51
|
Ebert PJR, Li QJ, Huppa JB, Davis MM. Functional development of the T cell receptor for antigen. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:65-100. [PMID: 20800817 PMCID: PMC4887107 DOI: 10.1016/s1877-1173(10)92004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell's extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR-ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell-antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive alphabetaT cells.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
52
|
Ciabattini A, Pettini E, Arsenijevic S, Pozzi G, Medaglini D. Intranasal immunization with vaccine vector Streptococcus gordonii elicits primed CD4+ and CD8+ T cells in the genital and intestinal tracts. Vaccine 2009; 28:1226-33. [PMID: 19945415 DOI: 10.1016/j.vaccine.2009.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/30/2009] [Accepted: 11/09/2009] [Indexed: 01/01/2023]
Abstract
Generation of primed T cells is crucial for the development of optimal vaccination strategies. Using a TCR-transgenic CD4(+) and CD8(+) T cell adoptive transfer model, we demonstrate that a single nasal immunization with recombinant Streptococcus gordonii induces antigen-specific primed T cells in lymph nodes draining the genital and intestinal tracts with about 80% of CD4(+) and 50% of CD8(+) proliferating cells. T cell clonal expansion was also observed in cervical lymph nodes, draining the immunization site, and in the spleen. The modulation of CD44 and CD45RB marker expression indicated that proliferating T cells were activated. Proliferation in distal mesenteric and iliac lymph nodes and in the spleen was observed 5 days after nasal immunization, while in draining cervical lymph nodes proliferation peaked already at day 3. The division profile of transgenic T cells observed in iliac and mesenteric lymph nodes was discontinuous, showing the lack of early cell divisions. The kinetics of T cell clonal expansion, the discontinuous division profile and the modulation of migration markers such as CD62L suggest that activated antigen-specific T cells disseminate from the immunization site to distal intestinal and genital tracts. These data demonstrate the efficacy of nasal immunization with recombinant S. gordonii in eliciting CD4(+) and CD8(+) T cell priming not only in draining sites, but also in the genital and intestinal tracts and in the spleen.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
53
|
Hansen T, Yu YYL, Fremont DH. Preparation of stable single-chain trimers engineered with peptide, beta2 microglobulin, and MHC heavy chain. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 17:17.5.1-17.5.17. [PMID: 19918946 DOI: 10.1002/0471142735.im1705s87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes a method for constructing a class I MHC molecule with a bound peptide as a single polypeptide chain, termed SCT, for single chain trimer. The component organization of the SCT appears to be widely applicable to different mouse or human MHC class I isotypes bound by different antigenic peptides. The enhanced peptide occupancy afforded by the SCT format makes these molecules effective reagents as DNA vaccines, multimeric staining reagents to enumerate CD8 T cells, and probes of lymphocyte biology.
Collapse
Affiliation(s)
- Ted Hansen
- Washington University School of Medicine, St. Louis, Missouri
| | - Y Y Lawrence Yu
- Washington University School of Medicine, St. Louis, Missouri
| | - Daved H Fremont
- Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
54
|
Palankar R, Skirtach AG, Kreft O, Bédard M, Garstka M, Gould K, Möhwald H, Sukhorukov GB, Winterhalter M, Springer S. Controlled intracellular release of peptides from microcapsules enhances antigen presentation on MHC class I molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2168-2176. [PMID: 19644923 DOI: 10.1002/smll.200900809] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To understand the time course of action of any small molecule inside a single cell, one would deposit a defined amount inside the cell and initiate its activity at a defined moment. An elegant way to achieve this is to encapsulate the molecule in a micrometer-sized reservoir, introduce it into a cell, remotely open its wall by a laser pulse, and then follow the biological response by microscopy. The validity of this approach is validated here using microcapsules with defined walls that are doped with metallic nanoparticles so as to enable them to be opened with an infrared laser. The capsules are loaded with a fluorescent antigenic peptide and introduced into mammalian cultured cells where, upon laser-induced release, the peptide binds to major histocompatibility complex (MHC) class I proteins and elicits their cell surface transport. The concept of releasing a drug inside a cell and following its action is applicable to many problems in cell biology and medicine.
Collapse
|
55
|
Bowerman NA, Colf LA, Garcia KC, Kranz DM. Different strategies adopted by K(b) and L(d) to generate T cell specificity directed against their respective bound peptides. J Biol Chem 2009; 284:32551-61. [PMID: 19755422 DOI: 10.1074/jbc.m109.040501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse T cell clone 2C recognizes two different major histocompatibility (MHC) ligands, the self MHC K(b) and the allogeneic MHC L(d). Two distinct peptides, SIY (SIYRYYGL) and QL9 (QLSPFPFDL), act as strong and specific agonists when bound to K(b) and L(d), respectively. To explore further the mechanisms involved in peptide potency and specificity, here we examined a collection of single amino acid peptide variants of SIY and QL9 for 1) T cell activity, 2) binding to their respective MHC, and 3) binding to the 2C T cell receptor (TCR) and high affinity TCR mutants. Characterization of SIY binding to MHC K(b) revealed significant effects of three SIY residues that were clearly embedded within the K(b) molecule. In contrast, QL9 binding to MHC L(d) was influenced by the majority of peptide side chains, distributed across the entire length of the peptide. Binding of the SIY-K(b) complex to the TCR involved three SIY residues that were pointed toward the TCR, whereas again the majority of QL9 residues influenced binding of TCRs, and thus the QL9 residues had impacts on both L(d) and TCR binding. In general, the magnitude of T cell activity mediated by a peptide variant was influenced more by peptide binding to MHC than by binding the TCR, especially for higher affinity TCRs. Findings with both systems, but QL9-L(d) in particular, suggest that many single-residue substitutions, introduced into peptides to improve their binding to MHC and thus their vaccine potential, could impair T cell reactivity due to their dual impact on TCR binding.
Collapse
Affiliation(s)
- Natalie A Bowerman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
56
|
Kumar P, Vahedi-Faridi A, Saenger W, Ziegler A, Uchanska-Ziegler B. Conformational changes within the HLA-A1:MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity. Protein Sci 2009; 18:37-49. [PMID: 19177349 DOI: 10.1002/pro.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although there is X-ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig-like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor-bound and -unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA-A1 bound to a melanoma antigen-encoding gene (MAGE)-A1-derived peptide in complex with a recombinant antibody fragment with TCR-like specificity, Fab-Hyb3. Here, we compare the X-ray structure of HLA-A1:MAGE-A1 with that complexed with Fab-Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab-Hyb3 binding results in major rearrangements (up to 5.5 A) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding-induced conformational changes, as revealed by a comparison with MHC class I structures in TCR-liganded and -unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA-Cw4 and KIR2DL1. Therefore, conformational changes within the HLA-A1:MAGE-A1:Fab-Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide-dependent recognition of MHC molecules.
Collapse
Affiliation(s)
- Pravin Kumar
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, Berlin 14195, Germany
| | | | | | | | | |
Collapse
|
57
|
Lazoura E, Lodding J, Farrugia W, Day S, Ramsland PA, Apostolopoulos V. Non-canonical anchor motif peptides bound to MHC class I induce cellular responses. Mol Immunol 2008; 46:1171-8. [PMID: 19118903 DOI: 10.1016/j.molimm.2008.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/05/2008] [Accepted: 11/11/2008] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which results in the initiation of a T cell dependent immune response. An understanding of how peptides bind to MHC molecules is important for determining the structural basis for T cell dependent immune responses and facilitates the structure-based design of peptides as candidate vaccines to elicit a specific immune response. To date, crystal structures, immunogenicity and in vivo biological relevance have mainly been characterized for high affinity peptide-MHC interactions. From the crystal structures of numerous peptide-MHC complexes it became apparent what canonical sequence features were required for high affinity binding, which led to the ability to predict in most instances peptides with high affinity for MHC. We previously identified the crystal structures of non-canonical peptides in complex with MHC class I (one bound with low affinity and the other with high affinity, but utilizing novel peptide anchors and MHC pockets). It is becoming increasingly evident that other non-canonical peptides can also bind, such as long-, short- and glyco-peptides. However, the in vivo role of non-canonical peptides is not clear and we present here the immunogenicity of two non-canonical peptides and their affinity when bound to MHC class I, H2K(b). Comparison of the three-dimensional structures in complex with MHC suggests major differences in hydrogen bonding patterns with H2K(b), despite sharing similar binding modes, which may account for the differences in affinity and immunogenicity. These studies provide further evidence for the diverse range of peptide ligands that can bind to MHC and be recognized by the TCR, which will facilitate approaches to peptide-based vaccine design.
