51
|
Lundwall Å, Persson M, Hansson K, Jonsson M. Identification of the major rabbit and guinea pig semen coagulum proteins and description of the diversity of the REST gene locus in the mammalian clade Glires. PLoS One 2020; 15:e0240607. [PMID: 33052982 PMCID: PMC7556508 DOI: 10.1371/journal.pone.0240607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 01/22/2023] Open
Abstract
The seminal vesicle secretions of guinea pig and rabbit were analyzed for semen coagulum proteins. Using SDS-PAGE we discovered a previously not fully recognized semen coagulum protein, Svp5, in the guinea pig and a single predominant component, SVP200, in the rabbit. Potential genes of these proteins were identified in genome databases by their homology with human and murine genes. The structure of their fullength transcripts was determined using seminal vesicle cDNA and sequencing primers based on genomic sequences. Homology searching indicated that both Svp5 and SVP200 were synthesized from composite genes that were the result of merger between two genes showing homology with human SEMG2 and PI3. For a deeper understanding of the evolution of the genes, we retrieved and analyzed genome sequences from the REST gene loci, encompassing genes of semen coagulum proteins and related rapidly evolving seminal vesicle-transcribed genes, of 14 rodents and 2 lagomorphs. The analysis showed that rodents of the suborders myomorpha, hystricomorpha, and castorimorpha had unique sets of REST genes, whereas sciuromorpha seemed to be lacking such genes. It also indicated a closer relationship between myomorpha and castorimorpha than to rodents of the two other analyzed suborders. In the lagomorph species, the pika appeared to be devoid of REST genes, whereas the rabbit had a single expressed REST gene, SVP200, and two pseudogenes. The structural similarity of semen coagulum proteins in rabbit and hystricomph species suggests that they are closely related. This was also supported by other similarities at their REST gene loci, e.g. the finding of a PI3-like gene in the rabbit that also had features in common with caltrin2 of hystricomorph rodents. The homologies indicate that hystricomorpha may have separated from myomorpha and castorimorpha before the separation of hystricomorpha from lagomorpha.
Collapse
Affiliation(s)
- Åke Lundwall
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
- * E-mail:
| | - Margareta Persson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Karin Hansson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Magnus Jonsson
- Department of Translational Medicine, Section for Clinical Chemistry, Lund University, Malmö, Sweden
| |
Collapse
|
52
|
Liebers M, Gillet FX, Israel A, Pounot K, Chambon L, Chieb M, Chevalier F, Ruedas R, Favier A, Gans P, Boeri Erba E, Cobessi D, Pfannschmidt T, Blanvillain R. Nucleo-plastidic PAP8/pTAC6 couples chloroplast formation with photomorphogenesis. EMBO J 2020; 39:e104941. [PMID: 33001465 DOI: 10.15252/embj.2020104941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022] Open
Abstract
The initial greening of angiosperms involves light activation of photoreceptors that trigger photomorphogenesis, followed by the development of chloroplasts. In these semi-autonomous organelles, construction of the photosynthetic apparatus depends on the coordination of nuclear and plastid gene expression. Here, we show that the expression of PAP8, an essential subunit of the plastid-encoded RNA polymerase (PEP) in Arabidopsis thaliana, is under the control of a regulatory element recognized by the photomorphogenic factor HY5. PAP8 protein is localized and active in both plastids and the nucleus, and particularly required for the formation of late photobodies. In the pap8 albino mutant, phytochrome-mediated signalling is altered, degradation of the chloroplast development repressors PIF1/PIF3 is disrupted, HY5 is not stabilized, and the expression of the photomorphogenesis regulator GLK1 is impaired. PAP8 translocates into plastids via its targeting pre-sequence, interacts with the PEP and eventually reaches the nucleus, where it can interact with another PEP subunit pTAC12/HMR/PAP5. Since PAP8 is required for the phytochrome B-mediated signalling cascade and the reshaping of the PEP activity, it may coordinate nuclear gene expression with PEP-driven chloroplastic gene expression during chloroplast biogenesis.
Collapse
Affiliation(s)
- Monique Liebers
- CNRS, CEA, INRA, IRIG-LPCV, Univ. Grenoble-Alpes, Grenoble, France
| | | | - Abir Israel
- CNRS, CEA, INRA, IRIG-LPCV, Univ. Grenoble-Alpes, Grenoble, France
| | - Kevin Pounot
- CNRS, CEA, INRA, IRIG-LPCV, Univ. Grenoble-Alpes, Grenoble, France
| | - Louise Chambon
- CNRS, CEA, INRA, IRIG-LPCV, Univ. Grenoble-Alpes, Grenoble, France
| | - Maha Chieb
- CNRS, CEA, INRA, IRIG-LPCV, Univ. Grenoble-Alpes, Grenoble, France
| | - Fabien Chevalier
- CNRS, CEA, INRA, IRIG-LPCV, Univ. Grenoble-Alpes, Grenoble, France
| | - Rémi Ruedas
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | - Adrien Favier
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | - Pierre Gans
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | | | - David Cobessi
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | | | | |
Collapse
|
53
|
Glodowsky AP, Ruberto LA, Martorell MM, Mac Cormack WP, Levin GJ. Cold active transglutaminase from antarctic Penicillium chrysogenum: Partial purification, characterization and potential application in food technology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
54
|
Huang C, Zhong S, Park H, Jeong JH, Luo JL. A Simple and Efficient System for Producing Recombinant Human CXCL8 in Escherichia coli. J Interferon Cytokine Res 2020; 40:460-465. [PMID: 32780615 DOI: 10.1089/jir.2020.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multifunctional pro-inflammatory cytokine CXCL8 is a small peptide of 8-10 kDa in size and it functions as a monomer or dimer. CXCL8 harbors 2 disulfide bonds for its stability. Although production of the CXCL8 protein in a large quantity in both mammalian and bacterial systems has been reported, the processes are complicated and lengthy. Here, we develop a new bacterial expression system for recombinant CXCL8 and simplify the purification system to yield a high amount of protein quickly. The purified CXCL8 protein from our new system develops a crystal structure that is identical to that produced through the mammalian expression system. Thus, we have established a simple and efficient recombinant CXCL8-producing system, which can be easily operated and is suitable to those requiring a large quantity of CXCL8.
Collapse
Affiliation(s)
- Changhao Huang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - HaJeung Park
- X-ray Core Facility, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
55
|
Avissa R, Widyaningtyas ST, Bela B. Optimization of the <em> apolipoprotein B mRNA editing enzyme catalytic polypeptidelike-3G </em> (<em>APOBEC3G</em>) gene to enhance its expression in <em> Escherichia coli </em>. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.oa.202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like-3G (APOBEC3G) can abolish HIV infection by inducing lethal mutations in the HIV genome. The HIV protein virion infectivity factor (Vif) can interact with APOBEC3G protein and cause its degradation. Development of a method that can screen substances inhibiting the APOBEC3G-Vif interaction is necessary for identification of substances that potentially used in anti-HIV drug development. In order to increase expression of recombinant APOBEC3G protein that will be used in APOBEC3G-Vif interaction assay, we developed an optimized APOBEC3G gene for expression in Escherichia coli.
METHODS The gene coding APOBEC3G was codon-optimized in accordance with prokaryotic codon using DNA 2.0 software to avoid bias codons that could inhibit its expression. The APOBEC3G gene was synthesized and sub-cloned into pQE80L plasmid vector. pQE80L containing APOBEC3G was screened by polymerase chain reaction, enzyme restriction, and sequencing to verify its DNA sequence. The recombinant APOBEC3G was expressed in E. coli under isopropyl-β-D-thiogalactoside (IPTG) induction and purified by using nickel-nitrilotriacetic acid (Ni-NTA) resin.
RESULTS The synthetic gene coding APOBEC3G was successfully cloned into the pQE80L vector and could be expressed abundantly in E. coli BL21 in the presence of IPTG.
CONCLUSIONS Recombinant APOBEC3G is robustly expressed in E. coli BL21, and the APOBEC3G protein could be purified by using Ni-NTA. The molecular weight of the recombinant APOBEC3G produced is smaller than the expected value. However, the protein is predicted to be able to interact with Vif because this interaction is determined by a specific domain located on the N-terminal of APOBEC3G.
Collapse
|
56
|
Kumagai H, Kunieda T, Nakamura K, Matsumura Y, Namiki M, Kohno H, Kubo T. Developmental stage-specific distribution and phosphorylation of Mblk-1, a transcription factor involved in ecdysteroid-signaling in the honey bee brain. Sci Rep 2020; 10:8735. [PMID: 32457433 PMCID: PMC7250831 DOI: 10.1038/s41598-020-65327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
In the honey bee, the mushroom bodies (MBs), a higher-order center in insect brain, comprise interneurons termed Kenyon cells (KCs). We previously reported that Mblk-1, which encodes a transcription factor involved in ecdysteroid-signaling, is expressed preferentially in the large-type KCs (lKCs) in the pupal and adult worker brain and that phosphorylation by the Ras/MAPK pathway enhances the transcriptional activity of Mblk-1 in vitro. In the present study, we performed immunoblotting and immunofluorescence studies using affinity-purified anti-Mblk-1 and anti-phosphorylated Mblk-1 antibodies to analyze the distribution and phosphorylation of Mblk-1 in the brains of pupal and adult workers. Mblk-1 was preferentially expressed in the lKCs in both pupal and adult worker brains. In contrast, some Mblk-1 was phosphorylated almost exclusively in the pupal stages, and phosphorylated Mblk-1 was preferentially expressed in the MB neuroblasts and lKCs in pupal brains. Immunofluorescence studies revealed that both Mblk-1 and phosphorylated Mblk-1 are located in both the cytoplasm and nuclei of the lKC somata in the pupal and adult worker brains. These findings suggest that Mblk-1 plays a role in the lKCs in both pupal and adult stages and that phosphorylated Mblk-1 has pupal stage-specific functions in the MB neuroblasts and lKCs in the honey bee brain.
