasing in frequency is relatively straightforward, but more sophisticated methodology is needed to determine whether a new variant is a global threat and the magnitude of its selective advantage. We present two models for quantifying the strength of selection for new and emerging variants of SARS-CoV-2 relative to the background of contemporaneous variants. These methods range from a detailed model of dynamics within one country to a broad analysis across all countries, and they include alternative explanations such as migration and drift. We find evidence for strong selection favoring the D614G spike mutation and B.1.1.7 (Alpha), weaker selection favoring B.1.351 (Beta), and no advantage of R.1 after it spreads beyond Japan. Cutting back data to earlier time horizons reveals that uncertainty is large very soon after emergence, but that estimates of selection stabilize after several weeks. Our results also show substantial heterogeneity among countries, demonstrating the need for a truly global perspective on the molecular epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Christiaan H van Dorp
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Emma E Goldberg
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Nick Hengartner
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Ethan O Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA.
- New Mexico Consortium, Los Alamos, NM, USA.
| |
Collapse
|
95
|
Rahbar MR, Jahangiri A, Khalili S, Zarei M, Mehrabani-Zeinabad K, Khalesi B, Pourzardosht N, Hessami A, Nezafat N, Sadraei S, Negahdaripour M. Hotspots for mutations in the SARS-CoV-2 spike glycoprotein: a correspondence analysis. Sci Rep 2021; 11:23622. [PMID: 34880279 PMCID: PMC8654821 DOI: 10.1038/s41598-021-01655-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Spike glycoprotein (Sgp) is liable for binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the host receptors. Since Sgp is the main target for vaccine and drug designing, elucidating its mutation pattern could help in this regard. This study is aimed at investigating the correspondence of specific residues to the SgpSARS-CoV-2 functionality by explorative interpretation of sequence alignments. Centrality analysis of the Sgp dissects the importance of these residues in the interaction network of the RBD-ACE2 (receptor-binding domain) complex and furin cleavage site. Correspondence of RBD to threonine500 and asparagine501 and furin cleavage site to glutamine675, glutamine677, threonine678, and alanine684 was observed; all residues are exactly located at the interaction interfaces. The harmonious location of residues dictates the RBD binding property and the flexibility, hydrophobicity, and accessibility of the furin cleavage site. These species-specific residues can be assumed as real targets of evolution, while other substitutions tend to support them. Moreover, all these residues are parts of experimentally identified epitopes. Therefore, their substitution may affect vaccine efficacy. Higher rate of RBD maintenance than furin cleavage site was predicted. The accumulation of substitutions reinforces the probability of the multi-host circulation of the virus and emphasizes the enduring evolutionary events.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Mehrabani-Zeinabad
- Department of Biostatistics, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine, and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Sadraei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.
| |
Collapse
|
96
|
Aiewsakun P, Nilplub P, Wongtrakoongate P, Hongeng S, Thitithanyanont A. SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity. Microb Genom 2021; 7. [PMID: 34870573 PMCID: PMC8767342 DOI: 10.1099/mgen.0.000734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either ‘pre-symptomatic/asymptomatic’ or ‘symptomatic’ were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Patrawee Nilplub
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Center for Neuroscience, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
97
|
Li CX, Gao J, Zhang Z, Chen L, Li X, Zhou M, Wheelock ÅM. Multiomics integration-based molecular characterizations of COVID-19. Brief Bioinform 2021; 23:6447675. [PMID: 34864875 PMCID: PMC8769889 DOI: 10.1093/bib/bbab485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.
Collapse
Affiliation(s)
- Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Gao
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lu Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
98
|
Alizon S, Sofonea MT. SARS-CoV-2 virulence evolution: Avirulence theory, immunity and trade-offs. J Evol Biol 2021; 34:1867-1877. [PMID: 34196431 PMCID: PMC8447366 DOI: 10.1111/jeb.13896] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic has led to a resurgence of the debate on whether host-parasite interactions should evolve towards avirulence. In this review, we first show that SARS-CoV-2 virulence is evolving, before explaining why some expect the mortality caused by the epidemic to converge towards that of human seasonal alphacoronaviruses. Leaning on existing theory, we then include viral evolution into the picture and discuss hypotheses explaining why the virulence has increased since the beginning of the pandemic. Finally, we mention some potential scenarios for the future.
Collapse
Affiliation(s)
- Samuel Alizon
- MIVEGECCNRS, IRD, Univ. MontpellierMontpellierFrance
| | | |
Collapse
|
99
|
Al-Jaf SMA, Niranji SS, Mahmood ZH. Rapid, inexpensive methods for exploring SARS CoV-2 D614G mutation. Meta Gene 2021; 30:100950. [PMID: 34307051 PMCID: PMC8286243 DOI: 10.1016/j.mgene.2021.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
A common mutation has occurred in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), known as D614G (A23403G). There are discrepancies in the impact of this mutation on the virus's infectivity. Also, the whole genome sequencings are expensive and time-consuming. This study aims to develop three fast economical assays for prompt identifications of the D614G mutation including Taqman probe-based real-time reverse transcriptase polymerase chain reaction (rRT PCR), an amplification refractory mutation system (ARMS) RT and restriction fragment length polymorphism (RFLP), in nasopharyngeal swab samples. Both rRT and ARMS data showed G614 mutants indicated by the presence of HEX probe and 176 bp, respectively. Additionally, the results of the RFLP data and DNA sequencings confirmed the prevalence of the G614 mutants. These methods will be important, in epidemiological, reinfections and zoonotic aspects, through detecting the G614 mutant in retro-perspective samples to track its origins and future re-emergence of D614 wild type.
Collapse
Affiliation(s)
- Sirwan M A Al-Jaf
- Department of Biology, College of Education, University of Garmian, Kurdistan Region, Iraq
- Coronavirus Research and Identification Lab., University of Garmian, Kurdistan Region, Iraq
| | - Sherko S Niranji
- Department of Biology, College of Education, University of Garmian, Kurdistan Region, Iraq
- Coronavirus Research and Identification Lab., University of Garmian, Kurdistan Region, Iraq
| | - Zana H Mahmood
- Molecular Diagnostic Laboratory, Sulaimani Veterinary Directorate, Sulaimani, Kurdistan, Iraq
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| |
Collapse
|
100
|
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 22:757-773. [PMID: 34535792 PMCID: PMC8447121 DOI: 10.1038/s41576-021-00408-x] [Citation(s) in RCA: 699] [Impact Index Per Article: 174.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ravindra K Gupta
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|