51
|
Edwards CL, Engel JA, de Labastida Rivera F, Ng SS, Corvino D, Montes de Oca M, Frame TC, Chauhan SB, Singh SS, Kumar A, Wang Y, Na J, Mukhopadhyay P, Lee JS, Nylen S, Sundar S, Kumar R, Engwerda CR. A molecular signature for IL-10-producing Th1 cells in protozoan parasitic diseases. JCI Insight 2023; 8:e169362. [PMID: 37917177 PMCID: PMC10807716 DOI: 10.1172/jci.insight.169362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.
Collapse
Affiliation(s)
- Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | | | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | | | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Jason S. Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanne Nylen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
52
|
Mageiros L, Megremis S, Papadopoulos NG. The virome in allergy and asthma: A nascent, ineffable player. J Allergy Clin Immunol 2023; 152:1347-1351. [PMID: 37778473 DOI: 10.1016/j.jaci.2023.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Allergic diseases can be affected by virus-host interactions and are increasingly linked with the tissue-specific microbiome. High-throughput metagenomic sequencing has offered the opportunity to study the presence of viruses as an ecologic system, namely, the virome. Even though virome studies are technically challenging conceptually and analytically, they are already producing novel data expanding our understanding of the pathophysiologic mechanisms related to chronic inflammation and allergy. The importance of interspecies and intraspecies interactions is becoming apparent, as they can significantly, directly or indirectly, affect the host's response and antigenic state. Here, we emphasize the challenges and potential insights related to study of the virome in the context of allergy and asthma. We review the limited number of studies that have investigated the virome in these conditions, underlining the need for prospective, repeated sampling designs to unravel the virome's impact on disease development and its interplay with microbiota and immunity. The potential therapeutic use of bacteriophages, which are highly complex components of the virome, is discussed. There is clearly a need for further in-depth investigation of the virome as a system in allergic diseases.
Collapse
Affiliation(s)
- Leonardos Mageiros
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece; University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
53
|
Lim JS, Cho S, Capek P, Kim SC, Bleha R, Choi DJ, Ree J, Lee J, Synytsya A, Park YI. Water-extractable polysaccharide fraction PNE-P1 from Pinus koraiensis pine nut: Structural features and immunostimulatory activity. Carbohydr Res 2023; 534:108980. [PMID: 37952447 DOI: 10.1016/j.carres.2023.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
The polysaccharide fraction PNE-P1 was isolated from hot water extract (PNE) of the defatted meal of pine nuts (Pinus koraiensis) using DEAE-cellulose column chromatography. This fraction had three components of molecular masses 1251, 616, and 303 g/mol consisting mainly of arabinose, xylose, and galacturonic acid at a molar ratio of 2:1.6:1. Structural analysis with FTIR/Raman, methylation and GC-MS, and NMR revealed that PNE-P1 is a cell wall polysaccharide complex including arabinan, heteroxylan, homogalacturonan (HM) and rhamnogalacturonan I (RG-I) parts. Being nontoxic to RAW 264.7 macrophages in the concentration range of 10-200 μg/mL, PNE-P1 promoted proliferation of these cells, significantly induced the secretion of proinflammatory cytokines (TNF-α and IL-6) and chemokines (RANTES and MIP-1α) and enhanced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nitric oxide (NO). PNE-P1 also markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrate that pine nuts Pinus koraiensis contain a complex of water-soluble plant cell wall polysaccharides, which can stimulate innate immunity by potentiating macrophage function.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Sarang Cho
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia.
| | - Seong Cheol Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Doo Jin Choi
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Jin Ree
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Jisun Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea; Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
54
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
55
|
Kobayashi M, Numakura K, Hatakeyama S, Ishida T, Koizumi A, Tadachi K, Igarashi R, Takayama K, Muto Y, Sekine Y, Sobu R, Sasagawa H, Akashi H, Kashima S, Yamamoto R, Nara T, Saito M, Narita S, Ohyama C, Habuchi T. Real clinical outcomes of nivolumab plus ipilimumab for renal cell carcinoma in patients over 75 years old. Int J Clin Oncol 2023; 28:1530-1537. [PMID: 37552353 DOI: 10.1007/s10147-023-02394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Although nivolumab plus ipilimumab is the standard treatment for metastatic renal cell carcinoma (RCC), its efficacy and safety in older patients remain unclear. Therefore, this study aimed to assess the clinical outcomes of nivolumab plus ipilimumab for metastatic RCC in patients aged ≥ 75 years. METHODS We enrolled 120 patients with metastatic RCC treated with nivolumab plus ipilimumab from August 2015 to January 2023. Objective response rates (ORRs) were compared between patients aged < 75 and ≥ 75 years. Progression-free survival (PFS), overall survival (OS), and adverse events were compared between the groups. Adverse events were evaluated according to the Response Evaluation Criteria in Solid Tumors 1.1. RESULTS Among the patients, 57 and 63 were classified as intermediate and poor risk, respectively, and one could not be classified. The median follow-up duration after the initiation of treatment was 16 months. The patient characteristics between the groups, except for age, were not significantly different. Intergroup differences in ORR (42% vs. 40%; p = 0.818), PFS (HR: 0.820, 95% CI 0.455-1.479; p = 0.510), and median OS (HR: 1.492, 95% CI 0.737-3.020; p = 0.267) were not significant. The incidence of adverse events (50% vs. 67%; p = 0.111) and nivolumab plus ipilimumab discontinuation due to adverse events was not significantly different between the groups (14% vs. 13%; p = 0.877). CONCLUSIONS The effectiveness of nivolumab plus ipilimumab was comparable between patients with metastatic RCC aged < 75 and those ≥ 75 years with respect to their ORRs, PFS, OS, and adverse event rates.