Collapse
Affiliation(s)
- Hitomi Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Korefumi Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro Matsumura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Manami Namiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
57
|
Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 2020; 10:7790. [PMID: 32385306 PMCID: PMC7210984 DOI: 10.1038/s41598-020-64640-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects. The chondrocyte nature of Snorc expression was confirmed in mouse and rat tissues, in differentiated (day 7) ATDC5, and in RCS cells where it was constitutive. Topological mapping and biochemical analysis brought experimental evidences that SNORC is a type I protein carrying a chondroitin sulfate (CS) attached to serine 44. The anomalous migration of SNORC on SDS-PAGE was due to its primary polypeptide features, suggesting no additional post-translational modifications apart from the CS glycosaminoglycan. A highly conserved SOX9-binding enhancer located in intron 1 was necessary to drive transcription of Snorc in the mouse, rat, and human. The enhancer was active independently of orientation and whether located in a heterologous promoter or intron. Crispr-mediated inactivation of the enhancer in RCS cells caused reduction of Snorc. Transgenic mice carrying the intronic multimerized enhancer drove high expression of a βGeo reporter in chondrocytes, but not in the hypertrophic zone. Altogether these data confirmed the chondrocyte-specific nature of Snorc and revealed dependency on the intronic enhancer binding of SOX9 for transcription.
Collapse
|
58
|
Comparative Genomics of Two New HF1-like Haloviruses. Genes (Basel) 2020; 11:genes11040405. [PMID: 32276506 PMCID: PMC7230728 DOI: 10.3390/genes11040405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Few genomes of the HF1-group of viruses are currently available, and further examples would enhance the understanding of their evolution, improve their gene annotation, and assist in understanding gene function and regulation. Two novel HF1-group haloviruses, Serpecor1 and Hardycor2, were recovered from widely separated hypersaline lakes in Australia. Both are myoviruses with linear dsDNA genomes and infect the haloarchaeon Halorubrum coriense. Both genomes possess long, terminal direct repeat (TDR) sequences (320 bp for Serpecor1 and 306 bp for Hardycor2). The Serpecor1 genome is 74,196 bp in length, 57.0% G+C, and has 126 annotated coding sequences (CDS). Hardycor2 has a genome of 77,342 bp, 55.6% G+C, and 125 annotated CDS. They show high nucleotide sequence similarity to each other (78%) and with HF1 (>75%), and carry similar intergenic repeat (IR) sequences to those originally described in HF1 and HF2. Hardycor2 carries a DNA methyltransferase gene in the same genomic neighborhood as the methyltransferase genes of HF1, HF2 and HRTV-5, but is in the opposite orientation, and the inferred proteins are only distantly related. Comparative genomics allowed us to identify the candidate genes mediating cell attachment. The genomes of Serpecor1 and Hardycor2 encode numerous small proteins carrying one or more CxxC motifs, a signature feature of zinc-finger domain proteins that are known to participate in diverse biomolecular interactions.
Collapse
|
59
|
The evolutionarily conserved HtrA is associated with stress tolerance and protein homeostasis in the halotolerant cyanobacterium Halothece sp. PCC7418. Extremophiles 2020; 24:377-389. [PMID: 32146515 DOI: 10.1007/s00792-020-01162-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
The HtrA protein family represents an important class of serine proteases that are widely distributed across taxa. These evolutionarily conserved proteins are crucial for survival and function as monitors of protein synthesis during various stresses. Here, we performed gene expression analysis of the entire set of putative serine protease genes in Halothece sp. PCC7418 under salt stress conditions. The gene-encoding HtrA2 (H3553) was highly upregulated. This gene was cloned and functionally characterized, and its sub-cellular localization was determined. The recombinant H3553 protein (rH3553) displayed a pH optimum of 8.0, remained stable at 45 °C, and its proteolytic activity was not affected by salts. H3553 completely degraded the unfolded model protein, β-casein. In contrast, the folded model substrates (lysozyme or BSA) were not degraded by rH3553. Denaturation of BSA at a high temperature significantly increased its degradation by rH3553. H3553 was detected in the soluble protein fraction as well as the plasma membrane and thylakoid membrane fractions. Interestingly, the majority of H3553 was present in the plasma membrane under salt and heat stress conditions. Thus, H3553 resides in multiple sub-cellular locations and its localization drastically changes after exposure to stresses. Taken together, H3553 underpins protein quality-control process and is involved in the response and adaptation to salinity and heat stresses.
Collapse
|
60
|
Ouimet P, Kienzle L, Lubosny M, Burzyński A, Angers A, Breton S. The ORF in the control region of the female-transmitted Mytilus mtDNA codes for a protein. Gene 2020; 725:144161. [DOI: 10.1016/j.gene.2019.144161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023]
|
61
|
RASSF10 Is a TGFβ-Target That Regulates ASPP2 and E-Cadherin Expression and Acts as Tumor Suppressor That Is Epigenetically Downregulated in Advanced Cancer. Cancers (Basel) 2019; 11:cancers11121976. [PMID: 31817988 PMCID: PMC6966473 DOI: 10.3390/cancers11121976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
The Ras Association Domain Family (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10. Additionally, we analyzed the up- and downstream pathways of RASSF10 that are involved in its tumor suppressive function. We report that RASSF10 binds ASPP1 (Apoptosis-stimulating protein of p53) and ASPP2 through its coiled-coils. Induction of RASSF10 leads to increased protein levels of ASPP2 and acts negatively on cell cycle progression. Interestingly, we found that RASSF10 is a target of the EMT (epithelial mesenchymal transition) driver TGFβ (Transforming growth factor beta) and that negatively associated genes of RASSF10 are significantly over-represented in an EMT gene set collection. We observed a positive correlation of RASSF10 expression and E-cadherin that prevents EMT. Depletion of RASSF10 by CRISPR/Cas9 technology induces the ability of lung cancer cells to proliferate and to invade an extracellular matrix after TGFβ treatment. Additionally, knockdown of RASSF10 or ASPP2 induced constitutive phosphorylation of SMAD2 (Smad family member 2). Moreover, we found that epigenetic reduction of RASSF10 levels correlates with tumor progression and poor survival in human cancers. Our study indicates that RASSF10 acts a TGFβ target gene and negatively regulates cell growth and invasion through ASPP2. This data suggests that epigenetic loss of RASSF10 contributes to tumorigenesis by promoting EMT induced by TGFβ.
Collapse
|
62
|
Naito T, Ercan B, Krshnan L, Triebl A, Koh DHZ, Wei FY, Tomizawa K, Torta FT, Wenk MR, Saheki Y. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife 2019; 8:51401. [PMID: 31724953 PMCID: PMC6905856 DOI: 10.7554/elife.51401] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is a major structural component of the plasma membrane (PM). The majority of PM cholesterol forms complexes with other PM lipids, making it inaccessible for intracellular transport. Transition of PM cholesterol between accessible and inaccessible pools maintains cellular homeostasis, but how cells monitor the accessibility of PM cholesterol remains unclear. We show that endoplasmic reticulum (ER)-anchored lipid transfer proteins, the GRAMD1s, sense and transport accessible PM cholesterol to the ER. GRAMD1s bind to one another and populate ER-PM contacts by sensing a transient expansion of the accessible pool of PM cholesterol via their GRAM domains. They then facilitate the transport of this cholesterol via their StART-like domains. Cells that lack all three GRAMD1s exhibit striking expansion of the accessible pool of PM cholesterol as a result of less efficient PM to ER transport of accessible cholesterol. Thus, GRAMD1s facilitate the movement of accessible PM cholesterol to the ER in order to counteract an acute increase of PM cholesterol, thereby activating non-vesicular cholesterol transport. The human body contains trillions of cells. At the outer edge of each cell is the plasma membrane, which protects the cell from the external environment. This membrane is mostly made of fatty molecules known as lipids and about half of these lipids are specifically cholesterol. Human cells can either take up cholesterol that were obtained via the diet or produce it within a compartment of the cell called the endoplasmic reticulum. Cells need to monitor the cholesterol levels in both the endoplasmic reticulum and the plasma membrane in order to regulate the uptake or production of this lipid. For example, if there is too much of cholesterol in the plasma membrane, then the cell transports some to the endoplasmic reticulum to tell it to shut down cholesterol production. However, how these different areas of the cell communicate with each other, and transport cholesterol, has remained unclear. Naito et al. set out to look for key regulators of cholesterol transport and identified a group of endoplasmic reticulum proteins called GRAMD1 proteins. Cholesterol in the plasma membrane is either accessible or inaccessible, meaning it either can or cannot be moved back into the cell. The GRAMD1 proteins sense accessible cholesterol, and experiments with human cells grown in the laboratory showed that, specifically, the GRAMD1 proteins work together in a complex to sense accessible cholesterol at or near the plasma membrane. One particular part of the protein senses when the amount of accessible cholesterol reaches a certain level at the plasma membrane; when this threshold is reached, the complex flips a switch to start the transport of cholesterol to the endoplasmic reticulum and tell it to shut down cholesterol production. This coupling of sensing and transporting lipids by one protein complex also helps maintain the right ratio of accessible and inaccessible cholesterol in the plasma membrane to prevent cells from activating unwanted cell-signaling events. Getting rid of the GRAMD1 proteins in cells, or removing sensing part of these proteins, leads to inefficient transport of cholesterol. A better understanding of how GRAMD1 proteins sense the accessibility of cholesterol could potentially help identify new approaches to control cholesterol transport inside cells. This may in turn eventually lead to new treatments that counteract the defects in cholesterol metabolism seen in some forms of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Logesvaran Krshnan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Federico Tesio Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
63
|
Sharma V, Kumar R, Sharma VK, Yadav AK, Tiirola M, Sharma PK. Expression, purification, characterization and in silico analysis of newly isolated hydrocarbon degrading bleomycin resistance dioxygenase. Mol Biol Rep 2019; 47:533-544. [PMID: 31724125 DOI: 10.1007/s11033-019-05159-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
In the present investigation, we report cloning, expression, purification and characterization of a novel Bleomycin Resistance Dioxygenase (BRPD). His-tagged fusion protein was purified to homogeneity using Ni-NTA affinity chromatography, yielding 1.2 mg of BRPD with specific activity of 6.25 U mg-1 from 600 ml of E. coli culture. Purified enzyme was a dimer with molecular weight ~ 26 kDa in SDS-PAGE and ~ 73 kDa in native PAGE analysis. The protein catalyzed breakdown of hydrocarbon substrates, including catechol and hydroquinone, in the presence of metal ions, as characterized via spectrophotometric analysis of the enzymatic reactions. Bleomycin binding was proven using the EMSA gel retardation assay, and the putative bleomycin binding site was further determined by in silico analysis. Molecular dynamic simulations revealed that BRPD attains octahedral configuration in the presence of Fe2+ ion, forming six co-ordinate complexes to degrade hydroquinone-like molecules. In contrary, in the presence of Zn2+ ion BRPD adopts tetrahedral configuration, which enables degradation of catechol-like molecules.
