51
|
An H, Qian C, Huang Y, Li J, Tian X, Feng J, Hu J, Fang Y, Jiao F, Zeng Y, Huang X, Meng X, Liu X, Lin X, Zeng Z, Guilliams M, Beschin A, Chen Y, Wu Y, Wang J, Oggioni MR, Leong J, Veening JW, Deng H, Zhang R, Wang H, Wu J, Cui Y, Zhang JR. Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. J Exp Med 2022; 219:e20212032. [PMID: 35258552 PMCID: PMC8908791 DOI: 10.1084/jem.20212032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Many encapsulated bacteria use capsules to cause invasive diseases. However, it remains largely unknown how the capsules enhance bacterial virulence under in vivo infection conditions. Here we show that the capsules primarily target the liver to enhance bacterial survival at the onset of blood-borne infections. In a mouse sepsis model, the capsules enabled human pathogens Streptococcus pneumoniae and Escherichia coli to circumvent the recognition of liver-resident macrophage Kupffer cells (KCs) in a capsular serotype-dependent manner. In contrast to effective capture of acapsular bacteria by KCs, the encapsulated bacteria are partially (low-virulence types) or completely (high-virulence types) "untouchable" for KCs. We finally identified the asialoglycoprotein receptor (ASGR) as the first known capsule receptor on KCs to recognize the low-virulence serotype-7F and -14 pneumococcal capsules. Our data identify the molecular interplay between the capsules and KCs as a master controller of the fate and virulence of encapsulated bacteria, and suggest that the interplay is targetable for therapeutic control of septic infections.
Collapse
Affiliation(s)
- Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyun Qian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiaying Feng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiao Hu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yujie Fang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Fangfang Jiao
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xianbin Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Xin Lin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhutian Zeng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije University Brussel, Brussels, Belgium
| | - Yongwen Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - John Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
52
|
Yang TY, Lin CL, Yao WC, Lio CF, Chiang WP, Lin K, Kuo CF, Tsai SY. How mycobacterium tuberculosis infection could lead to the increasing risks of chronic fatigue syndrome and the potential immunological effects: a population-based retrospective cohort study. J Transl Med 2022; 20:99. [PMID: 35189895 PMCID: PMC8862378 DOI: 10.1186/s12967-022-03301-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 12/30/2022] Open
Abstract
Background Chronic fatigue syndrome (CFS) has been shown to be associated with infections. Tuberculosis (TB) is a highly prevalent infectious disease. Patients with chronic fatigue syndrome and post-tuberculosis experience similar symptoms. Furthermore, chronic fatigue syndrome and tuberculosis share similar plasma immunosignatures. This study aimed to clarify the risk of chronic fatigue syndrome following the diagnosis of Mycobacterium tuberculosis infection (MTI), by analyzing the National Health Insurance Research Database of Taiwan. Methods 7666 patients aged 20 years or older with newly diagnosed Mycobacterium tuberculosis infection during 2000–2011 and 30,663 participants without Mycobacterium tuberculosis infection were identified. Both groups were followed up until the diagnoses of chronic fatigue syndrome were made at the end of 2011. Results The relationship between Mycobacterium tuberculosis infection and the subsequent risk of chronic fatigue syndrome was estimated through Cox proportional hazards regression analysis, with the incidence density rates being 3.04 and 3.69 per 1000 person‐years among the non‐Mycobacterium tuberculosis infection and Mycobacterium tuberculosis infection populations, respectively (adjusted hazard ratio [HR] = 1.23, with 95% confidence interval [CI] 1.03–1.47). In the stratified analysis, the Mycobacterium tuberculosis infection group were consistently associated with a higher risk of chronic fatigue syndrome in the male sex (HR = 1.27, 95% CI 1.02–1.58) and age group of ≥ 65 years old (HR = 2.50, 95% CI 1.86–3.38). Conclusions The data from this population‐based retrospective cohort study revealed that Mycobacterium tuberculosis infection is associated with an elevated risk of subsequent chronic fatigue syndrome.
Collapse
Affiliation(s)
- Tse-Yen Yang
- Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung City, 404, Taiwan.,College of Medicine, China Medical University, Taichung City, 404, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung City, 404, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung City, 404, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Tao-Yuan City, 330, Taiwan
| | - Chon-Fu Lio
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City, 104, Taiwan
| | - Wen-Po Chiang
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Kuan Lin
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City, 104, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Institute of Infectious Disease, Mackay Memorial Hospital, Taipei City, 104, Taiwan
| | - Shin-Yi Tsai
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City, 104, Taiwan. .,Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Graduate Institute of Long-Term Care, Mackay Medical College, New Taipei City, 252, Taiwan. .,Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, 21205, USA.
| |
Collapse
|
53
|
RNase R, a New Virulence Determinant of Streptococcus pneumoniae. Microorganisms 2022; 10:microorganisms10020317. [PMID: 35208772 PMCID: PMC8875335 DOI: 10.3390/microorganisms10020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Pneumococcal infections have increasingly high mortality rates despite the availability of vaccines and antibiotics. Therefore, the identification of new virulence determinants and the understanding of the molecular mechanisms behind pathogenesis have become of paramount importance in the search of new targets for drug development. The exoribonuclease RNase R has been involved in virulence in a growing number of pathogens. In this work, we used Galleria mellonella as an infection model to demonstrate that the presence of RNase R increases the pneumococcus virulence. Larvae infected with the RNase R mutant show an increased expression level of antimicrobial peptides. Furthermore, they have a lower bacterial load in the hemolymph in the later stages of infection, leading to a higher survival rate of the larvae. Interestingly, pneumococci expressing RNase R show a sudden drop in bacterial numbers immediately after infection, resembling the eclipse phase observed after intravenous inoculation in mice. Concomitantly, we observed a lower number of mutant bacteria inside larval hemocytes and a higher susceptibility to oxidative stress when compared to the wild type. Together, our results indicate that RNase R is involved in the ability of pneumococci to evade the host immune response, probably by interfering with internalization and/or replication inside the larval hemocytes.
Collapse
|
54
|
Nunez N, Derré-Bobillot A, Trainel N, Lakisic G, Lecomte A, Mercier-Nomé F, Cassard AM, Bierne H, Serror P, Archambaud C. The unforeseen intracellular lifestyle of Enterococcus faecalis in hepatocytes. Gut Microbes 2022; 14:2058851. [PMID: 35373699 PMCID: PMC8986240 DOI: 10.1080/19490976.2022.2058851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Enterococcus faecalis is a bacterial species present at a subdominant level in the human gut microbiota. This commensal turns into an opportunistic pathogen under specific conditions involving dysbiosis and host immune deficiency. E. faecalis is one of the rare pathobionts identified to date as contributing to liver damage in alcoholic liver disease. We have previously observed that E. faecalis is internalized in hepatocytes. Here, the survival and fate of E. faecalis was examined in hepatocytes, the main epithelial cell type in the liver. Although referred to as an extracellular pathogen, we demonstrate that E. faecalis is able to survive and divide in hepatocytes, and form intracellular clusters in two distinct hepatocyte cell lines, in primary mouse hepatocytes, as well as in vivo. This novel process extends to kidney cells. Unraveling the intracellular lifestyle of E. faecalis, our findings contribute to the understanding of pathobiont-driven diseases.
Collapse
Affiliation(s)
- Natalia Nunez
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Nicolas Trainel
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Goran Lakisic
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Lecomte
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, INSERM, CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Châtenay-Malabry, France
| | - Anne-Marie Cassard
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Hélène Bierne
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pascale Serror
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Cristel Archambaud
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
55
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
56
|
Hames RG, Jasiunaite Z, Wanford JJ, Carreno D, Chung WY, Dennison AR, Oggioni MR. Analyzing Macrophage Infection at the Organ Level. Methods Mol Biol 2021; 2414:405-431. [PMID: 34784049 DOI: 10.1007/978-1-0716-1900-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Classical in vivo infection models are oftentimes associated with speculation due to the many physiological factors that are unseen or not accounted for when analyzing experimental outputs, especially when solely utilizing the classic approach of tissue-derived colony-forming unit (CFU) enumeration. To better understand the steps and natural progression of bacterial infection, the pathophysiology of individual organs with which the bacteria interact in their natural course of infection must be considered. In this case, it is not only important to isolate organs as much as possible from additional physiological processes, but to also consider the dynamics of the bacteria at the cellular level within these organs of interest. Here, we describe in detail two models, ex vivo porcine liver and spleen coperfusion and a murine infection model, and the numerous associated experimental outputs produced by these models that can be taken and used together to investigate the pathogen-host interactions within tissues in depth.