Collapse
Affiliation(s)
- Mizuki Kobayashi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshiya Ishida
- Department of Urology, Akita City Hospital, Akita, Japan
| | - Atsushi Koizumi
- Department of Urology, Japanese Red Cross Hospital Akita, Akita, Japan
| | - Kazuki Tadachi
- Department of Urology, Iwate Prefectural Isawa Hospital, Oshu, Japan
| | - Ryoma Igarashi
- Department of Urology, Hiraka General Hospital, Yokote, Japan
| | | | - Yumina Muto
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuya Sekine
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryuta Sobu
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hajime Sasagawa
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita, Japan
| | - Soki Kashima
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryohei Yamamoto
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Taketoshi Nara
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Mitsuru Saito
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
56
|
Risemberg EL, Smeekens JM, Cisneros MCC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to peanut-induced oral anaphylaxis in CC027 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557467. [PMID: 37745496 PMCID: PMC10515941 DOI: 10.1101/2023.09.13.557467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L. Risemberg
- Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill
- Department of Genetics, UNC Chapel Hill
| | - Johanna M. Smeekens
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Marta C. Cruz Cisneros
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | - Brea K. Hampton
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | | | | | | | - Kelly Orgel
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Ginger D. Shaw
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | | | - A. Wesley Burks
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - William Valdar
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | - Michael D. Kulis
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | | |
Collapse
|
57
|
Si Y, Wu W, Xue X, Sun X, Qin Y, Li Y, Qiu C, Li Y, Zhuo Z, Mi Y, Zheng P. The evolution of SARS-CoV-2 and the COVID-19 pandemic. PeerJ 2023; 11:e15990. [PMID: 37701824 PMCID: PMC10493083 DOI: 10.7717/peerj.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Scientists have made great efforts to understand the evolution of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) to provide crucial information to public health experts on strategies to control this viral pathogen. The pandemic of the coronavirus disease that began in 2019, COVID-19, lasted nearly three years, and nearly all countries have set different epidemic prevention policies for this virus. The continuous evolution of SARS-CoV-2 alters its pathogenicity and infectivity in human hosts, thus the policy and treatments have been continually adjusted. Based on our previous study on the dynamics of binding ability prediction between the COVID-19 spike protein and human ACE2, the present study mined over 10 million sequences and epidemiological data of SARS-CoV-2 during 2020-2022 to understand the evolutionary path of SARS-CoV-2. We analyzed and predicted the mutation rates of the whole genome and main proteins of SARS-CoV-2 from different populations to understand the adaptive relationship between humans and COVID-19. Our study identified a correlation of the mutation rates from each protein of SARS-CoV-2 and various human populations. Overall, this analysis provides a scientific basis for developing data-driven strategies to confront human pathogens.
Collapse
Affiliation(s)
- Yuanfang Si
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Wu
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Qin
- School of Basic Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunjing Qiu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ziran Zhuo
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
58
|
Mettelman RC, Souquette A, Van de Velde LA, Vegesana K, Allen EK, Kackos CM, Trifkovic S, DeBeauchamp J, Wilson TL, St James DG, Menon SS, Wood T, Jelley L, Webby RJ, Huang QS, Thomas PG. Baseline innate and T cell populations are correlates of protection against symptomatic influenza virus infection independent of serology. Nat Immunol 2023; 24:1511-1526. [PMID: 37592015 PMCID: PMC10566627 DOI: 10.1038/s41590-023-01590-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lee-Ann Van de Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kasi Vegesana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanja Trifkovic
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Deryn G St James
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Smrithi S Menon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy Wood
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand
| | - Lauren Jelley
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Q Sue Huang
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
59
|
Temba GS, Vadaq N, Kullaya V, Pecht T, Lionetti P, Cavalieri D, Schultze JL, Kavishe R, Joosten LAB, van der Ven AJ, Mmbaga BT, Netea MG, de Mast Q. Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors. eLife 2023; 12:e82297. [PMID: 37555575 PMCID: PMC10473835 DOI: 10.7554/elife.82297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/08/2023] [Indexed: 08/10/2023] Open
Abstract
Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing African population and the comparison with populations outside Africa could provide insight in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of environmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we examined differences in the inflammatory proteome in healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/β-catenin signalling pathway and higher concentrations of different metabolic regulators such as 4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabolites were identified as an important driver of variation in inflammation-related molecules, emphasizing the potential importance of lifestyle changes. These findings endorse the importance of the current dietary transition and the inclusion of underrepresented populations in systems immunology studies.
Collapse
Affiliation(s)
- Godfrey S Temba
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
| | - Vesla Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical CenterMoshiUnited Republic of Tanzania
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Paolo Lionetti
- Departement NEUROFARBA, University of Florence – Gastroenterology and Nutrition Unit, Meyer Children's HospitalFlorenceItaly
| | | | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of BonnBonnGermany
| | - Reginald Kavishe
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
| | - Leo AB Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
| | - Andre J van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical CenterMoshiUnited Republic of Tanzania
- Department of Paediatrics, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
- Department of Immunology and Metabolism, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
| |
Collapse
|
60
|
Maasch JRMA, Torres MDT, Melo MCR, de la Fuente-Nunez C. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 2023; 31:1260-1274.e6. [PMID: 37516110 PMCID: PMC11625410 DOI: 10.1016/j.chom.2023.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides encrypted within extinct and extant human proteins, we introduce the panCleave random forest model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-specific cleavage site classifiers for three modern human caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable membrane permeabilization. Additionally, representative modern and archaic protein fragments showed anti-infective efficacy against A. baumannii in both a skin abscess infection model and a preclinical murine thigh infection model. These results suggest that machine-learning-based encrypted peptide prospection can identify stable, nontoxic peptide antibiotics. Moreover, we establish molecular de-extinction through paleoproteome mining as a framework for antibacterial drug discovery.