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
| | | | | | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014, Jyvaskyla, Finland
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India.
| |
Collapse
|
64
|
Osire T, Yang T, Xu M, Zhang X, Li X, Niyomukiza S, Rao Z. Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J Microbiol Biotechnol 2019; 35:173. [PMID: 31673794 DOI: 10.1007/s11274-019-2751-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Neutral proteases have broad application as additives in modern laundry detergents and therefore, thermostability is an integral parameter for effective production of protein crystals. To improve thermostability, the contribution of individual residues of Bacillus cereus neutral protease was examined by site-directed mutagenesis. The Lys11Arg and Lys211Arg mutants clearly possessed improved thermostabilities (Tm were 63 and 61 °C respectively) compared to the wild-type (Tm was 60 °C). MD simulations further revealed that the mutants had low RMSD and RMSF values compared to wild-type BCN indicating increased stability of the protein structure. Lys11Arg mutant particularly possessed the lowest RMSD values due to increased residue interactions, which resulted in enhanced thermostability. The mutants also displayed strong stability to most inhibitors, organic solvents and surfactants after incubation for 1 h. This study demonstrated Lys-Arg mutation enhanced thermostability of BCN and thus provides insight for engineering stabilizing mutations with improved thermostability for related proteins.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Samuel Niyomukiza
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
65
|
Liu J, Liu Z, Jiang C, Mao X. Biochemical Characterization and Substrate Degradation Mode of a Novel α-Agarase from Catenovulum agarivorans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10373-10379. [PMID: 31453692 DOI: 10.1021/acs.jafc.9b03073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Agarose can be hydrolyzed into agarooligosaccharides (AOSs) by α-agarase, which is an important enzyme for efficient saccharification of agarose or preparation of bioactive oligosaccharides from agarose. Although many β-agarases have been reported and characterized, there are only a few studies on α-agarases. Here, we cloned a novel α-agarase named CaLJ96 with a molecular weight of approximately 200 kDa belonging to glycoside hydrolase family 96 from Catenovulum agarivorans. CaLJ96 has good pH stability and exhibits maximum activity at 37 °C and pH 7.0. The hydrolyzed products of agarose by CaLJ96 are analyzed as agarobiose (A2), agarotetraose (A4), and agarohexaose (A6), in which A4 is the dominant product. CaLJ96 can hydrolyze agaropentaose (A5) into A2 and agarotriose (A3) and A6 into A2 and A4 but cannot act on A2, A3, or A4. This is the first report to characterize the α-agarase action on AOSs in detail. Therefore, CaLJ96 has potential for the manufacture of bioactive AOSs.
Collapse
Affiliation(s)
- Jie Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Zhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Chengcheng Jiang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
66
|
Mo D, Li X, Raabe CA, Cui D, Vollmar JF, Rozhdestvensky TS, Skryabin BV, Brosius J. A universal approach to investigate circRNA protein coding function. Sci Rep 2019; 9:11684. [PMID: 31406268 PMCID: PMC6690939 DOI: 10.1038/s41598-019-48224-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/29/2019] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of RNA molecules that have been linked to human diseases and important regulatory pathways. Their functional roles are still under investigation, often hampered by inefficient circRNA formation in and ex vivo. We generated an intron-mediated enhancement (IME) system that-in comparison to previously published methods-increases circRNA formation up to 5-fold. This strategy also revealed previously undetected translation of circRNA, e.g., circRtn4. Substantiated by Western blots and mass spectrometry we showed that in mammalian cells, translation of circRtn4 containing a potential "infinite" circular reading frame resulted in "monomers" and extended proteins, presumably "multimer" tandem repeats. In order to achieve high levels of circRNA formation and translation of other natural or recombinant circRNAs, we constructed a versatile circRNA expression vector-pCircRNA-DMo. We demonstrated the general applicability of this method by efficiently generating two additional circRNAs exhibiting high expression levels. The circRNA expression vector will be an important tool to investigate different aspects of circRNA biogenesis and to gain insights into mechanisms of circular RNA translation.
Collapse
Affiliation(s)
- Dingding Mo
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany.
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany.
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
- Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816, Neuruppin, Germany
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149, Münster, Germany
| | - Di Cui
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany
| | - Jeanne-Franca Vollmar
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
| | - Boris V Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
| | - Juergen Brosius
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
67
|
Saggu SK, Jha G, Mishra PC. Enzymatic Degradation of Biofilm by Metalloprotease From Microbacterium sp. SKS10. Front Bioeng Biotechnol 2019; 7:192. [PMID: 31448272 PMCID: PMC6692633 DOI: 10.3389/fbioe.2019.00192] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Enzymes have replaced or decreased usage of toxic chemicals for industrial and medical applications leading toward sustainable chemistry. In this study, we report purification and characterization of a biofilm degrading protease secreted by Microbacterium sp. SKS10. The protease was identified as a metalloprotease, Peptidase M16 using mass spectrometry. It showed optimum activity at 60°C, pH 12 and retained its activity in the presence of various salts and organic solvents. The enzyme was able to degrade biofilms efficiently at enzyme concentration lower than other known enzymes such as papain, trypsin and α-amylase. The presence of this protease increased the accessibility of antibiotics inside the biofilm, and was found to be non-cytotoxic toward human epidermoid carcinoma cells (A431) at the effective concentration for biofilm degradation. Thus, this protease may serve as an effective tool for management of biofilms.
Collapse
Affiliation(s)
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
68
|
Park S, Yoon J, Lee CR, Lee JY, Kim YR, Jang KS, Lee KH, Seok YJ. Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in Vibrio vulnificus. Mol Microbiol 2019; 112:266-279. [PMID: 31058375 DOI: 10.1111/mmi.14268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
How motile bacteria recognize their environment and decide whether to stay or navigate toward more favorable location is a fundamental issue in survival. The flagellum is an elaborate molecular device responsible for bacterial locomotion, and the flagellum-driven motility allows bacteria to move themselves to the appropriate location at the right time. Here, we identify the polar landmark protein HubP as a modulator of polar flagellation that recruits the flagellar assembly protein FapA to the old cell pole, thereby controlling its activity for the early events of flagellar assembly in Vibrio vulnificus. We show that dephosphorylated EIIAGlc of the PEP-dependent sugar transporting phosphotransferase system sequesters FapA from HubP in response to glucose and hence inhibits FapA-mediated flagellation. Thus, flagellar assembly and motility is governed by spatiotemporal control of FapA, which is orchestrated by the competition between dephosphorylated EIIAGlc and HubP, in the human pathogen V. vulnificus.