Collapse
Affiliation(s)
- Ryan G Hames
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - David Carreno
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Wen Y Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK. .,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
57
|
Wanford JJ, Hames RG, Carreno D, Jasiunaite Z, Chung WY, Arena F, Di Pilato V, Straatman K, West K, Farzand R, Pizza M, Martinez-Pomares L, Andrew PW, Moxon ER, Dennison AR, Rossolini GM, Oggioni MR. Interaction of Klebsiella pneumoniae with tissue macrophages in a mouse infection model and ex-vivo pig organ perfusions: an exploratory investigation. THE LANCET MICROBE 2021; 2:e695-e703. [PMID: 34901898 PMCID: PMC8641047 DOI: 10.1016/s2666-5247(21)00195-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
Affiliation(s)
- Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Ryan G Hames
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - David Carreno
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Wen Y Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, UK
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- IRCCS Don Carlo Gnocchi Foundation, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genova, Italy
| | | | - Kevin West
- Department of Pathology, University Hospitals of Leicester, Leicester, UK
| | - Robeena Farzand
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Luisa Martinez-Pomares
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, UK
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Clinical Microbiology and Virology Unit, Firenze Careggi University Hospital, Firenze, Italy
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Department of Farmacy and Biotechnology, University of Bologna, Bologna, Italy
- Correspondence to: Prof Marco R Oggioni, Department of Genetics and Genome Biology, University of Leicester, LE1 7RH Leicester, UK
| |
Collapse
|
58
|
Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021; 203:e0043921. [PMID: 34606370 PMCID: PMC8604078 DOI: 10.1128/jb.00439-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Akhila Parthasarathy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
59
|
Hoffman D, Tevet Y, Trzebanski S, Rosenberg G, Vainman L, Solomon A, Hen-Avivi S, Ben-Moshe NB, Avraham R. A non-classical monocyte-derived macrophage subset provides a splenic replication niche for intracellular Salmonella. Immunity 2021; 54:2712-2723.e6. [PMID: 34788598 PMCID: PMC8691386 DOI: 10.1016/j.immuni.2021.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
Interactions between intracellular bacteria and mononuclear phagocytes give rise to diverse cellular phenotypes that may determine the outcome of infection. Recent advances in single-cell RNA sequencing (scRNA-seq) have identified multiple subsets within the mononuclear population, but implications to their function during infection are limited. Here, we surveyed the mononuclear niche of intracellular Salmonella Typhimurium (S.Tm) during early systemic infection in mice. We described eclipse-like growth kinetics in the spleen, with a first phase of bacterial control mediated by tissue-resident red-pulp macrophages. A second phase involved extensive bacterial replication within a macrophage population characterized by CD9 expression. We demonstrated that CD9+ macrophages induced pathways for detoxificating oxidized lipids, that may be utilized by intracellular S.Tm. We established that CD9+ macrophages originated from non-classical monocytes (NCM), and NCM-depleted mice were more resistant to S.Tm infection. Our study defines macrophage subset-specific host-pathogen interactions that determine early infection dynamics and infection outcome of the entire organism. At early stages, Salmonella kinetics follows an eclipse-like dynamics CD9 Macs are an intracellular replication niche for Salmonella during eclipse CD9 Macs derive from non-classical monocytes and induce pathways to detoxify oxLDL CD9 Macs depletion reduces Salmonella infection and prolongs mice survival
Collapse
Affiliation(s)
- Dotan Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaara Tevet
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sébastien Trzebanski
- Department of Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Leia Vainman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Aryeh Solomon
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shelly Hen-Avivi
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noa Bossel Ben-Moshe
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
60
|
Capsule Promotes Intracellular Survival and Vascular Endothelial Cell Translocation during Invasive Pneumococcal Disease. mBio 2021; 12:e0251621. [PMID: 34634940 PMCID: PMC8510516 DOI: 10.1128/mbio.02516-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polysaccharide capsule that surrounds Streptococcus pneumoniae (Spn) is one of its most important virulence determinants, serving to protect against phagocytosis. To date, 100 biochemical and antigenically distinct capsule types, i.e., serotypes, of Spn have been identified. Yet how capsule influences pneumococcal translocation across vascular endothelial cells (VEC), a key step in the progression of invasive disease, was unknown. Here, we show that despite capsule being inhibitory of Spn uptake by VEC, capsule enhances the escape rate of internalized pneumococci and thereby promotes translocation. Upon investigation, we determined that capsule protected Spn against intracellular killing by VEC and H2O2-mediated killing in vitro. Using a nitroblue tetrazolium reduction assay and nuclear magnetic resonance (NMR) analyses, purified capsule was confirmed as having antioxidant properties which varied according to serotype. Using an 11-member panel of isogenic capsule-switch mutants, we determined that serotype affected levels of Spn resistance to H2O2-mediated killing in vitro, with killing resistance correlated positively with survival duration within VEC, rate of transcytosis to the basolateral surface, and human attack rates. Experiments with mice supported our in vitro findings, with Spn producing oxidative-stress-resistant type 4 capsule being more organ-invasive than that producing oxidative-stress-sensitive type 2 capsule during bacteremia. Capsule-mediated protection against intracellular killing was also observed for Streptococcus pyogenes and Staphylococcus aureus. We conclude that capsular polysaccharide plays an important role within VEC, serving as an intracellular antioxidant, and that serotype-dependent differences in antioxidant capabilities impact the efficiency of VEC translocation and a serotype’s potential for invasive disease.
Collapse
|
61
|
Hullahalli K, Waldor MK. Pathogen clonal expansion underlies multiorgan dissemination and organ-specific outcomes during murine systemic infection. eLife 2021; 10:e70910. [PMID: 34636322 PMCID: PMC8545400 DOI: 10.7554/elife.70910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
The dissemination of pathogens through blood and their establishment within organs lead to severe clinical outcomes. However, the within-host dynamics that underlie pathogen spread to and clearance from systemic organs remain largely uncharacterized. In animal models of infection, the observed pathogen population results from the combined contributions of bacterial replication, persistence, death, and dissemination, each of which can vary across organs. Quantifying the contribution of each these processes is required to interpret and understand experimental phenotypes. Here, we leveraged STAMPR, a new barcoding framework, to investigate the population dynamics of extraintestinal pathogenic Escherichia coli, a common cause of bacteremia, during murine systemic infection. We show that while bacteria are largely cleared by most organs, organ-specific clearance failures are pervasive and result from dramatic expansions of clones representing less than 0.0001% of the inoculum. Clonal expansion underlies the variability in bacterial burden between animals, and stochastic dissemination of clones profoundly alters the pathogen population structure within organs. Despite variable pathogen expansion events, host bottlenecks are consistent yet highly sensitive to infection variables, including inoculum size and macrophage depletion. We adapted our barcoding methodology to facilitate multiplexed validation of bacterial fitness determinants identified with transposon mutagenesis and confirmed the importance of bacterial hexose metabolism and cell envelope homeostasis pathways for organ-specific pathogen survival. Collectively, our findings provide a comprehensive map of the population biology that underlies bacterial systemic infection and a framework for barcode-based high-resolution mapping of infection dynamics.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| |
Collapse
|
62
|
Splenic macrophages as the source of bacteraemia during pneumococcal pneumonia. EBioMedicine 2021; 72:103601. [PMID: 34619637 PMCID: PMC8498229 DOI: 10.1016/j.ebiom.2021.103601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Severe community-acquired pneumococcal pneumonia is commonly associated with bacteraemia. Although it is assumed that the bacteraemia solely derives from pneumococci entering the blood from the lungs it is unknown if other organs are important in the pathogenesis of bacteraemia. Using three models, we tested the relevance of the spleen in pneumonia-associated bacteraemia. Methods We used human spleens perfused ex vivo to explore permissiveness to bacterial replication, a non-human primate model to check for splenic involvement during pneumonia and a mouse pneumonia-bacteraemia model to demonstrate that splenic involvement correlates with invasive disease. Findings Here we present evidence that the spleen is the reservoir of bacteraemia during pneumonia. We found that in the human spleen infected with pneumococci, clusters with increasing number of bacteria were detectable within macrophages. These clusters also were detected in non-human primates. When intranasally infected mice were treated with a non-therapeutic dose of azithromycin, which had no effect on pneumonia but concentrated inside splenic macrophages, bacteria were absent from the spleen and blood and importantly mice had no signs of disease. Interpretation We conclude that the bacterial load in the spleen, and not lung, correlates with the occurrence of bacteraemia. This supports the hypothesis that the spleen, and not the lungs, is the major source of bacteria during systemic infection associated with pneumococcal pneumonia; a finding that provides a mechanistic basis for using combination therapies including macrolides in the treatment of severe community-acquired pneumococcal pneumonia. Funding Oxford University, Wolfson Foundation, MRC, NIH, NIHR, and MRC and BBSRC studentships supported the work.
