51
|
Band M, Shams I, Joel A, Avivi A. Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flk1) in the naturally hypoxia-tolerant subterranean mole rat. FASEB J 2007; 22:105-12. [PMID: 17726089 DOI: 10.1096/fj.07-8892com] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor receptor (VEGF) plays a critical role in blood vessel formation and affects nerve growth and survival. VEGF receptor 2 (Flk1) functions as the major signal transducer of angiogenesis, mediating VEGF induction of endothelial tubulogenesis. We have cloned and analyzed expression of Flk1 in the blind subterranean mole rat Spalax ehrenbergi. Spalax experience abrupt and sharp changes in oxygen supply in their sealed underground niche and, hence, are genetically adapted to hypoxia and serve as a unique, natural mammalian model organism for hypoxia tolerance. Spalax Flk1 is relatively conserved at the nucleic acid and amino acid level compared to human, mouse, and rat orthologs. Reverse transcription-quantitative polymerase chain reaction was used to analyze Flk1 expression in muscle and brain of animals exposed to ambient or variant hypoxic oxygen levels at multiple stages of development. Transcript levels were compared with those obtained from Rattus, a primary model for human physiology. Our findings demonstrate that under normoxic conditions Flk1 patterns of expression correlate well with our previous investigations of VEGF expression. Exposure to hypoxic conditions resulted in divergent patterns of Flk1 expression between Spalax and Rattus and between muscle and brain. It appears that the regulatory mechanisms differentiating expression between the species and between tissues are most likely unique, suggesting that Flk1 expression may be regulated by multiple processes, including both angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Mark Band
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
52
|
Li BJ, Zhang C, Yi YX, Hao Y, Liu XP, Ou QJ. Vascular damage and anti-angiogenic effects of tumor vessel-targeted adenovirus-mediated herpes simplex virus thymidine kinase gene. World J Gastroenterol 2007; 13:4006-10. [PMID: 17663519 PMCID: PMC4171177 DOI: 10.3748/wjg.v13.i29.4006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the therapeutic efficacy and mechanism of herpes simplex virus-thymidine kinase (HSV-tk) targeting angiogenesis against hepatocellular carcinoma in vivio and in vitro.
METHODS: Recombinant adenovirus containing kinase domain insert with receptor (KDR) or cytomegalovirus (CMV) promoter-controlled HSV-tk gene (AdKDR-tk and AdCMV-tk) was constructed using pAdeasy system. The expression of KDR antigen in human umbilical venous endothelial cells (HUVEC) and HepG2 was detected with histological analysis of cells. The virus was used to infect HUVEC and HepG2. Following administration of ganciclovir (GCV), the survival rate of gene-transfected HUVEC and HepG2 was evaluated by MTT method. To develop hepatocarcinomas in 32 Balb/C mice with HepG2 cells, the mice were divided into four groups: ganciclovir group (I), Ad group (II), AdCMV-tk group (III) and AdKDR-tk group (IV). Then selective administration of recombinant adenovirus or Ad via the intratumorial was given to all rats. Ganciclovir (GCV) was given at a dose of 100 mg·kg-1·d-1 (ip) started on the following day and lasted 10 d. Microvessel density (MVD) of tumor in all the treated animals were examined by the immunohistochemical methods and tumor burden was evaluated 10 d before and after the last GCV dose.
RESULTS: Immunocytochemical staining indicated the expression of KDR antigen in HUVEC. Under adenovirus infection index of 100, with increasing GCV concentration from 0 up to 50 mg/L, the survival rate of AdKDR-tk-transfected HUVEC and HepG2 decreased from 100% to (28.94 ± 5.67)% and (75.45 ± 2.91)% at proper order, respectively (P < 0.01), while the survival rate of AdCMV-tk-transfected HUVEC and HepG2 declined from 100% to (17.56 ± 2.48)% and (23.15 ± 5.72)%, respectively (P > 0.05). Compared with groupI, there was a decrease of tumor weight by 14.7% in group III and by 23.6% in group IV. And there was a distinct difference between group III and IV (P < 0.05). The median MVD for all groups was 37.4 ± 8.6, 30.6 ± 7.8, 27.6 ± 7.1, and 10.7 ± 4.1 (microvessels/mm2) in groupI, II, III and IV, respectively. And there was a marked difference between group III and II (P < 0.05), IV and II (P < 0.01), and IV and III (P < 0.01).
CONCLUSION: KDR promoter-HSV-tk gene may effectually restrain the growth of tumor via targeting angiogenesis for hepatocellular carcinoma with treatment of GCV.
Collapse
Affiliation(s)
- Bao-Jin Li
- Department of Hepatobillary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, No. 1120, Lianhua Road, Shenzhen 518036, Guangdong Province, China.
| | | | | | | | | | | |
Collapse
|
53
|
Hung IH, Yu K, Lavine KJ, Ornitz DM. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol 2007; 307:300-13. [PMID: 17544391 PMCID: PMC2267922 DOI: 10.1016/j.ydbio.2007.04.048] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/05/2007] [Accepted: 04/30/2007] [Indexed: 12/25/2022]
Abstract
Gain-of-function mutations in fibroblast growth factor (FGF) receptors result in chondrodysplasia and craniosynostosis syndromes, highlighting the critical role for FGF signaling in skeletal development. Although the FGFRs involved in skeletal development have been well characterized, only a single FGF ligand, FGF18, has been identified that regulates skeletal development during embryogenesis. Here we identify Fgf9 as a second FGF ligand that is critical for skeletal development. We show that Fgf9 is expressed in the proximity of developing skeletal elements and that Fgf9-deficient mice exhibit rhizomelia (a disproportionate shortening of proximal skeletal elements), which is a prominent feature of patients with FGFR3-induced chondrodysplasia syndromes. Although Fgf9 is expressed in the apical ectodermal ridge in the limb bud, we demonstrate that the Fgf9-/- limb phenotype results from loss of FGF9 functions after formation of the mesenchymal condensation. In developing stylopod elements, FGF9 promotes chondrocyte hypertrophy at early stages and regulates vascularization of the growth plate and osteogenesis at later stages of skeletal development.
Collapse
Affiliation(s)
| | - Kai Yu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
54
|
Longo R, Gasparini G. Challenges for patient selection with VEGF inhibitors. Cancer Chemother Pharmacol 2007; 60:151-70. [PMID: 17370072 DOI: 10.1007/s00280-006-0403-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
As targeted therapies for cancer become increasingly integrated into standard practice, appropriate selection of the patients most likely to benefit from these therapies is now receiving critical scrutiny. Early experience with therapies directed at targets that are definitively overactive (e.g. the bcr-abl tyrosine kinase targeted by imatinib) or over-expressed [e.g. the human epidermal growth factor receptor 2 (HER2) targeted by trastuzumab] has generated the perception that pre-treatment target assessment is a pre-requisite for therapy with all targeted agents. However, emerging evidence suggests that this is not presently feasible for anti-angiogenic agents. Despite considerable evidence for the association of intratumoral and/or plasma vascular endothelial growth factor (VEGF) levels with tumor progression and/or poor prognosis, pre-treatment VEGF levels do not appear to be predictive of response to anti-angiogenic therapy. This may possibly be due to the complexity of the angiogenic pathways and the limitations associated with current methods of VEGF detection and quantification; e.g. low assay sensitivity and lack of standardized methods could prevent detection of very small increases in VEGF, which may be clinically important in patients with tumors that are highly dependent on this growth factor. In addition to a general lack of agreement as to the relative clinical relevance of circulating versus tumor VEGF levels, the absence of a 'gold standard' VEGF detection assay and the lack of a predefined, clinically relevant cut-off pose a significant hindrance to the clinical utility of VEGF measurements for therapy selection. Given the fundamental importance of angiogenesis for tumor growth and progression, and the key role of VEGF in these processes, presently it seems appropriate to view anti-VEGF agents such as bevacizumab (Avastin) as having potential utility, independently of pre-treatment screening. Further research is needed to define the relationship between potential surrogate markers of VEGF pathway activity and clinical outcomes.
Collapse
Affiliation(s)
- R Longo
- Division of Medical Oncology, San Filippo Neri Hospital, Via Martinotti 20, 00135 Rome, Italy.
| | | |
Collapse
|
55
|
Hardy B, Raiter A, Weiss C, Kaplan B, Tenenbaum A, Battler A. Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions. Peptides 2007; 28:691-701. [PMID: 17187899 DOI: 10.1016/j.peptides.2006.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 11/12/2006] [Accepted: 11/13/2006] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a process modulated by several endogenous vascular growth factors as well as by oxygen conditions. For example VEGF failed to induce useful therapeutic angiogenesis in clinical trials. We used a combinatory phage display peptide library screening on human umbilical endothelial cells under normoxia and hypoxia conditions in order to identify novel peptides that bind endothelial cells. The identified peptides induced angiogenesis as demonstrated by endothelial cell proliferation, migration and tube formation. Injection of peptides into the ears of mice resulted in increased numbers of blood vessels. Peptides did not induce VEGF receptor gene expression indicating a possible VEGF unrelated mechanism.
Collapse
Affiliation(s)
- Britta Hardy
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, Petah-Tikva 49100, Israel.
| | | | | | | | | | | |
Collapse
|
56
|
Adenovirus-mediated herpes simplex virus thymidine kinase gene transfer driver by KDR promoter in treatment of experimental human hepatocelLular carcinoma in nude mice. Chin J Cancer Res 2007. [DOI: 10.1007/s11670-007-0022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
57
|
Bequet-Romero M, Ayala M, Acevedo BE, Rodríguez EG, Ocejo OL, Torrens I, Gavilondo JV. Prophylactic naked DNA vaccination with the human vascular endothelial growth factor induces an anti-tumor response in C57Bl/6 mice. Angiogenesis 2007; 10:23-34. [PMID: 17273909 DOI: 10.1007/s10456-006-9062-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 12/13/2006] [Indexed: 11/28/2022]
Abstract
Passive immunotherapy against soluble pro-angiogenic factors and/or their receptors in endothelial cells has become a promising approach in cancer therapeutics. There is also experimental evidence indicating that an active immunotherapy strategy directed towards these target molecules could also be effective. In this paper we show that it is possible to reduce tumor growth or increase the survival of tumor-bearing C57Bl/6 mice when animals are vaccinated with the human vascular endothelial growth factor (VEGF) isoform 121 gene (hVEGF(121)), and later challenged with melanoma or lung carcinoma tumor cells. Immunization was done with 10 microg DNA doses of the hVEGF121 gene, which is highly homologous to its mouse counterpart, administered on a weekly basis using a plasmid bearing 5 CpG bacterial motifs. Histopathology analyses of tumors of hVEGF(121) immunized animals showed a decrease in tumor cell density around vessels and in mitotic figures, as well as an increase in apoptotic tumor cells. A statistically significant cell cytotoxic response was found when spleen cells of immunized mice were co-cultured in vitro with mouse tumor VEGF-producing cells. Vaccination with an hVEGF121 gene mutated to make it deficient for VEGF receptor binding, produced similar in vitro and in vivo results, and significantly reduced the number of spontaneous metastases produced by the mouse Lewis lung carcinoma. Our results indicate that human VEGF DNA can be employed for anti-angiogenic active immunotherapy in mice, and that direct cell cytotoxicity is a contributor mechanism to the overall anti-tumor effects seen in immunized animals.