Collapse
Affiliation(s)
- Eliada Lazoura
- Immunology and Vaccine Laboratory, Centre for Immunology, The Macfarlane Burnet Institute for Medical Research and Public Health, Austin Campus, VIC, Australia
| | | | | | | | | | | |
Collapse
|
58
|
Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun 2008; 76:5817-25. [PMID: 18838521 DOI: 10.1128/iai.00793-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary activation of T-helper and T-cytotoxic cells following mucosal immunization with recombinant Streptococcus gordonii was studied in vivo by adoptive transfer of ovalbumin (OVA)-specific transgenic CD8(+) (OT-I) and CD4(+) (OT-II) T cells. A recombinant strain, expressing on the surface the vaccine antigen Ag85B-ESAT-6 from Mycobacterium tuberculosis fused to OVA T-helper and T-cytotoxic epitopes (peptides 323 to 339 and 257 to 264), was constructed and used to immunize C57BL/6 mice by the intranasal route. Recombinant, but not wild-type, bacteria induced OVA-specific CD4(+) and CD8(+) T-cell clonal expansion in cervical lymph nodes, lung, and spleen. OVA-specific CD4(+) and CD8(+) T-cell proliferation appeared first in cervical lymph nodes and later in the spleen, suggesting a possible migration of activated cells from the inductive site to the systemic district. A significant correlation between the percentages of CD4(+) and CD8(+) proliferating T cells was observed for each animal. The expression of CD69, CD44, and CD45RB on proliferating T lymphocytes changed as a function of the cell division number, confirming T-cell activation following the antigen encounter. These data indicate that intranasal immunization with recombinant S. gordonii is capable of inducing primary activation of naive antigen-specific CD4(+) and CD8(+) T cells, both locally and systemically.
Collapse
|
59
|
Reinbold CJ, Malarkannan S. Recognition of allo-peptide is governed by novel anchor imposition and limited variations in TCR contact residues. Mol Immunol 2008; 45:1318-26. [PMID: 17981332 PMCID: PMC3835348 DOI: 10.1016/j.molimm.2007.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/06/2007] [Accepted: 09/12/2007] [Indexed: 11/27/2022]
Abstract
Immune specificity of a T cell is determined by the TCR contact residues exposed on the antigenic peptide/MHC complex. Naturally processed, biallelic epitopes from H7 minor histocompatibility (mH) antigen vary in position 7 (p7) from aspartic acid (D) to a glutamic acid (E), which differ by an additional methylene (-CH(2)) in the side chain. Here, we show that this variation generates a strong anti-H7a or anti-H7b cytotoxic T cell responses. Further, the H7 allelic peptides use p6 asparagine as their central anchor residue and amino acid variations in either the canonical p5 or the predicted p6 anchor positions in the antigenic epitope were detrimental for TCR recognition. In addition, introduction of any other amino acids, except asparagine, in the polymorphic p7 significantly abolished the ability of anti-H7b TCR recognition. This demonstrates that only an asparagine with an amine group as a side chain instead of a charged oxygen radical could effectively stimulate the anti-H7b specific T cells. Our findings provide evidence that mH antigen-specific TCRs are highly stringent in recognizing their cognate epitopes.
Collapse
Affiliation(s)
- Corbett J.A. Reinbold
- Laboratory of Molecular Immunology, Blood Research Institute, Milwaukee, WI 53226, United States
- Division of Neoplastic Diseases and Related Disorders, Department of Medicine, Milwaukee, WI 53226, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology, Blood Research Institute, Milwaukee, WI 53226, United States
- Division of Neoplastic Diseases and Related Disorders, Department of Medicine, Milwaukee, WI 53226, United States
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin; Milwaukee, WI 53226, United States
| |
Collapse
|
60
|
Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol 2008; 9:1. [PMID: 18211710 PMCID: PMC2245908 DOI: 10.1186/1471-2172-9-1] [Citation(s) in RCA: 545] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/22/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Class I major histocompatibility complex (MHC) molecules bind, and present to T cells, short peptides derived from intracellular processing of proteins. The peptide repertoire of a specific molecule is to a large extent determined by the molecular structure accommodating so-called main anchor positions of the presented peptide. These receptors are extremely polymorphic, and much of the polymorphism influences the peptide-binding repertoire. However, despite this polymorphism, class I molecules can be clustered into sets of molecules that bind largely overlapping peptide repertoires. Almost a decade ago we introduced this concept of clustering human leukocyte antigen (HLA) alleles and defined nine different groups, denominated as supertypes, on the basis of their main anchor specificity. The utility of this original supertype classification, as well several other subsequent arrangements derived by others, has been demonstrated in a large number of epitope identification studies. RESULTS Following our original approach, in the present report we provide an updated classification of HLA-A and -B class I alleles into supertypes. The present analysis incorporates the large amount of class I MHC binding data and sequence information that has become available in the last decade. As a result, over 80% of the 945 different HLA-A and -B alleles examined to date can be assigned to one of the original nine supertypes. A few alleles are expected to be associated with repertoires that overlap multiple supertypes. Interestingly, the current analysis did not identify any additional supertype specificities. CONCLUSION As a result of this updated analysis, HLA supertype associations have been defined for over 750 different HLA-A and -B alleles. This information is expected to facilitate epitope identification and vaccine design studies, as well as investigations into disease association and correlates of immunity. In addition, the approach utilized has been made more transparent, allowing others to utilize the classification approach going forward.
Collapse
Affiliation(s)
- John Sidney
- Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
61
|
Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 2007; 27:885-99. [PMID: 18083574 DOI: 10.1016/j.immuni.2007.11.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 10/10/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
Little is known about the structure of major histocompatibility complex (MHC) molecules outside of mammals. Only one class I molecule in the chicken MHC is highly expressed, leading to strong genetic associations with infectious pathogens. Here, we report two structures of the MHC class I molecule BF2*2101 from the B21 haplotype, which is known to confer resistance to Marek's disease caused by an oncogenic herpesvirus. The binding groove has an unusually large central cavity, which confers substantial conformational flexibility to the crucial residue Arg9, allowing remodeling of key peptide-binding sites. The coupled variation of anchor residues from the peptide, utilizing a charge-transfer system unprecedented in MHC molecules, allows peptides with conspicuously different sequences to be bound. This promiscuous binding extends our understanding of ways in which MHC class I molecules can present peptides to the immune system and might explain the resistance of the B21 haplotype to Marek's disease.
Collapse
Affiliation(s)
- Michael Koch
- Cancer Research UK Receptor Structure Research Group, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ray S, Kepler TB. Amino acid biophysical properties in the statistical prediction of peptide-MHC class I binding. Immunome Res 2007; 3:9. [PMID: 17967170 PMCID: PMC2186325 DOI: 10.1186/1745-7580-3-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background A key step in the development of an adaptive immune response to pathogens or vaccines is the binding of short peptides to molecules of the Major Histocompatibility Complex (MHC) for presentation to T lymphocytes, which are thereby activated and differentiate into effector and memory cells. The rational design of vaccines consists in part in the identification of appropriate peptides to effect this process. There are several algorithms currently in use for making such predictions, but these are limited to a small number of MHC molecules and have good but imperfect prediction power. Results We have undertaken an exploration of the power gained by taking advantage of a natural representation of the amino acids in terms of their biophysical properties. We used several well-known statistical classifiers using either a naive encoding of amino acids by name or an encoding by biophysical properties. In all cases, the encoding by biophysical properties leads to substantially lower misclassification error. Conclusion Representation of amino acids using a few important bio-physio-chemical property provide a natural basis for representing peptides and greatly improves peptide-MHC class I binding prediction.
Collapse
Affiliation(s)
- Surajit Ray
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
| | | |
Collapse
|
63
|
Mitaksov V, Truscott SM, Lybarger L, Connolly J, Hansen TH, Fremont DH. Structural engineering of pMHC reagents for T cell vaccines and diagnostics. CHEMISTRY & BIOLOGY 2007; 14:909-22. [PMID: 17719490 PMCID: PMC3601489 DOI: 10.1016/j.chembiol.2007.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/19/2007] [Accepted: 07/02/2007] [Indexed: 11/15/2022]
Abstract
MHC class I peptide complexes (pMHC) are routinely used to enumerate T cell populations and are currently being evaluated as vaccines to tumors and specific pathogens. Herein, we describe the structures of three generations of single-chain pMHC progressively designed for the optimal presentation of covalently associated epitopes. Our ultimate design employs a versatile disulfide trap between an invariant MHC residue and a short C-terminal peptide extension. This general strategy is nondisruptive of native pMHC conformation and T cell receptor engagement. Indeed, cell-surface-expressed MHC complexes with disulfide-trapped epitopes are refractory to peptide exchange, suggesting they will make safe and effective vaccines. Furthermore, we find that disulfide-trap stabilized, recombinant pMHC reagents reliably detect polyclonal CD8 T cell populations as proficiently as conventional reagents and are thus well suited to monitor or modulate immune responses during pathogenesis.
