51
|
Alonso MT, Villalobos C, Chamero P, Alvarez J, García-Sancho J. Calcium microdomains in mitochondria and nucleus. Cell Calcium 2006; 40:513-25. [PMID: 17067669 DOI: 10.1016/j.ceca.2006.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Endomembranes modify the progression of the cytosolic Ca(2+) wave and contribute to generate Ca(2+) microdomains, both in the cytosol and inside the own organella. The concentration of Ca(2+) in the cytosol ([Ca(2+)](C)), the mitochondria ([Ca(2+)](M)) and the nucleus ([Ca(2+)](N)) are similar at rest, but may become very different during cell activation. Mitochondria avidly take up Ca(2+) from the high [Ca(2+)](C) microdomains generated during cell activation near Ca(2+) channels of the plasma membrane and/or the endomembranes and prevent propagation of the high Ca(2+) signal to the bulk cytosol. This shaping of [Ca(2+)](C) signaling is essential for independent regulation of compartmentalized cell functions. On the other hand, a high [Ca(2+)](M) signal is generated selectively in the mitochondria close to the active areas, which tunes up respiration to the increased local needs. The progression of the [Ca(2+)](C) signal to the nucleus may be dampened by mitochondria, the nuclear envelope or higher buffering power inside the nucleoplasm. On the other hand, selective [Ca(2+)](N) signals could be generated by direct release of stored Ca(2+) into the nucleoplasm. Ca(2+) release could even be restricted to subnuclear domains. Putative Ca(2+) stores include the nuclear envelope, their invaginations inside the nucleoplasm (nucleoplasmic reticulum) and nuclear microvesicles. Inositol trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate have all been reported to produce release of Ca(2+) into the nucleoplasm, but contribution of these mechanisms under physiological conditions is still uncertain.
Collapse
Affiliation(s)
- María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés s/n, Valladolid, Spain
| | | | | | | | | |
Collapse
|
52
|
Valor LM, Grant SGN. Integrating Synapse Proteomics with Transcriptional Regulation. Behav Genet 2006; 37:18-30. [PMID: 16977502 DOI: 10.1007/s10519-006-9114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 08/18/2006] [Indexed: 01/28/2023]
Abstract
The mammalian postsynaptic proteome (PSP) comprises a highly interconnected set of approximately 1,000 proteins. The PSP is organized into macromolecular complexes that have a modular architecture defined by protein interactions and function. Signals initiated by neurotransmitter receptors are integrated by these complexes and their constituent enzymes to orchestrate multiple downstream cellular changes, including transcriptional regulation of genes at the nucleus. Genome wide transcriptome studies are beginning to map the sets of genes regulated by the synapse proteome. Conversely, understanding the transcriptional regulation of genes encoding the synapse proteome will shed light on synapse formation. Mutations that disrupt synapse signalling complexes result in cognitive impairments in mice and humans, and recent evidence indicates that these mutation change gene expression profiles. We discuss the need for global approaches combining genetics, transcriptomics and proteomics in order to understand cognitive function and disruption in diseases.
Collapse
Affiliation(s)
- L M Valor
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
53
|
Abstract
Integration in the nervous system is achieved by signal processing within dynamic functional ensembles formed by highly complex neuronal-glial cellular circuits. The interactions between electrically excitable neuronal networks and electrically non-excitable glial syncytium occur through either chemical transmission, which involves the release of transmitters from presynaptic terminals or from astroglial cells, or via direct intercellular contacts, gap junctions. Calcium ions act as a universal intracellular signalling system, which controls many aspects of neuronal-glial communications. In neurones, calcium signalling events regulate the exocytosis of neurotransmitters and establish the link between excitation of postsynaptic cells and integrative intracellular events, which control synaptic strength, expression of genes and memory function. In glial cells metabotropic receptor mediated release of calcium ions from the intracellular endoplasmic reticulum calcium store provide specific form of glial excitability. Glial calcium signals ultimately result in vesicular secretion of "glio" transmitters, which affect neuronal networks thus closing the glial-neuronal circuits. Cellular signalling through calcium ions therefore can be regarded as a molecular mechanism of integration in the nervous system.
Collapse
Affiliation(s)
- A Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
54
|
Abstract
An increase in nuclear Ca(2+) concentration may activate nuclear Ca(2+)-sensitive proteins and thereby regulate gene transcription. Ca(2+) can enter the nucleus from the cytoplasm either through nuclear pores or less certainly by release from the nuclear envelope. Recent studies indicate that the nuclear membrane of cerebellar Purkinje, but not granule neurons, contains multiple inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) localized to the inner nuclear membrane. These data suggest that the nuclear envelope in some neurons is a Ca(2+) store specialized to release Ca(2+) directly into the nucleoplasm and thereby to amplify Ca(2+) signals entering the nucleus from the cytoplasm or to generate nuclear Ca(2+) transients on its own. Here we review current data on the mechanisms of regulation of Ca(2+) in the cell nucleus with particular emphasis on cerebellar Purkinje neurons.
Collapse
|
55
|
Ghiani CA, Lelievre V, Beltran-Parrazal L, Sforza DM, Malvar J, Smith DJ, Charles AC, Ferchmin PA, de Vellis J. Gene expression is differentially regulated by neurotransmitters in embryonic neuronal cortical culture. J Neurochem 2006; 97 Suppl 1:35-43. [PMID: 16635248 DOI: 10.1111/j.1471-4159.2006.03713.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurotransmitters and their receptors have been involved in both proper brain development and neurodevelopmental disorders. The role that nicotinic receptors play in immature cortical neurons was initially investigated by gene profiling using Affymetrix DNA arrays. Both short (15 min) and prolonged (18 h) treatments with nicotine did not induce modification in gene expression, whereas a significant down-regulation of c-fos protein levels was observed after 18 h treatment. Conversely, a brief treatment with the glutamatergic agonist NMDA triggered up-regulation of immediate early genes and transcription factors, which remained unaffected by pre-treatment for 18 h with nicotine. Calcium imaging studies revealed that NMDA activated a sustained increase in intracellular calcium concentration in the majority of neurons, whereas nicotine evoked only a transient calcium increase in a smaller percentage of neurons, suggesting that the calcium signalling response was correlated with activation of gene expression. Nicotine effects on immature cortical neurons perhaps do not require gene regulation but may be still acting on signalling pathways.