Collapse
MESH Headings
- Angiogenesis Inhibitors/immunology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/prevention & control
- Carcinoma, Lewis Lung/secondary
- Cell Line, Tumor
- Female
- Gene Transfer Techniques
- Genetic Therapy/methods
- Humans
- Immunohistochemistry
- Interferon-gamma/immunology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/prevention & control
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Pathologic/prevention & control
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Vascular Endothelial Growth Factor A/therapeutic use
Collapse
Affiliation(s)
- Mónica Bequet-Romero
- Recombinant Antibodies Laboratory, Cancer Research Department, Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, P.O. Box 6162, Havana 10600, Cuba.
| | | | | | | | | | | | | |
Collapse
|
58
|
Greve JM, Chico TJ, Goldman H, Bunting S, Peale FV, Daugherty A, van Bruggen N, Williams SP. Magnetic resonance angiography reveals therapeutic enlargement of collateral vessels induced by VEGF in a murine model of peripheral arterial disease. J Magn Reson Imaging 2007; 24:1124-32. [PMID: 17029233 DOI: 10.1002/jmri.20731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To quantify spontaneous and therapeutic arteriogenesis in vivo in a murine model of peripheral arterial disease using magnetic resonance angiography. MATERIALS AND METHODS Male, 8-12-week-old, C57/BL6 mice underwent femoral artery ligation; 21 days later, 2 mg/kg recombinant murine VEGF165, formulated for slow release, was injected into the ipsilateral gastrocnemius. The spontaneous (following ligation) and therapeutic (following vascular endothelial growth factor (VEGF)) formation of collateral vessels was quantified using 3D magnetic resonance angiography on a small-bore 4.7T system. Therapeutically induced angiogenesis and blood flow were quantified using an in situ anti-platelet endothelial cell adhesion molecule (PECAM) 1 radioimmunoassay and radiolabeled microsphere deposition, respectively. RESULTS Spontaneous arteriogenesis was visible in all animals five days after ligation. VEGF treatment doubled the arteriogenic response five days after treatment compared to vehicle (cross-sectional area of vessels: 0.96 vs. 0.46 mm2, P<0.01). VEGF also induced angiogenesis (PECAM1 levels 191% of vehicle, P<0.05) and increased blood flow specific to the injection site (57 vs. 7 mL/minute/100 g, P<0.05). CONCLUSION The presented methodology allowed in vivo quantification of spontaneous arteriogenesis in a murine model of peripheral arterial disease and demonstrated that therapeutic enlargement of collateral vessels is possible with VEGF.
Collapse
Affiliation(s)
- Joan M Greve
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Dalton SJ, Whiting CV, Bailey JR, Mitchell DC, Tarlton JF. Mechanisms of chronic skin ulceration linking lactate, transforming growth factor-beta, vascular endothelial growth factor, collagen remodeling, collagen stability, and defective angiogenesis. J Invest Dermatol 2007; 127:958-68. [PMID: 17218944 DOI: 10.1038/sj.jid.5700651] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Up to one million people suffer from chronic skin ulcers in the US. Little is known of the mechanisms leading to tissue breakdown, although inadequate circulation and ischemia are common elements in most dermal ulcers. Collagen is the principal source of mechanical strength in most tissues, and its molecular and fibrillar stability is dependent on adequate oxygen supply. In wound repair, localized ischemia leads to fibrogenic responses culminating in elevated collagen synthesis and remodeling. This study examines factors influencing collagen turnover and stabilization before ulceration in "at risk" patients. Severely ischemic but uninjured ischemic skin (IS) was compared with patient- and site-matched non-ischemic skin. Biochemical mechanisms of tissue repair were activated in IS, with increased lactate, transforming growth factor-beta, vascular endothelial growth factor, collagen synthesis and matrix metalloproteinases (MMPs)-1 and 2. The absence of MMP-9 and inflammatory cells confirmed that this upregulation was inappropriate and not in response to injury. Molecular stability of collagen was reduced in IS, and there was increased susceptibility to enzymic degradation. In conclusion, chronic ischemia and long-term hypoxia result in elevated collagen remodeling in an oxygen-poor environment. Unstable collagen molecules are synthesized together with upregulated MMPs, resulting in collagen denaturation, defective angiogenesis, weaker skin, and predisposition to ulceration.
Collapse
|
60
|
Singh N, Higgins E, Amin S, Jani P, Richter E, Patel A, Kaur R, Wang J, Ambati J, Dong Z, Ambati BK. Unique Homologous siRNA Blocks Hypoxia-Induced VEGF Upregulation in Human Corneal Cells and Inhibits and Regresses Murine Corneal Neovascularization. Cornea 2007; 26:65-72. [PMID: 17198016 DOI: 10.1097/ico.0b013e31802b4201] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the results of amniotic membrane transplantation (AMT) for ocular surface reconstruction in chemical and thermal injuries. METHODS Retrospective review of case records of patients who had undergone AMT for chemical injuries (January 1998 to May 2001). RESULTS Seventy two eyes of 69 patients were studied of which 24 were acute cases (median-2 days, range, 1-20 days) and 48 were chronic cases (median-12.4 months, range, 1.02-95.8 months). Mean age was 22.4 years (SD +/- 13.34 years) and average follow up duration was 7.8 months (SD +/- 7.1). Main clinical findings were symblephara (52.8%), corneal vascularization (51.3%), conjunctivalization (45.8%), Limbal ischemia (45.8%), Limbal stem cell deficiency (55.5%) and epithelial defect (48.6%). 18 cases were due to acid injuries (5 acute, 13 chronic), 52 were due to alkali (18 acute and 34 chronic) and 2 cases were due to thermal burns (1 each acute and chronic). Overall success rate was 87.5% in acute cases and 72.9% in chronic cases. Indication-wise success rates were 94.3% for epithelial defect healing, 88.2% for symptomatic relief, 59.7% for ocular surface reconstruction, and 55% for improving limbal stem cell function. Success was not achieved in any outcome measure in 1/24 (4.2%) in acute group and 6/48 (12.5%) in chronic group. CONCLUSION AMT helps in ocular surface reconstruction, promotes rapid epithelial healing and partially restores limbal stem cell function. It can be considered as an effective modality for the ocular surface restoration in chemical and thermal injuries in selected cases. Success rates in acute and chronic cases are comparable.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Ophthalmology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Mirshahi P, Toprak SK, Faussat AM, Dubrulle S, Marie JP, Soria C, Soria J, Mirshahi M. Malignant hematopoietic cells induce an increased expression of VEGFR-1 and VEGFR-3 on bone marrow endothelial cells via AKT and mTOR signalling pathways. Biochem Biophys Res Commun 2006; 349:1003-1010. [PMID: 16959214 DOI: 10.1016/j.bbrc.2006.08.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 08/21/2006] [Indexed: 11/26/2022]
Abstract
Angiogenesis plays a significant role in a variety of malignant hematologic diseases, and it is recognized that it has prognostic value. However, the cellular mechanisms by which malignant hematologic cells induce angiogenesis are not well understood. In order to investigate the role of cells from B-cell chronic lymphocytic leukemia (B-CLL) and multiple myeloma (MM) in angiogenesis on human bone marrow endothelial cells (HBMEC), we analyzed the impact of factors secreted by B-CLL cells and by MM cells on HBMEC capillary tube formation on matrigel. It was found that, in addition to the secretion of angiogenic factors VEGF and b-FGF by B-CLL and MM cells, MM cells (but not B-CLL cells) induced a dramatic increase in expression of VEGFR-1 and VEGFR-3 on human bone marrow endothelial cells (HBMEC). It would seem that this increase in VEGFR-3 occurred via the ERK and mTOR pathways, since their respective inhibitors U0126, LY294002 or rapamycin were responsible for a decrease of VEGFR-3. In response to MM cells-increased VEGF receptors on HBMEC, endothelial cell migration was enhanced in a wound artificially produced in a semi-confluent HBMEC culture, a phenomenon which was also down-regulated by the same inhibitors that reversed the increase in VEGF receptors. The present study suggests that, in addition to the classic angiogenic pathway, another mechanism related to an increased expression of VEGFRs on HBMEC might exist in malignant hematopoietic angiogenesis.
Collapse
Affiliation(s)
- P Mirshahi
- INSERM, UMR736, IFR 58, Université Pierre et Marie Curie, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Pal S, Wu J, Murray JK, Gellman SH, Wozniak MA, Keely PJ, Boyer ME, Gomez TM, Hasso SM, Fallon JF, Bresnick EH. An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis. J Cell Biol 2006; 174:1047-58. [PMID: 17000881 PMCID: PMC2064395 DOI: 10.1083/jcb.200603152] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 08/22/2006] [Indexed: 01/16/2023] Open
Abstract
Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However, the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a "neuropeptide," neurokinin-B (NK-B), reversibly inhibits endothelial cell vascular network assembly and opposes angiogenesis in the chicken chorioallantoic membrane. Disruption of endogenous NK-B signaling promoted angiogenesis. Mechanistic analyses defined a multicomponent pathway in which NK-B signaling converges upon cellular processes essential for angiogenesis. NK-B-mediated ablation of Ca2+ oscillations and elevation of 3'-5' [corrected] cyclic adenosine monophosphate (cAMP) reduced cellular proliferation, migration, and vascular endothelial growth factor receptor expression and induced the antiangiogenic protein calreticulin. Whereas NK-B initiated certain responses, other activities required additional stimuli that increase cAMP. Although NK-B is a neurotransmitter/ neuromodulator and NK-B overexpression characterizes the pregnancy-associated disorder preeclampsia, NK-B had not been linked to vascular remodeling. These results establish a conserved mechanism in which NK-B instigates multiple activities that collectively oppose vascular remodeling.