Collapse
Affiliation(s)
- Jacqueline R M A Maasch
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo C R Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
61
|
Verheul MK, Nijhof KH, de Zeeuw-Brouwer ML, Duijm G, Ten Hulscher H, de Rond L, Beckers L, Eggink D, van Tol S, Reimerink J, Boer M, van Beek J, Rots N, van Binnendijk R, Buisman AM. Booster Immunization Improves Memory B Cell Responses in Older Adults Unresponsive to Primary SARS-CoV-2 Immunization. Vaccines (Basel) 2023; 11:1196. [PMID: 37515012 PMCID: PMC10384172 DOI: 10.3390/vaccines11071196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of a specific long-term immune response to SARS-CoV-2 is considered important for protection against COVID-19 infection and disease. Memory B cells, responsible for the generation of antibody-producing plasmablasts upon a new antigen encounter, play an important role in this process. Therefore, the induction of memory B cell responses after primary and booster SARS-CoV-2 immunizations was investigated in the general population with an emphasis on older adults. Participants, 20-99 years of age, due to receive the mRNA-1273 or BNT162b2 SARS-CoV-2 vaccine were included in the current study. Specific memory B cells were determined by ex vivo ELISpot assays. In a subset of participants, antibody levels, avidity, and virus neutralization capacity were compared to memory B cell responses. Memory B cells specific for both Spike S1 and receptor-binding domain (RBD) were detected in the majority of participants following the primary immunization series. However, a proportion of predominantly older adults showed low frequencies of specific memory B cells. Booster vaccination resulted in a large increase in the frequencies of S1- and RBD-specific memory B cells also for those in which low memory B cell frequencies were detected after the primary series. These data show that booster immunization is important for the generation of a memory B cell response, as a subset of older adults shows a suboptimal response to the primary SARS-CoV-2 immunization series. It is anticipated that these memory B cells will play a significant role in the immune response following viral re-exposure.
Collapse
Affiliation(s)
- Marije K Verheul
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Kim H Nijhof
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Geraly Duijm
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Hinke Ten Hulscher
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lisa Beckers
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Dirk Eggink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sophie van Tol
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Johan Reimerink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi Boer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Josine van Beek
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Nynke Rots
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Rob van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
62
|
Chowdhury R, Taguchi AT, Kelbauskas L, Stafford P, Diehnelt C, Zhao ZG, Williamson PC, Green V, Woodbury NW. Modeling the sequence dependence of differential antibody binding in the immune response to infectious disease. PLoS Comput Biol 2023; 19:e1010773. [PMID: 37339137 DOI: 10.1371/journal.pcbi.1010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
Past studies have shown that incubation of human serum samples on high density peptide arrays followed by measurement of total antibody bound to each peptide sequence allows detection and discrimination of humoral immune responses to a variety of infectious diseases. This is true even though these arrays consist of peptides with near-random amino acid sequences that were not designed to mimic biological antigens. This "immunosignature" approach, is based on a statistical evaluation of the binding pattern for each sample but it ignores the information contained in the amino acid sequences that the antibodies are binding to. Here, similar array-based antibody profiles are instead used to train a neural network to model the sequence dependence of molecular recognition involved in the immune response of each sample. The binding profiles used resulted from incubating serum from 5 infectious disease cohorts (Hepatitis B and C, Dengue Fever, West Nile Virus and Chagas disease) and an uninfected cohort with 122,926 peptide sequences on an array. These sequences were selected quasi-randomly to represent an even but sparse sample of the entire possible combinatorial sequence space (~1012). This very sparse sampling of combinatorial sequence space was sufficient to capture a statistically accurate representation of the humoral immune response across the entire space. Processing array data using the neural network not only captures the disease-specific sequence-binding information but aggregates binding information with respect to sequence, removing sequence-independent noise and improving the accuracy of array-based classification of disease compared with the raw binding data. Because the neural network model is trained on all samples simultaneously, a highly condensed representation of the differential information between samples resides in the output layer of the model, and the column vectors from this layer can be used to represent each sample for classification or unsupervised clustering applications.
Collapse
Affiliation(s)
- Robayet Chowdhury
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Laimonas Kelbauskas
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | - Phillip Stafford
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | - Chris Diehnelt
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | - Zhan-Gong Zhao
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | | | - Valerie Green
- Creative Testing Solutions, Tempe, Arizona, United States of America
| | - Neal W Woodbury
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
63
|
Gao J, Luo Y, Li H, Zhao Y, Zhao J, Han X, Han J, Lin H, Qian F. Deep Immunophenotyping of Human Whole Blood by Standardized Multi-parametric Flow Cytometry Analyses. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:309-328. [PMID: 37325713 PMCID: PMC10260734 DOI: 10.1007/s43657-022-00092-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Immunophenotyping is proving crucial to understanding the role of the immune system in health and disease. High-throughput flow cytometry has been used extensively to reveal changes in immune cell composition and function at the single-cell level. Here, we describe six optimized 11-color flow cytometry panels for deep immunophenotyping of human whole blood. A total of 51 surface antibodies, which are readily available and validated, were selected to identify the key immune cell populations and evaluate their functional state in a single assay. The gating strategies for effective flow cytometry data analysis are included in the protocol. To ensure data reproducibility, we provide detailed procedures in three parts, including (1) instrument characterization and detector gain optimization, (2) antibody titration and sample staining, and (3) data acquisition and quality checks. This standardized approach has been applied to a variety of donors for a better understanding of the complexity of the human immune system. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00092-9.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yali Luo
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Helian Li
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yiran Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jialin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuling Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jingxuan Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Huiqin Lin
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Immunophenome, International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| |
Collapse
|
64
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
65
|
Abstract
Autoimmune diseases display a high degree of comorbidity within individuals and families, suggesting shared risk factors. Over the past 15 years, genome-wide association studies have established the polygenic basis of these common conditions and revealed widespread sharing of genetic effects, indicative of a shared immunopathology. Despite ongoing challenges in determining the precise genes and molecular consequences of these risk variants, functional experiments and integration with multimodal genomic data are providing valuable insights into key immune cells and pathways driving these diseases, with potential therapeutic implications. Moreover, genetic studies of ancient populations are shedding light on the contribution of pathogen-driven selection pressures to the increased prevalence of autoimmune disease. This Review summarizes the current understanding of autoimmune disease genetics, including shared effects, mechanisms, and evolutionary origins.