Collapse
Affiliation(s)
- Cristina A Ghiani
- Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Hofmann F, Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. ACTA ACUST UNITED AC 2006; 99:125-32. [PMID: 16442786 DOI: 10.1016/j.jphysparis.2005.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Substrate integrated microelectrode arrays (MEAs) offer an alternative to classical electrophysiological methods like the patch clamp technique for recording the electrical activity from cells and tissue of neuronal or cardiac origin. Since its introduction 30 years ago, this technology has made possible the repeated simultaneous recording from multiple sites in a non-invasive manner. The MEA technology can be applied to any electrogenic cells or tissue (i.e., central and peripheral neurons, heart cells, and muscle cells), either as cultures or acute cell or slice preparations. The combination of culture techniques and MEAs offers the possibility to monitor the activity of a designed specimen over extended periods of time, up to several months. Furthermore, recording the electrical activity of distributed regions of a preparation yields information on spatial effects that might go undetected with other recording methods. Development, plasticity, and regeneration are examples of applications that could especially benefit from long term monitoring of neuronal activity, as they concern processes that develop over extended periods of time. Here we highlight recent MEA studies on signal regulation of neuronal network behavior and axonal regeneration. We illustrate the use of MEAs to study long term potentiation (LTP) and summarize the advantages of MEA technology over traditional electrophysiological methods for studies aimed at understanding the transcription-dependent late phase of plasticity.
Collapse
Affiliation(s)
- Frank Hofmann
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | |
Collapse
|
57
|
Lindemeyer K, Leemhuis J, Löffler S, Grass N, Nörenberg W, Meyer DK. Metabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons. ACTA ACUST UNITED AC 2006; 16:1662-77. [PMID: 16407481 DOI: 10.1093/cercor/bhj103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRIs) can be colocalized with ionotropic glutamate receptors in postsynaptic membranes. We have investigated whether mGluRIs alter the gene transcription induced by N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptors in rat neocortical gamma-aminobutyric acid (GABA) interneurons. In cultures of dissociated interneurons, the mGluRI antagonists LY367385 and MPEP reduced the increase in phosphorylation of the transcription factor CREB induced by NMDA as well as the expression of the proenkephalin (PEnk) gene. In contrast, they enhanced the AMPA-induced CREB phosphorylation and PEnk gene expression. Stimulation of the mGluRIs was due to network activity that caused the release of endogenous glutamate and could be blocked by tetrodotoxin. In organotypic cultures of neocortex, endogenous glutamate enhanced the PEnk gene expression by acting on NMDA and AMPA receptors. These effects were modulated via mGluRIs. In patch-clamp experiments and in biochemical studies on receptor density, stimulation of mGluRIs acutely affected NMDA receptor currents but had no long-term effect on NMDA receptor density at the cell surface. In contrast, stimulation of mGluRIs decreased the density of AMPA receptors located at the cell surface. Our results suggest that mGluRIs regulate the glutamate-induced gene expression in neocortical interneurons in a physiologically relevant manner.
Collapse
Affiliation(s)
- Kerstin Lindemeyer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwigs University, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Yoshida M, Sakai T. Dantrolene, a Calcium-Induced Calcium Release Inhibitor, Prevents the Acquisition of Amygdaloid Kindling in Rats, a Model of Experimental Epilepsy. TOHOKU J EXP MED 2006; 209:303-10. [PMID: 16864952 DOI: 10.1620/tjem.209.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kindling phenomenon (an experimental model of acquired epilepsy) and long-term potentiation (LTP) have many features in common. LTP is associated with an increase in intracellular Ca(2+) concentration where intracellular Ca(2+) stores play an important role. Dantrolene has an inhibitory action against Ca(2+) release from intracellular Ca(2+) stores. This substance has been reported to inhibit the induction of LTP. We investigated whether or not the development of kindling would be inhibited by dantrolene. We first determined at the right amygdala afterdischarge threshold (ADT) that is the minimal electric current necessary to evoke afterdischarge. For investigating the effects of dantrolene on the development of kindling, rats were stimulated once daily at the right amygdala with a current, 10% larger than ADT, one hour after either dantrolene or vehicle had been injected intraperitoneally. We observed daily the progress of both intensities of behavioral seizures (stages of seizures) and the duration of afterdischarge. Dantrolene significantly delayed both the progression of kindling stages and the elongation of afterdischarge duration at a dose of 10 mg/kg or 20 mg/kg, as compared with control vehicle. To investigate the effects of dantrolene on seizures in already kindled rats, we determined generalized seizure threshold (GST) that is the minimum electric current necessary to evoke generalized seizures in fully kindled rats. Rats were stimulated at a current, 10% larger than GST, one hour after treated with the drug or vehicle. Dantrolene showed no anticonvulsant action against either the stages of seizures or afterdischarge durations in fully kindled rats. Therefore, the inhibitory effect of dantrolene on the acquisition of kindling was not attributed to an anticonvulsant action. These results suggest that the prevention of kindling acquisition is associated with an inhibitory action of dantrolene on calcium-induced calcium release from intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- Motoaki Yoshida
- Department of Neurology, University of Health Science, Minamitsuru, Japan.
| | | |
Collapse
|
59
|
Abstract
New mRNA must be transcribed in order to consolidate changes in synaptic strength. But how are events at the synapse communicated to the nucleus? Some research has shown that proteins can move from activated synapses to the nucleus. However, other work has shown that action potentials can directly inform the nucleus about cellular activation. Here we contend that action potential-induced signalling to the nucleus best meets the requirements of the consolidation of synapse-specific plasticity, which include both timing and stoichiometric constraints.