Collapse
|
63
|
Gibson JF, Pidwill GR, Carnell OT, Surewaard BGJ, Shamarina D, Sutton JAF, Jeffery C, Derré-Bobillot A, Archambaud C, Siggins MK, Pollitt EJG, Johnston SA, Serror P, Sriskandan S, Renshaw SA, Foster SJ. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog 2021; 17:e1009880. [PMID: 34529737 PMCID: PMC8478205 DOI: 10.1371/journal.ppat.1009880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection. S. aureus is a commensal inhabitant of the human skin and nares. However, it can cause serious diseases if it is able to breach our protective barriers such as the skin, often via wounds or surgery. If infection occurs via a wound, this initial inoculum contains both the pathogen, other members of the microflora and also wider environmental microbes. We have previously described “augmentation”, whereby this other non-pathogenic material can enhance the ability of S. aureus to lead to a serious disease outcome. Here we have determined the breadth of augmenting material and elucidated the cellular and molecular basis for its activity. Augmentation occurs via shielding of S. aureus from the direct bactericidal effects of reactive oxygen species produced by macrophages. This initial protection enables the effective establishment of S. aureus infection. Understanding augmentation not only explains an important facet of the interaction of S. aureus with our innate immune system, but also provides a platform for the development of novel prophylaxis approaches.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Bas G. J. Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Charlotte Jeffery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthew K. Siggins
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eric J. G. Pollitt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Simon A. Johnston
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| |
Collapse
|
64
|
Liu X, Zhu K, Duan X, Wang P, Han Y, Peng W, Huang J. Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials 2021; 277:121098. [PMID: 34478931 DOI: 10.1016/j.biomaterials.2021.121098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Pathogenic bacteria evolve multiple strategies to hijack host cells for intracellular survival and persistent infections. Previous studies have revealed the intricate interactions between bacteria and host cells at genetic, biochemical and even single molecular levels. Mechanical interactions and mechanotransduction exert a crucial impact on the behaviors and functions of pathogenic bacteria and host cells, owing to the ubiquitous mechanical microenvironments like extracellular matrix (ECM) stiffness. Nevertheless, it remains unclear whether and how ECM stiffness modulates bacterial infections and the sequential outcome of antibacterial therapy. Here we show that bacteria tend to adhere to and invade epithelial cells located on the regions with relatively high traction forces. ECM stiffness regulates spatial distributions of bacteria during the invasion through arrangements of F-actin cytoskeletons in host cells. Depolymerization of cytoskeletons in the host cells induced by bacterial infection decreases intracellular accumulation of antibiotics, thus preventing the eradication of invaded bacterial pathogens. These findings not only reveal the key regulatory role of ECM stiffness, but suggest that the coordination of cytoskeletons may provide alternative approaches to improve antibiotic therapy against multidrug resistant bacteria in clinic.
Collapse
Affiliation(s)
- Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
65
|
A Novel Aquaporin Subfamily Imports Oxygen and Contributes to Pneumococcal Virulence by Controlling the Production and Release of Virulence Factors. mBio 2021; 12:e0130921. [PMID: 34399618 PMCID: PMC8406300 DOI: 10.1128/mbio.01309-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aquaporins, integral membrane proteins widely distributed in organisms, facilitate the transport of water, glycerol, and other small uncharged solutes across cellular membranes and play important physiological roles in eukaryotes. However, characterizations and physiological functions of the prokaryotic aquaporins remain largely unknown. Here, we report that Streptococcus pneumoniae (pneumococcus) AqpC (Pn-AqpC), representing a new aquaporin subfamily possessing a distinct substrate-selective channel, functions as an oxygen porin by facilitating oxygen movement across the cell membrane and contributes significantly to pneumococcal virulence. The use of a phosphorescent oxygen probe showed that Pn-AqpC facilitates oxygen permeation into pneumococcal and Pn-AqpC-expressing yeast cells. Reconstituting Pn-AqpC into liposomes prepared with pneumococcal and Escherichia coli cellular membranes further verified that Pn-AqpC transports O2 but not water or glycerol. Alanine substitution showed that Pro232 in the substrate channel is key for Pn-AqpC in O2 transport. The deletion of Pn-aqpC significantly reduced H2O2 production and resistance to H2O2 and NO of pneumococci, whereas low-H2O2 treatment helped the ΔPn-aqpC mutant resist higher levels of H2O2 and even NO, indicating that Pn-AqpC-facilitated O2 permeation contributes to pneumococcal resistance to H2O2 and NO. Remarkably, the lack of Pn-aqpC alleviated cell autolysis, thus reducing pneumolysin (Ply) release and decreasing the hemolysis of pneumococci. Accordingly, the ΔPn-aqpC mutant markedly reduced survival in macrophages, decreased damage to macrophages, and significantly reduced lethality in mice. Therefore, the oxygen porin Pn-AqpC, through modulating H2O2 production and pneumolysin release, the two major pneumococcal virulence factors, controls the virulence of pneumococcus. Pn-AqpC orthologs are widely distributed in various pneumococcal serotypes, highlighting that the oxygen porin is important for pneumococcal pathogenicity.
Collapse
|
66
|
Kono M, Umar NK, Takeda S, Ohtani M, Murakami D, Sakatani H, Kaneko F, Nanushaj D, Hotomi M. Novel Antimicrobial Treatment Strategy Based on Drug Delivery Systems for Acute Otitis Media. Front Pharmacol 2021; 12:640514. [PMID: 34421583 PMCID: PMC8371970 DOI: 10.3389/fphar.2021.640514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Despite tremendous success of pneumococcal conjugated vaccine and antimicrobial treatment by amoxicillin, acute otitis media (AOM) still remains as a great medical concern. Failure of antimicrobial treatment includes several factors. The middle ear cavity is surrounded by bone tissue, which makes it difficult to maintain sufficient concentration of antibiotics. Tympanic membrane of AOM patients thickens and actually becomes a barrier for topical therapy. This review discusses novel antimicrobial treatment strategies based on drug delivery systems (DDS) for AOM. To deliver drugs enough to kill the pathogenic bacteria without systemic side effects, the development of new antimicrobial treatment strategy applying innovative drug DDS has been expected. The sustained-release DDS can achieve sufficient time for antimicrobial concentrations to exceed minimum inhibitory concentration (MIC) for time-dependent antibiotics as well as enough maximum concentration for dose-dependent antibiotics to eradicate causative pathogens in the middle ear. The development of trans-tympanic membranes of DDS, such as hydrogels with chemical permeation enhancers (CPEs), is another attractive strategy. Phage is a promising strategy for developing DDS-based therapies. The DDS formulations enable antimicrobial treatment of AOM by a single dose and thus, an attractive future antimicrobial treatment for AOM.
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Nafisa K Umar
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Saori Takeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Makiko Ohtani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Fumie Kaneko
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.,Department of Otorhinolaryngology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
67
|
Abstract
Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in pneumococcal infections. However, the effect of EVs on the host immune system remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by macrophages, T cells, and epithelial cells. In vitro, pEVs induce NF-κB activation in a dosage-dependent manner and polarize human macrophages to an alternative (M2) phenotype. In addition, pEV pretreatment conditions macrophages to increase bacteria uptake and such macrophages may act as a reservoir for pneumococcal cells by increasing survival of the phagocytosed bacteria. When administered systemically in mice, pEVs induce cytokine release; when immobilized locally, they recruit lymphocytes and macrophages. Taken together, pEVs emerge as critical contributors to inflammatory responses and tissue damage in mammalian hosts.
Collapse
|
68
|
Anaya EP, Lin X, Todd EM, Szasz TP, Morley SC. Novel Mouse Model Reveals That Serine Phosphorylation of L-Plastin Is Essential for Effective Splenic Clearance of Pneumococcus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2135-2145. [PMID: 33858961 DOI: 10.4049/jimmunol.2000899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
Asplenia imparts susceptibility to life-threatening sepsis with encapsulated bacteria, such as the pneumococcus. However, the cellular components within the splenic environment that guard against pneumococcal bacteremia have not been defined. The actin-bundling protein L-plastin (LPL) is essential for the generation of marginal zone B cells and for anti-pneumococcal host defense, as revealed by a mouse model of genetic LPL deficiency. In independent studies, serine phosphorylation of LPL at residue 5 (S5) has been described as a key "switch" in regulating LPL actin binding and subsequent cell motility, although much of the data are correlative. To test the importance of S5 phosphorylation in LPL function, and to specifically assess the requirement of LPL S5 phosphorylation in anti-pneumococcal host defense, we generated the "S5A" mouse, expressing endogenous LPL bearing a serine-to-alanine mutation at this position. S5A mice were bred to homozygosity, and LPL was expressed at levels equivalent to wild-type, but S5 phosphorylation was absent. S5A mice exhibited specific impairment in clearance of pneumococci following i.v. challenge, with 10-fold-higher bacterial bloodstream burden 24 h after challenge compared with wild-type or fully LPL-deficient animals. Defective bloodstream clearance correlated with diminished population of marginal zone macrophages and with reduced phagocytic capacity of multiple innate immune cells. Development and function of other tested leukocyte lineages, such as T and B cell motility and activation, were normal in S5A mice. The S5A mouse thus provides a novel system in which to elucidate the precise molecular control of critical immune cell functions in specific host-pathogen defense interactions.