Collapse
Affiliation(s)
- Soyoung Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihee Yoon
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, 17058, Republic of Korea
| | - Ju Yeon Lee
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Yeon-Ran Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kyu-Ho Lee
- Department of Biological Sciences, Sogang University, Seoul, 04107, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
69
|
Bratanis E, Lood R. A Novel Broad-Spectrum Elastase-Like Serine Protease From the Predatory Bacterium Bdellovibrio bacteriovorus Facilitates Elucidation of Site-Specific IgA Glycosylation Pattern. Front Microbiol 2019; 10:971. [PMID: 31130941 PMCID: PMC6510308 DOI: 10.3389/fmicb.2019.00971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The increased interest in predatory bacteria due to their ability to kill antibiotic resistant bacteria has also highlighted their inherent plethora of hydrolytic enzymes, and their potential as natural sources of novel therapeutic agents and biotechnological tools. Here, we have identified and characterized a novel protease from the predatory bacterium Bdellovibrio bacteriovorus: BspE (Bdellovibrio elastase-like serine protease). Mapping preferential sites of proteolytic activity showed a single proteolytic cleavage site of native plasma IgA (pIgA) in the Fc-tail; as well as in the secretory component (SC) of secretory IgA (SIgA). Proteolysis of other native immunoglobulins and plasma proteins was either absent (IgG1 and 2, IgM, albumin and orosomucoid) or unspecific with multiple cleavage sites (IgG3 and 4, IgE, IgD). BspE displayed a broad activity against most amino acid bonds in shorter peptides and denatured proteins, with a slight preference for hydrolysis C-terminal of Y, V, F, S, L, R, P, E, and K. BspE autoproteolysis results in numerous cleavage products sustaining activity for more than 6 h. The enzymatic activity remained stable at pH 5.0-9.0 but was drastically reduced in the presence of MnCl2 and completely inhibited by ZnCl2. The hydrolysis of pIgA was subsequently utilized for the specific glycan characterization of the released pIgA Fc-tail (Asn459). Besides contributing to the basic knowledge of Bdellovibrio biology and proteases, we propose that BspE could be used as a potential tool to investigate the importance, and biological function of the pIgA Fc-tail. IMPORTANCE Antibodies are well-established as key components of the immune system, and the importance of antibody glycosylation is steadily gaining recognition. Modifications of antibodies by glycosylation creates a vast repertoire of antibody glycovariants with distinctive and diverse functions in the immune system. Most of the available information regarding antibody glycosylation is based on studies with IgG, which have contributed greatly to the advance of therapeutic antibody treatments. However, much is still unknown regarding the importance of glycosylation and the Fc-structure for the remaining antibody classes. Such research has proven to be technically challenging and demonstrates a need for novel tools to facilitate such investigations. Here we have identified and characterized a novel protease from B. bacteriovorus, facilitating the study of plasma IgA by cleaving the Fc-tail, including the Asn459 N-glycan. This further highlights the potential of B. bacteriovorus as a source to identify potential novel biotechnological tools.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
70
|
Lim CC, Woo PCY, Lim TS. Development of a Phage Display Panning Strategy Utilizing Crude Antigens: Isolation of MERS-CoV Nucleoprotein human antibodies. Sci Rep 2019; 9:6088. [PMID: 30988390 PMCID: PMC6465254 DOI: 10.1038/s41598-019-42628-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
71
|
Eustace NJ, Anderson JC, Langford CP, Trummell HQ, Hicks PH, Jarboe JS, Mobley JA, Hjelmeland AB, Hackney JR, Pedersen RT, Cosby K, Gillespie GY, Bonner JA, Willey CD. Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma. Int J Oncol 2019; 54:2039-2053. [PMID: 30942445 PMCID: PMC6521926 DOI: 10.3892/ijo.2019.4766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma harbors frequent alterations in receptor tyrosine kinases, phosphatidylinositol-3 kinase (PI3K) and phosphatase and tensin homolog (PTEN) that dysregulate phospholipid signaling driven tumor proliferation and therapeutic resistance. Myristoylated alanine-rich C-kinase substrate (MARCKS) is a 32 kDa intrinsically unstructured protein containing a polybasic (+13) effector domain (ED), which regulates its electrostatic sequestration of phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2), and its binding to phosphatidylserine, calcium/calmodulin, filamentous actin, while also serving as a nuclear localization sequence. MARCKS ED is phosphorylated by protein kinase C (PKC) and Rho-associated protein kinase (ROCK) kinases; however, the impact of MARCKS on glioblastoma growth and radiation sensitivity remains undetermined. In the present study, using a tetracycline-inducible system in PTEN-null U87 cells, we demonstrate that MARCKS overexpression suppresses growth and enhances radiation sensitivity in vivo. A new image cytometer, Xcyto10, was utilized to quantify differences in MARCKS ED phosphorylation on localization and its association with filamentous actin. The overexpression of the non-phosphorylatable ED mutant exerted growth-suppressive and radiation-sensitizing effects, while the pseudo-phosphorylated ED mutant exhibited an enhanced colony formation and clonogenic survival ability. The identification of MARCKS protein-protein interactions using co-immunoprecipitation coupled with tandem mass spectrometry revealed novel MARCKS-associated proteins, including importin-β and ku70. On the whole, the findings of this study suggest that the determination of the MARCKS ED phosphorylation status is essential to understanding the impact of MARCKS on cancer progression.
Collapse
Affiliation(s)
- Nicholas J Eustace
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine P Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hoa Q Trummell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John S Jarboe
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James R Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Kadia Cosby
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James A Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
72
|
Andersson AMC, Buldun CM, Pattinson DJ, Draper SJ, Howarth M. SnoopLigase peptide-peptide conjugation enables modular vaccine assembly. Sci Rep 2019; 9:4625. [PMID: 30874593 PMCID: PMC6420506 DOI: 10.1038/s41598-019-40985-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
For many infectious diseases there is still no vaccine, even though potential protective antigens have been identified. Suitable platforms and conjugation routes are urgently needed to convert the promise of such antigens into broadly protective and scalable vaccines. Here we apply a newly established peptide-peptide ligation approach, SnoopLigase, for specific and irreversible coupling of antigens onto an oligomerization platform. SnoopLigase was engineered from a Streptococcus pneumoniae adhesin and enables isopeptide bond formation between two peptide tags: DogTag and SnoopTagJr. We expressed in bacteria DogTag linked to the self-assembling coiled-coil nanoparticle IMX313. This platform was stable over months at 37 °C when lyophilized, remaining reactive even after boiling. IMX-DogTag was efficiently coupled to two blood-stage malarial proteins (from PfEMP1 or CyRPA), with SnoopTagJr fused at the N- or C-terminus. We also showed SnoopLigase-mediated coupling of a telomerase peptide relevant to cancer immunotherapy. SnoopLigase-mediated nanoassembly enhanced the antibody response to both malaria antigens in a prime-boost model. Including or depleting SnoopLigase from the conjugate had little effect on the antibody response to the malarial antigens. SnoopLigase decoration represents a promising and accessible strategy for modular plug-and-display vaccine assembly, as well as providing opportunities for robust nanoconstruction in synthetic biology.
Collapse
Affiliation(s)
| | - Can M Buldun
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
73
|
Talmont F, Moulédous L, Baranger M, Gomez-Brouchet A, Zajac JM, Deffaud C, Cuvillier O, Hatzoglou A. Development and characterization of sphingosine 1-phosphate receptor 1 monoclonal antibody suitable for cell imaging and biochemical studies of endogenous receptors. PLoS One 2019; 14:e0213203. [PMID: 30845158 PMCID: PMC6405204 DOI: 10.1371/journal.pone.0213203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022] Open
Abstract
Although sphingosine-1-phosphate receptor 1 (S1P1) has been shown to trigger several S1P targeted functions such as immune cell trafficking, cell proliferation, migration, or angiogenesis, tools that allow the accurate detection of endogenous S1P1 localization and trafficking remain to be obtained and validated. In this study, we developed and characterized a novel monoclonal S1P1 antibody. Mice were immunized with S1P1 produced in the yeast Pichia pastoris and nine hybridoma clones producing monoclonal antibodies were created. Using different technical approaches including Western blot, immunoprecipitation and immunocytochemistry, we show that a selected clone, hereinafter referred to as 2B9, recognizes human and mouse S1P1 in various cell lineages. The interaction between 2B9 and S1P1 is specific over receptor subtypes, as the antibody does not binds to S1P2 or S1P5 receptors. Using cell-imaging methods, we demonstrate that 2B9 binds to an epitope located at the intracellular domain of S1P1; reveals cytosolic and membrane localization of the endogenous S1P1; and receptor internalization upon S1P or FTY720-P stimulation. Finally, loss of 2B9 signal upon knockdown of endogenous S1P1 by specific small interference RNAs further confirms its specificity. 2B9 was also able to detect S1P1 in human kidney and spinal cord tissue by immunohistochemistry. Altogether, our results suggest that 2B9 could be a useful tool to detect, quantify or localize low amounts of endogenous S1P1 in various physiological and pathological processes.