Collapse
Affiliation(s)
- J Paige Adams
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
60
|
Limbäck-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M. Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci 2005; 24:10858-67. [PMID: 15574736 PMCID: PMC6730218 DOI: 10.1523/jneurosci.1022-04.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal response to a Ca2+ stimulus is a complex process involving direct Ca2+/calmodulin (CaM) actions as well as secondary activation of multiple signaling pathways such as cAMP and ERK (extracellular signal-regulated kinase). These signals can act in both the cytoplasm and the nucleus to control gene expression. To dissect the role of nuclear from cytoplasmic Ca2+/CaM signaling in memory formation, we generated transgenic mice that express a dominant inhibitor of Ca2+/CaM selectively in the nuclei of forebrain neurons and only after the animals reach adulthood. These mice showed diminished neuronal activity-induced phosphorylation of cAMP response element-binding protein, reduced expression of activity-induced genes, altered maximum levels of hippocampal long-term potentiation, and severely impaired formation of long-term, but not short-term, memory. Our results demonstrate that nuclear Ca2+/CaM signaling plays a critical role in memory consolidation in the mouse.
Collapse
Affiliation(s)
- Klara Limbäck-Stokin
- Institute for Childhood and Neglected Diseases and Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
61
|
Hongpaisan J, Winters CA, Andrews SB. Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. J Neurosci 2005; 24:10878-87. [PMID: 15574738 PMCID: PMC6730216 DOI: 10.1523/jneurosci.3278-04.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Large increases in cytosolic free Ca2+ ([Ca2+]i) activate several kinases that are important for neuronal plasticity, including Ca2+/calmodulin-dependent kinase II (CaMKII), protein kinase A (PKA), and protein kinase C (PKC). Because it is also known, mainly in non-neuronal systems, that superoxide radicals (O2-) activate these (and other) kinases and because O2- generation by mitochondria is in part [Ca2+]i dependent, we examined in hippocampal neurons the relationship between Ca2+ entry, O2- production, and kinase activity. We found that, after large stimulus-induced [Ca2+]i increases, O2- selectively produced by mitochondria near plasmalemmal sites of Ca2+ entry acts as a modulator to upregulate the two kinases, namely, CaMKII and PKA, whose activities are directly or indirectly phosphorylation dependent. The common mechanism involves O2- inhibition of inactivating protein phosphatases. Conversely, because small [Ca2+]i increases do not promote mitochondrial respiration and O2- generation, weak stimuli favor enhanced phosphatase activity, which therefore leads to suppressed kinase activity. Enhanced O2- production also promoted PKC activity but by a phosphatase-independent pathway. These results suggest that Ca2+-dependent upregulation of mitochondrial O2- production may be a general mechanism for linking Ca2+ entry to enhanced kinase activity and therefore to synaptic plasticity. This mechanism also represents yet another way that mitochondria, acting as calcium sensors, can play a role in neuronal signal transduction.
Collapse
Affiliation(s)
- Jarin Hongpaisan
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4062, USA
| | | | | |
Collapse
|
62
|
Marchenko SM, Yarotskyy VV, Kovalenko TN, Kostyuk PG, Thomas RC. Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J Physiol 2005; 565:897-910. [PMID: 15774532 PMCID: PMC1464565 DOI: 10.1113/jphysiol.2004.081299] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increases in Ca(2+) concentration in the nucleus of neurones modulate gene transcription and may be involved in activity-dependent long-term plasticity, apoptosis, and neurotoxicity. Little is currently known about the regulation of Ca(2+) in the nuclei of neurones. Investigation of neuronal nuclei is hampered by the cellular heterogeneity of the brain where neurones comprise no more than 10% of the cells. The situation is further complicated by large differences in properties of different neurones. Here we report a method for isolating nuclei from identified central neurones. We employed this technique to study nuclei from rat cerebellar Purkinje and granule neurones. Patch-clamp recording from the nuclear membrane of Purkinje neurones revealed numerous large-conductance channels selective for monovalent cations. The nuclear membrane of Purkinje neurones also contained multiple InsP(3)- activated ion channels localized exclusively in the inner nuclear membrane with their receptor loci facing the nucleoplasm. In contrast, the nuclear membrane of granule neurones contained only a small number of mainly anion channels. Nuclear InsP(3) receptors (InsP(3)Rs) were activated by InsP(3) with EC(50) = 0.67 microm and a Hill coefficient of 2.5. Ca(2+) exhibited a biphasic effect on the receptors elevating its activity at low concentrations and inhibiting it at micromolar concentrations. InsP(3) in saturating concentrations did not prevent the inhibitory effect of Ca(2+), but strongly increased InsP(3)R activity at resting Ca(2+) concentrations. These data are the first evidence for the presence of intranuclear sources of Ca(2+) in neurones. Ca(2+) release from the nuclear envelope may amplify Ca(2+) transients penetrating the nucleus from the cytoplasm or generate Ca(2+) transients in the nucleus independently of the cytoplasm.