Collapse
Affiliation(s)
- Vesselin Mitaksov
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M. Truscott
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lonnie Lybarger
- Cell Biology & Anatomy, University of Arizona Health Sciences Center, Tucson, AZ 85724, U.S.A
| | - Janet Connolly
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ted H. Hansen
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H. Fremont
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biochem. & Mol. Biophysics, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| |
Collapse
|
64
|
Truscott SM, Lybarger L, Martinko JM, Mitaksov VE, Kranz DM, Connolly JM, Fremont DH, Hansen TH. Disulfide bond engineering to trap peptides in the MHC class I binding groove. THE JOURNAL OF IMMUNOLOGY 2007; 178:6280-9. [PMID: 17475856 DOI: 10.4049/jimmunol.178.10.6280] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominant peptides in CD8 T cell responses to pathogens and tumors are not always tight binders to MHC class I molecules. Furthermore, antigenic peptides that bind weakly to the MHC can be problematic when designing vaccines to elicit CD8 T cells in vivo or for the production of MHC multimers for enumerating pathogen-specific T cells in vitro. Thus, to enhance peptide binding to MHC class I, we have engineered a disulfide bond to trap antigenic peptides into the binding groove of murine MHC class I molecules expressed as single-chain trimers or SCTs. These SCTs with disulfide traps, termed dtSCTs, oxidized properly in the endoplasmic reticulum, transited to the cell surface, and were recognized by T cells. Introducing a disulfide trap created remarkably tenacious MHC/peptide complexes because the peptide moiety of the dtSCT was not displaced by high-affinity competitor peptides, even when relatively weak binding peptides were incorporated into the dtSCT. This technology promises to be useful for DNA vaccination to elicit CD8 T cells, in vivo study of CD8 T cell development, and construction of multivalent MHC/peptide reagents for the enumeration and tracking of T cells-particularly when the antigenic peptide has relatively weak affinity for the MHC.
Collapse
Affiliation(s)
- Steven M Truscott
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Houghton CSB, Engelhorn ME, Liu C, Song D, Gregor P, Livingston PO, Orlandi F, Wolchok JD, McCracken J, Houghton AN, Guevara-Patiño JA. Immunological validation of the EpitOptimizer program for streamlined design of heteroclitic epitopes. Vaccine 2007; 25:5330-42. [PMID: 17570567 DOI: 10.1016/j.vaccine.2007.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 11/18/2022]
Abstract
One strategy to generate T-cell responses to tumors is to alter subdominant epitopes through substitution of amino acids that are optimal anchors for specific MHC molecules, termed heteroclitic epitopes. This approach is manually error-prone and time-consuming. In here, we describe a computer-based algorithm (EpitOptimizer) for the streamlined design of heteroclitic epitopes. Analysis of two cancer-related proteins showed that EpitOptimizer-generated peptides have enhanced MHC-I binding compared with their wild-type counterparts; and were able to induce stronger CD8+ T-cell responses against their native epitope. These data demonstrate that this approach can serve as the basis of epitope-engineering against cancer and intracellular pathogens.
Collapse
Affiliation(s)
- Colin S B Houghton
- The Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Towne CF, York IA, Watkin LB, Lazo JS, Rock KL. Analysis of the Role of Bleomycin Hydrolase in Antigen Presentation and the Generation of CD8 T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:6923-30. [PMID: 17513741 DOI: 10.4049/jimmunol.178.11.6923] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Long oligopeptides (>10 residues) are generated during the catabolism of cellular proteins in the cytosol. To be presented to T cells, such peptides must be trimmed by aminopeptidases to the proper size (typically 8-10 residues) to stably bind to MHC class I molecules. Aminopeptidases also destroy epitopes by trimming them to even shorter lengths. Bleomycin hydrolase (BH) is a cytosolic aminopeptidase that has been suggested to play a key role in generating MHC class I-presented peptides. We show that BH-deficient cells from mice are unimpaired in their ability to present epitopes from N-extended precursors or whole Ags and express normal levels of MHC class I molecules. Similarly, BH-deficient mice develop normal CD8(+) T cell responses to eight epitopes from three different viruses in vivo. Therefore, BH by itself is not essential for the generation or destruction of MHC class I peptides. In contrast, when BH(-/-) mice are crossed to mice lacking another cytosolic aminopeptidase, leucine aminopeptidase, the resulting BH(-/-)leucine aminopeptidase(-/-) progeny show a selective increase in CD8(+) T cell responses to the gp276 epitope from lymphocytic choriomeningitis virus, whereas the ability to present and respond to several other epitopes is unchanged. Therefore, BH does influence presentation of some Ags, although its role is largely redundant with other aminopeptidases.
Collapse
Affiliation(s)
- Charles F Towne
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
67
|
Becker PD, Nörder M, Guzmán CA, Grinstein S. Immune modulator adamantylamide dipeptide stimulates efficient major histocompatibility complex class I-restricted responses in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:538-43. [PMID: 17344349 PMCID: PMC1865622 DOI: 10.1128/cvi.00316-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adamantylamide L-alanyl-D-isoglutamine (AdDP) is a synthetic adjuvant which belongs to the family of the desmuramyl peptides. AdDP exerts its adjuvant properties when it is administered either by the parenteral or by the mucosal route, leading to the elicitation of strong humoral responses at both the systemic and the mucosal levels. However, very little is known about the effect of AdDP on cellular immunity. Here we demonstrate that AdDP is able to stimulate cellular responses, which are characterized by the release of gamma interferon by CD8+ T cells when they are restimulated with a major histocompatibility complex class I-restricted peptide and strong in vivo lymphocyte-mediated cytotoxic activity. The capacity of AdDP to stimulate the elicitation of both cellular and humoral adaptive responses makes this adjuvant a promising tool for the development of mucosal vaccine formulations.
Collapse
Affiliation(s)
- Pablo D Becker
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
68
|
Chu F, Lou Z, Chen YW, Liu Y, Gao B, Zong L, Khan AH, Bell JI, Rao Z, Gao GF. First glimpse of the peptide presentation by rhesus macaque MHC class I: crystal structures of Mamu-A*01 complexed with two immunogenic SIV epitopes and insights into CTL escape. THE JOURNAL OF IMMUNOLOGY 2007; 178:944-52. [PMID: 17202356 DOI: 10.4049/jimmunol.178.2.944] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The infection of rhesus macaques (Macaca mulatta) by the SIV is the best animal model for studying HIV infection and for AIDS vaccine development. A prevalent MHC class I allele, Mamu-A*01, is known to correlate with containment of SIV, which has been extensively explored in studies of CTL-based vaccination concepts. We determined the crystal structures of Mamu-A*01 complexed with two immunodominant SIV epitopes: the nonamer CM9 of group-specific Ag (Gag, 181-189; CTPYDINQM) and the octamer TL8 of transcription activator (Tat, 28-35; TTPESANL). The overall structures of the two Mamu-A*01 complexes are similar to other MHC class I molecules. Both structures confirm the presence of an absolutely conserved proline anchor residue in the P3 position of the Ag, bound to a D pocket of the Mamu-A*01 H chain with optimal surface complementarity. Like other MHC/peptide complex structures, the P2 and C-terminal residues of the epitopes are also important for anchoring to the MHC molecule, whereas the middle residues form an arch and their side chains are directed into solvent. These two structures reveal details of how Mamu-A*01 interacts with two well-studied epitopes at the atomic level. We discuss the structural basis of CTL escape, based on molecular models made possible by these two structures. The results we present in this study are most relevant for the rational design of Mamu-A*01-restricted CTL epitopes with improved binding, as a step toward development of AIDS vaccines.
Collapse
Affiliation(s)
- Fuliang Chu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, 13 Beiyitiao, Zhongguancun, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lazoura E, Lodding J, Farrugia W, Ramsland PA, Stevens J, Wilson IA, Pietersz GA, Apostolopoulos V. Enhanced major histocompatibility complex class I binding and immune responses through anchor modification of the non-canonical tumour-associated mucin 1-8 peptide. Immunology 2007; 119:306-16. [PMID: 17067310 PMCID: PMC1819580 DOI: 10.1111/j.1365-2567.2006.02434.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Designing peptide-based vaccines for therapeutic applications in cancer immunotherapy requires detailed knowledge of the interactions between the antigenic peptide and major histocompatibility complex (MHC) in addition to that between the peptide-MHC complex and the T-cell receptor. Past efforts to immunize with high-affinity tumour-associated antigenic peptides have not been very immunogenic, which may be attributed to the lack of T cells to these peptides, having been deleted during thymic development. For this reason, low-to-medium affinity non-canonical peptides represent more suitable candidates. However, in addition to the difficulty in identifying such antigens, peptide binding to MHC, and hence its ability to induce a strong immune response, is limited. Therefore, to enhance binding to MHC and improve immune responses, anchor modifications of non-canonical tumour-associated peptides would be advantageous. In this study, the non-canonical tumour-associated peptide from MUC1, MUC1-8 (SAPDTRPA), was modified at the MHC anchor residues to SAPDFRPL (MUC1-8-5F8L) and showed enhanced binding to H-2Kb and improved immune responses. Furthermore, the crystal structure of MUC1-8-5F8L in complex with H-2Kb was determined and it revealed that binding of the peptide to MHC is similar to that of the canonical peptide OVA8 (SIINFEKL).