Collapse
Affiliation(s)
- Edgar P Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - Xue Lin
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - Elizabeth M Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - Taylor P Szasz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - S Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and .,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
69
|
Vieira AZ, Raittz RT, Faoro H. Origin and evolution of nonulosonic acid synthases and their relationship with bacterial pathogenicity revealed by a large-scale phylogenetic analysis. Microb Genom 2021; 7:000563. [PMID: 33848237 PMCID: PMC8208679 DOI: 10.1099/mgen.0.000563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/16/2021] [Indexed: 12/28/2022] Open
Abstract
Nonulosonic acids (NulOs) are a group of nine-carbon monosaccharides with different functions in nature. N-acetylneuraminic acid (Neu5Ac) is the most common NulO. It covers the membrane surface of all human cells and is a central molecule in the process of self-recognition via SIGLECS receptors. Some pathogenic bacteria escape the immune system by copying the sialylation of the host cell membrane. Neu5Ac production in these bacteria is catalysed by the enzyme NeuB. Some bacteria can also produce other NulOs named pseudaminic and legionaminic acids, through the NeuB homologues PseI and LegI, respectively. In Opisthokonta eukaryotes, the biosynthesis of Neu5Ac is catalysed by the enzyme NanS. In this study, we used publicly available data of sequences of NulOs synthases to investigate its distribution within the three domains of life and its relationship with pathogenic bacteria. We mined the KEGG database and found 425 NeuB sequences. Most NeuB sequences (58.74 %) from the KEGG orthology database were classified as from environmental bacteria; however, sequences from pathogenic bacteria showed higher conservation and prevalence of a specific domain named SAF. Using the HMM profile we identified 13 941 NulO synthase sequences in UniProt. Phylogenetic analysis of these sequences showed that the synthases were divided into three main groups that can be related to the lifestyle of these bacteria: (I) predominantly environmental, (II) intermediate and (III) predominantly pathogenic. NeuB was widely distributed in the groups. However, LegI and PseI were more concentrated in groups II and III, respectively. We also found that PseI appeared later in the evolutionary process, derived from NeuB. We use this same methodology to retrieve sialic acid synthase sequences from Archaea and Eukarya. A large-scale phylogenetic analysis showed that while the Archaea sequences are spread across the tree, the eukaryotic NanS sequences were grouped in a specific branch in group II. None of the bacterial NanS sequences grouped with the eukaryotic branch. The analysis of conserved residues showed that the synthases of Archaea and Eukarya present a mutation in one of the three catalytic residues, an E134D change, related to a Neisseria meningitidis reference sequence. We also found that the conservation profile is higher between NeuB of pathogenic bacteria and NanS of eukaryotes than between NeuB of environmental bacteria and NanS of eukaryotes. Our large-scale analysis brings new perspectives on the evolution of NulOs synthases, suggesting their presence in the last common universal ancestor.
Collapse
Affiliation(s)
- Alexandre Zanatta Vieira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz-PR, Algacyr Munhoz Mader street, 3775, Curitiba, Paraná, Brazil
- Graduation Program on Bioinformatics – Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná, Brazil
| | - Roberto Tadeu Raittz
- Graduation Program on Bioinformatics – Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz-PR, Algacyr Munhoz Mader street, 3775, Curitiba, Paraná, Brazil
- Graduation Program on Bioinformatics – Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná, Brazil
| |
Collapse
|
70
|
Internal cell-penetrating peptide-mediated internalization enables a chimeric lysin to target intracellular pathogens. Int J Pharm 2021; 599:120449. [PMID: 33711472 DOI: 10.1016/j.ijpharm.2021.120449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
Intracellular pathogens pose serious challenges to the public health worldwide. Lysin, peptidoglycan hydrolase from phage, is promising alternative to conventional antibiotics because of its high bactericidal activity and low risk of resistance. However, most proteinaceous lysins cannot penetrate the mammalian cell membrane because of size exclusion. Previously, we reported a broad-spectrum chimeric lysin, ClyR, with a cysteine, histidine-dependent amidohydrolase/peptidase catalytic domain from PlyC lysin and an SH-3b cell-wall binding domain from PlySs2 lysin. Herein, we further report that a novel internal cell-penetrating peptide (CPP) is predicted in the junction region of the two constitutive domains of ClyR, mediated by which ClyR can be internalized by epithelial cells through caveolin-dependent endocytosis to target intracellular pathogens. Residues K153, P154, R169, and R188 of the internal CPP were found to be essential for ClyR-mediated internalization and intracellular killing. RNA-seq analysis further showed that there are minor differences in transcript and metabolic profiles from epithelial cells exposed to 100 μg/ml ClyR for 24 h. Taken together, our findings demonstrate a novel mechanism of internalization by ClyR, providing new insights into the rational designing of the next-generation lysins to target both extracellular and intracellular pathogens.
Collapse
|
71
|
Ercoli G, Ramos-Sevillano E, Nakajima R, de Assis RR, Jasinskas A, Goldblatt D, Felgner P, Weckbecker G, Brown J. The Influence of B Cell Depletion Therapy on Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2021; 11:611661. [PMID: 33584691 PMCID: PMC7876223 DOI: 10.3389/fimmu.2020.611661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
The anti-CD20 antibody Rituximab to deplete CD20+ B cells is an effective treatment for rheumatoid arthritis and B cell malignancies, but is associated with an increased incidence of respiratory infections. Using mouse models we have investigated the consequences of B cell depletion on natural and acquired humoral immunity to Streptococcus pneumoniae. B cell depletion of naïve C57Bl/6 mice reduced natural IgM recognition of S. pneumoniae, but did not increase susceptibility to S. pneumoniae pneumonia. ELISA and flow cytometry assays demonstrated significantly reduced IgG and IgM recognition of S. pneumoniae in sera from mice treated with B cell depletion prior to S. pneumoniae nasopharyngeal colonization compared to untreated mice. Colonization induced antibody responses to protein rather than capsular antigen, and when measured using a protein array B cell depletion prior to colonization reduced serum levels of IgG to several protein antigens. However, B cell depleted S. pneumoniae colonized mice were still partially protected against both lung infection and septicemia when challenged with S. pneumoniae after reconstitution of their B cells. These data indicate that although B cell depletion markedly impairs antibody recognition of S. pneumoniae in colonized mice, some protective immunity is maintained, perhaps mediated by cellular immunity.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Immunologic Factors/pharmacology
- Lymphocyte Depletion
- Mice, Inbred C57BL
- Pneumonia, Pneumococcal/blood
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/prevention & control
- Rituximab/pharmacology
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/pathogenicity
- Mice
Collapse
Affiliation(s)
- Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Algis Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - David Goldblatt
- Department of Immunobiology, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London, United Kingdom
| | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Gisbert Weckbecker
- Novartis Institute for BioMedical Research, Novartis, Basel, Switzerland
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
72
|
De Ste Croix M, Holmes J, Wanford JJ, Moxon ER, Oggioni MR, Bayliss CD. Selective and non-selective bottlenecks as drivers of the evolution of hypermutable bacterial loci. Mol Microbiol 2020; 113:672-681. [PMID: 32185830 PMCID: PMC7154626 DOI: 10.1111/mmi.14453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022]
Abstract
Bottlenecks reduce the size of the gene pool within populations of all life forms with implications for their subsequent survival. Here, we examine the effects of bottlenecks on bacterial commensal-pathogens during transmission between, and dissemination within, hosts. By reducing genetic diversity, bottlenecks may alter individual or population-wide adaptive potential. A diverse range of hypermutable mechanisms have evolved in infectious agents that allow for rapid generation of genetic diversity in specific genomic loci as opposed to the variability arising from increased genome-wide mutation rates. These localised hypermutable mechanisms include multi-gene phase variation (PV) of outer membrane components, multi-allele PV of restriction systems and recombination-driven antigenic variation. We review selected experimental and theoretical (mathematical) models pertaining to the hypothesis that localised hypermutation (LH) compensates for fitness losses caused by bottlenecks and discuss whether bottlenecks have driven the evolution of hypermutable loci.
Collapse
Affiliation(s)
- Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - E Richard Moxon
- Department of Paediatrics, University of Oxford Medical Sciences Division, John Radcliffe Hospital, Oxford, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
73
|
Badgujar DC, Anil A, Green AE, Surve MV, Madhavan S, Beckett A, Prior IA, Godsora BK, Patil SB, More PK, Sarkar SG, Mitchell A, Banerjee R, Phale PS, Mitchell TJ, Neill DR, Bhaumik P, Banerjee A. Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestyle. PLoS Pathog 2020; 16:e1009016. [PMID: 33216805 PMCID: PMC7717573 DOI: 10.1371/journal.ppat.1009016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-π interaction, governing formation of the transmembrane β-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche.
Collapse
Affiliation(s)
- Dilip C. Badgujar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Manalee Vishnu Surve
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Alison Beckett
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ian A. Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barsa K. Godsora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sanket B. Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prachi Kadam More
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shruti Guha Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Andrea Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
74
|
Panagiotou S, Chaguza C, Yahya R, Audshasai T, Baltazar M, Ressel L, Khandaker S, Alsahag M, Mitchell TJ, Prudhomme M, Kadioglu A, Yang M. Hypervirulent pneumococcal serotype 1 harbours two pneumolysin variants with differential haemolytic activity. Sci Rep 2020; 10:17313. [PMID: 33057054 PMCID: PMC7560715 DOI: 10.1038/s41598-020-73454-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is a devastating global pathogen. Prevalent in sub-Saharan Africa, pneumococcal serotype 1 is atypical in that it is rarely found as a nasopharyngeal coloniser, yet is described as one of the most common causes of invasive pneumococcal disease. Clonal sequence type (ST)-306 and ST615 are representative of the two major serotype 1 lineages A and C, respectively. Here we investigated the virulence properties and haemolytic activities of these 2 clonal types using in vivo mouse models and in vitro assays. A lethal dose of ST615 administered intranasally to mice led to the rapid onset of disease symptoms and resulted in 90% mortality. In contrast, mice exposed to the same infection dose of ST306 or a pneumolysin (Ply)-deficient ST615 failed to develop any disease symptoms. Interestingly, the 2 strains did not differ in their ability to bind the immune complement or to undergo neutrophil-mediated phagocytosis. Upon comparative genomic analysis, we found higher within-ST sequence diversity in ST615 compared with ST306 and determined that ZmpA, ZmpD proteins, and IgA protease, were uniquely found in ST615. Using cell fractionation and cell contact-dependent assay, we made the unexpected finding that ST615 harbours the expression of two haemolytic variants of Ply: a cell-wall restricted fully haemolytic Ply, and a cytosolic pool of Ply void of any detectable haemolytic activity. This is the first time such a phenomenon has been described. We discuss the biological significance of our observation in relation to the aptitude of the pneumococcus for sustaining its human reservoir.