Collapse
Affiliation(s)
- Sergey M Marchenko
- Bogomoletz Institute of Physiology, 4 Bogomoletz Street, Kiev, 01024, Ukraine.
| | | | | | | | | |
Collapse
|
63
|
Chow FA, Anderson KA, Noeldner PK, Means AR. The autonomous activity of calcium/calmodulin-dependent protein kinase IV is required for its role in transcription. J Biol Chem 2005; 280:20530-8. [PMID: 15769749 DOI: 10.1074/jbc.m500067200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent kinase IV (CaMKIV) is a multifunctional serine/threonine kinase that is positively regulated by two main events. The first is the binding of calcium/calmodulin (Ca(2+)/CaM), which relieves intramolecular autoinhibition of the enzyme and leads to basal kinase activity. The second is activation by the upstream kinase, Ca(2+)/calmodulin-dependent kinase kinase. Phosphorylation of Ca(2+)/CaM-bound CaMKIV on its activation loop threonine (residue Thr(200) in human CaMKIV) by Ca(2+)/calmodulin-dependent kinase kinase leads to increased CaMKIV kinase activity. It has also been repeatedly noted that activation of CaMKIV is accompanied by the generation of Ca(2+)/CaM-independent or autonomous activity, although the significance of this event has been unclear. Here we demonstrate the importance of autonomous activity to CaMKIV biological function. We show that phosphorylation of CaMKIV on Thr(200) leads to the generation of a fully Ca(2+)/CaM-independent enzyme. By analyzing the behavior of wild-type and mutant CaMKIV proteins in biochemical experiments and cellular transcriptional assays, we demonstrate that CaMKIV autonomous activity is necessary and sufficient for CaMKIV-mediated transcription. The ability of wild-type CaMKIV to drive cAMP response element-binding protein-mediated transcription is strictly dependent upon an initiating Ca(2+) stimulus, which leads to kinase activation and development of autonomous activity in cells. Mutant CaMKIV proteins that are incapable of developing autonomous activity within a cellular context fail to drive transcription, whereas certain CaMKIV mutants that possess constitutive autonomous activity drive transcription in the absence of a Ca(2+) stimulus and independent of Ca(2+)/CaM binding or Thr(200) phosphorylation.
Collapse
Affiliation(s)
- Felice A Chow
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
64
|
Arteaga MF, Gutiérrez R, Avila J, Mobasheri A, Díaz-Flores L, Martín-Vasallo P. Regeneration influences expression of the Na+, K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience 2005; 129:691-702. [PMID: 15541890 DOI: 10.1016/j.neuroscience.2004.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2004] [Indexed: 01/06/2023]
Abstract
Neural injury triggers changes in the expression of a large number of gene families. Particularly interesting are those encoding proteins involved in the generation, propagation or restoration of electric potentials. The expression of the Na+, K+-ATPase subunit isoforms (alpha, beta and gamma) was studied in dorsal root ganglion (DRG) and sciatic nerve of the rat in normal conditions, after axotomy and during regeneration. In normal DRG, alpha1 and alpha2 are expressed in the plasma membrane of all cell types, while there is no detectable signal for alpha3 in most DRG cells. After axotomy, alpha1 and alpha2 expression decreases evenly in all cells, while there is a remarkable onset in alpha3 expression, with a peak about day 3, which gradually disappears throughout regeneration (day 7). beta1 Is restricted to the nuclear envelope and plasma membrane of neurons and satellite cells. Immediately after injury, beta1 shows a homogeneous distribution in the soma of neurons. No beta2 expression was found. Beta3 Specific immunofluorescence appears in all neurons, although it is brightest in the smallest, diminishing progressively after injury until day 3 and, thereafter, increasing in intensity, until it reaches normal levels. FXYD7 is expressed weakly in a few DRG neurons (less than 2%) and Schwann cells. It increases intensely in satellite cells immediately after axotomy, and in all cell types at day 3. Transient switching of members of the Na+, K+-ATPase isoform family elicited by axotomy suggests variations in the sodium pump isozymes with different affinities for Na+, K+ and ATP from those in intact nerve. This adaptation may be important for regeneration.
Collapse
Affiliation(s)
- M-F Arteaga
- Laboratorio de Biología del Desarrollo, Department of Bioquímica y Biología Molecular, Universidad de La Laguna, Avda Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
65
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 570] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
66
|
Arnold FJL, Hofmann F, Bengtson CP, Wittmann M, Vanhoutte P, Bading H. Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity. J Physiol 2004; 564:3-19. [PMID: 15618268 PMCID: PMC1456059 DOI: 10.1113/jphysiol.2004.077446] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A simplified cell culture system was developed to study neuronal plasticity. As changes in synaptic strength may alter network activity patterns, we grew hippocampal neurones on a microelectrode array (MEA) and monitored their collective behaviour with 60 electrodes simultaneously. We found that exposure of the network for 15 min to the GABA(A) receptor antagonist bicuculline induced an increase in synaptic efficacy at excitatory synapses that was associated with an increase in the frequency of miniature AMPA receptor-mediated EPSCs and a change in network activity from uncoordinated firing of neurones (lacking any recognizable pattern) to a highly organized, periodic and synchronous burst pattern. Induction of recurrent synchronous bursting was dependent on NMDA receptor activation and required extracellular signal-regulated kinase (ERK)1/2 signalling and translation of pre-existing mRNAs. Once induced, the burst pattern persisted for several days; its maintenance phase (> 4 h) was dependent on gene transcription taking place in a critical period of 120 min following induction. Thus, cultured hippocampal neurones display a simple, transcription and protein synthesis-dependent form of plasticity. The non-invasive nature of MEA recordings provides a significant advantage over traditional assays for synaptic connectivity (i.e. long-term potentiation in brain slices) and facilitates the search for activity-regulated genes critical for late-phase plasticity.