Collapse
Affiliation(s)
- Eliada Lazoura
- Burnet Institute at Austin, Immunology and Vaccine LaboratoryHeidelberg, VIC, Australia
| | - Jodie Lodding
- Burnet Institute at Austin, Immunology and Vaccine LaboratoryHeidelberg, VIC, Australia
| | - William Farrugia
- Burnet Institute at Austin, Structural Immunology LaboratoryHeidelberg, VIC, Australia
| | - Paul A Ramsland
- Burnet Institute at Austin, Structural Immunology LaboratoryHeidelberg, VIC, Australia
| | - James Stevens
- Department of Molecular Biology, The Scripps Research InstituteLa Jolla, CA, USA
| | - Ian A Wilson
- Department of Molecular Biology, The Scripps Research InstituteLa Jolla, CA, USA
- Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA, USA
| | - Geoffrey A Pietersz
- Burnet Institute at Austin, Bio-Organic and Medicinal Chemistry LaboratoryHeidelberg VIC Australia
| | - Vasso Apostolopoulos
- Burnet Institute at Austin, Immunology and Vaccine LaboratoryHeidelberg, VIC, Australia
| |
Collapse
|
70
|
Joseph MA, Mitchell ML, Evanseck JD, Kovacs JR, Jia L, Shen H, Meng WS. Secondary anchor substitutions in an HLA-A*0201-restricted T-cell epitope derived from Her-2/neu. Mol Immunol 2007; 44:322-31. [PMID: 16597462 PMCID: PMC2430429 DOI: 10.1016/j.molimm.2006.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
We investigated analogues of GP2 (IISAVVGIL), an HLA-A*0201-restricted T-cell epitope derived from residues 654-662 in the tumor-associated antigen (TAA) Her-2/neu. One limiting factor of GP2 is its poor affinity for HLA-A*0201. Conformational analysis revealed the P5-P7 region in GP2 appears to be linked to the stability of P9 side chain interaction with the MHC molecule. To identify variants of GP2 with enhanced presentation to HLA-A*0201, we tested V6S, V6T, V6Q, G7P, G7F, T6F7, and Q6F7 for their capacity to stabilize cell surface HLA-A*0201 molecules. Of the mono-substituted variants, V6Q and G7F exhibited superior stabilization as compared to GP2. Molecular dynamics simulations suggest the improved binding can be attributed to concerted motions in the central and C-terminal regions of the peptide. These data support the notion that amino acids in HLA-A*0201 epitopes may be inter-dependent. Priming HLA-A*0201 transgenic mice with G7F-loaded syngeneic dendritic cells stimulated mouse T cells to produce a higher level of INFgamma than mice immunized with GP2.
Collapse
Affiliation(s)
- Matthew A. Joseph
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Megan L. Mitchell
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jeffrey D. Evanseck
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | - Jeffrey R. Kovacs
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Liang Jia
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Hongmei Shen
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Wilson S. Meng
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
71
|
Meng WS, Bui HH, Haworth IS. Exploiting the Peptide — MHC Water Interface in the Computer-Aided Design of Non-Natural Peptides that Bind to the Class I MHC Molecule HLA-A2. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020008022372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
72
|
Bordner AJ, Abagyan R. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins 2006; 63:512-26. [PMID: 16470819 DOI: 10.1002/prot.20831] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since determining the crystallographic structure of all peptide-MHC complexes is infeasible, an accurate prediction of the conformation is a critical computational problem. These models can be useful for determining binding energetics, predicting the structures of specific ternary complexes with T-cell receptors, and designing new molecules interacting with these complexes. The main difficulties are (1) adequate sampling of the large number of conformational degrees of freedom for the flexible peptide, (2) predicting subtle changes in the MHC interface geometry upon binding, and (3) building models for numerous MHC allotypes without known structures. Whereas previous studies have approached the sampling problem by dividing the conformational variables into different sets and predicting them separately, we have refined the Biased-Probability Monte Carlo docking protocol in internal coordinates to optimize a physical energy function for all peptide variables simultaneously. We also imitated the induced fit by docking into a more permissive smooth grid representation of the MHC followed by refinement and reranking using an all-atom MHC model. Our method was tested by a comparison of the results of cross-docking 14 peptides into HLA-A*0201 and 9 peptides into H-2K(b) as well as docking peptides into homology models for five different HLA allotypes with a comprehensive set of experimental structures. The surprisingly accurate prediction (0.75 A backbone RMSD) for cross-docking of a highly flexible decapeptide, dissimilar to the original bound peptide, as well as docking predictions using homology models for two allotypes with low average backbone RMSDs of less than 1.0 A illustrate the method's effectiveness. Finally, energy terms calculated using the predicted structures were combined with supervised learning on a large data set to classify peptides as either HLA-A*0201 binders or nonbinders. In contrast with sequence-based prediction methods, this model was also able to predict the binding affinity for peptides to a different MHC allotype (H-2K(b)), not used for training, with comparable prediction accuracy.
Collapse
Affiliation(s)
- Andrew J Bordner
- Department of Molecular Biology, The Scripps Research Institute, San Diego, California, USA.
| | | |
Collapse
|
73
|
Yachi PP, Ampudia J, Zal T, Gascoigne NRJ. Altered Peptide Ligands Induce Delayed CD8-T Cell Receptor Interaction—a Role for CD8 in Distinguishing Antigen Quality. Immunity 2006; 25:203-11. [PMID: 16872849 DOI: 10.1016/j.immuni.2006.05.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/21/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
How T cells translate T cell receptor (TCR) recognition of almost identical pMHC ligands into distinct biological responses has remained enigmatic. Although differences in affinity or off rate are important, they offer at best an incomplete explanation. By using Förster resonance energy transfer (FRET), we have visualized the ligand-induced interaction between OT-I TCR and CD8. We found that both recruitment of TCR to the immunological synapse and the TCR-CD8 interaction induced by weak agonists (positive-selecting ligands) was delayed but not necessarily weaker than strong agonists (negative selectors). A delayed and perhaps longer lasting CD8-TCR interaction results in delayed phospho-ERK recruitment to the synapse. The kinetics of the TCR-CD8 interaction can reconcile previously anomalous data, where biological activity did not correlate with TCR-pMHC binding kinetics for certain ligands. Our findings indicate that the T cell translates antigen recognition into T cell responses by differential recruitment of CD8 to the TCR.
Collapse
Affiliation(s)
- Pia P Yachi
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
74
|
Bui HH, Schiewe AJ, von Grafenstein H, Haworth IS. Structural prediction of peptides binding to MHC class I molecules. Proteins 2006; 63:43-52. [PMID: 16447245 DOI: 10.1002/prot.20870] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptide binding to class I major histocompatibility complex (MHCI) molecules is a key step in the immune response and the structural details of this interaction are of importance in the design of peptide vaccines. Algorithms based on primary sequence have had success in predicting potential antigenic peptides for MHCI, but such algorithms have limited accuracy and provide no structural information. Here, we present an algorithm, PePSSI (peptide-MHC prediction of structure through solvated interfaces), for the prediction of peptide structure when bound to the MHCI molecule, HLA-A2. The algorithm combines sampling of peptide backbone conformations and flexible movement of MHC side chains and is unique among other prediction algorithms in its incorporation of explicit water molecules at the peptide-MHC interface. In an initial test of the algorithm, PePSSI was used to predict the conformation of eight peptides bound to HLA-A2, for which X-ray data are available. Comparison of the predicted and X-ray conformations of these peptides gave RMSD values between 1.301 and 2.475 A. Binding conformations of 266 peptides with known binding affinities for HLA-A2 were then predicted using PePSSI. Structural analyses of these peptide-HLA-A2 conformations showed that peptide binding affinity is positively correlated with the number of peptide-MHC contacts and negatively correlated with the number of interfacial water molecules. These results are consistent with the relatively hydrophobic binding nature of the HLA-A2 peptide binding interface. In summary, PePSSI is capable of rapid and accurate prediction of peptide-MHC binding conformations, which may in turn allow estimation of MHCI-peptide binding affinity.