Collapse
Affiliation(s)
- Stavros Panagiotou
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Chrispin Chaguza
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Darwin College, University of Cambridge, Silver Street, Cambridge, CB3 9EU, UK
| | - Reham Yahya
- College of sciences and health professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Teerawit Audshasai
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Murielle Baltazar
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Shadia Khandaker
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Mansoor Alsahag
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
- Faculty of Applied Medical Sciences, Albaha University, Albaha, Kingdom of Saudi Arabia
| | - Tim J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marc Prudhomme
- Université Paul Sabatier, Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Aras Kadioglu
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK.
| | - Marie Yang
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK.
| |
Collapse
|
75
|
Ngwa DN, Singh SK, Gang TB, Agrawal A. Treatment of Pneumococcal Infection by Using Engineered Human C-Reactive Protein in a Mouse Model. Front Immunol 2020; 11:586669. [PMID: 33117400 PMCID: PMC7575696 DOI: 10.3389/fimmu.2020.586669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) binds to several species of bacterial pathogens including Streptococcus pneumoniae. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection by binding to pneumococci and activating the complement system. For protection, however, CRP must be injected into mice within a few hours of administering pneumococci, that is, CRP is protective against early-stage infection but not against late-stage infection. It is assumed that CRP cannot protect if pneumococci got time to recruit complement inhibitor factor H on their surface to become complement attack-resistant. Since the conformation of CRP is altered under inflammatory conditions and altered CRP binds to immobilized factor H also, we hypothesized that in order to protect against late-stage infection, CRP needed to change its structure and that was not happening in mice. Accordingly, we engineered CRP molecules (E-CRP) which bind to factor H on pneumococci but do not bind to factor H on any host cell in the blood. We found that E-CRP, in cooperation with wild-type CRP, was protective regardless of the timing of administering E-CRP into mice. We conclude that CRP acts via two different conformations to execute its anti-pneumococcal function and a model for the mechanism of action of CRP is proposed. These results suggest that pre-modified CRP, such as E-CRP, is therapeutically beneficial to decrease bacteremia in pneumococcal infection. Our findings may also have implications for infections with antibiotic-resistant pneumococcal strains and for infections with other bacterial species that use host proteins to evade complement-mediated killing.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Toh B Gang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
76
|
Subramanian K, Iovino F, Tsikourkitoudi V, Merkl P, Ahmed S, Berry SB, Aschtgen MS, Svensson M, Bergman P, Sotiriou GA, Henriques-Normark B. Mannose receptor-derived peptides neutralize pore-forming toxins and reduce inflammation and development of pneumococcal disease. EMBO Mol Med 2020; 12:e12695. [PMID: 32985105 PMCID: PMC7645366 DOI: 10.15252/emmm.202012695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022] Open
Abstract
Cholesterol‐dependent cytolysins (CDCs) are essential virulence factors for many human pathogens like Streptococcus pneumoniae (pneumolysin, PLY), Streptococcus pyogenes (streptolysin O, SLO), and Listeria monocytogenes (Listeriolysin, LLO) and induce cytolysis and inflammation. Recently, we identified that pneumococcal PLY interacts with the mannose receptor (MRC‐1) on specific immune cells thereby evoking an anti‐inflammatory response at sublytic doses. Here, we identified the interaction sites between MRC‐1 and CDCs using computational docking. We designed peptides from the CTLD4 domain of MRC‐1 that binds to PLY, SLO, and LLO, respectively. In vitro, the peptides blocked CDC‐induced cytolysis and inflammatory cytokine production by human macrophages. Also, they reduced PLY‐induced damage of the epithelial barrier integrity as well as blocked bacterial invasion into the epithelium in a 3D lung tissue model. Pre‐treatment of human DCs with peptides blocked bacterial uptake via MRC‐1 and reduced intracellular bacterial survival by targeting bacteria to autophagosomes. In order to use the peptides for treatment in vivo, we developed calcium phosphate nanoparticles (CaP NPs) as peptide nanocarriers for intranasal delivery of peptides and enhanced bioactivity. Co‐administration of peptide‐loaded CaP NPs during infection improved survival and bacterial clearance in both zebrafish and mice models of pneumococcal infection. We suggest that MRC‐1 peptides can be employed as adjunctive therapeutics with antibiotics to treat bacterial infections by countering the action of CDCs.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vasiliki Tsikourkitoudi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sultan Ahmed
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Samuel B Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,The Immunodeficiency Unit, Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
77
|
Siggins MK, Lynskey NN, Lamb LE, Johnson LA, Huse KK, Pearson M, Banerji S, Turner CE, Woollard K, Jackson DG, Sriskandan S. Extracellular bacterial lymphatic metastasis drives Streptococcus pyogenes systemic infection. Nat Commun 2020; 11:4697. [PMID: 32943639 PMCID: PMC7498588 DOI: 10.1038/s41467-020-18454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Unassisted metastasis through the lymphatic system is a mechanism of dissemination thus far ascribed only to cancer cells. Here, we report that Streptococcus pyogenes also hijack lymphatic vessels to escape a local infection site, transiting through sequential lymph nodes and efferent lymphatic vessels to enter the bloodstream. Contrasting with previously reported mechanisms of intracellular pathogen carriage by phagocytes, we show S. pyogenes remain extracellular during transit, first in afferent and then efferent lymphatics that carry the bacteria through successive draining lymph nodes. We identify streptococcal virulence mechanisms important for bacterial lymphatic dissemination and show that metastatic streptococci within infected lymph nodes resist and subvert clearance by phagocytes, enabling replication that can seed intense bloodstream infection. The findings establish the lymphatic system as both a survival niche and conduit to the bloodstream for S. pyogenes, explaining the phenomenon of occult bacteraemia. This work provides new perspectives in streptococcal pathogenesis with implications for immunity. Pathogenic agents can spread from an initial to a secondary site via the lymphatics. Here, using a mouse model of infection, the authors show that S. pyogenes readily transit through sequential lymph nodes within efferent lymphatics to reach the bloodstream and drive systemic infection, while remaining extracellular.
Collapse
Affiliation(s)
- Matthew K Siggins
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK. .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK. .,NLHI, Imperial College London, London, W2 1PG, UK.
| | - Nicola N Lynskey
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK.,The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lucy E Lamb
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK
| | - Louise A Johnson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Kristin K Huse
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK
| | - Suneale Banerji
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Claire E Turner
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.,The Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kevin Woollard
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College London, London, W12 0NN, UK
| | - David G Jackson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK. .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK.
| |
Collapse
|
78
|
Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. THE LANCET RESPIRATORY MEDICINE 2020; 8:619-630. [PMID: 32526189 DOI: 10.1016/s2213-2600(20)30080-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Critical illness is associated with immune dysregulation, characterised by concurrent hyperinflammation and immune suppression. Hyperinflammation can result in collateral tissue damage and organ failure, whereas immune suppression has been implicated in susceptibility to secondary infections and reactivation of latent viruses. Macrolides are a class of bacteriostatic antibiotics that are used in the intensive care unit to control infections or to alleviate gastrointestinal dysmotility. Yet macrolides also have potent and wide-ranging immunomodulatory properties, which might have the potential to correct immune dysregulation in patients who are critically ill without affecting crucial antimicrobial defences. In this Review, we provide an overview of preclinical and clinical studies that point to the beneficial effects of macrolides in acute diseases relevant to critical care, and we discuss the possible underlying mechanisms of their immunomodulatory effects. Further studies are needed to explore the therapeutic potential of macrolides in critical illness, to identify subgroups of patients who might benefit from treatment, and to develop novel non-antibiotic macrolide derivatives with improved immunomodulatory properties.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
79
|
The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathog 2020; 16:e1008761. [PMID: 32790758 PMCID: PMC7447016 DOI: 10.1371/journal.ppat.1008761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.