Collapse
Affiliation(s)
- Saumen Pal
- Department of Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Liu Z, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 2006; 302:80-91. [PMID: 17014841 DOI: 10.1016/j.ydbio.2006.08.071] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/29/2006] [Accepted: 08/30/2006] [Indexed: 01/02/2023]
Abstract
Fibroblast growth factor 18 (FGF18) has been shown to regulate chondrocyte proliferation and differentiation by signaling through FGF receptor 3 (FGFR3) and to regulate osteogenesis by signaling through other FGFRs. Fgf18(-/-) mice have an apparent delay in skeletal mineralization that is not seen in Fgfr3(-/-) mice. However, this delay in mineralization could not be simply explained by FGF18 signaling to osteoblasts. Here we show that delayed mineralization in Fgf18(-/-) mice was closely associated with delayed initiation of chondrocyte hypertrophy, decreased proliferation at early stages of chondrogenesis, delayed skeletal vascularization and delayed osteoclast and osteoblast recruitment to the growth plate. We further show that FGF18 is necessary for Vegf expression in hypertrophic chondrocytes and the perichondrium and is sufficient to induce Vegf expression in skeletal explants. These findings support a model in which FGF18 regulates skeletal vascularization and subsequent recruitment of osteoblasts/osteoclasts through regulation of early stages of chondrogenesis and VEGF expression. FGF18 thus coordinates neovascularization of the growth plate with chondrocyte and osteoblast growth and differentiation.
Collapse
Affiliation(s)
- Zhonghao Liu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
64
|
González-Pacheco FR, Deudero JJP, Castellanos MC, Castilla MA, Alvarez-Arroyo MV, Yagüe S, Caramelo C. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol 2006; 291:H1395-401. [PMID: 16899768 DOI: 10.1152/ajpheart.01277.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The defense mechanisms of endothelial cells (EC) against reactive oxygen species (ROS) are insufficiently characterized. We have addressed the hypothesis that vascular endothelial growth factor (VEGF) and its receptors are relevant elements in this response. Cell viability, VEGF and VEGF receptor (VEGFR1 and VEGFR2) expression, and transcription factor activation were studied on transient exposure of monolayer EC to H2O2. Wild-type and mutant inhibitors of κBα (IκBα) constructions were used to further assess the role of NF-κB in the induction of VEGFR2 expression. A concentration of H2O2 ≥60 μM elicited clear-cut damaging effects on EC, whereas lower concentrations (2–4 μM) were cytoprotective. The cytoprotective effect was shifted to an EC-damaging pattern by means of specific VEGF blockade, therefore revealing a major role of autologous VEGF. Exposure to H2O2 increased VEGF and VEGFR2 mRNA and protein in EC, without affecting VEGFR1 expression. Also, H2O2 challenge was accompanied by increased NF-κB, activator protein-1, and specific protein-1 nuclear binding. A role of NF-κB as the mediator of the H2O2 induction of VEGFR2 mRNA expression was supported by inhibition by the ROS scavenger pyrrolidine dithiocarbamate and by the blocking effect of transfected IκBα. Exposure to exogenous VEGF also increased VEGFR2 and induced NF-κB in EC. In summary, autologous VEGF is instrumental for EC protection induced by low concentrations of ROS. ROS induce expression not only of VEGF but also of VEGFR2. VEGFR2 increase by ROS is mainly driven through a NF-κB-dependent pathway.
Collapse
Affiliation(s)
- Francisco R González-Pacheco
- Laboratorio de Nefrología-Hipertensión, Instituto de Investigaciones Médicas, Fundación Jiménez Díaz, Servicio de Immunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Av. Reyes Católicos 2, E-28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
65
|
Muir C, Chung LWK, Carson DD, Farach-Carson MC. Hypoxia increases VEGF-A production by prostate cancer and bone marrow stromal cells and initiates paracrine activation of bone marrow endothelial cells. Clin Exp Metastasis 2006; 23:75-86. [PMID: 16826426 DOI: 10.1007/s10585-006-9021-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/14/2006] [Indexed: 11/29/2022]
Abstract
Hypoxia develops at sites of rapid cancer growth near sites of poorly organized vasculature. Heparin binding growth factors (HBGFs) support neoangiogenesis of tumors. We examined the effect of culturing bone-targeted, metastatic C4-2B prostate cancer cells and bone stromal derived HS27a cells under hypoxic conditions on expression of vascular endothelial growth factor (VEGF) family members. A sealed chamber infused with 1% (hypoxic) or 20% (normoxic) O(2) was used. Both cell lines produced VEGF-A in normoxia, but little or no HB-EGF, another HBGF. HS27a cells produced low levels of FGF-2 and HGF, but little or none was secreted by C4-2B cells. Levels of VEGF-A in conditioned medium (CM) from both cell lines doubled when cultured in hypoxia. Similar changes in VEGF-A mRNA levels were seen. Receptor expression was unchanged by hypoxia. Changes in VEGF-A expression during hypoxia were preceded by nuclear accumulation of hypoxia inducible factor-1alpha (HIF-1alpha). Bone marrow endothelial (BME) cells express high levels of VEGFR2/flk-1, and are targets of VEGF-A induced neovascularization. BME cells proliferated in response to treatment with HS27a CM, but not C4-2B CM. BME cells formed tube-like angiogenic structures on growth factor reduced Matrigel in response to CM from HS27a or C4-2B cells. This response was greater when CM was produced under hypoxia, and was reduced by VEGF-A or FGF-2 neutralizing antibodies. We conclude that hypoxia triggers a physiologically relevant increase in VEGF-A by prostate cancer and bone marrow stromal cells which involves a paracrine loop that recruits and activates BME to support tumor neovascularization-related processes.
Collapse
Affiliation(s)
- Caroline Muir
- Department of Biological Sciences, University of Delaware, Room 326 Wolf Hall, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
66
|
Abstract
The development of a vascular supply is a critical factor in the growth and metastatic spread of malignant tumors. Of the multitude of growth factors that regulate physiological and pathological angiogenesis, vascular endothelial growth factor (VEGF) is believed to be the most important. There is evidence that overexpression of VEGF is correlated with an adverse prognosis, at least in some tumors. Tumor-expressed VEGF is particularly attractive as a target for anticancer therapy because its angiogenesis-promoting activity is at the level of the endothelial cell and, compared with agents that directly target tumor cells, tumor penetration is less critical for VEGF inhibitors. Moreover, recent work has shown that inhibiting tumor angiogenesis increases the effectiveness of coadministered chemotherapy and radiotherapy. This suggests that drugs that target VEGF or its receptors can be combined with traditional treatment modalities to ensure maximum effectiveness. A variety of agents aimed at blocking VEGF or its receptor-signaling system are currently being developed for the treatment of cancer. Of these, bevacizumab, a humanized monoclonal antibody directed at VEGF, is the most advanced in clinical development and has shown promising results in clinical trials.
Collapse
|
67
|
Mori S, Akagi M, Kikuyama A, Yasuda Y, Hamanishi C. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res 2006; 24:653-63. [PMID: 16514629 DOI: 10.1002/jor.20076] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axial micromotion of bone fragments enhances callus formation during fracture repair or limb lengthening. To examine this, we used an axial-shortening model of the tibial callus in rabbits and performed histological analyses. After 10-mm lengthening of the left tibia with an external fixator, we shortened the callus by 2 mm. Radiographs and quantitative evaluation of corrected bone mineral density showed a significant increase in mineralization in the shortened callus (57.3 vs. 36.2%, p = 0.001). Histologically, greater osteoblast proliferation and more vigorous trabecular bone formation were noted in the shortened calluses than in the controls. Around the front of membranous bone formation in the shortened callus, there was a significant decrease in mean percentage area of vascular lumens (1.8 vs. 4.5%, p = 0.009), which seemed attributable to compressive force, and a significantly increased production of vascular endothelial growth factor (VEGF; 422.5 vs. 142.7 pg/mg protein, p = 0.007) and its receptors. There were also increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and proliferating cell nuclear antigen (PCNA)-positive cells. A marked increase of hypoxia inducible factor-1alpha (HIF-1alpha) expression in osteoblasts was also observed in this area. Thus, enhancement of membranous bone formation by static compression or axial dynamization may be at least partly attributable to HIF-1alpha-mediated VEGF induction following the local hypoxia caused by collapse of vascular lumens.
Collapse
Affiliation(s)
- Shigeshi Mori
- Department of Orthpaedic Surgery, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| | | | | | | | | |
Collapse
|
68
|
Whitehurst B, Eversgerd C, Flister M, Bivens CM, Pickett B, Zawieja DC, Ran S. Molecular profile and proliferative responses of rat lymphatic endothelial cells in culture. Lymphat Res Biol 2006; 4:119-42. [PMID: 17034293 DOI: 10.1089/lrb.2006.4.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Lymphangiogenesis plays an important role in metastasis of many solid tumors. To study lymphangiogenesis under controlled conditions, an in vitro model is needed. The goal of this work was to establish such an in vitro model by determining a molecular profile of rat mesenteric lymphatic endothelial cells (RMLEC) and characterizing their proliferative responses to angiogenic and lymphangiogenic factors, such as vascular endothelial growth factor A and C (VEGF-A and VEGF-C). METHODS AND RESULTS RMLEC strongly expressed most lymphatic-specific markers, including Prox-1, LYVE-1, and VEGFR-3. Proliferation of RMLEC was serum and heparin dependent. In the presence of low (2%) serum concentration, exogenously added VEGF-A and VEGFC stimulated RMLEC in a linear and dose-dependent manner. This effect was abrogated by anti-VEGF-A and VEGF-C antibodies, as well as by soluble Tie-2 and Flt-4 fusion proteins. Abrogation was reversed by VEGF-A, suggesting that this factor as an important regulator of lymphangiogenesis. CONCLUSIONS Cultured RMLEC preserved a molecular profile consistent with the phenotype of lymphatic endothelium in vivo and respond to either VEGF-A or VEGF-C factors. VEGFA was able to rescue RMLEC proliferation inhibited by a neutralizing VEGF-C antibody or soluble Tie-2 fusion protein. These results support the existence of cross-talk among angiogenic and lymphangiogenic factors. This work established experimental conditions that allow in vitro modeling of lymphatic endothelial responses to lymphangiogenic regulators. Preliminary results using this model suggest that VEGF-A, VEGF-C, and angiopoietins work in concert to promote lymphangiogenesis in vivo.