Collapse
Affiliation(s)
- Huynh-Hoa Bui
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
75
|
Selin LK, Brehm MA, Naumov YN, Cornberg M, Kim SK, Clute SC, Welsh RM. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev 2006; 211:164-81. [PMID: 16824126 PMCID: PMC7165519 DOI: 10.1111/j.0105-2896.2006.00394.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The main functions of memory T cells are to provide protection upon re-exposure to a pathogen and to prevent the re-emergence of low-grade persistent pathogens. Memory T cells achieve these functions through their high frequency and elevated activation state, which lead to rapid responses upon antigenic challenge. The significance and characteristics of memory CD8+ T cells in viral infections have been studied extensively. In many of these studies of T-cell memory, experimental viral immunologists go to great lengths to assure that their animal colonies are free of endogenous pathogens in order to design reproducible experiments. These experimental results are then thought to provide the basis for our understanding of human immune responses to viruses. Although these findings can be enlightening, humans are not immunologically naïve, and they often have memory T-cell populations that can cross-react with and respond to a new infectious agent or cross-react with allo-antigens and influence the success of tissue transplantation. These cross-reactive T cells can become activated and modulate the immune response and outcome of subsequent heterologous infections, a phenomenon we have termed heterologous immunity. These large memory populations are also accommodated into a finite immune system, requiring that the host makes room for each new population of memory cell. It appears that memory cells are part of a continually evolving interactive network, where with each new infection there is an alteration in the frequencies, distributions, and activities of memory cells generated in response to previous infections and allo-antigens.
Collapse
Affiliation(s)
- Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Classic major histocompatibility complex (MHC) proteins associate with antigen- and self-derived peptides in an allele-specific manner. Herein we present the crystal structure of the MHC class I protein H-2K(d) (K(d)) expressed by BALB/c mice in complex with an antigenic peptide derived from influenza A/PR/8/34 nucleoprotein (Flu, residues 147-155, TYQRTRALV). Analysis of our structure in conjunction with the sequences of naturally processed epitopes provides a comprehensive understanding of the dominant K(d) peptide-binding motif. We find that Flu residues Tyr(P2), Thr(P5), and Val(P9) are sequestered into the B, C, and F pockets of the K(d) groove, respectively. The shape and chemistry of the polymorphic B pocket make it an optimal binding site for the side chain of Tyr(P2) as the dominant anchoring residue of nonameric peptides. The non-polar F pocket limits the amino acid repertoire at P9 to hydrophobic residues such as Ile, Leu, or Val, whereas the C pocket restricts the size of the P5-anchoring side chain. We also show that Flu is accommodated in the complex through an unfavorable kink in the otherwise extended peptide backbone due to the presence of a prominent ridge in the K(d) groove. Surprisingly, this backbone conformation is strikingly similar to D(b)-presented peptides despite the fact that these proteins employ distinct motif-anchoring strategies. The results presented in this study provide a solid foundation for the understanding of K(d)-restricted antigen presentation and recognition events.
Collapse
Affiliation(s)
- Vesselin Mitaksov
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
77
|
Hattotuwagama CK, Doytchinova IA, Flower DR. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study. J Chem Inf Model 2005; 45:1415-23. [PMID: 16180918 DOI: 10.1021/ci049667l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current methods for the in silico identification of T cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate prediction of peptide-major histocompatibility complex (MHC) affinity. A three-dimensional quantitative structure-activity relationship (3D-QSAR) for the prediction of peptide binding to class I MHC molecules was established using the comparative molecular similarity index analysis (CoMSIA) method. Three MHC alleles were studied: H2-D(b), H2-K(b), and H2-K(k). Models were produced for each allele. Each model consisted of five physicochemical descriptors-steric bulk, electrostatic potentials, hydrophobic interactions, and hydrogen-bond donor and hydrogen-bond acceptor abilities. The models have an acceptable level of predictivity: cross-validation leave-one-out statistical terms q2 and SEP (standard error of prediction) ranged between 0.490 and 0.679 and between 0.525 and 0.889, respectively. The non-cross-validated statistical terms r2 and SEE (standard error of estimate) ranged between 0.913 and 0.979 and between 0.167 and 0.248, respectively. The use of coefficient contour maps, which indicate favored and disfavored areas for each position of the MHC-bound peptides, allowed the binding specificity of each allele to be identified, visualized, and understood. The present study demonstrates the effectiveness of CoMSIA as a method for studying peptide-MHC interactions. The peptides used in this study are available on the Internet (http://www.jenner.ac.uk/AntiJen). The partial least-squares method is available commercially in the SYBYL molecular modeling software package.
Collapse
|
78
|
Achour A, Michaëlsson J, Harris RA, Ljunggren HG, Kärre K, Schneider G, Sandalova T. Structural basis of the differential stability and receptor specificity of H-2Db in complex with murine versus human beta2-microglobulin. J Mol Biol 2005; 356:382-96. [PMID: 16375919 DOI: 10.1016/j.jmb.2005.11.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/07/2005] [Accepted: 11/22/2005] [Indexed: 11/15/2022]
Abstract
beta(2)-Microglobulin (beta(2)m) is non-covalently linked to the major histocompatibility complex (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I heavy chains can bind human beta(2)m (hbeta(2)m) and peptide, and such hybrid molecules are often used in structural and functional studies. The replacement of mouse beta(2)m (mbeta(2)m) with hbeta(2)m has several functional consequences for MHC class I complex stability and specificity, but the structural basis for this is presently unknown. To investigate the impact of species-specific beta(2)m subunits on MHC class I conformation, we provide a crystallographic comparison of H-2D(b) in complex with LCMV-derived gp33 peptide and either hbeta(2)m or mbeta(2)m. The conformation of the gp33 peptide is not affected by the beta(2)m species. Comparison of the interface between beta(2)m and the alpha(1)alpha(2) domains of the heavy chain in these two crystal structures reveals a marked increase in both polarity and number of hydrogen bonds between hbeta(2)m and the alpha(1)alpha(2) domains of H-2D(b). We propose that the positioning of two hydrogen bond rich regions at the hbeta(2)m/alpha(1)alpha(2) interface plays a central role in the increased overall stability and peptide exchange capacity in the H-2D(b)/hbeta(2)m complex. These two regions act as bridges, holding and stabilizing the underside of the alpha(1) and alpha(2) helices, enabling a prolonged peptide-receptive conformation of the peptide binding cleft. Furthermore, analysis of H-2D(b) in complex with either mbeta(2)m or hbeta(2)m provides a structural explanation for the differential binding of H-2D(b)/hbeta(2)m to both Ly49A and Ly49C. Our comparative structural study emphasizes the importance of beta(2)m residues at positions 3, 6 and 29 for binding to Ly49A and suggests that sterical hindrance by residue K6 on hbeta(2)m impairs the recognition of Ly49C by H-2D(b)/gp33/hbeta(2)m. Finally, comparison of the two H-2D(b) crystal structures implies that the beta(2)m species may affect the strength of TCR recognition by affecting CD8 binding.
Collapse
Affiliation(s)
- Adnane Achour
- Center for Infectious Medicine, F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital in Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
79
|
Fagerberg T, Cerottini JC, Michielin O. Structural prediction of peptides bound to MHC class I. J Mol Biol 2005; 356:521-46. [PMID: 16368108 DOI: 10.1016/j.jmb.2005.11.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Collapse
Affiliation(s)
- Theres Fagerberg
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
80
|
Hansen TH, Lybarger L, Yu L, Mitaksov V, Fremont DH. Recognition of open conformers of classical MHC by chaperones and monoclonal antibodies. Immunol Rev 2005; 207:100-11. [PMID: 16181330 DOI: 10.1111/j.0105-2896.2005.00315.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is considerable evidence that the conformation and stability of class I and class II major histocompatibility complex (MHC) proteins is dependent upon high-affinity peptide ligation, but structural data for an empty MHC protein unfortunately is lacking. However, several monoclonal antibodies (mAbs) that specifically detect open MHC conformers have been characterized, and they provide insights into the changes associated with peptide loading and unloading. Here, the structural changes make the argument that certain of these open conformer-specific mAbs recognize analogous MHC segments as the molecular chaperones tapasin and DM. MHC residues located in regions flanking the peptide-terminal anchoring pockets have been implicated in both chaperone and monoclonal antibody binding. Indeed, we propose these regions serve as peptide-binding hinges that are uniquely accessible in open MHC.