Collapse
|
80
|
Best A, Jubrail J, Boots M, Dockrell D, Marriott H. A mathematical model shows macrophages delay Staphylococcus aureus replication, but limitations in microbicidal capacity restrict bacterial clearance. J Theor Biol 2020; 497:110256. [PMID: 32304686 PMCID: PMC7262596 DOI: 10.1016/j.jtbi.2020.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
S. aureus is a leading cause of bacterial infection. Macrophages, the first line of defence in the human immune response, phagocytose and kill S. aureus but the pathogen can evade these responses. Therefore, the exact role of macrophages is incompletely defined. We develop a mathematical model of macrophage - S. aureus dynamics, built on recent experimental data. We demonstrate that, while macrophages may not clear infection, they significantly delay its growth and potentially buy time for recruitment of further cells. We find that macrophage killing is a major obstacle to controlling infection and ingestion capacity also limits the response. We find bistability such that the infection can be limited at low doses. Our combination of experimental data, mathematical analysis and model fitting provide important insights in to the early stages of S. aureus infections, showing macrophages play an important role limiting bacterial replication but can be overwhelmed with large inocula.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics & Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Jamil Jubrail
- Medical School, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK; Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK; Department of Infection Medicine and MRC Centre for Inflammation Research, University of Edinburgh
| | - Mike Boots
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3140, USA; Biosciences, College of Life & Environmental Sciences, University of Exeter Cornwall Campus, Penryn, TR10 9EZ, UK
| | - David Dockrell
- Department of Infection Medicine and MRC Centre for Inflammation Research, University of Edinburgh
| | - Helen Marriott
- Medical School, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
81
|
Harding CL, Villarino NF, Valente E, Schwarzer E, Schmidt NW. Plasmodium Impairs Antibacterial Innate Immunity to Systemic Infections in Part Through Hemozoin-Bound Bioactive Molecules. Front Cell Infect Microbiol 2020; 10:328. [PMID: 32714882 PMCID: PMC7344233 DOI: 10.3389/fcimb.2020.00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
One complication of malaria is increased susceptibility to invasive bacterial infections. Plasmodium infections impair host immunity to non-Typhoid Salmonella (NTS) through heme-oxygenase I (HO-I)-induced release of immature granulocytes and myeloid cell-derived IL-10. Yet, it is not known if these mechanisms are specific to NTS. We show here, that Plasmodium yoelii 17XNL (Py) infected mice had impaired clearance of systemic Listeria monocytogenes (Lm) during both acute parasitemia and up to 2 months after clearance of Py infected red blood cells that was independent of HO-I and IL-10. Py-infected mice were also susceptible to Streptococcus pneumoniae (Sp) bacteremia, a common malaria-bacteria co-infection, with higher blood and spleen bacterial burdens and decreased survival compared to naïve mice. Mechanistically, impaired immunity to Sp was independent of HO-I, but was dependent on Py-induced IL-10. Splenic phagocytes from Py infected mice exhibit an impaired ability to restrict growth of intracellular Lm, and neutrophils from Py-infected mice produce less reactive oxygen species (ROS) in response to Lm or Sp. Analysis also identified a defect in a serum component in Py-infected mice that contributes to reduced production of ROS in response to Sp. Finally, treating naïve mice with Plasmodium-derived hemozoin containing naturally bound bioactive molecules, excluding DNA, impaired clearance of Lm. Collectively, we have demonstrated that Plasmodium infection impairs host immunity to diverse bacteria, including S. pneumoniae, through multiple effects on innate immunity, and that a parasite-specific factor (Hz+bound bioactive molecules) directly contributes to Plasmodium-induced suppression of antibacterial innate immunity.
Collapse
Affiliation(s)
- Christopher L Harding
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Nicolas F Villarino
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Elena Valente
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Nathan W Schmidt
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
82
|
Van Bockstal L, Bulté D, Van den Kerkhof M, Dirkx L, Mabille D, Hendrickx S, Delputte P, Maes L, Caljon G. Interferon Alpha Favors Macrophage Infection by Visceral Leishmania Species Through Upregulation of Sialoadhesin Expression. Front Immunol 2020; 11:1113. [PMID: 32582193 PMCID: PMC7296180 DOI: 10.3389/fimmu.2020.01113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Type I interferons (IFNs) induced by an endogenous Leishmania RNA virus or exogenous viral infections have been shown to exacerbate infections with New World Cutaneous Leishmania parasites, however, the impact of type I IFNs in visceral Leishmania infections and implicated mechanisms remain to be unraveled. This study assessed the impact of type I IFN on macrophage infection with L. infantum and L. donovani and the implication of sialoadhesin (Siglec-1/CD169, Sn) as an IFN-inducible surface receptor. Stimulation of bone marrow-derived macrophages with type I IFN (IFN-α) significantly enhanced susceptibility to infection of reference laboratory strains and a set of recent clinical isolates. IFN-α particularly enhanced promastigote uptake. Enhanced macrophage susceptibility was linked to upregulated Sn surface expression as a major contributing factor to the infection exacerbating effect of IFN-α. Stimulation experiments in Sn-deficient macrophages, macrophage pretreatment with a monoclonal anti-Sn antibody or a novel bivalent anti-Sn nanobody and blocking of parasites with soluble Sn restored normal susceptibility levels. Infection of Sn-deficient mice with bioluminescent L. infantum promastigotes revealed a moderate, strain-dependent role for Sn during visceral infection under the used experimental conditions. These data indicate that IFN-responsive Sn expression can enhance the susceptibility of macrophages to infection with visceral Leishmania promastigotes and that targeting of Sn may have some protective effects in early infection.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
83
|
Watson K, Russell CD, Baillie JK, Dhaliwal K, Fitzgerald JR, Mitchell TJ, Simpson AJ, Renshaw SA, Dockrell DH. Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. Front Immunol 2020; 11:786. [PMID: 32582139 PMCID: PMC7289984 DOI: 10.3389/fimmu.2020.00786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial therapy has provided the main component of chemotherapy against bacterial pathogens. The effectiveness of this strategy has, however, been increasingly challenged by the emergence of antimicrobial resistance which now threatens the sustained utility of this approach. Humans and animals are constantly exposed to bacteria and have developed effective strategies to control pathogens involving innate and adaptive immune responses. Impaired pathogen handling by the innate immune system is a key determinant of susceptibility to bacterial infection. However, the essential components of this response, specifically those which are amenable to re-calibration to improve host defense, remain elusive despite extensive research. We provide a mini-review focusing on therapeutic targeting of microbicidal responses in macrophages and neutrophils to de-stress reliance on antimicrobial therapy. We highlight pre-clinical and clinical data pointing toward potential targets and therapies. We suggest that developing focused host-directed therapeutic strategies to enhance "pauci-inflammatory" microbial killing in myeloid phagocytes that maximizes pathogen clearance while minimizing the harmful consequences of the inflammatory response merits particular attention. We also suggest the importance of One Health approaches in developing host-based approaches through model development and comparative medicine in informing our understanding of how to deliver this strategy.
Collapse
Affiliation(s)
- Katie Watson
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Clark D Russell
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kev Dhaliwal
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Stephen A Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
84
|
Bose RJC, Tharmalingam N, Garcia Marques FJ, Sukumar UK, Natarajan A, Zeng Y, Robinson E, Bermudez A, Chang E, Habte F, Pitteri SJ, McCarthy JR, Gambhir SS, Massoud TF, Mylonakis E, Paulmurugan R. Reconstructed Apoptotic Bodies as Targeted "Nano Decoys" to Treat Intracellular Bacterial Infections within Macrophages and Cancer Cells. ACS NANO 2020; 14:5818-5835. [PMID: 32347709 PMCID: PMC9116903 DOI: 10.1021/acsnano.0c00921] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.
Collapse
Affiliation(s)
- Rajendran J C Bose
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Nagendran Tharmalingam
- Infectious Disease Division, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Brown University, Providence, Rhode Island 02903, United States
| | - Fernando J Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Uday Kumar Sukumar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Arutselvan Natarajan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Yitian Zeng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Elise Robinson
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Frezghi Habte
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Jason R McCarthy
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, New York 13501, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Tarik F Massoud
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Eleftherios Mylonakis
- Infectious Disease Division, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Brown University, Providence, Rhode Island 02903, United States
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| |
Collapse
|
85
|
Brown JS. Improving Pulmonary Immunity to Bacterial Pathogens through Streptococcus pneumoniae Colonization of the Nasopharynx. Am J Respir Crit Care Med 2020; 201:268-270. [PMID: 31664865 PMCID: PMC6999096 DOI: 10.1164/rccm.201910-2047ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeremy S Brown
- UCL RespiratoryUniversity College LondonLondon, United Kingdom
| |
Collapse
|
86
|
Gordon S, Plüddemann A, Mukhopadhyay S. Plasma membrane receptors of tissue macrophages: functions and role in pathology. J Pathol 2020; 250:656-666. [PMID: 32086805 DOI: 10.1002/path.5404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
The cells of the mononuclear phagocyte system (MPS) constitute a dispersed organ, which is distributed throughout the body. Macrophages in different tissues display distinctive mosaic phenotypes as resident and recruited cells of embryonic and bone marrow origin, respectively. They help to maintain homeostasis during development and throughout adult life, yet contribute to the pathogenesis of many disease processes, including inflammation, innate and adaptive immunity, metabolic disorders, and cancer. Heterogeneous tissue macrophage populations display a wide variety of surface molecules to recognise and respond to host, microbial, and exogenous ligands in their environment; their receptors mediate the uptake and destruction of effete and dying host cells and pathogens, as well as contribute trophic and secretory functions within every organ in the body. Apart from local cellular interactions, macrophage surface molecules and products serve to mobilise and coordinate systemic humoral and cellular responses. Their use as antigen markers in pathogenesis and as potential drug targets has lagged in clinical pathology and human immunotherapy. In this review, we summarise the properties of selected surface molecules expressed on macrophages in different tissues and disease processes, to provide a functional basis for diagnosis, further research, and treatment. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siamon Gordon
- College of Medicine, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, Medical Research Council Centre for Transplantation, King's College London, London, UK
| |
Collapse
|
87
|
De Ste Croix M, Mitsi E, Morozov A, Glenn S, Andrew PW, Ferreira DM, Oggioni MR. Phase variation in pneumococcal populations during carriage in the human nasopharynx. Sci Rep 2020; 10:1803. [PMID: 32019989 PMCID: PMC7000782 DOI: 10.1038/s41598-020-58684-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/28/2019] [Indexed: 11/10/2022] Open
Abstract
Streptococcus pneumoniae is one of the world's leading bacterial pathogens, responsible for pneumonia, septicaemia and meningitis. Asymptomatic colonisation of the nasopharynx is considered to be a prerequisite for these severe infections, however little is understood about the biological changes that permit the pneumococcus to switch from asymptomatic coloniser to invasive pathogen. A phase variable type I restriction-modification (R-M) system (SpnIII) has been linked to a change in capsule expression and to the ability to successfully colonise the murine nasopharynx. Using our laboratory data, we have developed a Markov change model that allows prediction of the expected level of phase variation within a population, and as a result measures when populations deviate from those expected at random. Using this model, we have analysed samples from the Experimental Human Pneumococcal Carriage (EHPC) project. Here we show, through mathematical modelling, that the patterns of dominant SpnIII alleles expressed in the human nasopharynx are significantly different than those predicted by stochastic switching alone. Our inter-disciplinary work demonstrates that the expression of alternative methylation patterns should be an important consideration in studies of pneumococcal colonisation.