Collapse
Affiliation(s)
- Adil Harroud
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- The Neuro (Montreal Neurological Institute and Hospital), McGill University, Montréal, Quebec, Canada
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| |
Collapse
|
66
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
67
|
Mulè MP, Martins AJ, Cheung F, Farmer R, Sellers B, Quiel JA, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg PL, Tsang JS. Multiscale integration of human and single-cell variations reveals unadjuvanted vaccine high responders are naturally adjuvanted. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.20.23287474. [PMID: 37090674 PMCID: PMC10120791 DOI: 10.1101/2023.03.20.23287474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Advances in multimodal single cell analysis can empower high-resolution dissection of human vaccination responses. The resulting data capture multiple layers of biological variations, including molecular and cellular states, vaccine formulations, inter- and intra-subject differences, and responses unfolding over time. Transforming such data into biological insight remains a major challenge. Here we present a systematic framework applied to multimodal single cell data obtained before and after influenza vaccination without adjuvants or pandemic H5N1 vaccination with the AS03 adjuvant. Our approach pinpoints responses shared across or unique to specific cell types and identifies adjuvant specific signatures, including pro-survival transcriptional states in B lymphocytes that emerged one day after vaccination. We also reveal that high antibody responders to the unadjuvanted vaccine have a distinct baseline involving a rewired network of cell type specific transcriptional states. Remarkably, the status of certain innate immune cells in this network in high responders of the unadjuvanted vaccine appear "naturally adjuvanted": they resemble phenotypes induced early in the same cells only by vaccination with AS03. Furthermore, these cell subsets have elevated frequency in the blood at baseline and increased cell-intrinsic phospho-signaling responses after LPS stimulation ex vivo in high compared to low responders. Our findings identify how variation in the status of multiple immune cell types at baseline may drive robust differences in innate and adaptive responses to vaccination and thus open new avenues for vaccine development and immune response engineering in humans.
Collapse
Affiliation(s)
- Matthew P. Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Brian Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juan A. Quiel
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Arjun Jain
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Cell Signaling and Immunity Section, NIAID, NIH, Bethesda, MD, USA
| | - John S. Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
68
|
Corcoran M, Chernyshev M, Mandolesi M, Narang S, Kaduk M, Ye K, Sundling C, Färnert A, Kreslavsky T, Bernhardsson C, Larena M, Jakobsson M, Karlsson Hedestam GB. Archaic humans have contributed to large-scale variation in modern human T cell receptor genes. Immunity 2023; 56:635-652.e6. [PMID: 36796364 DOI: 10.1016/j.immuni.2023.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.
Collapse
Affiliation(s)
- Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mateusz Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kewei Ye
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Färnert
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Taras Kreslavsky
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Maximilian Larena
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | | |
Collapse
|
69
|
Carlberg C. Nutrigenomics in the context of evolution. Redox Biol 2023; 62:102656. [PMID: 36933390 PMCID: PMC10036735 DOI: 10.1016/j.redox.2023.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Nutrigenomics describes the interaction between nutrients and our genome. Since the origin of our species most of these nutrient-gene communication pathways have not changed. However, our genome experienced over the past 50,000 years a number of evolutionary pressures, which are based on the migration to new environments concerning geography and climate, the transition from hunter-gatherers to farmers including the zoonotic transfer of many pathogenic microbes and the rather recent change of societies to a preferentially sedentary lifestyle and the dominance of Western diet. Human populations responded to these challenges not only by specific anthropometric adaptations, such as skin color and body stature, but also through diversity in dietary intake and different resistance to complex diseases like the metabolic syndrome, cancer and immune disorders. The genetic basis of this adaptation process has been investigated by whole genome genotyping and sequencing including that of DNA extracted from ancient bones. In addition to genomic changes, also the programming of epigenomes in pre- and postnatal phases of life has an important contribution to the response to environmental changes. Thus, insight into the variation of our (epi)genome in the context of our individual's risk for developing complex diseases, helps to understand the evolutionary basis how and why we become ill. This review will discuss the relation of diet, modern environment and our (epi)genome including aspects of redox biology. This has numerous implications for the interpretation of the risks for disease and their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Juliana Tuwima 10, PL-10748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
70
|
Lipsa D, Ruiz Moreno A, Desmet C, Bianchi I, Geiss O, Colpo P, Bremer-Hoffmann S. Inter-Individual Variations: A Challenge for the Standardisation of Complement Activation Assays. Int J Nanomedicine 2023; 18:711-720. [PMID: 36816333 PMCID: PMC9930575 DOI: 10.2147/ijn.s384184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 02/13/2023] Open
Abstract