Collapse
Affiliation(s)
- Brandt Whitehurst
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62702-9678, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Gamba A, de Candia A, Di Talia S, Coniglio A, Bussolino F, Serini G. Diffusion-limited phase separation in eukaryotic chemotaxis. Proc Natl Acad Sci U S A 2005; 102:16927-32. [PMID: 16291809 PMCID: PMC1287969 DOI: 10.1073/pnas.0503974102] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 09/14/2005] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense spatial gradients of chemoattractant factors governs the development of complex eukaryotic organisms. Cells exposed to shallow chemoattractant gradients respond with strong accumulation of the enzyme phosphatidylinositol 3-kinase (PI3K) and its D3-phosphoinositide product (PIP(3)) on the plasma membrane side exposed to the highest chemoattractant concentration, whereas PIP(3)-degrading enzyme PTEN and its product PIP(2) localize in a complementary pattern. Such an early symmetry-breaking event is a mandatory step for directed cell movement elicited by chemoattractants, but its physical origin is still mysterious. Here, we propose that directional sensing is the consequence of a phase-ordering process mediated by phosphoinositide diffusion and driven by the distribution of chemotactic signal. By studying a realistic reaction-diffusion lattice model that describes PI3K and PTEN enzymatic activity, recruitment to the plasma membrane, and diffusion of their phosphoinositide products, we show that the effective enzyme-enzyme interaction induced by catalysis and diffusion introduces an instability of the system toward phase separation for realistic values of physical parameters. In this framework, large reversible amplification of shallow chemotactic gradients, selective localization of chemical factors, macroscopic response timescales, and spontaneous polarization arise naturally. The model is robust with respect to order-of-magnitude variations of the parameters.
Collapse
Affiliation(s)
- Andrea Gamba
- Department of Mathematics, Polytechnic of Turin, 10129 Turin, Italy.
| | | | | | | | | | | |
Collapse
|
70
|
Kamba T, Tam BYY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O'Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 2005; 290:H560-76. [PMID: 16172168 DOI: 10.1152/ajpheart.00133.2005] [Citation(s) in RCA: 602] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unlike during development, blood vessels in the adult are generally thought not to require VEGF for normal function. However, VEGF is a survival factor for many tumor vessels, and there are clues that some normal blood vessels may also depend on VEGF. In this study, we sought to identify which, if any, vascular beds in adult mice depend on VEGF for survival. Mice were treated with a small-molecule VEGF receptor (VEGFR) tyrosine kinase inhibitor or soluble VEGFRs for 1-3 wk. Blood vessels were assessed using immunohistochemistry or scanning or transmission electron microscopy. In a study of 17 normal organs after VEGF inhibition, we found significant capillary regression in pancreatic islets, thyroid, adrenal cortex, pituitary, choroid plexus, small-intestinal villi, and epididymal adipose tissue. The amount of regression was dose dependent and varied from organ to organ, with a maximum of 68% in thyroid, but was less in normal organs than in tumors in RIP-Tag2-transgenic mice or in Lewis lung carcinoma. VEGF-dependent capillaries were fenestrated, expressed high levels of both VEGFR-2 and VEGFR-3, and had normal pericyte coverage. Surviving capillaries in affected organs had fewer fenestrations and less VEGFR expression. All mice appeared healthy, but distinct physiological changes, including more efficient blood glucose handling, accompanied some regimens of VEGF inhibition. Strikingly, most capillaries in the thyroid grew back within 2 wk after cessation of treatment for 1 wk. Our findings of VEGF dependency of normal fenestrated capillaries and rapid regrowth after regression demonstrate the plasticity of the adult microvasculature.
Collapse
Affiliation(s)
- Tomomi Kamba
- Cardiovascular Research Institute, and Dept. of Anatomy, Univ. of California, 513 Parnassus Ave., San Francisco, CA 94143-0452, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Nadeau S, Baribeau J, Janvier A, Perreault T. Changes in expression of vascular endothelial growth factor and its receptors in neonatal hypoxia-induced pulmonary hypertension. Pediatr Res 2005; 58:199-205. [PMID: 16006432 DOI: 10.1203/01.pdr.0000169969.18669.d2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent mitogen with angiogenic and vasoactive properties. VEGF can bind to two types of receptors. VEGF receptor 2 (VEGFR2) is mainly responsible for the dilator response to VEGF through nitric oxide (NO) release, whereas VEGFR1 may sequestrate the ligand. We hypothesized that in neonatal hypoxia-induced pulmonary hypertension, VEGF vasodilation is reduced. The dilator response to VEGF was assessed in isolated perfused lung of 1-d-old piglets that were exposed to either normoxia or hypoxia (fraction of inspired oxygen 0.10) for 14 d. The plasma and pulmonary artery concentration of VEGF was measured by quantitative sandwich enzyme immunoassay in piglets that were exposed to either normoxia or hypoxia for 1, 3, 7, or 14 d. The expression of VEGFR1, VEGFR2, and endothelial NO synthase in pulmonary artery was measured in the same study groups using Western blot analysis. VEGF (10(-12)-10(-9) M) induces a dose-dependent relaxation in 14-d normoxic piglets, whereas vasodilation is abolished after 14 d of hypoxia. VEGF tissue concentration is increased by hypoxia. VEGFR1 expression is dramatically increased after 1, 3, and 7 d of hypoxia compared with normoxia and returns to normal afterward. VEGFR2 expression is reduced by hypoxia at 14 d. However, endothelial NO synthase expression is not affected by hypoxia compared with normoxia. In neonatal hypoxia-induced pulmonary hypertension, VEGF is increased, whereas vasodilation to VEGF is abolished. This reduced vasodilation may be due to decreased VEGFR2 expression. We speculate that sequestration by VEGFR1 may also limit, to some extent, the vascular protecting effect of VEGF, thus contributing to the pathophysiologic changes seen in neonatal hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Sophie Nadeau
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada H3H 1P3
| | | | | | | |
Collapse
|
72
|
Kim SJ, Seo JH, Lee YJ, Yoon JH, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS. Autocrine Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor-2 Growth Pathway Represents a Cyclooxygenase-2-Independent Target for the Cyclooxygenase-2 Inhibitor NS-398 in Colon Cancer Cells. Oncology 2005; 68:204-11. [PMID: 16015035 DOI: 10.1159/000086775] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Accepted: 07/05/2004] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Coexpression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) has been reported in tumor cells, suggesting the presence of an autocrine VEGF/VEGFR-2 growth pathway in solid tumors. Thus, we hypothesize that the presence of this autocrine pathway in colon cancer cells may be a COX-2-independent target of COX-2 inhibitors and a mechanism behind the antitumor effects of these agents. METHODS COX-2-positive (Caco2, HT-29) and COX-2-negative colon cancer cells (DLD-1, Hct-15) were used. Expression of VEGFR-2 was evaluated by Western blot and reverse transcriptase-polymerase chain reaction and VEGF production was measured from culture supernatant by enzyme-linked immunosorbent assay. Growth inhibition and the expression of VEGF and VEGFR-2 were compared after treatment with the COX-2 inhibitor, NS-398 at doses ranging from 5 to 100 microM. RESULTS VEGF and VEGFR-2 were expressed in all four colon cancer cells and a blockade of VEGFR-2 with anti-VEGFR-2 antibody treatment induced growth inhibition of colon cancer cells, supporting the presence of autocrine VEGF/VEGFR-2 growth pathway. NS-398 suppressed the growth of colon cancer cells, independent of COX-2 expression. VEGFR-2 expression of tumor cells was reduced after NS-398 treatment at 100 microM, the concentration at which maximal growth inhibition was induced. The amount of VEGF in culture supernatant was increased by NS-398 at 100 microM, suggesting increased secretion of VEGF in compensation for reduced VEGFR-2 expression. CONCLUSION The autocrine VEGF/VEGFR-2 growth pathway could be a COX-2-independent target of the COX-2 inhibitor, NS-398, in colon cancer cells.
Collapse
Affiliation(s)
- Seok Jin Kim
- Division of Oncology and Hematology, Department of Internal Medicine, College of Medicine, Korea University, Kozan-1 Dong, Ansan City, Kyoung-ki, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Wagatsuma A, Tamaki H, Ogita F. Capillary supply and gene expression of angiogenesis‐related factors in murine skeletal muscle following denervation. Exp Physiol 2005; 90:403-9. [PMID: 15708874 DOI: 10.1113/expphysiol.2004.029769] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capillary supply of skeletal muscle decreases during denervation. To gain insight into the regulation of this process, we investigated capillary supply and gene expression of angiogenesis-related factors in mouse gastrocnemius muscle following denervation for 4 months. Frozen transverse sections were stained for alkaline phosphatase to detect endogenous enzyme in the capillary endothelium. The mRNA for angiogenesis-related factors, including hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1), fms-like tyrosine kinase (Flt-1), angiopoietin-1 and tyrosine kinase with Ig and epidermal growth factor(EGF) homology domain 2 (Tie-2), was analysed using a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The fibre cross-sectional area after denervation was about 20% of the control value, and the capillary to fibre ratio was significantly lower in denervated than in control muscles. The number of capillaries around each fibre also decreased to about 40% of the control value. These observations suggest that muscle capillarity decreases in response to chronic denervation. RT-PCR analysis showed that the expression of VEGF mRNA was lower in denervated than in control muscles, while the expression of HIF-1alpha mRNA remained unchanged. The expression levels of the KDR/Flk-1 and Flt-1 genes were decreased in the denervated muscle. The expression levels of angiopoietin-1 but not Tie-2 genes were decreased in the denervated muscle. These findings indicate that reduction in the expression of mRNAs in the VEGF/KDR/Flk-1 and Flt-1 as well as angiopoietin-1/Tie-2 signal pathways might be one of the reasons for the capillary regression during chronic denervation.