Collapse
Affiliation(s)
- M De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
| | - E Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, L3 5QA, United Kingdom
| | - A Morozov
- Department of Mathematics, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii pr., Moscow, 119071, Russia
| | - S Glenn
- Department of Respiratory Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
| | - P W Andrew
- Department of Respiratory Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
| | - D M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, L3 5QA, United Kingdom
| | - M R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
88
|
Mitsi E, Carniel B, Reiné J, Rylance J, Zaidi S, Soares-Schanoski A, Connor V, Collins AM, Schlitzer A, Nikolaou E, Solórzano C, Pojar S, Hill H, Hyder-Wright AD, Jambo KC, Oggioni MR, De Ste Croix M, Gordon SB, Jochems SP, Ferreira DM. Nasal Pneumococcal Density Is Associated with Microaspiration and Heightened Human Alveolar Macrophage Responsiveness to Bacterial Pathogens. Am J Respir Crit Care Med 2020; 201:335-347. [PMID: 31626559 PMCID: PMC6999099 DOI: 10.1164/rccm.201903-0607oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rationale: Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with Streptococcus pneumoniae (Spn), although a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited.Objectives: Using a controlled human infection model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells.Methods: We collected BAL from healthy pneumococcal-challenged participants aged 18-49 years. Confocal microscopy and molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations.Measurements and Main Results: AMs from Spn-colonized individuals exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for approximately 3 months after experimental pneumococcal colonization. AMs also had increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized individuals were positively correlated with nasal pneumococcal density (r = 0.71; P = 0.029). Similarly, AM-heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r = 0.61, P = 0.025).Conclusions: Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AMs, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AMs in the alveolar spaces, alongside their potential for nonspecific protection, render them an attractive target for novel vaccines.
Collapse
Affiliation(s)
- Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Beatriz Carniel
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Seher Zaidi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Victoria Connor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea M. Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andreas Schlitzer
- The Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela D. Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Chichiri, Blantyre, Malawi
| | - Marco R. Oggioni
- Department of Genetics, University of Leicester, Leicester, United Kingdom; and
| | - Megan De Ste Croix
- Department of Genetics, University of Leicester, Leicester, United Kingdom; and
| | - Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Chichiri, Blantyre, Malawi
| | - Simon P. Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
89
|
Casadevall A, Fang FC. The intracellular pathogen concept. Mol Microbiol 2019; 113:541-545. [PMID: 31762116 DOI: 10.1111/mmi.14421] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
The intracellular pathogen concept classifies pathogenic microbes on the basis of their site of replication and dependence on host cells. This concept played a fundamental role in establishing the field of cellular microbiology, founded in part by Dr. Pascale Cossart, whose seminal contributions are honored in this issue of Molecular Microbiology. The recognition that microbes can access and replicate in privileged compartments within host cells has led to many new and fruitful lines of investigation into the biology of the cell and mechanisms of cell-mediated immunity. However, like any scientific concept, the intracellular pathogen concept can become a dogma that constrains thinking and oversimplifies complex and dynamic host-pathogen interactions. Growing evidence has blurred the distinction between "intracellular" and "extracellular" pathogens and demonstrated that many pathogens can exist both within and outside of cells. Although the intracellular pathogen concept remains useful, it should not be viewed as a rigid classification of pathogenic microbes, which exhibit remarkable variation and complexity in their behavior in the host.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Ferric C Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
90
|
Hu W, Chan H, Lu L, Wong KT, Wong SH, Li MX, Xiao ZG, Cho CH, Gin T, Chan MTV, Wu WKK, Zhang L. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol 2019; 101:41-50. [PMID: 31408699 DOI: 10.1016/j.semcdb.2019.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved intracellular degradation process enclosing the bulk of cytosolic components for lysosomal degradation to maintain cellular homeostasis. Accumulating evidences showed that a specialized form of autophagy, known as xenophagy, could serve as an innate immune response to defend against pathogens invading inside the host cells. Correspondingly, infectious pathogens have developed a variety of strategies to disarm xenophagy, leading to a prolonged and persistent intracellular colonization. In this review, we first summarize the current knowledge about the general mechanisms of intracellular bacterial infections and xenophagy. We then focus on the ongoing battle between these two processes.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, PR China; Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, PR China
| | - Kam Tak Wong
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming X Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhan G Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Zhang
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
91
|
Methylation Warfare: Interaction of Pneumococcal Bacteriophages with Their Host. J Bacteriol 2019; 201:JB.00370-19. [PMID: 31285240 PMCID: PMC6755750 DOI: 10.1128/jb.00370-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection. Virus-host interactions are regulated by complex coevolutionary dynamics. In Streptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogen S. pneumoniae. IMPORTANCE With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.
Collapse
|
92
|
Jochems SP, de Ruiter K, Solórzano C, Voskamp A, Mitsi E, Nikolaou E, Carniel BF, Pojar S, German EL, Reiné J, Soares-Schanoski A, Hill H, Robinson R, Hyder-Wright AD, Weight CM, Durrenberger PF, Heyderman RS, Gordon SB, Smits HH, Urban BC, Rylance J, Collins AM, Wilkie MD, Lazarova L, Leong SC, Yazdanbakhsh M, Ferreira DM. Innate and adaptive nasal mucosal immune responses following experimental human pneumococcal colonization. J Clin Invest 2019; 129:4523-4538. [PMID: 31361601 PMCID: PMC6763269 DOI: 10.1172/jci128865] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD161+CD8+ T cell clusters were significantly lower in colonized than in noncolonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide–specific and total plasmablasts in blood. Moreover, increased responses of blood mucosa-associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.
Collapse
Affiliation(s)
- Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Karin de Ruiter
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Astrid Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Beatriz F Carniel
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Rachel Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Angela D Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | | | - Pascal F Durrenberger
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | | | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Britta C Urban
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom.,Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Mark D Wilkie
- Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Lepa Lazarova
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
| | - Samuel C Leong
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Otorhinolaryngology - Head and Neck Surgery, Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
93
|
Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21:e13077. [PMID: 31251447 PMCID: PMC6899785 DOI: 10.1111/cmi.13077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a human respiratory tract pathogen and a major cause of morbidity and mortality globally. Although the pneumococcus is a commensal bacterium that colonizes the nasopharynx, it also causes lethal diseases such as meningitis, sepsis, and pneumonia, especially in immunocompromised patients, in the elderly, and in young children. Due to the acquisition of antibiotic resistance and the emergence of nonvaccine serotypes, the pneumococcus has been classified as one of the priority pathogens for which new antibacterials are urgently required by the World Health Organization, 2017. Understanding molecular mechanisms behind the pathogenesis of pneumococcal infections and bacterial interactions within the host is crucial to developing novel therapeutics. Previously considered to be an extracellular pathogen, it is becoming evident that pneumococci may also occasionally establish intracellular niches within the body to escape immune surveillance and spread within the host. Intracellular survival within host cells also enables pneumococci to resist many antibiotics. Within the host cell, the bacteria exist in unique vacuoles, thereby avoiding degradation by the acidic lysosomes, and modulate the expression of its virulence genes to adapt to the intracellular environment. To invade and survive intracellularly, the pneumococcus utilizes a combination of virulence factors such as pneumolysin (PLY), pneumococcal surface protein A (PspA), pneumococcal adhesion and virulence protein B (PavB), the pilus‐1 adhesin RrgA, pyruvate oxidase (SpxB), and metalloprotease (ZmpB). In this review, we discuss recent findings showing the intracellular persistence of Streptococcus pneumoniae and its underlying mechanisms.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| |
Collapse
|
94
|
Garai P, Berry L, Moussouni M, Bleves S, Blanc-Potard AB. Killing from the inside: Intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants. PLoS Pathog 2019; 15:e1007812. [PMID: 31220187 PMCID: PMC6586356 DOI: 10.1371/journal.ppat.1007812] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
While considered solely an extracellular pathogen, increasing evidence indicates that Pseudomonas aeruginosa encounters intracellular environment in diverse mammalian cell types, including macrophages. In the present study, we have deciphered the intramacrophage fate of wild-type P. aeruginosa PAO1 strain by live and electron microscopy. P. aeruginosa first resided in phagosomal vacuoles and subsequently could be detected in the cytoplasm, indicating phagosomal escape of the pathogen, a finding also supported by vacuolar rupture assay. The intracellular bacteria could eventually induce cell lysis, both in a macrophage cell line and primary human macrophages. Two bacterial factors, MgtC and OprF, recently identified to be important for survival of P. aeruginosa in macrophages, were found to be involved in bacterial escape from the phagosome as well as in cell lysis caused by intracellular bacteria. Strikingly, type III secretion system (T3SS) genes of P. aeruginosa were down-regulated within macrophages in both mgtC and oprF mutants. Concordantly, cyclic di-GMP (c-di-GMP) level was increased in both mutants, providing a clue for negative regulation of T3SS inside macrophages. Consistent with the phenotypes and gene expression pattern of mgtC and oprF mutants, a T3SS mutant (ΔpscN) exhibited defect in phagosomal escape and macrophage lysis driven by internalized bacteria. Importantly, these effects appeared to be largely dependent on the ExoS effector, in contrast with the known T3SS-dependent, but ExoS independent, cytotoxicity caused by extracellular P. aeruginosa towards macrophages. Moreover, this macrophage damage caused by intracellular P. aeruginosa was found to be dependent on GTPase Activating Protein (GAP) domain of ExoS. Hence, our work highlights T3SS and ExoS, whose expression is modulated by MgtC and OprF, as key players in the intramacrophage life of P. aeruginosa which allow internalized bacteria to lyse macrophages. The ability of professional phagocytes to ingest and kill microorganisms is central to host defense and Pseudomonas aeruginosa has developed mechanisms to avoid being killed by phagocytes. While considered an extracellular pathogen, P. aeruginosa has been reported to be engulfed by macrophages in animal models. Here, we visualized the fate of P. aeruginosa within cultured macrophages, revealing macrophage lysis driven by intracellular P. aeruginosa. Two bacterial factors, MgtC and OprF, recently discovered to be involved in the intramacrophage survival of P. aeruginosa, appeared to play a role in this cytotoxicity caused by intracellular bacteria. We provided evidence that type III secretion system (T3SS) gene expression is lowered intracellularly in mgtC and oprF mutants. We further showed that intramacrophage P. aeruginosa uses its T3SS, specifically the ExoS effector, to promote phagosomal escape and cell lysis. We thus describe a transient intramacrophage stage of P. aeruginosa that could contribute to bacterial dissemination.