Collapse
Affiliation(s)
- Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Anne Gomez-Brouchet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Service d'anatomie et cytologie pathologiques, IUCT Oncopole, Toulouse, France
| | - Jean-Marie Zajac
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anastassia Hatzoglou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
74
|
Trypanosoma cruzi immunoproteome: Calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy. J Proteomics 2019; 194:179-190. [DOI: 10.1016/j.jprot.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
|
75
|
Dyall-Smith M, Palm P, Wanner G, Witte A, Oesterhelt D, Pfeiffer F. Halobacterium salinarum virus ChaoS9, a Novel Halovirus Related to PhiH1 and PhiCh1. Genes (Basel) 2019; 10:E194. [PMID: 30832293 PMCID: PMC6471424 DOI: 10.3390/genes10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022] Open
Abstract
The unexpected lysis of a large culture of Halobacterium salinarum strain S9 was found to be caused by a novel myovirus, designated ChaoS9. Virus purification from the culture lysate revealed a homogeneous population of caudovirus-like particles. The viral genome is linear, dsDNA that is partially redundant and circularly permuted, has a unit length of 55,145 nt, a G + C% of 65.3, and has 85 predicted coding sequences (CDS) and one tRNA (Arg) gene. The left arm of the genome (0⁻28 kbp) encodes proteins similar in sequence to those from known caudoviruses and was most similar to myohaloviruses phiCh1 (host: Natrialbamagadii) and phiH1 (host: Hbt. salinarum). It carries a tail-fiber gene module similar to the invertible modules present in phiH1 and phiCh1. However, while the tail genes of ChaoS9 were similar to those of phiCh1 and phiH1, the Mcp of ChaoS9 was most similar (36% aa identity) to that of Haloarcula hispanica tailed virus 1 (HHTV-1). Provirus elements related to ChaoS9 showed most similarity to tail/assembly proteins but varied in their similarity with head/assembly proteins. The right arm (29⁻55 kbp) of ChaoS9 encoded proteins involved in DNA replication (ParA, RepH, and Orc1) but the other proteins showed little similarity to those from phiH1, phiCh1, or provirus elements, and most of them could not be assigned a function. ChaoS9 is probably best classified within the genus Myohalovirus, as it shares many characteristics with phiH1 (and phiCh1), including many similar proteins. However, the head/assembly gene region appears to have undergone a recombination event, and the inferred proteins are different to those of phiH1 and phiCh1, including the major capsid protein. This makes the taxonomic classification of ChaoS9 more ambiguous. We also report a revised genome sequence and annotation of Natrialba virus phiCh1.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter Palm
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Gerhard Wanner
- AG Ultrastrukturforschung, Biozentrum der LMU, Großhadernerstrasse 2-4, 82152 Martinsried, Germany.
| | - Angela Witte
- Department of Microbiology, Immunobiology and Genetics, MFPL Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Dieter Oesterhelt
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
76
|
Mazumdar R, Nöbauer K, Hummel K, Hess M, Bilic I. Molecular characterization of Histomonas meleagridis exoproteome with emphasis on protease secretion and parasite-bacteria interaction. PLoS One 2019; 14:e0212429. [PMID: 30807611 PMCID: PMC6391000 DOI: 10.1371/journal.pone.0212429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
The exoproteome of parasitic protists constitutes extracellular proteins that play a fundamental role in host-parasite interactions. Lytic factors, especially secreted proteases, are capable of modulating tissue invasion, thereby aggravating host susceptibility. Despite the important role of exoproteins during infection, the exoproteomic data on Histomonas meleagridis are non-existent. The present study employed traditional 1D-in-gel-zymography (1D-IGZ) and micro-LC-ESI-MS/MS (shotgun proteomics), to investigate H. meleagridis exoproteomes, obtained from a clonal virulent and an attenuated strain. Both strains were maintained as mono-eukaryotic monoxenic cultures with Escherichia coli. We demonstrated active in vitro secretion kinetics of proteases by both parasite strains, with a widespread proteolytic activity ranging from 17 kDa to 120 kDa. Based on protease inhibitor susceptibility assay, the majority of proteases present in both exoproteomes belonged to the family of cysteine proteases and showed stronger activity in the exoproteome of a virulent H. meleagridis. Shotgun proteomics, aided by customized database search, identified 176 proteins including actin, potential moonlighting glycolytic enzymes, lytic molecules such as pore-forming proteins (PFPs) and proteases like cathepsin-L like cysteine protease. To quantify the exoproteomic differences between the virulent and the attenuated H. meleagridis cultures, a sequential window acquisition of all theoretical spectra mass spectrometric (SWATH-MS) approach was applied. Surprisingly, results showed most of the exoproteomic differences to be of bacterial origin, especially targeting metabolism and locomotion. By deciphering such molecular signatures, novel insights into a complex in vitro protozoan- bacteria relationship were elucidated.
Collapse
Affiliation(s)
- Rounik Mazumdar
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Nöbauer
- VetCORE, Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCORE, Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
77
|
Tiwari P, Kaila P, Guptasarma P. Understanding anomalous mobility of proteins on SDS‐PAGE with special reference to the highly acidic extracellular domains of human E‐ and N‐cadherins. Electrophoresis 2019; 40:1273-1281. [DOI: 10.1002/elps.201800219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Prince Tiwari
- Centre for Protein ScienceDesign and EngineeringDepartment of Biological SciencesIndian Institute of Science Education and Research (IISER) Mohali Punjab India
| | - Pallavi Kaila
- Centre for Protein ScienceDesign and EngineeringDepartment of Biological SciencesIndian Institute of Science Education and Research (IISER) Mohali Punjab India
| | - Purnananda Guptasarma
- Centre for Protein ScienceDesign and EngineeringDepartment of Biological SciencesIndian Institute of Science Education and Research (IISER) Mohali Punjab India
| |
Collapse
|
78
|
Östreicher C, Gensberger-Reigl S, Pischetsrieder M. Targeted mass spectrometry to monitor nuclear accumulation of endogenous Nrf2 and its application to SH-SY5Y cells stimulated with food components. Anal Bioanal Chem 2019; 411:1273-1286. [PMID: 30637439 DOI: 10.1007/s00216-018-1560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The Nrf2 signaling pathway is highly significant for redox homeostasis. Hence, nutrients and drugs activating Nrf2 can prevent oxidative stress-mediated medical conditions. After activation, Nrf2 accumulates in the cell nucleus; therefore, stimulation of Nrf2 by food components and drugs is usually monitored by measuring nuclear Nrf2 levels. The present study developed a targeted mass spectrometry method for the highly reliable quantification of nuclear Nrf2 levels. Three Nrf2-specific peptides were detected after enzymatic digestion of the nuclear fraction by the developed protocol for micro-liquid chromatography-tandem mass spectrometry in scheduled multiple reaction monitoring mode (microLC-MS/MS-sMRM). The method also identified nuclear Nrf2 unequivocally and specifically in the SDS-PAGE fraction of 100-150 kDa. Moreover, highly precise and linear relative quantification was achieved (mean relative standard deviation 8.3%; coefficient of determination 0.998). Incubation experiments in SH-SY5Y neuroblastoma cells revealed significantly up to 6-fold elevated nuclear Nrf2 levels after stimulation with 10 μM carnosol (rosemary), 10 μM sulforaphane (broccoli), or 20 μM cinnamaldehyde (cinnamon). Our results were in very good accordance with conventional Nrf2 western blotting and were highly correlated with the food components' effect on the expression levels of NAD(P)H dehydrogenase [quinone] 1 and thioredoxin reductase 1, two major Nrf2-regulated cytoprotective enzymes. The newly developed microLC-MS/MS-sMRM method shows broad applicability and can serve as a highly selective and reliable method to analyze Nrf2 activation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Christiane Östreicher
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Sabrina Gensberger-Reigl
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
79
|
Rendón-Gandarilla FJ, Álvarez-Hernández V, Castañeda-Ortiz EJ, Cárdenas-Hernández H, Cárdenas-Guerra RE, Valdés J, Betanzos A, Chávez-Munguía B, Lagunes-Guillen A, Orozco E, López-Canovas L, Azuara-Liceaga E. Telomeric Repeat-Binding Factor Homologs in Entamoeba histolytica: New Clues for Telomeric Research. Front Cell Infect Microbiol 2018; 8:341. [PMID: 30333961 PMCID: PMC6175992 DOI: 10.3389/fcimb.2018.00341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Telomeric Repeat Binding Factors (TRFs) are architectural nuclear proteins with critical roles in telomere-length regulation, chromosome end protection and, fusion prevention, DNA damage detection, and senescence regulation. Entamoeba histolytica, the parasite responsible of human amoebiasis, harbors three homologs of human TRFs, based on sequence similarities to their Myb DNA binding domain. These proteins were dubbed EhTRF-like I, II and III. In this work, we revealed that EhTRF-like I and II share similarity with human TRF1, while EhTRF-like III shares similarity with human TRF2 by in silico approach. The analysis of ehtrf-like genes showed they are expressed differentially under basal culture conditions. We also studied the cellular localization of EhTRF-like I and III proteins using subcellular fractionation and western blot assays. EhTRF-like I and III proteins were enriched in the nuclear fraction, but they were also present in the cytoplasm. Indirect immunofluorescence showed that these proteins were located at the nuclear periphery co-localizing with Lamin B1 and trimethylated H4K20, which is a characteristic mark of heterochromatic regions and telomeres. We found by transmission electron microscopy that EhTRF-like III was located in regions of more condensed chromatin. Finally, EMSA assays showed that EhTRF-like III forms specific DNA-protein complexes with telomeric related sequences. Our data suggested that EhTRF-like proteins play a role in the maintenance of the chromosome ends in this parasite.