Collapse
Affiliation(s)
- A Wagatsuma
- Department of Physiological Sciences, National Institute of Fitness and Sports, Shiromizu-cho 1, Kanoya, Kagoshima 891-2393, Japan.
| | | | | |
Collapse
|
74
|
Hohenstein A, Erber R, Schilling L, Weigel R. Increased mRNA Expression of VEGF within the Hematoma and Imbalance of Angiopoietin-1 and -2 mRNA within the Neomembranes of Chronic Subdural Hematoma. J Neurotrauma 2005; 22:518-28. [PMID: 15892598 DOI: 10.1089/neu.2005.22.518] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aim of the study was to determine the source of vascular endothelial growth factor (VEGF) in hematoma fluid of patients suffering from chronic subdural hematoma (CSH) and to identify the level of gene expression of the pro-angiogenic factors angiopoietin 1 (ANG-1) and ANG-2 in hematoma membranes. Samples of venous blood, hematoma fluid, and outer membrane were obtained during surgery for CSH. The numbers of mononuclear cells were determined in hematoma fluid and in venous blood samples taken from 11 patients. The concentration of VEGF was measured by ELISA technique in hematoma fluid and in plasma. RT-PCR methodology was used to study the expression of different mRNA species in 11 patients. The mRNA species analyzed include VEGF and its receptors, VEGFR-1 and VEGFR-2, and ANG-1, ANG-2 and their receptor, Tie-2. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as housekeeping gene and was used for semiquantitative analysis. The VEGF concentration was several hundred fold higher in the hematoma fluid than in corresponding plasma samples. A significant correlation was found between the number of neutrophils and the VEGF content in the hematoma fluid. The expression levels of VEGF, mainly VEGF165 and VEGF121 mRNA were highest in cells obtained from the hematoma fluid. In membrane samples, mRNA encoding for VEGF and its receptors was only inconsistently detected while the mRNA species encoding for ANG-1, ANG-2, and Tie-2 were found throughout all samples. The mean ratio of ANG-1/ANG-2 mRNA expression was 0.48 as opposed to 1.9 in a normal human brain tissue sample. The results suggest that the hematoma cells are the primary source of VEGF. A marked increase in the expression of ANG-2 mRNA over ANG-1 mRNA demonstrates a pro-angiogenic pattern in the hematoma membranes. Persistent activation of the ANG/Tie-2 system in addition to high levels of VEGF may keep the vasculature in a destabilized condition and may account for the continuous formation of new and immature blood vessels resulting in massive plasma extravasation and repeated bleeding episodes. Thus, the present study provides new evidence in favor of pro-angiogenic mechanisms playing an important role in the pathophysiology of CSH.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Angiopoietin-1/genetics
- Angiopoietin-2/genetics
- Blood Vessels/growth & development
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Female
- Gene Expression Regulation/physiology
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Hematoma, Subdural, Chronic/genetics
- Hematoma, Subdural, Chronic/metabolism
- Hematoma, Subdural, Chronic/physiopathology
- Humans
- Male
- Middle Aged
- Neovascularization, Pathologic/genetics
- Neutrophils/cytology
- RNA, Messenger/metabolism
- Receptor, TIE-2/genetics
- Recurrence
- Up-Regulation/physiology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-2/genetics
Collapse
Affiliation(s)
- Axel Hohenstein
- Department of Neurosurgery and Division of Neurosurgical Research, University Hospital, Mannheim, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
75
|
Gustafsson T, Ameln H, Fischer H, Sundberg CJ, Timmons JA, Jansson E. VEGF-A splice variants and related receptor expression in human skeletal muscle following submaximal exercise. J Appl Physiol (1985) 2005; 98:2137-46. [PMID: 15661835 DOI: 10.1152/japplphysiol.01402.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
VEGF-A contributes to muscle tissue angiogenesis following aerobic exercise training. The temporal response of the VEGF-A isoforms and their target receptors has not been comprehensively profiled in human skeletal muscle. We combined submaximal exercise with and without reduced leg blood flow to establish whether ischemia-induced metabolic stress was an important physiological stimuli responsible for regulating the VEGF-A system in humans. Nine healthy men performed two 45-min bouts of one-leg knee-extension exercise, with and without blood flow restriction. Muscle biopsies were obtained at rest and 2 and 6 h after exercise. Expression (mRNA) of the VEGF-A splice variants and related receptors [VEGF receptor (VEGFR)-1, VEGFR-2, and neuropilin-1] was determined by using qPCR. VEGF-A(total) expression increased more robustly after exercise with reduced blood flow, and initially this principally reflected an increase in VEGF-A(165). Six hours after exercise, there was a relatively greater increase in VEGF-A(189), and this response was not influenced by blood flow conditions. VEGFR-1 mRNA expression increased 2 h after exercise, and neuropilin-1 expression was transiently reduced, while all three receptors increased by 6 h. There was no evidence for the expression of the inhibitory VEGF-A(165B) variant in human skeletal muscle. Our study, reflecting both VEGF-A ligand and receptors, implicates metabolic perturbation as a regulator of human muscle angiogenesis and demonstrates that VEGF-A splice variants are distinctly regulated. Our findings also indicate that all three receptor genes exhibit different pretranslational regulation, in response to exercise in humans.
Collapse
Affiliation(s)
- T Gustafsson
- Karolinska Institute, Berzelius Väg 35, Stockholm 171 77, Sweden
| | | | | | | | | | | |
Collapse
|
76
|
Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K. Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 2005; 96:308-18. [PMID: 15662032 DOI: 10.1161/01.res.0000156273.30274.f7] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glycogen-Synthase Kinase 3beta (GSK3beta) has been shown to function as a nodal point of converging signaling pathways in endothelial cells to regulate vessel growth, but the signaling mechanisms downstream from GSK3beta have not been identified. Here, we show that beta-catenin is an important downstream target for GSK3beta action in angiogenesis and dissect the signal transduction pathways involved in the angiogenic phenotype. Transduction of human umbilical vein endothelial cells (HUVECs) with a kinase-mutant form of the enzyme (KM-GSK3beta) increased cytosolic beta-catenin levels, whereas constitutively active GSK3beta (S9A-GSK3beta) reduced beta-catenin levels. Lymphoid enhancer factor/T-cell factor promoter activity was upregulated by KM-GSK3beta and diminished by S9A-GSK3beta, whereas manipulation of Akt signaling had no effect on this parameter. beta-Catenin transduction induced capillary formation in a Matrigel-plug assay in vivo and promoted endothelial cell differentiation into network structures on Matrigel-coated plates in vitro. beta-Catenin activated the expression of vascular endothelial growth factor (VEGF)-A and VEGF-C in endothelial cells, and these effects were mediated at the levels of protein, mRNA, and promoter activity. Consistent with these data, beta-catenin increased the phosphorylation of the VEGF receptor 2 (VEGF-R2) and promoted its association with PI3-kinase, leading to a dose-dependent activation of the serine-threonine kinase Akt. Inhibition of PI3-kinase or Akt signaling led to a significant reduction in the pro-angiogenic activity of beta-catenin. Collectively, these data show that the growth factor-PI3-kinase-Akt axis functions downstream of GSK3beta/beta-catenin signaling in endothelial cells to promote angiogenesis.
Collapse
Affiliation(s)
- Carsten Skurk
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass 02118, USA
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
Normal tissue function depends on adequate supply of oxygen through blood vessels. Reduced oxygen supply (hypoxia) induces a variety of specific adaptation mechanisms in mammals that occur at the cellular, local and systemic level. These mechanisms are in part governed by the activation of the hypoxia-inducible transcription factors HIF-1 and HIF-2. Prolyl and asparaginyl hydroxylases as recently characterized oxygen sensors allow the regulation of HIFs that in turn modulate expression of hypoxically regulated genes such as VEGF. VEGF plays a key role in the formation of a functional and integrated vascular network required during physiological processes such as embryogenesis or female reproductive cycle as well as during a variety of pathological processes such tumor growth, wound healing, retinopathy and ischemic diseases (myocardial infarction, cerebral ischemia). However, other angiogenic factors, such as angiopoietins, PDGF, ephrins and erythropoietin are additionally needed to enable the formation of a functional vascular network. Many of these factors are activated during hypoxia although no HIF binding sites have yet been identified in the regulatory sequences of theses genes. Hypoxia-induced gene products that result in new vessel growth may be part of a self-regulated physiological protection mechanism preventing cell injury, especially under conditions of chronically reduced blood blow (chronic ischemia).
Collapse
Affiliation(s)
- Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany.
| |
Collapse
|
78
|
Choksy S, Pockley AG, Wajeh YE, Chan P. VEGF and VEGF receptor expression in human chronic critical limb ischaemia. Eur J Vasc Endovasc Surg 2004; 28:660-9. [PMID: 15531204 DOI: 10.1016/j.ejvs.2004.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study quantified endogenous VEGF and VEGF receptor expression in limbs of patients with chronic critical limb ischaemia (CLI). METHODS Skin and muscle biopsies were obtained from the legs of 25 patients undergoing limb amputation for CLI. Samples were obtained at the amputation level (thigh or calf) and, distally, from the foot and in the vicinity of ischaemic ulcers and gangrene. Control biopsies were obtained from patients undergoing amputation for non-arterial reasons or knee arthroplasty (n=7). VEGF protein levels in tissue lysates were measured by ELISA, and VEGF and KDR mRNA levels were determined using quantitative PCR. RESULTS At the amputation level, VEGF protein and VEGF and KDR mRNA levels in CLI limbs were similar to those in controls. In the foot VEGF mRNA in skin (P=0.005) and VEGF protein levels in muscle (P=0.02) were elevated compared to levels in a proximal biopsy from the same limb. VEGF and KDR mRNA levels in the vicinity of gangrene/ulcers (VEGF P=0.01, KDR P=0.03) also were elevated. CONCLUSIONS VEGF expression is not deficient in CLI. Indeed, it is elevated at distal sites in the ischaemic limb. These findings question the rationale for VEGF supplementation in CLI.
Collapse
Affiliation(s)
- S Choksy
- Division of Clinical Sciences (North), University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
| | | | | | | |
Collapse
|
79
|
Streicher KL, Sylte MJ, Johnson SE, Sordillo LM. Thioredoxin Reductase Regulates Angiogenesis by Increasing Endothelial Cell-Derived Vascular Endothelial Growth Factor. Nutr Cancer 2004; 50:221-31. [PMID: 15623470 DOI: 10.1207/s15327914nc5002_13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Low selenium (Se) status increases angiogenesis by inducing the production of vascular endothelial growth factor (VEGF); however, the mechanism responsible for VEGF up-regulation has yet to be characterized. Se's ability to control cellular oxidative state through its incorporation into selenoproteins such as thioredoxin reductase (TrxR) may explain previous studies that connect Se status to tumor angiogenesis. Therefore, the focus of this study was to determine if altered VEGF expression and angiogenesis due to decreased Se levels are influenced by reduced TrxR activity. We found that chemical inhibition of TrxR in Se-sufficient endothelial cells (ECs) was associated with increases in VEGF and VEGF receptor expression, cell migration, proliferation, and angiogenesis to levels similar to those seen in Se-deficient ECs. Specific inhibition of glutathione peroxidase did not affect pro-angiogenic responses, indicating a unique role of the TrxR system during low Se status. These data correlate changes in TrxR activity with changes in VEGF expression and angiogenic development in ECs, which is significant because minimal mechanistic data exist that explain the role of Se in cancer prevention. Understanding the importance of the tumor microenvironment in contributing to angiogenic regulation has the potential to significantly impact breast cancer chemoprevention strategies by focusing on maintaining proper EC function within the mammary gland.