Collapse
Affiliation(s)
- Preeti Garai
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Laurence Berry
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Malika Moussouni
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Sophie Bleves
- LISM, Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
- * E-mail:
| |
Collapse
|
95
|
Golikova MV, Strukova EN, Portnoy YA, Dovzhenko SA, Kobrin MB, Zinner SH, Firsov AA. Resistance studies with Streptococcus pneumoniae using an in vitro dynamic model: amoxicillin versus azithromycin at clinical exposures. J Chemother 2019; 31:252-260. [DOI: 10.1080/1120009x.2019.1623361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Maria V. Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Elena N. Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Yury A. Portnoy
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Svetlana A. Dovzhenko
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Mikhail B. Kobrin
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Stephen H. Zinner
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Alexander A. Firsov
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| |
Collapse
|
96
|
Feldman C, Normark S, Henriques-Normark B, Anderson R. Pathogenesis and prevention of risk of cardiovascular events in patients with pneumococcal community-acquired pneumonia. J Intern Med 2019; 285:635-652. [PMID: 30584680 DOI: 10.1111/joim.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that cardiovascular events (CVE) occur quite commonly, both in the acute phase and in the long-term, in patients with community-acquired pneumonia (CAP). CVE have been noted in up to 30% of patients hospitalized with all-cause CAP. One systematic review and meta-analysis of hospitalized patients with all-cause CAP noted that the incidence rates for overall cardiac events were 17.7%, for incident heart failure were 14.1%, for acute coronary syndromes were 5.3% and for incident cardiac arrhythmias were 4.7%. In the case of pneumococcal CAP, almost 20% of patients studied had one or more of these cardiac events. Recent research has provided insights into the pathogenesis of the acute cardiac events occurring in pneumococcal infections. With respect to the former, key involvements of the major pneumococcal protein virulence factor, pneumolysin, are now well documented, whilst systemic platelet-driven neutrophil activation may also contribute. However, events involved in the pathogenesis of the long-term cardiovascular sequelae remain largely unexplored. Emerging evidence suggests that persistent antigenaemia may predispose to the development of a systemic pro-inflammatory/prothrombotic phenotype underpinning the risk of future cardiovascular events. The current manuscript briefly reviews the occurrence of cardiovascular events in patients with all-cause CAP, as well as in pneumococcal and influenza infections. It highlights the close interaction between influenza and pneumococcal pneumonia. It also includes a brief discussion of mechanisms of the acute cardiac events in CAP. However, the primary focus is on the prevalence, pathogenesis and prevention of the longer-term cardiac sequelae of severe pneumococcal disease, particularly in the context of persistent antigenaemia and associated inflammation.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - B Henriques-Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - R Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
97
|
Construction of Fluorescent Pneumococci for In Vivo Imaging and Labeling of the Chromosome. Methods Mol Biol 2019. [PMID: 30929204 DOI: 10.1007/978-1-4939-9199-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Advances in fluorescence imaging techniques and development and optimization of fluorescent proteins recent years have made major impacts on different fields of pneumococcal research. This chapter provides methodology for construction of fluorescent pneumococcal strains using fusions to DNA-binding proteins. By expressing fluorescent proteins fused to HlpA, a pneumococcal nucleoid binding protein, brightly fluorescent pneumococci are generated. HlpA fusions may be used both for in vivo imaging of pneumococci as well as for marking the nucleoid in cell biology studies. Furthermore, it also explains how to construct strains for imaging of specific chromosomal loci in pneumococci, using a heterologous ParBS system.
Collapse
|
98
|
Scott BNV, Sarkar T, Kratofil RM, Kubes P, Thanabalasuriar A. Unraveling the host's immune response to infection: Seeing is believing. J Leukoc Biol 2019; 106:323-335. [PMID: 30776153 PMCID: PMC6849780 DOI: 10.1002/jlb.4ri1218-503r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
It has long been appreciated that understanding the interactions between the host and the pathogens that make us sick is critical for the prevention and treatment of disease. As antibiotics become increasingly ineffective, targeting the host and specific bacterial evasion mechanisms are becoming novel therapeutic approaches. The technology used to understand host‐pathogen interactions has dramatically advanced over the last century. We have moved away from using simple in vitro assays focused on single‐cell events to technologies that allow us to observe complex multicellular interactions in real time in live animals. Specifically, intravital microscopy (IVM) has improved our understanding of infection, from viral to bacterial to parasitic, and how the host immune system responds to these infections. Yet, at the same time it has allowed us to appreciate just how complex these interactions are and that current experimental models still have a number of limitations. In this review, we will discuss the advances in vivo IVM has brought to the study of host‐pathogen interactions, focusing primarily on bacterial infections and innate immunity.
Collapse
Affiliation(s)
- Brittney N V Scott
- University of Calgary Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Tina Sarkar
- University of Calgary Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Rachel M Kratofil
- University of Calgary Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- University of Calgary Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ajitha Thanabalasuriar
- University of Calgary Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
99
|
Ellis MJ, Tsai CN, Johnson JW, French S, Elhenawy W, Porwollik S, Andrews-Polymenis H, McClelland M, Magolan J, Coombes BK, Brown ED. A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nat Commun 2019; 10:197. [PMID: 30643129 PMCID: PMC6331611 DOI: 10.1038/s41467-018-08190-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) establishes systemic infection in susceptible hosts by evading the innate immune response and replicating within host phagocytes. Here, we sought to identify inhibitors of intracellular S. Tm replication by conducting parallel chemical screens against S. Tm growing in macrophage-mimicking media and within macrophages. We identify several compounds that inhibit Salmonella growth in the intracellular environment and in acidic, ion-limited media. We report on the antimicrobial activity of the psychoactive drug metergoline, which is specific against intracellular S. Tm. Screening an S. Tm deletion library in the presence of metergoline reveals hypersensitization of outer membrane mutants to metergoline activity. Metergoline disrupts the proton motive force at the bacterial cytoplasmic membrane and extends animal survival during a systemic S. Tm infection. This work highlights the predictive nature of intracellular screens for in vivo efficacy, and identifies metergoline as a novel antimicrobial active against Salmonella.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697-4025, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697-4025, USA
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
100
|
Iovino F, Henriques-Normark B. High-Resolution and Super-Resolution Immunofluorescent Microscopy Ex Vivo to Study Pneumococcal Interactions with the Host. Methods Mol Biol 2019; 1968:53-59. [PMID: 30929205 DOI: 10.1007/978-1-4939-9199-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vivo imaging, meaning imaging tissues in living animals, is still a developing technique. However, microscopy imaging ex vivo remains a very important tool that allows for visualization of biological and pathological processes occurring in vivo. As described in Chap. 5, imaging of animal and human tissue postmortem can be performed at high resolution. Recently, imaging of human tissues infected with pneumococci using an even higher resolution, the so-called super-resolution with STED, has been reported.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SE-17176, Sweden
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|