Collapse
Affiliation(s)
- Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
81
|
Giabbai B, Sidobre S, Crispin MDM, Sanchez-Ruìz Y, Bachi A, Kronenberg M, Wilson IA, Degano M. Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:977-84. [PMID: 16002697 DOI: 10.4049/jimmunol.175.2.977] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NKT cells are immunoregulatory lymphocytes whose activation is triggered by the recognition of lipid Ags in the context of the CD1d molecules by the TCR. In this study we present the crystal structure to 2.8 A of mouse CD1d bound to phosphatidylcholine. The interactions between the ligand acyl chains and the CD1d molecule define the structural and chemical requirements for the binding of lipid Ags to CD1d. The orientation of the polar headgroup toward the C terminus of the alpha1 helix provides a rationale for the structural basis for the observed Valpha chain bias in invariant NKT cells. The contribution of the ligand to the protein surface suggests a likely mode of recognition of lipid Ags by the NKT cell TCR.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Cell Line
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Drosophila melanogaster
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Lymphocyte Activation/immunology
- Mice
- Models, Molecular
- Phosphatidylcholines/chemistry
- Phosphatidylcholines/immunology
- Phosphatidylcholines/metabolism
- Protein Binding/immunology
- Protein Isoforms/chemistry
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Surface Properties
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Barbara Giabbai
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Webb AI, Dunstone MA, Williamson NA, Price JD, de Kauwe A, Chen W, Oakley A, Perlmutter P, McCluskey J, Aguilar MI, Rossjohn J, Purcell AW. T Cell Determinants Incorporating β-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:3810-8. [PMID: 16148127 DOI: 10.4049/jimmunol.175.6.3810] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of beta-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding beta-amino acid and examined the resultant efficacy of these mimotopes. Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with beta-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using beta-amino acids. We conclude that the rational incorporation of beta-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring alpha-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.
Collapse
Affiliation(s)
- Andrew I Webb
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kellenberger C, Roussel A, Malissen B. The H-2KkMHC Peptide-Binding Groove Anchors the Backbone of an Octameric Antigenic Peptide in an Unprecedented Mode. THE JOURNAL OF IMMUNOLOGY 2005; 175:3819-25. [PMID: 16148128 DOI: 10.4049/jimmunol.175.6.3819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A wealth of data has accumulated on the structure of mouse MHC class I (MHCI) molecules encoded by the H-2(b) and H-2(d) haplotypes. In contrast, there is a dearth of structural data regarding H-2(k)-encoded molecules. Therefore, the structures of H-2K(k) complexed to an octameric peptide from influenza A virus (HA(259-266)) and to a nonameric peptide from SV40 (SV40(560-568)) have been determined by x-ray crystallography at 2.5 and 3.0 A resolutions, respectively. The structure of the H-2K(k)-HA(259-266) complex reveals that residues located on the floor of the peptide-binding groove contact directly the backbone of the octameric peptide and force it to lie deep within the H-2K(k) groove. This unprecedented mode of peptide binding occurs despite the presence of bulky residues in the middle of the floor of the H-2K(k) peptide-binding groove. As a result, the Calpha atoms of peptide residues P5 and P6 are more buried than the corresponding residues of H-2K(b)-bound octapeptides, making them even less accessible to TCR contact. When bound to H-2K(k), the backbone of the SV40(560-568) nonapeptide bulges out of the peptide-binding groove and adopts a conformation reminiscent of that observed for peptides bound to H-2L(d). This structural convergence occurs despite the totally different architectures of the H-2L(d) and H-2K(k) peptide-binding grooves. Therefore, these two H-2K(k)-peptide complexes provide insights into the mechanisms through which MHC polymorphism outside primary peptide pockets influences the conformation of the bound peptides and have implications for TCR recognition and vaccine design.
Collapse
Affiliation(s)
- Christine Kellenberger
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale-Centre National Recherche de la Scientifique-Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France.
| | | | | |
Collapse
|
84
|
Carey B, DeLay M, Strasser JE, Chalk C, Dudley-McClain K, Milligan GN, Brunner HI, Thornton S, Hirsch R. A soluble divalent class I MHC/IgG1 fusion protein activates CD8+ T cells in vivo. Clin Immunol 2005; 116:65-76. [PMID: 15925833 DOI: 10.1016/j.clim.2005.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 02/22/2005] [Indexed: 11/16/2022]
Abstract
CD8+ T lymphocytes recognize tumor and viral antigens bound to class I major histocompatibility complexes (MHC). Tumors and viruses may evade detection by preventing antigen presentation. The present study was designed to determine whether a soluble divalent fusion protein, containing the extracellular domains of a class I MHC molecule fused to beta2-microglobulin and the constant domains of IgG1, could induce an immune response in vivo. Administration to mice of the fusion protein loaded with a tumor peptide induced peptide-specific T cell activation and retarded tumor growth. Administration of the fusion protein loaded with a glycoprotein B (gB) peptide derived from herpes simplex virus type 1 (HSV-1) induced gB-specific cytotoxic T lymphocytes and protected mice from a lethal HSV-1 challenge. These data suggest that antigen-loaded MHC/IgG fusion proteins may enhance T cell immunity in conditions where antigen presentation is altered.
Collapse
Affiliation(s)
- Brenna Carey
- William S. Rowe Division of Rheumatology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Huang S, Gilfillan S, Cella M, Miley MJ, Lantz O, Lybarger L, Fremont DH, Hansen TH. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J Biol Chem 2005; 280:21183-93. [PMID: 15802267 DOI: 10.1074/jbc.m501087200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its alpha1/alpha2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) alpha chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/alphabetaTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Kishimoto J, Fukuma Y, Mizuno A, Nemoto TK. Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones. Cell Stress Chaperones 2005; 10:296-311. [PMID: 16333984 PMCID: PMC1283875 DOI: 10.1379/csc-129r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 01/13/2023] Open
Abstract
We previously reported that, in human heat shock protein (Hsp) 90 (hHsp90), there are 4 highly immunogenic sites, designated sites Ia, Ib, Ic, and II. This study was performed to further characterize their epitopes and to identify the epitope that is potentially common to all members of the Hsp90 family. Panning of a bacterial library carrying randomized dodecapeptides revealed that Glu251-Ser-X-Asp254 constituted site Ia and Pro295-Ile-Trp-Thr-Arg299, site Ic. Site II (Asp701-Pro717) was composed of several epitopes. When 19 anti-hHsp90 monoclonal antibodies (mAbs) were subjected to immunoblotting against recombinant forms of 7 Hsp90-family members, 2 mAbs (K41110 and K41116C) that recognized site Ic bound to yeast Hsp90 with affinity identical to that for hHsp90, and 1 mAb (K3729) that recognized Glu222-Ala23, of hHsp90beta could bind to human 94-kDa glucose-regulated protein (Grp94), an endoplasmic reticulum paralog of Hsp90. Among the 5 amino acids constituting site Ic, Trp297 and Pro295 were essential for recognition by all anti-site-Ic mAbs, and Arg299 was important for most of them. The necessity of Ile296, Thr298, and Arg299, which are replaced by Leu, Met/Leu, and Lys, respectively, in some eukaryotic Hsp90, was dependent on the mAbs, and K41110 and K41116C could react with Hsp90s carrying these substitutions. From these data taken together, we propose that the pentapeptide Pro295-Ile-Trp-Thr-Arg299 of hHsp90 functions as an immunodominant epitope common to all eukaryotic Hsp90.
Collapse
Affiliation(s)
- Jun Kishimoto
- Division of Oral and Maxillofacial Surgery, Department of Developmental and Reconstructive Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | |
Collapse
|
87
|
Miley MJ, Messaoudi I, Metzner BM, Wu Y, Nikolich-Zugich J, Fremont DH. Structural basis for the restoration of TCR recognition of an MHC allelic variant by peptide secondary anchor substitution. ACTA ACUST UNITED AC 2004; 200:1445-54. [PMID: 15557346 PMCID: PMC2211956 DOI: 10.1084/jem.20040217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Major histocompatibility complex (MHC) class I variants H-2Kb and H-2Kbm8 differ primarily in the B pocket of the peptide-binding groove, which serves to sequester the P2 secondary anchor residue. This polymorphism determines resistance to lethal herpes simplex virus (HSV-1) infection by modulating T cell responses to the immunodominant glycoprotein B498-505 epitope, HSV8. We studied the molecular basis of these effects and confirmed that T cell receptors raised against Kb–HSV8 cannot recognize H-2Kbm8–HSV8. However, substitution of SerP2 to GluP2 (peptide H2E) reversed T cell receptor (TCR) recognition; H-2Kbm8–H2E was recognized whereas H-2Kb–H2E was not. Insight into the structural basis of this discrimination was obtained by determining the crystal structures of all four MHC class I molecules in complex with bound peptide (pMHCs). Surprisingly, we find no concerted pMHC surface differences that can explain the differential TCR recognition. However, a correlation is apparent between the recognition data and the underlying peptide-binding groove chemistry of the B pocket, revealing that secondary anchor residues can profoundly affect TCR engagement through mechanisms distinct from the alteration of the resting state conformation of the pMHC surface.