Collapse
Affiliation(s)
- Katie L Streicher
- Department of Veterinary Science, Pennsylvania State University, University Park, 16802, USA
| | | | | | | |
Collapse
|
80
|
Nilsson I, Shibuya M, Wennström S. Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 2004; 299:476-85. [PMID: 15350545 DOI: 10.1016/j.yexcr.2004.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/05/2004] [Indexed: 12/19/2022]
Abstract
Changes in the local environment, such as reduced oxygen tension (hypoxia), elicit transcriptional activation of a variety of genes in mammalian cells. Here we have analyzed the effect of hypoxia in different vascular endothelial cells (ECs) with emphasis on hypoxia-regulated transcription factors and genes of importance for blood vessel dynamics. While hypoxia induced the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) in all endothelial cells tested, the closely related HIF-2alpha protein was markedly induced in microvascular/capillary endothelial cells, but only weakly or not at all in artery and vein endothelial cells. Furthermore, microvascular/capillary endothelial cells responded to hypoxia with increased number of transcripts encoding vascular endothelial growth factor-A (VEGF-A), VEGF receptor-2, the angiopoietin receptor Tie2, platelet-derived growth factor-B (PDGF-B), and inducible nitric oxide synthase (iNOS). In vein endothelial cells, hypoxia instead increased transcripts encoding lymphatic vascular components VEGF-C, -D, and VEGF receptor-3. Finally, reduced VEGF receptor levels and phosphorylation indicated establishment of a functional autocrine VEGF-A loop in hypoxic endothelial cells. Our results show that endothelial cells, derived from different vascular beds, mount different transcriptional responses to changes in oxygen tension.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
81
|
Beierle EA, Dai W, Langham MR, Copeland EM, Chen MK. Expression of VEGF receptors in cocultured neuroblastoma cells. J Surg Res 2004; 119:56-65. [PMID: 15126083 DOI: 10.1016/j.jss.2004.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Indexed: 01/13/2023]
Abstract
BACKGROUND VEGF is best known for its angiogenic properties. We have found that VEGF expression is increased in neuroblastoma cells cocultured with hepatocytes. In addition, we have previously shown that neuroblastoma cells cultured with exogenous VEGF have an increase in the expression of VEGF receptors. Therefore, we hypothesized that the expression of VEGF receptors would be up-regulated in neuroblastoma cells grown in the coculture environment. MATERIALS AND METHODS Two neuroblastoma cell lines (IMR-32 or SK-N-DZ) are used. These cells are cultured alone and in a coculture system with hepatocytes. Message for VEGF and the VEGF receptors KDR, flt-1, flt-4, neuropilin 1 (NRP-1), and neuropilin 2 (NRP-2) are measured with RT-PCR. Flt-4, NRP-1, and NRP-2 protein expression is measured with Western blot. RESULTS The receptors KDR and flt-1 are not detected in either cell line in either control or coculture conditions. Message for VEGF and flt-4 is significantly increased in the cocultured IMR-32 cells, while that for NRP-1 and NRP-2 is unchanged in these cells. VEGF and its receptors are unchanged in cocultured SK-N-DZ cells. CONCLUSIONS Neuroblastoma cells express specific VEGF receptors that are differentially regulated in the different cell lines. These findings suggest that the heterogeneity of neuroblastomas may limit the utility of targeting VEGF and its receptors as sole treatments for the tumor, and that successful therapies will be dependent upon the specific biology of the tumor.
Collapse
Affiliation(s)
- Elizabeth A Beierle
- Department of Surgery, JHMHSC, University of Florida, Gainesville, Florida 32610-0286, USA.
| | | | | | | | | |
Collapse
|
82
|
Wang H, Olszewski B, Rosebury W, Wang D, Robertson A, Keiser JA. Impaired angiogenesis in SHR is associated with decreased KDR and MT1-MMP expression. Biochem Biophys Res Commun 2004; 315:363-8. [PMID: 14766216 DOI: 10.1016/j.bbrc.2004.01.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Indexed: 12/22/2022]
Abstract
This study examined whether retarded angiogenesis in a hypertension animal model was associated with impaired VEGF signaling. Furthermore, we sought to determine whether this impairment could be overcome by VEGF addition. Using a rat sponge implantation model, we confirmed impaired angiogenesis in spontaneous hypertensive rats (SHRs). Fourteen days after sponge implantation, the level of angiogenesis in SHRs was approximately half of those in age-matched normotensive Wistar-Kyoto or Sprague-Dawley rats. Significantly, expression of kinase-insert domain-containing receptor (KDR) and membrane type 1 matrix metalloproteinase (MT1-MMP) was reduced in SHRs compared to controls. Immunohistological analysis indicated endothelial proliferation was decreased in SHRs. Gene transfer of human VEGF(121) increased KDR and MT1-MMP expression in SHRs. VEGF(121) also up-regulated endothelial proliferation and angiogenesis. Our results indicate down-regulated KDR and MT1-MMP expression is associated with an impaired angiogenesis in SHRs. VEGF gene transfer is effective in ameliorating the impaired angiogenesis in SHRs.
Collapse
Affiliation(s)
- He Wang
- Human Biomarker Center, Translational Medicine and Technology, GlaxoSmithKline, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Liddell RP, Weiss CR, Hofmann LV. Therapeutic angiogenesis: the next frontier for interventional radiology. Tech Vasc Interv Radiol 2004; 7:40-8. [PMID: 15071780 DOI: 10.1053/j.tvir.2004.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of interventional radiology has traditionally relied on mechanical methods to treat vascular disease, such as angioplasty balloons and stents. Although there have been a number of important technical advances in endovascular devices, there are still a number of patients who are not candidates for percutaneous or surgical revascularization. As we approach the technical limits of these newer devices, therapeutic angiogenesis may play an ever-increasing role in the future. Interventional radiologists have unique delivery skills that would complement the on-going research in this area. It is the goal of this article to serve as a primer for interventional radiologists on the agents and techniques used in this exciting field.
Collapse
Affiliation(s)
- Robert P Liddell
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | |
Collapse
|
84
|
Mantzaris NV, Webb S, Othmer HG. Mathematical modeling of tumor-induced angiogenesis. J Math Biol 2004; 49:111-87. [PMID: 15293017 DOI: 10.1007/s00285-003-0262-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2003] [Indexed: 01/06/2023]
Affiliation(s)
- Nikos V Mantzaris
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
85
|
Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.59.3.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Bortezomib (Velcade, formerly known as PS-341) is a boronic acid dipeptide derivative, which is a selective and potent inhibitor of the proteasome. We examined the antitumor activity of combination therapy with bortezomib + docetaxel in two human pancreatic cancer cell lines (MiaPaCa-2 and L3.6pl) selected for their divergent responses to bortezomib alone. Bortezomib blocked docetaxel-induced apoptosis in the MiaPaCa-2 cells and failed to enhance docetaxel-induced apoptosis in L3.6pl cells in vitro but did interact positively with docetaxel to inhibit clonogenic survival. These effects were associated with decreased accumulation of cells in M phase, stabilization of the cyclin-dependent kinase inhibitors, p21 and p27, and inhibition of cdk2 and cdc2 activities. In orthotopic xenografts, combination therapy produced significant reductions in tumor weight and volume in both models associated with accumulation of p21, inhibition of proliferation, and increased apoptosis. Combination therapy also reduced tumor microvessel densities, effects that were associated with reductions in tumor cell production of vascular endothelial growth factor and increased levels of apoptosis in tumor-associated endothelial cells. Together, our results suggest that bortezomib enhances the antitumoral activity of taxanes by enforcing cell growth arrest and inhibiting angiogenesis.
Collapse
Affiliation(s)
| | | | - Ryan Takamori
- 2Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
86
|
Mac Gabhann F, Popel AS. Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am J Physiol Heart Circ Physiol 2004; 286:H153-64. [PMID: 12714333 DOI: 10.1152/ajpheart.00254.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Placental growth factor (PlGF) competes with vascular endothelial growth factor (VEGF) for binding to VEGF receptor (VEGFR)-1 but does not bind VEGFR2. Experiments show that PlGF can augment the response to VEGF in pathological angiogenesis and in models of endothelial cell survival, migration, and proliferation. This synergy has been hypothesized to be due to a combination of the following: signaling by PlGF through VEGFR1 and displacement of VEGF from VEGFR1 to VEGFR2 by PlGF, causing increased signaling through VEGFR2. In this study, the relative contribution of PlGF-induced VEGF displacement to the synergy is quantified using a mathematical model of ligand-receptor binding to examine the effect on ligand-receptor complex formation of VEGF and PlGF acting together. Parameters specific to the VEGF-PlGF system are used based on existing data. The model is used to simulate in silico a specific in vitro experiment in which VEGF-PlGF synergy is observed. We show that, whereas a significant change in the formation of endothelial surface growth factor-VEGFR1 complexes is predicted in the presence of PlGF, the increase in the number of VEGFR2-containing signaling complexes is less significant; these results were shown to be robust to significant variation in the kinetic parameters of the model. Synergistic effects observed in that experiment thus appear unlikely to be due to VEGF displacement but to a shift from VEGF-VEGFR1 to PlGF-VEGFR1 complexes and an increase in total VEGFR1 complexes. These results suggest that VEGFR1 signaling can be functional in adult-derived endothelial cells.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Traylor 613, 720 Rutland Ave., Baltimore, MD 21205, USA.
| | | |
Collapse
|
87
|
Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol (1985) 2004; 96:19-24. [PMID: 12949011 DOI: 10.1152/japplphysiol.00748.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether acute systemic exercise increases vascular endothelial growth factor (VEGF), VEGF receptor (KDR and Flt-1) mRNA, and VEGF protein in sedentary humans. Twelve sedentary subjects were recruited and performed 1 h of acute, cycle ergometer exercise at 50% of maximal oxygen consumption. Muscle biopsies were obtained from the vastus lateralis before exercise and at 0, 2, and 4 h postexercise. Acute exercise significantly increased VEGF mRNA at 2 and 4 h and increased KDR and Flt-1 mRNA at 4 h postexercise. The sustained increase in VEGF mRNA through 4 h and the increases in KDR and Flt-1 at 4 h are different from their respective time course responses in rats. In contrast to the increase in VEGF mRNA postexercise, VEGF protein levels were decreased at 0 h postexercise. These results provide evidence in humans that 1) VEGF, KDR, and Flt-1 mRNA are increased by acute systemic exercise; 2) the time course of the VEGF, KDR, and Flt-1 mRNA responses are different from those previously reported in rats (Gavin TP and Wagner PD. Acta Physiol Scand 175: 201-209, 2002); and 3) VEGF protein is decreased immediately after exercise.