Collapse
Affiliation(s)
| | - Víctor Álvarez-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | | | | | | | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anel Lagunes-Guillen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
80
|
Ten-Caten F, Vêncio RZN, Lorenzetti APR, Zaramela LS, Santana AC, Koide T. Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea. RNA Biol 2018; 15:1119-1132. [PMID: 30175688 PMCID: PMC6161675 DOI: 10.1080/15476286.2018.1509661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prokaryotic genomes show a high level of information compaction often with different molecules transcribed from the same locus. Although antisense RNAs have been relatively well studied, RNAs in the same strand, internal RNAs (intraRNAs), are still poorly understood. The question of how common is the translation of overlapping reading frames remains open. We address this question in the model archaeon Halobacterium salinarum. In the present work we used differential RNA-seq (dRNA-seq) in H. salinarum NRC-1 to locate intraRNA signals in subsets of internal transcription start sites (iTSS) and establish the open reading frames associated to them (intraORFs). Using C-terminally flagged proteins, we experimentally observed isoforms accurately predicted by intraRNA translation for kef1, acs3 and orc4 genes. We also recovered from the literature and mass spectrometry databases several instances of protein isoforms consistent with intraRNA translation such as the gas vesicle protein gene gvpC1. We found evidence for intraRNAs in horizontally transferred genes such as the chaperone dnaK and the aerobic respiration related cydA in both H. salinarum and Escherichia coli. Also, intraRNA translation evidence in H. salinarum, E. coli and yeast of a universal elongation factor (aEF-2, fusA and eEF-2) suggests that this is an ancient phenomenon present in all domains of life.
Collapse
Affiliation(s)
- Felipe Ten-Caten
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ricardo Z N Vêncio
- b Department of Computation and Mathematics, Faculdade de Filosofia , Ciências e Letras de Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Alan Péricles R Lorenzetti
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Livia Soares Zaramela
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ana Carolina Santana
- c Department of Cell and Molecular Biology and Pathogenic Bioagents , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Tie Koide
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
81
|
Peters MJ, Parker SK, Grim J, Allard CAH, Levin J, Detrich HW. Divergent Hemogen genes of teleosts and mammals share conserved roles in erythropoiesis: analysis using transgenic and mutant zebrafish. Biol Open 2018; 7:bio.035576. [PMID: 30097520 PMCID: PMC6124579 DOI: 10.1242/bio.035576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hemogen is a vertebrate transcription factor that performs important functions in erythropoiesis and testicular development and may contribute to neoplasia. Here we identify zebrafish Hemogen and show that it is considerably smaller (∼22 kDa) than its human ortholog (∼55 kDa), a striking difference that is explained by an underlying modular structure. We demonstrate that Hemogens are largely composed of 21-25 amino acid repeats, some of which may function as transactivation domains (TADs). Hemogen expression in embryonic and adult zebrafish is detected in hematopoietic, renal, neural and gonadal tissues. Using Tol2- and CRISPR/Cas9-generated transgenic zebrafish, we show that Hemogen expression is controlled by two Gata1-dependent regulatory sequences that act alone and together to control spatial and temporal expression during development. Partial depletion of Hemogen in embryos by morpholino knockdown reduces the number of erythrocytes in circulation. CRISPR/Cas9-generated zebrafish lines containing either a frameshift mutation or an in-frame deletion in a putative, C-terminal TAD display anemia and embryonic tail defects. This work expands our understanding of Hemogen and provides mutant zebrafish lines for future study of the mechanism of this important transcription factor. Summary: Transgenic and mutant zebrafish lines were created to characterize the expression and functions of Hemogen, a transcription factor involved in the formation of red blood cells and other processes.
Collapse
Affiliation(s)
- Michael J Peters
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Sandra K Parker
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jeffrey Grim
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Corey A H Allard
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jonah Levin
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
82
|
Cheng N, Xu XN, Zhou Y, Dong YT, Bao YF, Xu B, Hu W, Feng Z. Cs1, a Clonorchis sinensis-derived serodiagnostic antigen containing tandem repeats and a signal peptide. PLoS Negl Trop Dis 2018; 12:e0006683. [PMID: 30070987 PMCID: PMC6091968 DOI: 10.1371/journal.pntd.0006683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/14/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background Clonorchiasis, caused by the liver fluke Clonorchis sinensis, remains a serious public health issue in Asia, especially in China, and its relationship with cholangiocarcinoma has highlighted the importance of C. sinensis infection. Proteins containing tandem repeats (TRs) are found in a variety of parasites and, as targets of B-cell responses, are valuable for the serodiagnosis of parasite infections. Here, we identified a novel C. sinensis-specific antigen, Cs1, containing TRs, and investigated its diagnostic value, other immunological properties, and tissue distribution. Methodology/Principal findings A partial Cs1 cDNA sequence was cloned by screening an adult C. sinensis cDNA expression library. The full-length Cs1 cDNA was obtained by 5′ rapid amplification of cDNA ends. The deduced Cs1 protein consists of a signal peptide and five TRs of 21 amino acids. The recombinant Cs1 (rCs1) was constructed and purified. rCs1 showed higher sensitivity (94.3%) and specificity (94.4%) than the C. sinensis excretory–secretory products (ESPs) according to ELISA of 114 serum samples. Native Cs1 was identified in C. sinensis ESPs and crude antigens of adult C. sinensis by western blotting using an anti-rCs1 monoclonal antibody. ELISA of recombinant peptides of different Cs1 regions demonstrated that the TR region was immunodominant in Cs1. Immunohistochemistry and confocal microscopy revealed that Cs1 is located in a granule-like structure surrounding the acetabulum of C. sinensis adults that has not previously been described. Conclusions/Significance We identified a novel C. sinensis-specific TR protein, Cs1, which is an antigen of high serological significance, compared with C. sinensis ESPs. The deduced features of Cs1 show a unique structure containing TRs and a signal peptide and the TR region is immunodominant in Cs1. This provides a basis for targeted screens of other antigens. The novel structure in which Cs1 is located also deserves further investigation. Clonorchiasis is a neglected tropical disease. The major factor that prevents the effective management of clonorchiasis is a lack of effective diagnostic tools. Proteins containing tandem repeats (TRs), which have been found in a variety of parasites, are known targets of B-cell responses and can be useful for the serodiagnosis of parasite infections. Here we identified a novel C. sinensis-specific cDNA, which we named Cs1. This cDNA encodes a protein that has a unique structure, containing TRs and a signal peptide. A recombinant Cs1 protein (rCs1) was expressed and purified. rCs1 showed a high sensitivity and specificity in enzyme-linked immunosorbent assays, and lower cross-reactivity with Paragonimus westermani compared with C. sinensis excretory–secretory products. Our results also indicated that the TR region was immunodominant in the Cs1 protein. Immunohistochemistry and confocal microscopy revealed that Cs1 was located in a granule-like structure surrounding the acetabulum of adult worms that has not been previously described in C. sinensis. These results show that Cs1 is a promising antigen for serodiagnosis of clonorchiasis and its features provide a basis for future targeted screens of entire proteomes based on the likelihood of seroreactivity.
Collapse
Affiliation(s)
- Na Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
| | - Xue-Nian Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
- * E-mail: (XNX); (WH)
| | - Yan Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
| | - Yu-Ting Dong
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
| | - Yi-Fang Bao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- * E-mail: (XNX); (WH)
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People’s Republic of China
| |
Collapse
|
83
|
Intracellular Localization of Blattella germanica Densovirus (BgDV1) Capsid Proteins. Viruses 2018; 10:v10070370. [PMID: 30011943 PMCID: PMC6071259 DOI: 10.3390/v10070370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
Densovirus genome replication and capsid assembly take place in the nucleus of the infected cells. However, the mechanisms underlying such processes as the delivery of virus proteins to the nucleus and the export of progeny virus from the nucleus remain elusive. It is evident that nuclear transport signals should be involved in these processes. We performed an in silico search for the putative nuclear localization signal (NLS) and nuclear export signal (NES) motifs in the capsid proteins of the Blattella germanica Densovirus 1 (BgDV1) densovirus. A high probability NLS motif was found in the common C-terminal of capsid proteins together with a NES motif in the unique N-terminal of VP2. We also performed a global search for the nuclear traffic signals in the densoviruses belonging to five Densovirinae genera, which revealed high diversity in the patterns of NLSs and NESs. Using a heterologous system, the HeLa mammalian cell line expressing GFP-fused BgDV1 capsid proteins, we demonstrated that both signals are functionally active. We suggest that the NLS shared by all three BgDV1 capsid proteins drives the trafficking of the newly-synthesized proteins into the nucleus, while the NES may play a role in the export of the newly-assembled BgDV1 particles into the cytoplasm through nuclear pore complexes.
Collapse
|
84
|
Expression of the onconeural protein CDR1 in cerebellum and ovarian cancer. Oncotarget 2018; 9:23975-23986. [PMID: 29844866 PMCID: PMC5963614 DOI: 10.18632/oncotarget.25252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebellar degeneration related protein 1 (CDR1) is expressed in the cerebellum, and CDR1 antibodies have been associated with paraneoplastic cerebellar degeneration (PCD). In this study, we examined CDR1 expression in cerebellum and in ovarian and breast tumors, as well as the intracellular localization of CDR1 in cancer cells in culture. CDR1 was strongly expressed in the cytosol and dendrites of Purkinje cells and in interneurons of the molecular layer in cerebellum. CDR1 was also present in ovarian and breast tumors, as well as in ovarian and breast cancer cell lines, but was not present in normal breast or ovarian tissue. In cells overexpressing CDR1, CDR1 localized close to the plasma membrane in a polarized pattern at one edge. CDR1 was strongly expressed on the outer surface, apparently in filopodias or lamellipodias, in cells endogenously expressing CDR1. Overexpression of CDR1 showed a 37 and a 45 kDa band in western blot. The 37-kDa isoform was present in 16 ovarian cancer lysates, while the 45-kDa isoform was only found in three ovarian cancer patients. The presence of CDR1 in ovarian cancer was not associated with PCD. CDR1 antibodies were only found in serum from one patient with PCD and ovarian tumor with metastases. Therefore, CDR1 is probably not a marker for PCD. However, CDR1 may be associated with cell migration and differentiation.