Collapse
Affiliation(s)
- Michael J Miley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
88
|
Buus S, Lauemøller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. ACTA ACUST UNITED AC 2004; 62:378-84. [PMID: 14617044 DOI: 10.1034/j.1399-0039.2003.00112.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have generated Artificial Neural Networks (ANN) capable of performing sensitive, quantitative predictions of peptide binding to the MHC class I molecule, HLA-A*0204. We have shown that such quantitative ANN are superior to conventional classification ANN, that have been trained to predict binding vs non-binding peptides. Furthermore, quantitative ANN allowed a straightforward application of a 'Query by Committee' (QBC) principle whereby particularly information-rich peptides could be identified and subsequently tested experimentally. Iterative training based on QBC-selected peptides considerably increased the sensitivity without compromising the efficiency of the prediction. This suggests a general, rational and unbiased approach to the development of high quality predictions of epitopes restricted to this and other HLA molecules. Due to their quantitative nature, such predictions will cover a wide range of MHC-binding affinities of immunological interest, and they can be readily integrated with predictions of other events involved in generating immunogenic epitopes. These predictions have the capacity to perform rapid proteome-wide searches for epitopes. Finally, it is an example of an iterative feedback loop whereby advanced, computational bioinformatics optimize experimental strategy, and vice versa.
Collapse
Affiliation(s)
- S Buus
- Division of Experimental Immunology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mitra AK, Célia H, Ren G, Luz JG, Wilson IA, Teyton L. Supine orientation of a murine MHC class I molecule on the membrane bilayer. Curr Biol 2004; 14:718-24. [PMID: 15084288 DOI: 10.1016/j.cub.2004.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 01/21/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Structural studies of cellular immune receptors such as MHC molecules, T cell receptors (TCR), and TCR/MHC complexes have been carried out with recombinant, soluble forms of the extracytoplasmic domain of these glycoproteins. The important role of the membrane bilayer in T cell recognition and antigen presentation has become increasingly obvious with the description of lipid microdomains. These rafts appear to regulate recognition and signaling by clustering receptors and facilitating the formation of the immune synapse. However, the interactions and orientation of these receptors at the lipid bilayer are unknown. We have used H-2K(b), a major-histocompatibility (MHC) class I molecule, and tethered its soluble domain to a lipid bilayer via a surrogate connecting peptide to reveal the disposition of MHC molecule on the membrane surface. We demonstrate that the long axis of the MHC molecule is approximately parallel to the plane of the membrane with the peptide binding pocket close to the membrane surface. This result was determined by analyzing 4.5A resolution electron crystallographic projection data from frozen-hydrated 2-dimensional crystals. Ionic interactions between the lipid headgroup and the protein appear to be responsible for this orientation, which could establish a "fourth dimension" during MHC/T cell receptor interactions critical for activation.
Collapse
Affiliation(s)
- Alok K Mitra
- School of Biological Sciences, University of Auckland Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
90
|
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4:123-32. [PMID: 15040585 DOI: 10.1038/nri1292] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-alphabeta gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and the Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
91
|
Petrone PM, Garcia AE. MHC–Peptide Binding is Assisted by Bound Water Molecules. J Mol Biol 2004; 338:419-35. [PMID: 15066441 DOI: 10.1016/j.jmb.2004.02.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 02/02/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
Water plays an important role in determining the high affinity of epitopes to the class I MHC complex. To study the energy and dynamics of water interactions in the complex we performed molecular dynamics simulation of the class I MHC-HLA2 complex bound to the HIV reverse transcriptase epitope, ILKEPVHGV, and in the absence of the epitope. Each simulation was extended for 5ns. We studied the processes of water penetration in the interface between MHC and peptide, and identified 14 water molecules that stay bound for periods longer than 1ns in regions previously identified by crystallography. These water molecules in the interface perform definite "tasks" contributing to the binding energy: hydrogen bond bridges between MHC and peptide and filling empty spaces in the groove which enhance affinity without contributing to epitope specificity. We calculate the binding energy for interfacial water molecules and find that there is an overall gain in free energy resulting from the formation of water clusters at the epitope-MHC interface. Water molecules serving the task of filling empty spaces bind at the interface with a net gain in entropy, relative to their entropy in bulk. We conclude that water molecules at the interface play the role of active mediators in the MHC-peptide interaction, and might be responsible for the large binding affinity of the MHC complex to a large number of epitope sequences.
Collapse
Affiliation(s)
- Paula M Petrone
- Theoretical Biology and Biophysics Group, T-10 MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
92
|
Acosta-Rivero N, Dueñas-Carrera S, Alvarez-Lajonchere L, Morales-Grillo J. HCV core protein-expressing DNA vaccine induces a strong class I-binding peptide DTH response in mice. Biochem Biophys Res Commun 2004; 314:781-6. [PMID: 14741703 DOI: 10.1016/j.bbrc.2003.12.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus (HCV) core protein-encoding sequence (HCcAg) is the most conserved gene in HCV genome and therefore may be useful to study broadly reacting T-cell epitopes. In this study BALB/c and C57BL/6 mice were immunized with a DNA based vaccine expressing the first 176 aa of HCcAg (pIDKCo). After i.m or i.p injection of pIDKCo in BALB/c mice, a detectable INF-gamma secreting response to the relevant class I-binding peptide DLMGYIPLVGA (P1) (aa 132-142) was detected suggesting the induction of HCcAg specific CD8(+) T-cell effectors. CD8(+) T-cell responses were also monitored in vivo by T-cell-mediated DTH reactions after subcutaneous injection of class I-binding viral peptide P1. pIDKCo induced a strong P1-specific DTH response in both i.m and i.p immunized mice. To evaluate the T-cell response induced by pIDKCo in C57BL/6 mice, an HCcAg epitope was predicted based upon it containing the H-2K(b) binding motif XXXXF/YXXL (DLMGYIPL (P2)). pIDKCo induced a strong P2-specific DTH response with similar kinetics of swelling response to that observed in BALB/c mice. Previously, it had been demonstrated that only activated and protective CD8(+) effector T cells could mediate a specific DTH in footpads of virally infected mice after local injection of viral class I-binding peptides. Hence, pIDKCo could prime a strong HCcAg-specific T-cell response in mice with the potential capacity to exert their specific effector functions in peripheral tissues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cytotoxicity Tests, Immunologic/methods
- Edema/chemically induced
- Edema/immunology
- Enzyme-Linked Immunosorbent Assay/methods
- Epitopes, T-Lymphocyte/immunology
- Genetic Vectors/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Hypersensitivity, Delayed/immunology
- Injections, Subcutaneous
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Peptide Fragments/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Nelson Acosta-Rivero
- Division of Vaccines, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | | | | | | |
Collapse
|
93
|
Block MS, Hansen MJ, Van Keulen VP, Pease LR. MHC class I gene conversion mutations alter the CD8 T cell repertoire. THE JOURNAL OF IMMUNOLOGY 2004; 171:4006-10. [PMID: 14530320 DOI: 10.4049/jimmunol.171.8.4006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I molecules are highly polymorphic within populations. This diversity is thought to be the result of selective maintenance of new class I alleles formed by gene conversion. It has been proposed that rare alleles are maintained by their ability to confer resistance to common pathogens. Investigation has focused on differences in the presentation of foreign Ags by class I alleles, but the majority of peptides presented by class I molecules are self peptides used in shaping the naive T cell repertoire. We propose that the key substrate for the natural selection of class I gene conversion variants is the diversity in immune potential formed by new alleles. We show that T cells compete with each other for niches in the thymus and spleen during development, and that competition between different clones is dramatically affected by class I mutations. We also show that peripheral naive T cells proliferate preferentially in the presence of the class I variant that directed T cell development. The data argue that class I gene conversion mutations dramatically affect both the development and the maintenance of the naive CD8 T cell repertoire.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Immunology, Mayo Medical and Graduate Schools, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
94
|
Apostolopoulos V, Yuriev E, Ramsland PA, Halton J, Osinski C, Li W, Plebanski M, Paulsen H, McKenzie IFC. A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proc Natl Acad Sci U S A 2003; 100:15029-34. [PMID: 14657390 PMCID: PMC299892 DOI: 10.1073/pnas.2432220100] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Accepted: 10/13/2003] [Indexed: 11/18/2022] Open
Abstract
Peptides bind MHC class I molecules by anchoring hydrophobic side chains into pockets in the peptide binding groove. Here, we report an immunogenic (in vitro and in vivo) MUC1 glycopeptide (MUC1-8-5GalNAc) bound to H-2Kb, fully crossreactive with the nonglycosylated variant. Molecular modeling showed that the central P5-Thr-GalNAc residue points into the C pocket and forms van der Waals and hydrogen bond interactions with the MHC class I. As predicted, GalNAc, a modified peptide carrying an additional anchor in the central C anchor pocket, increased the affinity by approximately 100-fold compared with the native low-affinity peptide (MUC1-8). The findings demonstrate that glycopeptides associated with MHC class I molecules can use GalNAc to anchor the peptide in the groove and enable high-affinity binding.