Collapse
Affiliation(s)
- Fiona JL Arnold
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergGermany
- MRC Laboratory of Molecular BiologyCambridge, UK
| | - Frank Hofmann
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergGermany
| | - C. Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergGermany
| | - Malte Wittmann
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergGermany
| | - Peter Vanhoutte
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergGermany
- MRC Laboratory of Molecular BiologyCambridge, UK
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergGermany
- MRC Laboratory of Molecular BiologyCambridge, UK
- Corresponding author H. Bading: Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
67
|
Isenberg G. Ca2+ control of transcription: can we extrapolate signaling cascades from neurons to vascular smooth muscle cells? Circ Res 2004; 94:1276-8. [PMID: 15166114 DOI: 10.1161/01.res.0000131752.94031.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Ozaki M, Itoh K, Miyakawa Y, Kishida H, Hashikawa T. Protein processing and releases of neuregulin-1 are regulated in an activity-dependent manner. J Neurochem 2004; 91:176-88. [PMID: 15379898 DOI: 10.1111/j.1471-4159.2004.02719.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of the key molecules that bridge presynaptic neuronal events and long-term modification of the postsynaptic process is an important challenge which will have to be met in order to further our understanding of the mechanisms for learning and memory. This study is focused on neuregulin-1 (NRG-1), a neurotrophic factor, that is known to regulate the development of various tissues and/or the life/death of cells through activation of the ErbB family receptor tyrosine kinases. It was discovered that the soluble form of NRG-1 (sNRG-1) is produced from the transmembrane form of NRG through proteolytic cleavage during electrical stimulation of either cultured cerebellar granule cells (GCs) or pontine nucleus neurons (PNs) that are presynaptic to GCs. sNRG-1 was assayed by measuring the phosphorylation of both the ErbB receptors and cyclic AMP-responsive element-binding protein (CREB), and by means of antibodies to sNRG-1. The cleavage and release of NRG-1 depended on the frequency of electrical stimulation; the peak effect was at 50 Hz in both GCs and PNs. Activation of protein kinase C (PKC) mimicked this effect. The culture apparatus provided along with the mass-electrical stimulation that was employed proved to be a powerful tool for combining neuronal electrical events and chemical events. We conclude from the results that, in mossy fibre (PN axon)-GC synapses, electrical activity controls the proteolytic processing of NRG-1 in a frequency-dependent fashion and involves PKC. Furthermore, cleaved sNRG-1 plays an important functional role in regulating transmission across these synapses.
Collapse
Affiliation(s)
- Miwako Ozaki
- Laboratory for Memory and Learning, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), Saitama, Japan.
| | | | | | | | | |
Collapse
|
69
|
Harris SL, Cho K, Bashir ZI, Molnar E. Metabotropic glutamate receptor signalling in perirhinal cortical neurons. Mol Cell Neurosci 2004; 25:275-87. [PMID: 15019944 DOI: 10.1016/j.mcn.2003.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/02/2003] [Accepted: 10/21/2003] [Indexed: 01/24/2023] Open
Abstract
Long-term depression (LTD) induction relies upon receptor cross-talk between group I and group II metabotropic glutamate receptors (mGluRs) in perirhinal cortex. The molecular mechanism of this mGluR interplay is not clear. Here, we show that the mGluR subtypes postulated to be involved in this mechanism are developmentally regulated and mGluR2 has a preferential role over mGluR3 in the synergistic interaction with mGluR5. We have identified a >70% reduction in basal cAMP levels following mGluR2 stimulation, which could lead to increased mGluR5 function via reduced PKA mediated phosphorylation and decreased desensitisation of mGluR5. To further investigate the roles of mGluRs in downstream intracellular signalling, we have examined the effects of mGluRs on the phosphorylation state of cAMP response element-binding protein (CREB). Both group I and group II agonists increased the phosphorylation of CREB, which indicates a cAMP- and PKA-independent signalling mechanism. These results suggest a convergence of signalling mechanisms from surface mGluRs to CREB-mediated transcription.
Collapse
Affiliation(s)
- Sarah L Harris
- Department of Anatomy, MRC Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
70
|
Bruce JIE, Giovannucci DR, Blinder G, Shuttleworth TJ, Yule DI. Modulation of [Ca2+]i signaling dynamics and metabolism by perinuclear mitochondria in mouse parotid acinar cells. J Biol Chem 2003; 279:12909-17. [PMID: 14699167 DOI: 10.1074/jbc.m309070200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parotid acinar cells exhibit rapid cytosolic calcium signals ([Ca2+]i) that initiate in the apical region but rapidly become global in nature. These characteristic [Ca2+]i signals are important for effective fluid secretion, which critically depends on a synchronized activation of spatially separated ion fluxes. Apically restricted [Ca2+]i signals were never observed in parotid acinar cells. This is in marked contrast to the related pancreatic acinar cells, where the distribution of mitochondria has been suggested to contribute to restricting [Ca2+]i signals to the apical region. Therefore, the aim of this study was to determine the mitochondrial distribution and the role of mitochondrial Ca2+ uptake in shaping the spatial and temporal properties of [Ca2+]i signaling in parotid acinar cells. Confocal imaging of cells stained with MitoTracker dyes (MitoTracker Green FM or MitoTracker CMXRos) and SYTO dyes (SYTO-16 and SYTO-61) revealed that a majority of mitochondria is localized around the nucleus. Carbachol (CCh) and caged inositol 1,4,5-trisphosphate-evoked [Ca2+]i signals were delayed as they propagated through the nucleus. This delay in the CCh-evoked nuclear [Ca2+]i signal was abolished by inhibition of mitochondrial Ca2+ uptake with ruthenium red and Ru360. Likewise, simultaneous measurement of [Ca2+]i with mitochondrial [Ca2+] ([Ca2+]m), using fura-2 and rhod-FF, respectively, revealed that mitochondrial Ca2+ uptake was also inhibited by ruthenium red and Ru360. Finally, at concentrations of agonist that evoke[Ca2+]i oscillations, mitochondrial Ca2+ uptake, and a nuclear [Ca2+] delay, CCh also evoked a substantial increase in NADH autofluorescence. This autofluorescence exhibited a predominant perinuclear localization that was also sensitive to mitochondrial inhibitors. These data provide evidence that perinuclear mitochondria and mitochondrial Ca2+ uptake may differentially shape nuclear [Ca2+] signals but more importantly drive mitochondrial metabolism to generate ATP close to the nucleus. These effects may profoundly affect a variety of nuclear processes in parotid acinar cells while facilitating efficient fluid secretion.