Introduction The role of the human immune system in pathologic responses to chemicals including nanomaterials was identified as a gap in current hazard assessments. However, the complexity of the human immune system as well as interspecies variations make the development of predictive toxicity tests challenging. In the present study, we have analysed to what extent fluctuations of the complement system of different individuals will have an impact on the standardisation of immunological tests. Methods We treated commercially available pooled sera (PS) from healthy males, individual sera from healthy donors and from patients suffering from cancer, immunodeficiency and allergies with small molecules and liposomes. Changes of iC3b protein levels measured in enzyme-linked immunosorbent assays served as biomarker for complement activation. Results The level of complement activation in PS differed significantly from responses of individual donors (p < 0.01). Only seven out of 32 investigated sera from healthy donors responded similarly to the pooled serum. This variability was even more remarkable when investigating the effect of liposomes on the complement activation in sera from donors with pre-existing pathologies. Neither the 26 sera of donors with allergies nor sera of 16 donors with immunodeficiency responded similar to the PS of healthy donors. Allergy sufferers showed an increase in iC3b levels of 4.16-fold changes when compared to PS treated with liposomes. Discussion Our studies demonstrate that the use of pooled serum can lead to an over- or under-estimation of immunological response in particular for individuals with pre-existing pathologies. This is of high relevance when developing medical products based on nanomaterials and asks for a review of the current practice to use PS from healthy donors for the prediction of immunological effects of drugs in patients. A better understanding of individual toxicological responses to xenobiotics should be an essential part in safety assessments.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ana Ruiz Moreno
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Bianchi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Otmar Geiss
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Pascal Colpo
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Susanne Bremer-Hoffmann
- European Commission, Joint Research Centre (JRC), Ispra, Italy,Correspondence: Susanne Bremer-Hoffmann, Email
| |
Collapse
|
71
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
72
|
Michaels M, Madsen KL. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol 2023; 16:72-85. [PMID: 36642380 DOI: 10.1016/j.mucimm.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Margret Michaels
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Karen L Madsen
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; IMPACTT: Integrated Microbiome Platforms for Advancing Causation Testing & Translation, Edmonton, Alberta, Canada.
| |
Collapse
|
73
|
Pushparaj P, Nicoletto A, Sheward DJ, Das H, Castro Dopico X, Perez Vidakovics L, Hanke L, Chernyshev M, Narang S, Kim S, Fischbach J, Ekström S, McInerney G, Hällberg BM, Murrell B, Corcoran M, Karlsson Hedestam GB. Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity 2023; 56:193-206.e7. [PMID: 36574772 PMCID: PMC9742198 DOI: 10.1016/j.immuni.2022.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrea Nicoletto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Ekström
- Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
74
|
Pennell M, Rodriguez OL, Watson CT, Greiff V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol 2023; 44:7-21. [PMID: 36470826 DOI: 10.1016/j.it.2022.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
75
|
Jaschke NP, Pählig S, Sinha A, Adolph TE, Colunga ML, Hofmann M, Wang A, Thiele S, Schwärzler J, Kleymann A, Gentzel M, Tilg H, Wielockx B, Hofbauer LC, Rauner M, Göbel A, Rachner TD. Dickkopf1 fuels inflammatory cytokine responses. Commun Biol 2022; 5:1391. [PMID: 36539532 PMCID: PMC9765382 DOI: 10.1038/s42003-022-04368-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Many human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors. DKK1-controlled inflammation derives from cell-autonomous mechanisms, which involve SOCS3-restricted, nuclear RelA (p65) activity. We translate these findings to humans by showing that genetic DKK1 variants are linked to elevated cytokine production across healthy populations. Finally, we find that genetic deletion of DKK1 but not pharmacological neutralization of soluble DKK1 ameliorates inflammation and disease trajectories in a mouse model of endotoxemia. Collectively, our study identifies a cell-autonomous function of DKK1 in the control of the inflammatory response, which is conserved between malignant and non-malignant cells. Additional studies are required to mechanistically dissect cellular DKK1 trafficking and signaling pathways.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Sophie Pählig
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anupam Sinha
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Ledesma Colunga
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Maura Hofmann
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andrew Wang
- Department of Medicine (Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sylvia Thiele
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Kleymann
- Division of Rheumatology, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Marc Gentzel
- Molecular Analysis - Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
76
|
Caporali S, Butera A, Amelio I. BAP1 in cancer: epigenetic stability and genome integrity. Discov Oncol 2022; 13:117. [PMID: 36318367 PMCID: PMC9626716 DOI: 10.1007/s12672-022-00579-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations in BAP1 have been identified in a hereditary cancer predisposition syndrome and in sporadic tumours. Individuals carrying familiar BAP1 monoallelic mutations display hypersusceptibility to exposure-associated cancers, such as asbestos-driven mesothelioma, thus BAP1 status has been postulated to participate in gene-environment interaction. Intriguingly, BAP1 functions display also a high degree of tissue dependency, associated to a peculiar cancer spectrum and cell types of specific functions. Mechanistically, BAP1 functions as an ubiquitin carboxy-terminal hydrolase (UCH) and controls regulatory ubiquitination of histones as well as degradative ubiquitination of a range of protein substrates. In this article we provide an overview of the most relevant findings on BAP1, underpinning its tissue specific tumour suppressor function. We also discuss the importance of its epigenetic role versus the control of protein stability in the regulation of genomic integrity.