Collapse
|
95
|
Dam J, Guan R, Natarajan K, Dimasi N, Chlewicki LK, Kranz DM, Schuck P, Margulies DH, Mariuzza RA. Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb. Nat Immunol 2003; 4:1213-22. [PMID: 14595439 DOI: 10.1038/ni1006] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 10/08/2003] [Indexed: 11/09/2022]
Abstract
The Ly49 family of natural killer (NK) receptors regulates NK cell function by sensing major histocompatibility complex (MHC) class I. Ly49 receptors show complex patterns of MHC class I cross-reactivity and, in certain cases, peptide selectivity. To investigate whether specificity differences result from topological differences in MHC class I engagement, we determined the structure of the peptide-selective receptor Ly49C in complex with H-2K(b). The Ly49C homodimer binds two MHC class I molecules in symmetrical way, a mode distinct from that of Ly49A, which binds MHC class I asymmetrically. Ly49C does not directly contact the MHC-bound peptide. In addition, MHC crosslinking by Ly49C was demonstrated in solution. We propose a dynamic model for Ly49-MHC class I interactions involving conformational changes in the receptor, whereby variations in Ly49 dimerization mediate different MHC-binding modes.
Collapse
Affiliation(s)
- Julie Dam
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Gaur A, Green WR. Analysis of the helper virus in murine retrovirus-induced immunodeficiency syndrome: evidence for immunoselection of the dominant and subdominant CTL epitopes of the BM5 ecotropic virus. Viral Immunol 2003; 16:203-12. [PMID: 12828871 DOI: 10.1089/088282403322017938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In genetically susceptible strains, such as C57BL/6 (B6) mice, LP-BM5 causes murine AIDS (MAIDS). LP-BM5 is a complex mixture of murine leukemia viruses (MuLV) that includes replication competent ecotropic (BM5eco) and mink cell focus inducing (MCF), and replication defective (BM5d) MuLV. At present, for the BM5eco virus, sequence information on only the gag region is available. In this paper, we describe for the first time the sequencing of the entire BM5eco viral genome as well as analysis of homology with two other previously sequenced and well-characterized MuLVs, Emv-11 and Emv-2, the latter constituting the parental virus for BM5eco. We propose that the detailed sequence comparisons herein provide cogent evidence that BM5eco utilizes variations in cytotoxic T lymphocytes (CTL) epitopes as an immune escape mechanism. This CTL evasion mechanism may contribute substantially to the underlying prototypic susceptibility of B6 mice to LP-BM5-induced MAIDS.
Collapse
Affiliation(s)
- Arti Gaur
- Department of Microbiology and Immunology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
97
|
Lybarger L, Yu YYL, Miley MJ, Fremont DH, Myers N, Primeau T, Truscott SM, Connolly JM, Hansen TH. Enhanced immune presentation of a single-chain major histocompatibility complex class I molecule engineered to optimize linkage of a C-terminally extended peptide. J Biol Chem 2003; 278:27105-11. [PMID: 12732632 DOI: 10.1074/jbc.m303716200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex class I molecules can be expressed as single polypeptides wherein the antigenic peptide, beta2-microglobulin, and heavy chain are attached by flexible linkers. These molecules, single-chain trimers (SCTs), are remarkably stable at the cell surface compared with native (noncovalently attached) class I molecules. In this study, we used a structure-based approach to engineer an F pocket variant SCT of the murine class I molecule Kb that presents the SIINFEKL epitope of ovalbumin. Mutation of heavy chain residue Tyr84 (Y84A) in the SCT resulted in enhanced serological and cytolytic CD8 T cell recognition of the covalently linked peptide due to better accommodation of the linker extending from the C terminus of the peptide. These SCTs exhibit significant cell-surface stability, which we hypothesize is rendered by their ability to continuously and efficiently rebind the covalently attached peptide. In addition, we demonstrate that SCT technology can be applied to tetramer construction using recombinant SCTs expressed in Escherichia coli. SCT-based tetramers could have applications for the enumeration of T and natural killer cells that recognize peptide.class I complexes prone to dissociation.
Collapse
Affiliation(s)
- Lonnie Lybarger
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kreher CR, Dittrich MT, Guerkov R, Boehm BO, Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods 2003; 278:79-93. [PMID: 12957398 DOI: 10.1016/s0022-1759(03)00226-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The frequency and the cytokine signature of antigen-specific T cells in the blood reflect the magnitude and the quality of T cell immunity in vivo. Recently, cytokine enzyme-linked immunospot (ELISPOT) assays performed on freshly isolated peripheral blood mononuclear cells (PBMC) emerged as a promising tool for monitoring these key parameters, providing direct feedback information on the efficacy of vaccinations and immune therapies. However, performing ELISPOT assays with freshly isolated cells is not readily feasible in the context of clinical trials. The ability to obtain valid ELISPOT data on cryopreserved samples would greatly enhance ex vivo immune monitoring capabilities. We have therefore systematically studied antigen-specific T cell responses in freshly isolated PBMC and after cryopreservation. Four healthy donors were selected that displayed T cell responses to six recall antigens. The antigen reactive T cells were defined as CD4 or CD8 cells, and their cytokine effector class was established measuring interferon (IFN)-gamma, interleukin (IL)-2, IL-4 and IL-5. The donors were bled at three different time points, and their PBMC were tested fresh and after freeze-thawing. The results showed that the frequencies and type 1/type 2 cytokine signatures of recall antigen-specific CD4 and CD8 cells are unaffected after cryopreservation. In contrast to these data obtained on human PBMC, cryopreservation of murine spleen cells causes a decrease in cytokine secretion.
Collapse
Affiliation(s)
- Christian R Kreher
- Department of Pathology, School of Medicine, Case Western Reserve University, BRB 928, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
99
|
Cantu C, Benlagha K, Savage PB, Bendelac A, Teyton L. The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity, low specificity for CD1d, high affinity for alpha beta TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4673-82. [PMID: 12707346 DOI: 10.4049/jimmunol.170.9.4673] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1 resembles both class I and class II MHC but differs by the important aspect of presenting lipid/glycolipids, instead of peptides, to T cells. Biophysical studies of lipid/CD1 interactions have been limited, and kinetics of binding are in contradiction with functional studies. We have revisited this issue by designing new assays to examine the loading of CD1 with lipids. As expected for hydrophobic interactions, binding affinity was not high and had limited specificity. Lipid critical micelle concentration set the limitation to these studies. Once loaded onto CD1d, the recognition of glycolipids by alphabeta T cell receptor was studied by surface plasmon resonance using soluble Valpha14-Vbeta8.2 T cell receptors. The Valpha14 Jalpha18 chain could be paired with NK1.1 cell-derived Vbeta chain, or any Vbeta8 chain, to achieve high affinity recognition of alpha-galactosylceramide. Biophysical analysis indicated little effect of temperature or ionic strength on the binding interaction, in contrast to what has been seen in peptide/MHC-TCR studies. This suggests that there is less accommodation made by this TCR in recognizing alpha-galactosylceramide, and it can be assumed that the most rigid part of the Ag, the sugar moiety, is critical in the interaction.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Binding Sites/immunology
- Calorimetry/methods
- Cell Line
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Galactosylceramides/immunology
- Galactosylceramides/metabolism
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Isoelectric Focusing/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Lymphocyte Activation
- Mice
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thermodynamics
- Transfection
Collapse
Affiliation(s)
- Carlos Cantu
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
100
|
Nair DT, Kaur KJ, Singh K, Mukherjee P, Rajagopal D, George A, Bal V, Rath S, Rao KVS, Salunke DM. Mimicry of native peptide antigens by the corresponding retro-inverso analogs is dependent on their intrinsic structure and interaction propensities. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1362-73. [PMID: 12538696 DOI: 10.4049/jimmunol.170.3.1362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retro-inverso (ri) analogs of model T cell and B cell epitopes were predictively designed as mimics and then assayed for activity to understand the basis of functional ri-antigenic peptide mimicry. ri versions of two MHC class I binding peptide epitopes, one from a vesicular stomatitis virus glycoprotein (VSV(p)) and another from OVA (OVAp), exhibit structural as well as functional mimicry of their native counterparts. The two ri peptides exhibit conformational plasticity and they bind to MHC class I (H-2K(b)) similar to their native counterparts both in silico and in vivo. In fact, ri-OVAp is also presented to an OVAp-specific T cell line in a mode similar to native OVAp. In contrast, the ri version of an immunodominant B cell peptide epitope from a hepatitis B virus protein, PS1, exhibits no structural or functional correlation with its native counterpart. PS1 and its ri analog do not exhibit similar conformational propensities. PS1 is less flexible relative to its ri version. These observed structure-function relationships of the ri-peptide epitopes are consistent with the differences in recognition properties between peptide-MHC vs peptide-Ab binding where, while the recognition of the epitope by MHC is pattern based, the exquisitely specific recognition of Ag by Ab arises from the high complementarity between the Ag and the binding site of the Ab. It is evident that the correlation of conformational and interaction propensities of native L-peptides and their ri counterparts depends both on their inherent structural properties and on their mode of recognition.
Collapse
|