Collapse
Affiliation(s)
- Jason I E Bruce
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
71
|
Vanhoutte P, Bading H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 2003; 13:366-71. [PMID: 12850222 DOI: 10.1016/s0959-4388(03)00073-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuronal responses to electrical activity-induced calcium signals are specified by the localization of the calcium entry site and the spatial properties of the calcium transient. Calcium flux through NMDA receptors located in the synapse initiates changes in synaptic efficacy and promotes pro-survival events, whereas calcium flux through extrasynaptic NMDA receptors is coupled to cell death pathways. The dialogue between the synaptic NMDA receptors and the nucleus is also modulated by extrasynaptic NMDA receptors, which shut down activity of CRE-binding protein (CREB) and antagonize the increase in brain-derived neurotrophic factor (BDNF) expression induced by synaptic NMDA receptors. The specification of the biological response by the localization of the receptor activated is a new concept in neuronal calcium signalling that can explain many of the opposing roles of NMDA receptors.
Collapse
Affiliation(s)
- Peter Vanhoutte
- Signalisation Neuronale et Régulations Géniques, CNRS/UPMC, UMR 7102 9, Paris, France
| | | |
Collapse
|
72
|
Kuipers SD, Trentani A, Den Boer JA, Ter Horst GJ. Molecular correlates of impaired prefrontal plasticity in response to chronic stress. J Neurochem 2003; 85:1312-23. [PMID: 12753089 DOI: 10.1046/j.1471-4159.2003.01770.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disturbed adaptations at the molecular and cellular levels following stress could represent compromised neural plasticity that contributes to the pathophysiology of stress-induced disorders. Evidence illustrates atrophy and cell death of stress-vulnerable neurones in the prefrontal cortex. Reduced plasticity may be realized through the destabilized function of selective proteins involved in organizing the neuronal skeleton and translating neurotrophic signals. To elucidate the mechanisms underlying these effects, rats were exposed to chronic footshock stress. Patterns of c-fos, phospho-extracellular-regulated protein kinases 1/2 (ERK1/2), calcineurin and phospho-cyclic-AMP response-element binding protein (CREB) expression were subsequently investigated. The results indicate chronic stress-induced impairments in prefrontal and cingulate signal transduction cascades underlying neuronal plasticity. The medial prefrontal cortex, demonstrated functional hyperactivity and dendritic phospho-ERK1/2 hyperphosphorylation, while reduced c-fos and calcineurin immunoreactivity occurred in the cingulate cortex. Significantly reduced phospho-CREB expression in both cortical regions, considering its implication in brain-derived neurotrophic factor (BDNF) transcription, suggests reduced synaptic plasticity. This data confirms the damaging effect of stress on cortical activity, on a molecular level. Due to the association of these markers in the regulation of BDNF signalling, these findings suggest a central role for intracellular neurotrophin transduction members in the pathways underlying cellular actions of stress in the brain.
Collapse
Affiliation(s)
- S D Kuipers
- Department of Psychiatry, Division of Biological Psychiatry, Academic Hospital Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
73
|
Hentschke M, Schulze C, Süsens U, Borgmeyer U. Characterization of calmodulin binding to the orphan nuclear receptor Errgamma. Biol Chem 2003; 384:473-82. [PMID: 12715898 DOI: 10.1515/bc.2003.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The estrogen receptor-related receptor gamma (ERRgamma/ ERR3/NR3B3), a member of the nuclear receptor superfamily, activates transcription in the absence of ligands. In order to identify ligand-independent mechanisms of activation, we tested whether calmodulin (CaM), a key regulator of numerous cellular processes and a predominant intracellular receptor for Ca2+-signals, interacts with ERRgamma. In vitro pull-down experiments with calmodulin-Sepharose demonstrated a Ca2+-dependent interaction with cellularly expressed ERRgamma. As shown by truncation analysis, the CaM binding site is highly unusual in that it is composed of two discontinuous elements. Moreover, by surface plasmon resonance (SPR) biosensor technology, we detected a direct interaction of immobilized bacterially expressed ERR-gamma fusion protein with Ca2+-calmodulin. This is best described by a model which assumes a conformational change of the initially formed complex to a more stable form. Whereas in vitro DNA binding was calmodulin-independent, transient transfection analysis revealed a Ca2+-influx-dependent ERRgamma-mediated transcriptional activation of a luciferase reporter gene. Thus, we propose that CaM acts as a mediator in the Ca2+-dependent modulation of ERRgamma.
Collapse
Affiliation(s)
- Moritz Hentschke
- Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
74
|
Pokorska A, Vanhoutte P, Arnold FJL, Silvagno F, Hardingham GE, Bading H. Synaptic activity induces signalling to CREB without increasing global levels of cAMP in hippocampal neurons. J Neurochem 2003; 84:447-52. [PMID: 12558964 DOI: 10.1046/j.1471-4159.2003.01504.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear calcium signals associated with electrical activation of neurons can control the activity of the transcription factor cAMP-response element binding protein (CREB). Yet, cAMP is thought to be the key messenger that links synaptic activity to the regulation of CREB-mediated transcription. It is generally assumed that synaptic activity increases the intracellular levels of cAMP; this causes activation of the cAMP-dependent protein kinase (PKA) that regulates CREB-mediated transcription either directly or through controlling nuclear signalling of the MAP kinases/extracellular signal-regulated kinases (ERK1/2) pathway. Here we show that, in hippocampal neurons, synaptic activity failed to increase global levels of cAMP that would be required for the cAMP-PKA system to induce nuclear events. Even near-continuous bursting of action potentials, giving rise to large nuclear calcium signals and robust CREB-dependent transcription, left global intracellular levels of cAMP unchanged. These results suggest that the cAMP-PKA system does not function as the transducer of synaptic signals to the nucleus. They indicate that the known inhibitory effects of blockers of PKA on gene expression and long-lasting plasticity triggered by calcium entry reflect a gating function of basal activity of PKA that renders neurons permissive for nuclear calcium-regulated, CREB/CBP-dependent gene expression.