Collapse
Affiliation(s)
- Timothy P Gavin
- Department of Exercise and Sport Science, East Carolina Univiversity, Greenville, NC 27858, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Cho DH, Choi YJ, Jo SA, Jo I. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem 2003; 279:2499-506. [PMID: 14593122 DOI: 10.1074/jbc.m309451200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been reported to increase endothelial NO, but the signaling mechanisms involved are unknown. Using troglitazone, a PPARgamma ligand known as an antidiabetic compound, we investigated the molecular mechanism of its effect on NO production in bovine aortic endothelial cells. Troglitazone increased endothelial NO production in a dose- and time-dependent manner with no alteration in endothelial nitric-oxide synthase (eNOS) expression. The maximal increase ( approximately 3.1-fold) was achieved with 20 microm troglitazone treatment for 12 h, and this increase was accompanied by increases in the expression of vascular endothelial growth factor (VEGF) and its receptor, KDR/Flk-1, and in Akt phosphorylation. Analysis with antibodies specific for each phosphorylated site demonstrated that troglitazone (20 microm treatment for 12 h) significantly increased both the phosphorylation of Ser(1179) of eNOS (eNOS-Ser(1179)) and the dephosphorylation of eNOS-Ser(116) but did not alter eNOS-Thr(497) phosphorylation. Treatment with anti-VEGF antibody to scavenge the increased VEGF induced by troglitazone partially inhibited troglitazone-stimulated NO production. This was accompanied by the attenuation of troglitazone-stimulated increases in the phosphorylation of Akt and eNOS-Ser(1179) with no alteration in eNOS-Ser(116) dephosphorylation. We also found that bisphenol A diglycidyl ether, a PPARgamma antagonist, partially inhibited troglitazone-stimulated NO production with a concomitant reduction in VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation but with no alteration in eNOS-Ser(116) dephosphorylation induced by troglitazone. Taken together, our results demonstrate that prolonged treatment with troglitazone increases endothelial NO production by at least two independent signaling pathways: PPARgamma-dependent, VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation and PPARgamma-independent, eNOS-Ser(116) dephosphorylation.
Collapse
Affiliation(s)
- Du-Hyong Cho
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Korea
| | | | | | | |
Collapse
|
89
|
Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC. Vascular endothelial growth factor modulates skeletal myoblast function. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1417-28. [PMID: 14507649 DOI: 10.1016/s0002-9440(10)63499-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF(165) gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia.
Collapse
Affiliation(s)
- Antonia Germani
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Fondazione I. Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Igarashi J, Erwin PA, Dantas APV, Chen H, Michel T. VEGF induces S1P1 receptors in endothelial cells: Implications for cross-talk between sphingolipid and growth factor receptors. Proc Natl Acad Sci U S A 2003; 100:10664-9. [PMID: 12963813 PMCID: PMC196861 DOI: 10.1073/pnas.1934494100] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that binds to S1P1 (EDG-1) receptors and activates the endothelial isoform of NO synthase (eNOS). S1P and the polypeptide growth factor vascular endothelial growth factor (VEGF) act independently to modulate angiogenesis and activate eNOS. In these studies, we explored the cross-talk between S1P and VEGF signaling pathways. When cultured bovine aortic endothelial cells were treated with VEGF (10 ng/ml), the expression of S1P1 protein and mRNA increased by approximately 4-fold. S1P1 up-regulation by VEGF was seen within 30 min of VEGF addition and reached a maximum after 1.5 h. By contrast, expression of neither bradykinin B2 receptors nor the scaffolding protein caveolin-1 was altered by VEGF treatment. The EC50 for VEGF-promoted induction of S1P1 expression was approximately 2 ng/ml, within its physiological concentration range. S1P1 induction by VEGF was attenuated by the tyrosine kinase inhibitor genistein and by the PKC inhibitor calphostin C. Preincubation of bovine aortic endothelial cells with VEGF (10 ng/ml for 90 min) markedly enhanced subsequent S1P-dependent eNOS activation. VEGF pretreatment of cultured endothelial cells also markedly potentiated S1P-promoted eNOS phosphorylation at Ser-1179, as well as S1P-mediated activation of kinase Akt. In isolated rat arteries, VEGF pretreatment markedly potentiated S1P-mediated vasorelaxation and eNOS Ser-1179 phosphorylation. Taken together, these data indicate that VEGF specifically induces expression of S1P1 receptors, associated with enhanced intracellular signaling responses to S1P and the potentiation of S1P-mediated vasorelaxation. We suggest that VEGF acts to sensitize the vascular endothelium to the effects of lipid mediators by promoting the induction of S1P1 receptors, representing a potentially important point of cross-talk between receptor-regulated eNOS signaling pathways in the vasculature.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cattle
- Cells, Cultured
- Endothelial Growth Factors/physiology
- Endothelium, Vascular/physiology
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Lymphokines/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Cross-Talk/physiology
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, G-Protein-Coupled
- Receptors, Growth Factor/metabolism
- Receptors, Lysophospholipid
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Junsuke Igarashi
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
91
|
Affiliation(s)
- Hugo H Marti
- Max-Planck-Institute for Physiological and Clinical Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany
| |
Collapse
|
92
|
Gómez R, Simón C, Remohí J, Pellicer A. Administration of moderate and high doses of gonadotropins to female rats increases ovarian vascular endothelial growth factor (VEGF) and VEGF receptor-2 expression that is associated to vascular hyperpermeability. Biol Reprod 2003; 68:2164-71. [PMID: 12606463 DOI: 10.1095/biolreprod.102.010801] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Convincing evidence supports the role of ovarian-origin vascular endothelial growth factor (VEGF) in inducing vascular permeability (VP) and ascites associated with ovarian hyperstimulation syndrome (OHSS) in mammals, including humans. A circulatory dysfunction has been described in every woman treated with gonadotropins for in vitro fertilization. It is not known, however, whether the action of gonadotropins also includes up-regulation of the VEGF receptor-2 (VEGFR-2) and whether increased VP is also found when milder stimulation is used. Thus, we applied an OHSS animal model to answer these questions. Immature female rats were stimulated with saline (control group) or with high (10 IU of eCG x 4 days + 30 IU hCG, OHSS group) or mild (10 IU of eCG + 10 IU of hCG, mild-stimulation group) doses of gonadotropins. The VP and the expression of whole-VEGF and VEGFR-2 mRNAs were analyzed through time-course experiments (0, 24, 48, and 96 h after hCG). Although eCG increased VP and the expression of VEGF and VEGFR-2 mRNAs in the ovaries of both mild- and OHSS-stimulated animals, hCG further augmented these parameters and produced the highest values after 48 h. A linear correlation was found between increased expression of VEGF and VEGFR-2 mRNAs and enhanced VP in both mild and OHSS groups. Immunohistochemistry showed the presence of VEGF and VEGFR-2 in the granulosa-lutein and endothelial cells of the entire corpus luteum. These studies confirm that in hyperstimulated animals as well as in mildly treated rats, VEGF and VEGFR-2 are overexpressed and associated with an increase in VP, which may be responsible for the accumulation of ascitic fluid in the syndrome.
Collapse
Affiliation(s)
- R Gómez
- Fundación IVI para el Estudio de la Reproducción, Valencia University School of Medicine, Valencia, Spain
| | | | | | | |
Collapse
|
93
|
Lloyd PG, Prior BM, Yang HT, Terjung RL. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 2003; 284:H1668-78. [PMID: 12543634 DOI: 10.1152/ajpheart.00743.2002] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenesis occurs in skeletal muscle in response to exercise training. To gain insight into the regulation of this process, we evaluated the mRNA expression of factors implicated in angiogenesis over the course of a training program. We studied sedentary control (n = 17) rats and both sedentary (n = 18) and exercise-trained (n = 48) rats with bilateral femoral artery ligation. Training consisted of treadmill exercise (4 times/day, 1-24 days). Basal mRNA expression in sedentary control muscle was inversely related to muscle vascularity. Angiogenesis was histologically evident in trained white gastrocnemius muscle by day 12. Training produced initial three- to sixfold increases in VEGF, VEGF receptors (KDR and Flt), the angiopoietin receptor (Tie-2), and endothelial nitric oxide synthase mRNA, which dissipated before the increase in capillarity, and a substantial (30- to 50-fold) but transient upregulation of monocyte chemoattractant protein 1 mRNA. These results emphasize the importance of early events in regulating angiogenesis. However, we observed a sustained elevation of the angiopoietin 2-to-angiopoietin 1 ratio, suggesting continued vascular destabilization. The response to exercise was (in general) tempered in high-oxidative muscles. These findings place importance on cellular events coupled to the onset of angiogenesis.
Collapse
Affiliation(s)
- Pamela G Lloyd
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 E. Rollins Road, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
94
|
Grover TR, Parker TA, Zenge JP, Markham NE, Kinsella JP, Abman SH. Intrauterine hypertension decreases lung VEGF expression and VEGF inhibition causes pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 2003; 284:L508-17. [PMID: 12573989 DOI: 10.1152/ajplung.00135.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although vascular endothelial growth factor (VEGF) plays a vital role in lung vascular growth in the embryo, its role in maintaining endothelial function and modulating vascular structure during late fetal life has not been studied. We hypothesized that impaired lung VEGF signaling causes pulmonary hypertension, endothelial dysfunction, and structural remodeling before birth. To determine whether lung VEGF expression is decreased in an experimental model of persistent pulmonary hypertension of the newborn (PPHN), we measured lung VEGF and VEGF receptor protein content from fetal lambs 7-10 days after ductus arteriosus ligation (132-140 days gestation; term = 147 days). In contrast with the surge in lung VEGF expression during late gestation in controls, chronic intrauterine pulmonary hypertension reduced lung VEGF expression by 78%. To determine whether VEGF inhibition during late gestation causes pulmonary hypertension, we treated fetal lambs with EYE001, an aptamer that specifically inhibits VEGF(165). Compared with vehicle controls, EYE001 treatment elevated pulmonary artery pressure and pulmonary vascular resistance by 22 and 50%, respectively, caused right ventricular hypertrophy, and increased wall thickness of small pulmonary arteries. EYE001 treatment reduced lung endothelial nitric oxide synthase protein content by 50% and preferentially impaired the pulmonary vasodilator response to ACh, an endothelium-dependent agent. We conclude that chronic intrauterine pulmonary hypertension markedly decreases lung VEGF expression and that selective inhibition of VEGF(165) mimics the structural and physiological changes of experimental PPHN. We speculate that hypertension downregulates VEGF expression in the developing lung and that impaired VEGF signaling may contribute to the pathogenesis of PPHN.