Collapse
Affiliation(s)
- Sabrina Caporali
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, 78464, Constance, Germany
| | - Alessio Butera
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, 78464, Constance, Germany
| | - Ivano Amelio
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, 78464, Constance, Germany.
| |
Collapse
|
77
|
Cevirgel A, Shetty SA, Vos M, Nanlohy NM, Beckers L, Bijvank E, Rots N, van Beek J, Buisman A, van Baarle D. Identification of aging-associated immunotypes and immune stability as indicators of post-vaccination immune activation. Aging Cell 2022; 21:e13703. [PMID: 36081314 PMCID: PMC9577949 DOI: 10.1111/acel.13703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 01/25/2023] Open
Abstract
Immunosenescence describes immune dysfunction observed in older individuals. To identify individuals at-risk for immune dysfunction, it is crucial to understand the diverse immune phenotypes and their intrinsic functional capabilities. We investigated immune cell subsets and variation in the aging population. We observed that inter-individual immune variation was associated with age and cytomegalovirus seropositivity. Based on the similarities of immune subset composition among individuals, we identified nine immunotypes that displayed different aging-associated immune signatures, which explained inter-individual variation better than age. Additionally, we correlated the immune subset composition of individuals over approximately a year as a measure of stability of immune parameters. Immune stability was significantly lower in immunotypes that contained aging-associated immune subsets and correlated with a circulating CD38 + CD4+ T follicular helper cell increase 7 days after influenza vaccination. In conclusion, immune stability is a feature of immunotypes and could be a potential indicator of post-vaccination cellular kinetics.
Collapse
Affiliation(s)
- Alper Cevirgel
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sudarshan A. Shetty
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| | - Martijn Vos
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Nening M. Nanlohy
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Lisa Beckers
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Elske Bijvank
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Nynke Rots
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Josine van Beek
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Anne‐Marie Buisman
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
78
|
Tieu S, Charchoglyan A, Wagter-Lesperance L, Karimi K, Bridle BW, Karrow NA, Mallard BA. Immunoceuticals: Harnessing Their Immunomodulatory Potential to Promote Health and Wellness. Nutrients 2022; 14:4075. [PMID: 36235727 PMCID: PMC9571036 DOI: 10.3390/nu14194075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
Knowledge that certain nutraceuticals can modulate the immune system is not new. These naturally occurring compounds are known as immunoceuticals, which is a novel term that refers to products and systems that naturally improve an individual's immuno-competence. Examples of immunoceuticals include vitamin D3, mushroom glycans, flavonols, quercetin, omega-3 fatty acids, carotenoids, and micronutrients (e.g., zinc and selenium), to name a few. The immune system is a complex and highly intricate system comprising molecules, cells, tissues, and organs that are regulated by many different genetic and environmental factors. There are instances, such as pathological conditions, in which a normal immune response is suboptimal or inappropriate and thus augmentation or tuning of the immune response by immunoceuticals may be desired. With infectious diseases, cancers, autoimmune disorders, inflammatory conditions, and allergies on the rise in both humans and animals, the importance of the use of immunoceuticals to prevent, treat, or augment the treatment of these conditions is becoming more evident as a natural and often economical approach to support wellness. The global nutraceuticals market, which includes immunoceuticals, is a multi-billion-dollar industry, with a market size value of USD 454.55 billion in 2021, which is expected to reach USD 991.09 billion by 2030. This review will provide an overview of the immune system, the importance of immunomodulation, and defining and testing for immunocompetence, followed by a discussion of several key immunoceuticals with clinically proven and evidence-based immunomodulatory properties.
Collapse
Affiliation(s)
- Sophie Tieu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauri Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
79
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
80
|
Abstract
Background: The long coronavirus disease 2019 (COVID-19) syndrome includes a group of patients who, after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit lingering mild-to-moderate symptoms and develop medical complications that can have lasting health problems. Objective: The purpose of this report was to examine the current body of evidence that deals with the relationship of COVID-19 infection with the long COVID syndrome to define the possible immunologic mechanisms involved in the pathogenesis of long COVID and to describe potential strategies for the diagnosis and clinical management of the condition. Methods: Extensive research was conducted in medical literature data bases by applying terms such as long COVID, post-COVID-19 condition, pathogenesis of long COVID, management of the long COVID syndrome. Results: The post-COVID conditions, a more recent and less anxiety-inducing term for the patient than long COVID or "long haul," is an umbrella term for a wide range of physical and mental health symptoms similar to those seen in patients with the myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), experienced by some patients and are present ≥ 4 weeks after SARS-CoV-2 infection. Although the precise reason why long COVID develops is unknown, one of the major causes is thought to be related to chronic inflammation with overproduction of inflammatory cytokines responsible for the symptoms of the disorder. Conclusion: Long COVID is a growing burden for millions of patients, health-care providers, and global health-care systems, and is a particular challenge for the allergist/immunologist. Many survivors of COVID-19 struggle with multiple symptoms, increased disability, reduced function, and poor quality of life. The allergist/immunologist can assist the total health-care team's efforts in providing a comprehensive and coordinated approach to the management of these patients by promoting comprehensive vaccination and rehabilitation and social services that focus on improving physical, mental, and social well-being, and by establishing partnerships with specialists and other health-care professionals who can provide behavioral, lifestyle, and integrative approaches that may have much to offer in helping patients cope with their symptoms.