Collapse
|
85
|
Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 PMCID: PMC5854594 DOI: 10.1038/s41598-018-22860-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
|
86
|
Kang H, Park Y, Lee Y, Yoo YJ, Hwang I. Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 DOI: 10.1038/s41598-018-22860-22862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 05/28/2023] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Youngmin Park
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yongjik Lee
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
87
|
Starfish Apaf-1 activates effector caspase-3/9 upon apoptosis of aged eggs. Sci Rep 2018; 8:1611. [PMID: 29371610 PMCID: PMC5785508 DOI: 10.1038/s41598-018-19845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022] Open
Abstract
Caspase-3-related DEVDase activity is initiated upon apoptosis in unfertilized starfish eggs. In this study, we cloned a starfish procaspase-3 corresponding to mammalian effector caspase containing a CARD that is similar to the amino terminal CARD of mammalian capsase-9, and we named it procaspase-3/9. Recombinant procaspase-3/9 expressed at 15 °C was cleaved to form active caspase-3/9 which has DEVDase activity. Microinjection of the active caspase-3/9 into starfish oocytes/eggs induced apoptosis. An antibody against the recombinant protein recognized endogenous procaspase-3/9 in starfish oocytes, which was cleaved upon apoptosis in aged unfertilized eggs. These results indicate that caspase-3/9 is an effector caspase in starfish. To verify the mechanism of caspase-3/9 activation, we cloned starfish Apaf-1 containing a CARD, a NOD, and 11 WD40 repeat regions, and we named it sfApaf-1. Recombinant sfApaf-1 CARD interacts with recombinant caspase-3/9 CARD and with endogenous procaspase-3/9 in cell-free preparations made from starfish oocytes, causing the formation of active caspase-3/9. When the cell-free preparation without mitochondria was incubated with inactive recombinant procaspase-3/9 expressed at 37 °C, DEVDase activity increased and apoptosome-like complexes were formed in the high molecular weight fractions containing both sfApaf-1 and cleaved caspase-3/9. These results suggest that sfApaf-1 activation is not dependent on cytochrome c.
Collapse
|
88
|
Sunatani Y, Kamdar RP, Sharma MK, Matsui T, Sakasai R, Hashimoto M, Ishigaki Y, Matsumoto Y, Iwabuchi K. Caspase-mediated cleavage of X-ray repair cross-complementing group 4 promotes apoptosis by enhancing nuclear translocation of caspase-activated DNase. Exp Cell Res 2017; 362:450-460. [PMID: 29233683 DOI: 10.1016/j.yexcr.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022]
Abstract
X-ray repair cross-complementing group 4 (XRCC4), a repair protein for DNA double-strand breaks, is cleaved by caspases during apoptosis. In this study, we examined the role of XRCC4 in apoptosis. Cell lines, derived from XRCC4-deficient M10 mouse lymphoma cells and stably expressing wild-type XRCC4 or caspase-resistant XRCC4, were established and treated with staurosporine (STS) to induce apoptosis. In STS-induced apoptosis, expression of wild-type, but not caspase-resistant, XRCC4 in XRCC4-deficient cells enhanced oligonucleosomal DNA fragmentation and the appearance of TUNEL-positive cells by promoting nuclear translocation of caspase-activated DNase (CAD), a major nuclease for oligonucleosomal DNA fragmentation. CAD activity is reportedly regulated by the ratio of two inhibitor of CAD (ICAD) splice variants, ICAD-L and ICAD-S mRNA, which, respectively, produce proteins with and without the ability to transport CAD into the nucleus. The XRCC4-dependent promotion of nuclear import of CAD in STS-treated cells was associated with reduction of ICAD-S mRNA and protein, and enhancement of phosphorylation and nuclear import of serine/arginine-rich splicing factor (SRSF) 1. These XRCC4-dependent, apoptosis-enhancing effects were canceled by depletion of SRSF1 or SR protein kinase (SRPK) 1. In addition, overexpression of SRSF1 in XRCC4-deficient cells restored the normal level of apoptosis, suggesting that SRSF1 functions downstream of XRCC4 in activating CAD. This XRCC4-dependent, SRPK1/SRSF1-mediated regulatory mechanism was conserved in apoptosis in Jurkat human leukemia cells triggered by STS, and by two widely used anti-cancer agents, Paclitaxel and Vincristine. These data imply that the level of XRCC4 expression could be used to predict the effects of apoptosis-inducing drugs in cancer treatment.
Collapse
Affiliation(s)
- Yumi Sunatani
- Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Radhika Pankaj Kamdar
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Mukesh Kumar Sharma
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; Department of Zoology, SPC Government College, Ajmer, Rajasthan 305001, India
| | - Tadashi Matsui
- Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Ryo Sakasai
- Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Mitsumasa Hashimoto
- Department of Physics, General Education Department, Kanazawa Medical University, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Division of Molecular and Cell Biology, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Ishikawa 920-0293, Japan.
| |
Collapse
|
89
|
Olson TL, Espiritu E, Edwardraja S, Canarie E, Flores M, Williams JC, Ghirlanda G, Allen JP. Biochemical and spectroscopic characterization of dinuclear Mn-sites in artificial four-helix bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:945-954. [PMID: 28882760 DOI: 10.1016/j.bbabio.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4μM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3μM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Elizabeth Canarie
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
90
|
Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N Biotechnol 2017; 40:261-267. [PMID: 28962879 DOI: 10.1016/j.nbt.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Research on the enzymatic breakdown of seaweed-derived agar has recently gained attention due to the progress in green technologies for marine biomass utilization. The enzymes known as agarases catalyze the cleavage of glycosidic bonds within the polysaccharide. In this study, a new β-agarase, Aga2, was identified from Cellulophaga omnivescoria W5C. Aga2 is one of four putative agarases from the W5C genome, and it belongs to the glycoside hydrolase 16 family. It was shown to be exclusive to the Cellulophaga genus. Agarase activity assays showed that Aga2 is an endolytic-type β-agarase that produces tetrameric and hexameric neoagaro-oligosaccharides, with optimum activity at 45°C and pH 8.0. Zinc ions slightly enhanced its activity while manganese ions had inhibitory effects even at very low concentrations. Aga2 has a Km of 2.59mgmL-1 and Vmax of 275.48Umg-1. The Kcat is 1.73×102s-1, while the Kcat/Km is 8.04×106s-1M-1. Aga2 also showed good thermostability at 45°C and above, and retained >90% of its activity after repeated freeze-thaw cycles. Bioinformatic analysis of its amino acid sequence revealed that intrinsic properties of the protein (e.g. presence of certain dipeptides and the relative volume occupied by aliphatic amino acids) and tertiary structural elements (e.g. presence of salt bridges, hydrophobic interactions and H-bonding) contributed to its thermostability.
Collapse
Affiliation(s)
- Kristine Rose M Ramos
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
91
|
Laverde D, Probst I, Romero-Saavedra F, Kropec A, Wobser D, Keller W, Grohmann E, Huebner J. Targeting Type IV Secretion System Proteins to Combat Multidrug-Resistant Gram-positive Pathogens. J Infect Dis 2017; 215:1836-1845. [PMID: 28863473 DOI: 10.1093/infdis/jix227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
For many gram-positive pathogens, conjugative plasmid transfer is an important means of spreading antibiotic resistance . Therefore, the search for alternative treatments to fight and prevent infections caused by these bacteria has become of major interest. In the present study, we evaluated the protein TraM, from the conjugative plasmid pIP501, as a potential vaccine candidate. Anti-TraM antiserum mediated in vitro opsonophagocytic killing of the strain harboring the pIP501 plasmid and also proved to be cross-reactive against other clinically relevant enterococcal and staphylococcal strains. Specificity of antibodies toward TraM was confirmed by results of an opsonophagocytic inhibition assay and Western blot. In addition, conjugative transfer experiments proved that TraM is essential for the transfer of pIP501. Finally, immunization with either TraM or anti-TraM antiserum reduced significantly the colony counts in mice livers, demonstrating that TraM is a promising vaccine candidate against enterococci and other gram-positive pathogens.