Collapse
Affiliation(s)
- Anna Pokorska
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Hills Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
75
|
Atkinson L, Milligan CJ, Buckley NJ, Deuchars J. An ATP-gated ion channel at the cell nucleus. Nature 2002; 420:42. [PMID: 12422208 DOI: 10.1038/420042a] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucy Atkinson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, UK
| | | | | | | |
Collapse
|
76
|
Adenosine induces inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons. J Neurosci 2002. [PMID: 12196591 DOI: 10.1523/jneurosci.22-17-07680.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the cholinergic basal forebrain, we found previously that the extracellular adenosine concentration increase that accompanies sleep deprivation, acting via the A1 receptor, led to activation of the transcription factor nuclear factor-kappaB and to the upregulation of A1 adenosine receptor mRNA. We thus began to examine intracellular signaling mechanisms. We report here that adenosine, acting in a dose-dependent manner and predominantly via A1 receptors, stimulated IP3 receptor-regulated calcium release from intracellular stores. To the best of our knowledge, this calcium signaling pathway effect is a novel action of the G(i)-coupled A1 adenosine receptor in neurons. Moreover, this calcium mobilization was not seen at all in noncholinergic neurons but was present in a large proportion of cholinergic neurons. These data suggest a potential role for a calcium-signaling pathway in adenosine-induced long-term effects of sleep deprivation and a key role for cholinergic neurons in this process.
Collapse
|
77
|
Quesada I, Rovira JM, Martin F, Roche E, Nadal A, Soria B. Nuclear KATP channels trigger nuclear Ca(2+) transients that modulate nuclear function. Proc Natl Acad Sci U S A 2002; 99:9544-9. [PMID: 12089327 PMCID: PMC123177 DOI: 10.1073/pnas.142039299] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Indexed: 11/18/2022] Open
Abstract
Glucose, the principal regulator of endocrine pancreas, has several effects on pancreatic beta cells, including the regulation of insulin release, cell proliferation, apoptosis, differentiation, and gene expression. Although the sequence of events linking glycemia with insulin release is well described, the mechanism whereby glucose regulates nuclear function is still largely unknown. Here, we have shown that an ATP-sensitive K(+) channel (K(ATP)) with similar properties to that found on the plasma membrane is also present on the nuclear envelope of pancreatic beta cells. In isolated nuclei, blockade of the K(ATP) channel with tolbutamide or diadenosine polyphosphates triggers nuclear Ca(2+) transients and induces phosphorylation of the transcription factor cAMP response element binding protein. In whole cells, fluorescence in situ hybridization revealed that these Ca(2+) signals may trigger c-myc expression. These results demonstrate a functional K(ATP) channel in nuclei linking glucose metabolism, nuclear Ca(2+) signals, and nuclear function.
Collapse
Affiliation(s)
- Ivan Quesada
- Institute of Bioengineering, Miguel Hernández University, San Juan Campus, 03550 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
78
|
Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5:405-14. [PMID: 11953750 DOI: 10.1038/nn835] [Citation(s) in RCA: 1300] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Accepted: 03/13/2002] [Indexed: 12/16/2022]
Abstract
Here we report that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival. Calcium entry through synaptic NMDA receptors induced CREB activity and brain-derived neurotrophic factor (BDNF) gene expression as strongly as did stimulation of L-type calcium channels. In contrast, calcium entry through extrasynaptic NMDA receptors, triggered by bath glutamate exposure or hypoxic/ischemic conditions, activated a general and dominant CREB shut-off pathway that blocked induction of BDNF expression. Synaptic NMDA receptors have anti-apoptotic activity, whereas stimulation of extrasynaptic NMDA receptors caused loss of mitochondrial membrane potential (an early marker for glutamate-induced neuronal damage) and cell death. Specific blockade of extrasynaptic NMDA receptors may effectively prevent neuron loss following stroke and other neuropathological conditions associated with glutamate toxicity.
Collapse
Affiliation(s)
- G E Hardingham
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
79
|
Ryser S, Tortola S, Schlegel W. Map kinase phosphatase-1 gene expression and regulation in neuroendocrine cells. J Recept Signal Transduct Res 2002; 22:17-29. [PMID: 12503606 DOI: 10.1081/rrs-120014586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Long-term cellular processes like proliferation, differentiation, and adaptive responses (e.g. neuronal plasticity) are initiated by the synthesis of immediate early gene (IEG) products which control the expression of late response genes. Immediate early genes encode for transcription factors, structural proteins, cytokines, and other regulatory proteins. One of the latter category of IEG products is the mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1), a dual specificity tyrosine phosphatase which inactivates the MAP kinase ERK in the nucleus. In GH4C1 neuroendocrine cells, MKP-1 is rapidly synthesised and translocated to the nucleus in response thyrotropin-releasing hormone (TRH) or epidermal growth factor (EGF). Regulation of MKP-1 gene expression in this cell line is controlled at the transcriptional level via a strong block to elongation in the exon I of the gene. After stimulation with TRH the block to elongation is released and gene transcription is completed. Nuclear run-on is traditionally used to identify blocks to elongation and to determine endogeneous levels of transcriptional activities, but this method has severe technical limitations. An alternative approach to nuclear run-on is presented here for the MKP-1 gene, which involves the purification and analysis of nascent and free nuclear RNA fractions. [1] This method may be helpful to study in more detail the mechanisms of transcriptional elongation in mammalian cells.