Collapse
Affiliation(s)
- Joseph A. Bellanti
- From the Departments of Pediatrics and
- Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C.; and
- the International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, D.C
| |
Collapse
|
81
|
Li D, Calderone R, Nsouli TM, Reznikov E, Bellanti JA. Salivary and serum IgA and IgG responses to SARS-CoV-2-spike protein following SARS-CoV-2 infection and after immunization with COVID-19 vaccines. Allergy Asthma Proc 2022; 43:419-430. [PMID: 36065108 PMCID: PMC9465644 DOI: 10.2500/aap.2022.43.220045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Secretory immunoglobulin A (sIgA) plays an important role in antiviral protective immunity. Although salivary testing has been used for many viral infections, including severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS), its use has not yet been well established with the SARS coronavirus 2 (SARS-CoV-2). Quantification of salivary IgA and IgG antibodies can elucidate mucosal and systemic immune responses after natural infection or vaccination. Here, we report the development and validation of a rapid enzyme-linked immunosorbent assay (ELISA) for anti-SARS-CoV-2 salivary IgA and serum IgG antibodies, and present quantitative results for immunized subjects both prior to or following COVID-19 infections. Objective: Total and serum SARS-CoV-2 spike-specific IgG responses were compared with salivary spike-specific IgA and IgG responses in samples obtained from patients recently infected with SARS-CoV-2 and from subjects recently immunized with COVID-19 vaccines. Methods: A total of 52 paired saliva and serum samples were collected from 26 study participants: 7 subjects after COVID-19 infection and 19 subjects who were uninfected. The ELISA results from these samples were compared with five prepandemic control serum samples. Total IgG and SARS-CoV-2 spike-specific IgG in the serum samples from the subjects who were infected and vaccinated were also measured in a commercial laboratory with an enzyme immunoassay. Results: A wide variation in antibody responses was seen in salivary and serum samples measured by both methods. Three groups of serum total and IgG spike-specific SARS-CoV-2 antibody responses were observed: (1) low, (2) intermediate, and (3) high antibody responders. A correlational analysis of salivary IgA (sIgA) responses with serum IgG concentrations showed a statistical correlation in the low and intermediate antibody responder groups but not in the high group (which we believe was a result of saturation). Conclusion: These preliminary findings suggest measuring salivary and serum IgG and IgA merit further investigation as markers of current or recent SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Dongmei Li
- From the Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C
| | - Richard Calderone
- From the Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C
| | - Talal M. Nsouli
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| | - Elizabeth Reznikov
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and ,Department of Medicine, Georgetown University Medical Center, Washington, D.C
| | - Joseph A. Bellanti
- From the Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C.; ,Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| |
Collapse
|
82
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
83
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|
84
|
O'Connor D. The omics strategy: the use of systems vaccinology to characterise immune responses to childhood immunisation. Expert Rev Vaccines 2022; 21:1205-1214. [PMID: 35786291 DOI: 10.1080/14760584.2022.2093193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccines have had a transformative impact on child health. Despite this impact the immunological processes involved in protective responses are not entirely understood and vaccine development has been largely empirical. Recent technological advances offer the opportunity to reveal the immunology underlying vaccine response at an unprecedented resolution. These data could revolutionise the way vaccines are developed and tested and further augment their role in securing the health of children around the world. AREAS COVERED Systems level information and the tools are now being deployed by vaccinologists at all stages of the vaccine development pathway; however, this review will specifically describe some of the key findings that have be gleaned from multi-omics datasets collected in the context of childhood immunisation. EXPERT OPINION Despite the success of vaccines there remains hard-to-target pathogens, refractory to current vaccination strategies. Moreover, zoonotic diseases with pandemic potential are a threat to global health, as recently illustrated by COVID-19. Systems vaccinology holds a great deal of promise in revealing a greater understanding of vaccine responses and consequently modernising vaccinology. However, there is a need for future studies -particularly in vulnerable populations that are targets for vaccination programmes - if this potential is to be fulfilled.
Collapse
Affiliation(s)
- Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
85
|
Troisi A, Di Cave D, Carola V, Nanni RC. The behavioral immune system in action: Psychological correlates of pathogen disgust sensitivity in healthcare professionals working in a COVID-19 hospital. Physiol Behav 2022; 251:113821. [PMID: 35461836 PMCID: PMC9021045 DOI: 10.1016/j.physbeh.2022.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
The behavioral immune system includes a set of proactive mechanisms that inhibit contact with pathogens in the first place. These mechanisms offer a sort of psychological and behavioral prophylaxis against infection. The aim of this study was to assess the functionality of the behavioral immune system under conditions of strong ecological validity. Our hypothesis was that the emotional and more primitive component of the behavioral immune system (i.e. pathogen disgust sensitivity) acts as a powerful predictor of fear of infection. The sample was made up of 101 healthcare professionals working in a COVID-19 hospital when vaccination was not yet available. We conducted a hierarchical regression analysis to assess the role of germ-related disgust in modulating levels of fear. After controlling for the significant effects of depressive symptoms and exposure to people with a confirmed diagnosis of COVID-19, we found that fear of infection was more intense in those healthcare workers who reported higher levels of germ-related disgust. Fear of infection was not related to perceived infectability, an individual variable informed by more rational cognitive appraisals. These findings show that, even in healthcare workers who can take advantage of their professional knowledge and acquired skills for rational appraisals, the most primitive component of the behavioral immune system still plays a major role in eliciting fear of COVID-19. It is likely that the psychological reactions elicited by the behavioral immune system promote preventive health behaviors in modern environments as well.
Collapse
Affiliation(s)
- Alfonso Troisi
- Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, Rome 00133, Italy.
| | - David Di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology, University of Rome La Sapienza, Rome, Italy
| | | |
Collapse
|
86
|
Fiocchi C, Iliopoulos D. Inflammatory Bowel Disease Therapy: Beyond the Immunome. Front Immunol 2022; 13:864762. [PMID: 35615360 PMCID: PMC9124778 DOI: 10.3389/fimmu.2022.864762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Claudio Fiocchi
- Department of Inflammation & Immunity, Lerner Research Institute Cleveland, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Claudio Fiocchi,
| | | |
Collapse
|
87
|
Baron F, Canti L, Ariën KK, Kemlin D, Desombere I, Gerbaux M, Pannus P, Beguin Y, Marchant A, Humblet-Baron S. Insights From Early Clinical Trials Assessing Response to mRNA SARS-CoV-2 Vaccination in Immunocompromised Patients. Front Immunol 2022; 13:827242. [PMID: 35309332 PMCID: PMC8931657 DOI: 10.3389/fimmu.2022.827242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.