Collapse
Affiliation(s)
- Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich
| | - Ines Probst
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg.,Faculty of Biology, Microbiology, Albert Ludwigs University Freiburg
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich
| | - Andrea Kropec
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg
| | - Walter Keller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Elisabeth Grohmann
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg.,Microbiology, Faculty of Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich.,Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg
| |
Collapse
|
92
|
Pacesa M, Hendrickx R, Bieri M, Flatt JW, Greber UF, Hemmi S. Small-size recombinant adenoviral hexon protein fragments for the production of virus-type specific antibodies. Virol J 2017; 14:158. [PMID: 28821267 PMCID: PMC5563037 DOI: 10.1186/s12985-017-0822-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022] Open
Abstract
Background Adenoviruses are common pathogens infecting animals and humans. They are classified based on serology, or genome sequence information. These methods have limitations due to lengthy procedures or lack of infectivity data. Adenoviruses are easy to produce and amenable to genetic and biochemical modifications, which makes them a powerful tool for biological studies, and clinical gene-delivery and vaccine applications. Antibodies directed against adenoviral proteins are important diagnostic tools for virus identification in vivo and in vitro, and are used to elucidate infection mechanisms, often in combination with genomic sequencing and type specific information from hyper-variable regions of structural proteins. Results Here we describe a novel and readily useable method for cloning, expressing and purifying small fragments of hyper-variable regions 1-6 of the adenoviral hexon protein. We used these polypeptides as antigens for generating polyclonal rabbit antibodies against human adenovirus 3 (HAdV-B3), mouse adenovirus 1 (MAdV-1) and MAdV-2 hexon. In Western immunoblots with lysates from cells infected from thirteen human and three mouse viruses, these antibodies bound to homologous full-length hexon protein and revealed variable levels of cross-reactivity to heterologous hexons. Results from immuno-fluorescence and electron microscopy studies indicated that HAdV-B3 and MAdV-2 hexon antibodies recognized native forms of hexon. Conclusions The procedure described here can in principle be applied to any adenovirus for which genome sequence information is available. It provides a basis for generating novel type-specific tools in diagnostics and research, and extends beyond the commonly used anti-viral antibodies raised against purified viruses or subviral components. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0822-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Pacesa
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Rodinde Hendrickx
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland.,Molecular Life Sciences Graduate School, Eidgenössische Technische Hochschule and University of Zurich, CH-8057, Zurich, Switzerland
| | - Manuela Bieri
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland.,Molecular Life Sciences Graduate School, Eidgenössische Technische Hochschule and University of Zurich, CH-8057, Zurich, Switzerland
| | - Justin W Flatt
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
93
|
Sá-Moura B, Kornprobst M, Kharde S, Ahmed YL, Stier G, Kunze R, Sinning I, Hurt E. Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome. PLoS One 2017; 12:e0183272. [PMID: 28813493 PMCID: PMC5558966 DOI: 10.1371/journal.pone.0183272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, ribosome assembly is a highly complex process that involves more than 200 assembly factors that ensure the folding, modification and processing of the different rRNA species as well as the timely association of ribosomal proteins. One of these factors, Mpp10 associates with Imp3 and Imp4 to form a complex that is essential for the normal production of the 18S rRNA. Here we report the crystal structure of a complex between Imp4 and a short helical element of Mpp10 to a resolution of 1.88 Å. Furthermore, we extend the interaction network of Mpp10 and characterize two novel interactions. Mpp10 is able to bind the ribosome biogenesis factor Utp3/Sas10 through two conserved motifs in its N-terminal region. In addition, Mpp10 interacts with the ribosomal protein S5/uS7 using a short stretch within an acidic loop region. Thus, our findings reveal that Mpp10 provides a platform for the simultaneous interaction with multiple proteins in the 90S pre-ribosome.
Collapse
Affiliation(s)
- Bebiana Sá-Moura
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Markus Kornprobst
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Satyavati Kharde
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Yasar Luqman Ahmed
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Gunter Stier
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Ruth Kunze
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
94
|
Lu Y, Qiao F, Li Y, Sang XH, Li CR, Jiang JD, Yang XY, You XF. Recombinant expression and biochemical characterization of Mycobacterium tuberculosis 3Fe-4S ferredoxin Rv1786. Appl Microbiol Biotechnol 2017; 101:7201-7212. [DOI: 10.1007/s00253-017-8454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
|
95
|
Sharma J, Uchida M, Miettinen HM, Douglas T. Modular interior loading and exterior decoration of a virus-like particle. NANOSCALE 2017; 9:10420-10430. [PMID: 28702648 PMCID: PMC6482854 DOI: 10.1039/c7nr03018e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Virus-like particles (VLPs) derived from the bacteriophage P22 offer an interesting and malleable platform for encapsulation and multivalent presentation of cargo molecules. The packaging of cargo in P22 VLP is typically achieved through genetically enabled directed in vivo encapsulation. However, this approach does not allow control over the packing density and composition of the encapsulated cargos. Here, we have adopted an in vitro assembly approach to gain control over cargo packaging in P22. The packaging was controlled by closely regulating the stoichiometric ratio of cargo-fused-scaffold protein and wild-type scaffold protein during the in vitro assembly. In a "one-pot assembly reaction" coat protein subunits were incubated with varied ratios of wild-type scaffold protein and cargo-fused-scaffold protein, which resulted in the encapsulation of both components in a co-assembled capsid. These experiments demonstrate that an input stoichiometry can be used to achieve controlled packaging of multiple cargos within the VLP. The porous nature of P22 allows the escape and re-entry of wild-type scaffold protein from the assembled capsid but scaffold protein fused to a protein-cargo cannot traverse the capsid shell due to the size of the cargo. This has allowed us to control and alter the packing density by selectively releasing wild-type scaffold protein from the co-assembled capsids. We have demonstrated these concepts in the P22 system using an encapsulated streptavidin protein and have shown its highly selective interaction with biotin or biotin derivatives. Additionally, this system can be used to encapsulate small molecules coupled to biotin, or display large proteins, that cannot enter the capsid and thus remain available for the multivalent display on the exterior of the capsid when attached to a flexible biotinylated linker. Thus, we have developed a P22 system with controlled protein cargo composition and packing density, to which both small and large molecules can be attached at high copy number on the interior or exterior of the capsid.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Masaki Uchida
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Heini M Miettinen
- Department of Microbiology & Immunology, Montana State University, PO Box 173520, Bozeman, Montana 59717, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| |
Collapse
|
96
|
Trease AJ, Capuccino JMV, Contreras J, Harris AL, Sorgen PL. Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization. J Mol Cell Cardiol 2017; 111:69-80. [PMID: 28754342 DOI: 10.1016/j.yjmcc.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/06/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Gap junctions, composed of connexins, mediate electrical coupling and impulse propagation in the working myocardium. In the human heart, the spatio-temporal regulation and distinct functional properties of the three dominant connexins (Cx43, Cx45, and Cx40) suggests non-redundant physiological roles for each isoform. There are substantial differences in gating properties, expression, and trafficking among these isoforms, however, little is known about the determinants of these different phenotypes. To gain insight regarding these determinants, we focused on the carboxyl-terminal (CT) domain because of its importance in channel regulation and large degree of sequence divergence among connexin family members. Using in vitro biophysical experiments, we identified a structural feature unique to Cx45: high affinity (KD~100nM) dimerization between CT domains. In this study, we sought to determine if this dimerization occurs in cells and to identify the biological significance of the dimerization. Using a bimolecular fluorescence complementation assay, we demonstrate that the CT domains dimerize at the plasma membrane. By inhibiting CT dimerization with a mutant construct, we show that CT dimerization is necessary for proper Cx45 membrane localization, turnover, phosphorylation status, and binding to protein partners. Furthermore, CT dimerization is needed for normal intercellular communication and hemichannel activity. Altogether, our results demonstrate that CT dimerization is a structural feature important for correct Cx45 function. This study is significant because discovery of how interactions mediated by the CT domains can be modulated would open the door to strategies to ameliorate the pathological effects of altered connexin regulation in the failing heart.
Collapse
Affiliation(s)
- Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Juan M V Capuccino
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jorge Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Andrew L Harris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
97
|
Abstract
A natural and permanent transfer of prokaryotic viral sequences to mammals has not been reported by others. Circular "SPHINX" DNAs <5 kb were previously isolated from nuclease-protected cytoplasmic particles in rodent neuronal cell lines and brain. Two of these DNAs were sequenced after Φ29 polymerase amplification, and they revealed significant but imperfect homology to segments of commensal Acinetobacter phage viruses. These findings were surprising because the brain is isolated from environmental microorganisms. The 1.76-kb DNA sequence (SPHINX 1.8), with an iteron before its ORF, was evaluated here for its expression in neural cells and brain. A rabbit affinity purified antibody generated against a peptide without homology to mammalian sequences labeled a nonglycosylated ∼41-kDa protein (spx1) on Western blots, and the signal was efficiently blocked by the competing peptide. Spx1 was resistant to limited proteinase K digestion, but was unrelated to the expression of host prion protein or its pathologic amyloid form. Remarkably, spx1 concentrated in selected brain synapses, such as those on anterior motor horn neurons that integrate many complex neural inputs. SPHINX 1.8 appears to be involved in tissue-specific differentiation, including essential functions that preserve its propagation during mammalian evolution, possibly via maternal inheritance. The data here indicate that mammals can share and exchange a larger world of prokaryotic viruses than previously envisioned.
Collapse
|
98
|
Wu Y, Chen M, Fang Y, Zhu M. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions. J Chromatogr A 2017; 1489:134-142. [DOI: 10.1016/j.chroma.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/01/2022]
|
99
|
Role of Litopenaeus vannamei Yin Yang 1 in the Regulation of the White Spot Syndrome Virus Immediate Early Gene ie1. J Virol 2017; 91:JVI.02314-16. [PMID: 28077637 DOI: 10.1128/jvi.02314-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.
Collapse
|
100
|
Paharik AE, Kotasinska M, Both A, Hoang TMN, Büttner H, Roy P, Fey PD, Horswill AR, Rohde H. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol Microbiol 2017; 103:860-874. [PMID: 27997732 DOI: 10.1111/mmi.13594] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Abstract
The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare-associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall-anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA-negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap-dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT-PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA-related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap-mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm.
Collapse
Affiliation(s)
- Alexandra E Paharik
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marta Kotasinska
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Tra-My N Hoang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paroma Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander R Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|