Collapse
Affiliation(s)
- Stephan Ryser
- Fondation pour Recherches Médicales, University of Geneva, CH-1211 Geneva, Switzerland.
| | | | | |
Collapse
|
80
|
Chawla S, Bading H. CREB/CBP and SRE-interacting transcriptional regulators are fast on-off switches: duration of calcium transients specifies the magnitude of transcriptional responses. J Neurochem 2001; 79:849-58. [PMID: 11723177 DOI: 10.1046/j.1471-4159.2001.00645.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transient increases in the intracellular calcium concentration, which are associated with electrical activation of neurones, control synapse-to-nucleus communication. Calcium signals differ in time and space but it is unclear exactly how this translates into stimulus-specific gene expression. Analysis of transcription induced by calcium transients with defined durations revealed that the evoked genomic responses, unlike those following neurotrophin exposure, are not all-or-none but graded events. The CRE-binding protein CREB, its coactivator CREB-binding protein (CBP), and SRE-interacting transcriptional regulators are fast on-off switches: their activities are induced by short-lasting calcium signals, remain active for the duration of the signal and are rapidly shut-off after calcium concentrations have returned to basal levels. CREB is switched on by a fast, nuclear calmodulin (CaM) kinase-dependent mechanism that mediates CREB phosphorylation on serine 133 within 30 s of calcium entry. The second calcium-activated route to CREB involves the MAP kinase/extracellular signal-regulated kinase (ERK1/2) cascade. This pathway can be triggered by brief, 30-60 s calcium transients. ERK1/2 activity peaks several minutes after calcium entry and can outlast the calcium transient. The shut-off of CREB and ERK1/2 involves rapid dephosphorylation of their activator sites. These properties of transcription factors and their regulating kinases and phosphatases provide a mechanism through which the duration of calcium signals specifies the magnitude of the transcriptional response. The decoding of temporal features of calcium transients is likely to contribute to impulse-specific gene expression.
Collapse
Affiliation(s)
- S Chawla
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | |
Collapse
|
81
|
Gibson CL, Clowry GJ. N-methyl-D-aspartate receptor blockade during development induces short-term but not long-term changes in c-Jun and parvalbumin expression in the rat cervical spinal cord. Exp Neurol 2001; 170:380-4. [PMID: 11476605 DOI: 10.1006/exnr.2001.7720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During postnatal development, N-methyl-D-aspartate receptor (NMDA-R) expression progressively decreases in ventral and deep dorsal horns. This transient expression might play a role in activity-dependent development of segmental circuitry. NMDA-Rs were blocked unilaterally in the lower cervical spinal cord using Elvax implants that released the NMDA-R antagonist MK-801 maximally over a 2-week period from postnatal day 7 (P7) onward. At P14, the ratio of c-Jun immunoreactive motoneurons ipsilateral/contralateral to the implants was significantly increased and the ratio of parvalbumin immunoreactive neurons decreased, compared to control implants. However, at P84, MK-801-treated and control spinal cords appeared the same. Therefore, NMDA-R blockade during development only transiently altered expression of activity-dependent proteins in the spinal cord, unlike lesions to the developing motor cortex, which we have previously shown to have a permanent effect.
Collapse
Affiliation(s)
- C L Gibson
- Developmental Neuroscience Group, Department of Child Health, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
82
|
Estrada M, Cárdenas C, Liberona JL, Carrasco MA, Mignery GA, Allen PD, Jaimovich E. Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors. J Biol Chem 2001; 276:22868-74. [PMID: 11301324 DOI: 10.1074/jbc.m100118200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium depolarization of skeletal myotubes evokes slow calcium waves that are unrelated to contraction and involve the cell nucleus (Jaimovich, E., Reyes, R., Liberona, J. L., and Powell, J. A. (2000) Am. J. Physiol. 278, C998-C1010). Studies were done in both the 1B5 (Ry53-/-) murine "dyspedic" myoblast cell line, which does not express any ryanodine receptor isoforms (Moore, R. A., Nguyen, H., Galceran, J., Pessah, I. N., and Allen, P. D. (1998) J. Cell Biol. 140, 843-851), and C(2)C(12) cells, a myoblast cell line that expresses all three isoforms. Although 1B5 cells lack ryanodine binding, they bind tritiated inositol (1,4,5)-trisphosphate. Both type 1 and type 3 inositol trisphosphate receptors were immuno-located in the nuclei of both cell types and were visualized by Western blot analysis. After stimulation with 47 mm K(+), inositol trisphosphate mass raised transiently in both cell types. Both fast calcium increase and slow propagated calcium signals were seen in C(2)C(12) myotubes. However, 1B5 myotubes (as well as ryanodine-treated C(2)C(12) myotubes) displayed only a long-lasting, non-propagating calcium increase, particularly evident in the nuclei. Calcium signals in 1B5 myotubes were almost completely blocked by inhibitors of the inositol trisphosphate pathway: U73122, 2-aminoethoxydiphenyl borate, or xestospongin C. Results support the hypothesis that inositol trisphosphate mediates slow calcium signals in muscle cell ryanodine receptors, having a role in their time course and propagation.
Collapse
Affiliation(s)
- M Estrada
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 6530499, Chile
| | | | | | | | | | | | | |
Collapse
|
83
|
Schell T, Testa G, Castagnetti S, Rutz B, Hannus M, Frischknecht F. Neuroscience from different angles. Student symposium: from genes to thoughts. EMBO Rep 2001; 2:471-5. [PMID: 11415977 PMCID: PMC1083906 DOI: 10.1093/embo-reports/kve112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- T Schell
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Hardingham GE, Arnold FJ, Bading H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 2001; 4:261-7. [PMID: 11224542 DOI: 10.1038/85109] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information storage in the nervous system requires transcription triggered by synaptically evoked calcium signals. It has been suggested that translocation of calmodulin into the nucleus, initiated by submembranous calcium transients, relays synaptic signals to CREB. Here we show that in hippocampal neurons, signaling to CREB can be activated by nuclear calcium alone and does not require import of cytoplasmic proteins into the nucleus. The nucleus is particularly suited to integrate neuronal firing patterns, and specifies the transcriptional outputs through a burst frequency-to-nuclear calcium amplitude conversion. Calcium release from intracellular stores promotes calcium wave propagation into the nucleus, which is critical for CREB-mediated transcription by synaptic NMDA receptors. Pharmacological or genetic modulation of nuclear calcium may directly affect transcription-dependent memory and cognitive functions.
Collapse
Affiliation(s)
- G E Hardingham
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
| | | | | |
Collapse
|