Collapse
Affiliation(s)
- Frédéric Baron
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
- Department of Medicine, Division of Hematology, Centre Hospitalier Universitaire (CHU) of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
| | - Kevin K. Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Kemlin
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Desombere
- Scientific Directorate Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Margaux Gerbaux
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Pieter Pannus
- Scientific Directorate Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
- Department of Medicine, Division of Hematology, Centre Hospitalier Universitaire (CHU) of Liège, Liège, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
88
|
Evaluation of circulating leucocyte populations both in subjects with previous SARS-COV-2 infection and in healthy subjects after vaccination. J Immunol Methods 2022; 502:113230. [PMID: 35114198 PMCID: PMC8802555 DOI: 10.1016/j.jim.2022.113230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
Innate immune mechanisms are central players in response to the binding of pathogens to pattern-recognition receptors providing a crucial initial block on viral replication. Moreover, innate immune response mobilizes cells of the cellular-mediated immune system, which develop into effector cells that promote viral clearance. Here, we observed circulating leukocyte T cell response in healthy subjects, COVID-19 infected, and in healthy vaccinated subjects. We found a significant CD8+ T cells (p < 0,05) decrease and an augmented CD4+/CD8+ ratio (p < 0,05) in COVID-19 infected group compared with vaccinated subjects. In addition, healthy vaccinated subjects have a significant increased expression of CD8+ T cells, and a reduction of CD4+/CD8+ ratio with respect to subjects previously COVID-19 infected. Central Memory and Terminal Effector Memory cells (TEMRA) increased after vaccine but not among groups.
Collapse
|
89
|
Sex, Allergic Diseases and Omalizumab. Biomedicines 2022; 10:biomedicines10020328. [PMID: 35203537 PMCID: PMC8869622 DOI: 10.3390/biomedicines10020328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Gender differences are increasingly emerging in every area of medicine including drug therapy; however, specific gender-targeted studies are infrequent. Sex is a fundamental variable, which cannot be neglected. When optimizing therapies, gender pharmacology must always be considered in order to improve the effectiveness and safety of the use of drugs. Knowledge of gender differences promotes appropriate use of therapies and greater health protection for both genders. Further development of gender research would make it possible to report on differences in the assimilation and response of the female organism as compared to the male, in order to identify potential risks and benefits that can be found between genders. Furthermore, a better understanding of sex/gender-related influences, with regard to pharmacological activity, would allow the development of personalized “tailor-made” medicines. Here, we summarize the state of knowledge on the role of sex in several allergic diseases and their treatment with omalizumab, the first biologic drug authorized for use in the field of allergology.
Collapse
|
90
|
Parker J, O’Brien C, Hawrelak J, Gersh FL. Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031336. [PMID: 35162359 PMCID: PMC8835454 DOI: 10.3390/ijerph19031336] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is increasingly recognized as a complex metabolic disorder that manifests in genetically susceptible women following a range of negative exposures to nutritional and environmental factors related to contemporary lifestyle. The hypothesis that PCOS phenotypes are derived from a mismatch between ancient genetic survival mechanisms and modern lifestyle practices is supported by a diversity of research findings. The proposed evolutionary model of the pathogenesis of PCOS incorporates evidence related to evolutionary theory, genetic studies, in utero developmental epigenetic programming, transgenerational inheritance, metabolic features including insulin resistance, obesity and the apparent paradox of lean phenotypes, reproductive effects and subfertility, the impact of the microbiome and dysbiosis, endocrine-disrupting chemical exposure, and the influence of lifestyle factors such as poor-quality diet and physical inactivity. Based on these premises, the diverse lines of research are synthesized into a composite evolutionary model of the pathogenesis of PCOS. It is hoped that this model will assist clinicians and patients to understand the importance of lifestyle interventions in the prevention and management of PCOS and provide a conceptual framework for future research. It is appreciated that this theory represents a synthesis of the current evidence and that it is expected to evolve and change over time.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2500, Australia
- Correspondence:
| | - Claire O’Brien
- Faculty of Science and Technology, University of Canberra, Bruce 2617, Australia;
| | - Jason Hawrelak
- College of Health and Medicine, University of Tasmania, Hobart 7005, Australia;
| | - Felice L. Gersh
- College of Medicine, University of Arizona, Tucson, AZ 85004, USA;
| |
Collapse
|
91
|
Vacca F, Le Gros G. Tissue-specific immunity in helminth infections. Mucosal Immunol 2022; 15:1212-1223. [PMID: 35680972 PMCID: PMC9178325 DOI: 10.1038/s41385-022-00531-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
A characteristic feature of host responses to helminth infections is the development of profound systemic and tissue-localised Type 2 immune responses that play critical roles in immunity, tissue repair and tolerance of the parasite at tissue sites. These same Type 2 responses are also seen in the tissue-associated immune-pathologies seen in asthma, atopic dermatitis and many forms of allergies. The recent identification of new subtypes of immune cells and cytokine pathways that influence both immune and non-immune cells and tissues creates the opportunity for reviewing helminth parasite-host responses in the context of tissue specific immunity. This review focuses on the new discoveries of the cells and cytokines involved in tissue specific immune responses to helminths and how these contribute to host immunity against helminth infection and allow the host to accommodate the presence of parasites when they cannot be eliminated.
Collapse
Affiliation(s)
- Francesco Vacca
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|