Collapse
Affiliation(s)
- Theresa R Grover
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Beierle EA, Dai W, Langham MR, Copeland EM, Chen MK. VEGF receptors are differentially expressed by neuroblastoma cells in culture. J Pediatr Surg 2003; 38:514-21. [PMID: 12632379 DOI: 10.1053/jpsu.2003.50091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/PURPOSE Vascular endothelial growth factor (VEGF) is best known for its angiogenic properties, but its mitogenic capacity may be more important for tumorigenesis. The ability of VEGF to induce specific biologic activities may be dependent on the amount and type of VEGF receptors present. The authors hypothesize that neuroblastoma cells express specific VEGF receptors and that their expression may be altered when the cells are exposed to differing cytokines and culture environments. METHODS Four groups of human neuroblastoma cells (IMR-32) are studied. (1) Control cells: cultured in standard media. (2) VEGF cells: VEGF added to the media. (3) Tumor necrosis factor alpha (TNF-alpha) cells: TNF-alpha added to the media. (4) Serum starved cells: cultured in serum-depleted media. Reverse transcriptase polymerase chain reaction (RT-PCR) is utilized to measure the VEGF receptors flt-1, KDR/flk-1, flt-4, neuropilin 1 (NRP-1), and neuropilin 2 (NRP-2). RESULTS Flt-1 and KDR are not detected in any groups. Flt-4, NRP-1, and NRP-2 are present in the IMR-32 cells, and their expression is significantly increased by the administration of VEGF. Neuroblastoma cells cultured with TNF-alpha or in serum-depleted media have a significant decrease in the expression of these receptors. CONCLUSIONS The authors show that neuroblastoma cells express specific VEGF receptors that may be altered by mitogenic or apoptotic stimuli. Specifically targeting VEGF and its receptors may be another therapeutic strategy for the treatment of neuroblastoma.
Collapse
MESH Headings
- Culture Media, Serum-Free
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuropilin-1/biosynthesis
- Neuropilin-1/genetics
- Neuropilin-2/biosynthesis
- Neuropilin-2/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptors, Vascular Endothelial Growth Factor/biosynthesis
- Receptors, Vascular Endothelial Growth Factor/genetics
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Endothelial Growth Factor Receptor-1/biosynthesis
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-3/biosynthesis
- Vascular Endothelial Growth Factor Receptor-3/genetics
Collapse
Affiliation(s)
- Elizabeth A Beierle
- Department of Surgery, University of Florida, J. Hillis Miller Health Science Center, Gainesville, Florida 32610-0286, USA
| | | | | | | | | |
Collapse
|
96
|
Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Sieweke M, Breier G, Flamme I. Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha ) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 2003; 278:7520-30. [PMID: 12464608 DOI: 10.1074/jbc.m211298200] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions between Ets family members and a variety of other transcription factors serve important functions during development and differentiation processes, e.g. in the hematopoietic system. Here we show that the endothelial basic helix-loop-helix PAS domain transcription factor, hypoxia-inducible factor-2alpha (HIF-2alpha) (but not its close relative HIF-1alpha), cooperates with Ets-1 in activating transcription of the vascular endothelial growth factor receptor-2 (VEGF-2) gene (Flk-1). The receptor tyrosine kinase Flk-1 is indispensable for angiogenesis, and its expression is closely regulated during development. Consistent with the hypothesis that HIF-2alpha controls the expression of Flk-1 in vivo, we show here that HIF-2alpha and Flk-1 are co-regulated in postnatal mouse brain capillaries. A tandem HIF-2alpha/Ets binding site was identified within the Flk-1 promoter that acted as a strong enhancer element. Based on the analysis of transgenic mouse embryos, these motifs are essential for endothelial cell-specific reporter gene expression. A single HIF-2alpha/Ets element conferred strong cooperative induction by HIF-2alpha and Ets-1 when fused to a heterologous promoter and was most active in endothelial cells. The physical interaction of HIF-2alpha with Ets-1 was demonstrated and localized to the HIF-2alpha carboxyl terminus and the autoinhibitory exon VII domain of Ets-1, respectively. The deletion of the DNA binding and carboxyl-terminal transactivation domains of HIF-2alpha, respectively, created dominant negative mutants that suppressed transactivation by the wild type protein and failed to synergize with Ets-1. These results suggest that the interaction between HIF-2alpha and endothelial Ets factors is required for the full transcriptional activation of Flk-1 in endothelial cells and may therefore represent a future target for the manipulation of angiogenesis.
Collapse
MESH Headings
- Age Factors
- Amino Acid Motifs
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Binding Sites
- Blotting, Western
- Cell Differentiation
- Cell Division
- Cell Line
- Cell Nucleus/metabolism
- Dose-Response Relationship, Drug
- Embryo, Mammalian/metabolism
- Endothelium/cytology
- Endothelium/metabolism
- Exons
- Gene Deletion
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genetic Vectors
- Glutathione Transferase/metabolism
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Luciferases/metabolism
- Mice
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Neovascularization, Pathologic
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Trans-Activators/chemistry
- Trans-Activators/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transfection
- Transgenes
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Gerd Elvert
- Zentrum für Molekulare Medizin der Universität zu Köln, Joseph-Stelzmann-Strasse 9, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Trollmann R, Amann K, Schoof E, Beinder E, Wenzel D, Rascher W, Dötsch J. Hypoxia activates the human placental vascular endothelial growth factor system in vitro and in vivo: up-regulation of vascular endothelial growth factor in clinically relevant hypoxic ischemia in birth asphyxia. Am J Obstet Gynecol 2003; 188:517-23. [PMID: 12592265 DOI: 10.1067/mob.2003.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We investigated the influence of acute hypoxia on the placental vascular endothelial growth factor system in vitro and in vivo in acute birth asphyxia compared with pregnancies that were complicated by preeclampsia and with healthy control subjects. STUDY DESIGN Messenger RNA levels for vascular endothelial growth factor, flt-1, and KDR were measured by TaqMan real-time polymerase chain reaction in human placental choriocarcinoma cells (BeWo) that were exposed to hypoxia (1% oxygen, 5% carbon dioxide, 94% nitrogen) and in placental tissue of neonates with birth asphyxia (n = 20), newborn infants of mothers with preeclampsia (n = 20), and gestational age-matched control subjects. Immunhistologically, placental vascular endothelial growth factor protein expression was compared among the groups. RESULTS In BeWo cells, vascular endothelial growth factor, flt-1 and KDR messenger RNA increased in a time-dependent manner in response to hypoxia. In vivo, vascular endothelial growth factor/beta-actin and KDR/beta-actin messenger RNA were significantly higher in placental tissue of newborn infants with severe hypoxic-ischemic encephalopathy than with newborn infants with mild or no hypoxic-ischemic encephalopathy and control subjects. In chronic placental hypoxia (preeclampsia), vascular endothelial growth factor and both receptors were found to be up-regulated. Increased placental vascular endothelial growth factor expression was confirmed by immunohistologic examination. CONCLUSION The vascular endothelial growth factor system is up-regulated in response to placental hypoxia and is assumed to be a potential early indicator of severe birth asphyxia.
Collapse
Affiliation(s)
- R Trollmann
- Department of Pediatrics, University of Erlangen-Nuernberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
98
|
Urbich C, Stein M, Reisinger K, Kaufmann R, Dimmeler S, Gille J. Fluid shear stress-induced transcriptional activation of the vascular endothelial growth factor receptor-2 gene requires Sp1-dependent DNA binding. FEBS Lett 2003; 535:87-93. [PMID: 12560084 DOI: 10.1016/s0014-5793(02)03879-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hemodynamic forces play a fundamental role in the regulation of endothelial cell survival. As signaling via the vascular endothelial growth factor (VEGF) receptor-2 pathway has been previously demonstrated to impact endothelial cell survival, we hypothesized that laminar shear stress may facilitate survival in part by inducing VEGF receptor-2 expression. This study shows a time- and dose-dependent upregulation of endothelial VEGF receptor-2 expression by fluid shear stress in microvascular and large-vessel derived endothelial cells. A functional analysis of the 5'-regulatory region of the VEGF receptor-2 promoter localized the shear stress-response element to a sequence between bp -60 and -37 that encompasses two adjacent consensus Sp1 transcription factor binding sites. Constitutive and shear stress-inducible Sp1-dependent complexes are bound to this element, indicating that fluid shear stress-induced transcriptional activation of the VEGF receptor-2 gene requires Sp1-dependent DNA binding. Together, these results suggest that biomechanical stimulation may lead to endothelial cell survival by upregulating VEGF receptor-2 expression.
Collapse
Affiliation(s)
- Carmen Urbich
- Molecular Cardiology, Department of Internal Medicine IV, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
99
|
Akita T, Murohara T, Ikeda H, Sasaki KI, Shimada T, Egami K, Imaizumi T. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. J Transl Med 2003; 83:65-73. [PMID: 12533687 DOI: 10.1097/01.lab.0000050761.67879.e4] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A subset of human peripheral blood mononuclear cells (PB-MNCs) differentiate into endothelial progenitor cells (EPCs) that participate in postnatal neovascularization. Although tissue ischemia can mobilize EPCs from bone marrow, the effects of hypoxia on differentiation and angiogenic function of EPCs are little known. We examined whether hypoxic conditioning would modulate differentiation and function of human PB-MNC-derived EPCs. A subset of PB-MNCs gave rise to EPC-like attaching (AT) cells under either normoxic or hypoxic conditions. However, hypoxia much enhanced the differentiation of AT cells from PB-MNCs compared with normoxia. AT cells released vascular endothelial growth factor (VEGF) protein and expressed CD31 and kinase insert domain receptor/VEGFR-2, endothelial lineage markers, on their surface, which were also enhanced by hypoxia. Both a neutralizing anti-VEGF mAb and a KDR-specific receptor tyrosine kinase inhibitor, SU1498, suppressed PB-MNC differentiation into EPC-like AT cells in a dose-dependent manner. Migration of AT cells in response to VEGF as examined by a modified Boyden chamber apparatus was also enhanced by hypoxia. Finally, in vivo neovascularization efficacy was significantly enhanced by in vitro hypoxic conditioning of AT cells when cells were transplanted into the ischemic hindlimb of immunodeficient nude rats. In conclusion, hypoxia directly stimulated differentiation of EPC-like AT cells from human PB-MNC culture. Moreover, hypoxic preconditioning of AT cells before in vivo transplantation is a useful means to enhance therapeutic vasculogenesis.
Collapse
Affiliation(s)
- Takako Akita
- The Cardiovascular Research Institute and Department of Internal Medicine III, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | |
Collapse
|
100
|
Staalesen T, Risberg B, Mattsson E. The kinase insert domain-containing receptor (KDR) is regulated by shear stress. SCAND CARDIOVASC J 2002; 36:368-72. [PMID: 12626205 DOI: 10.1080/140174302762659102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Intimal hyperplasia develops in areas with low shear stress. The aim of the present study was to investigate if the mRNA expression of vascular endothelial growth factor (VEGF), Fms-like tyrosine kinase-1 receptor (Flt-1) and kinase insert domain-containing receptor (KDR) is regulated by shear stress. DESIGN Endothelial cells from human umbilical veins were in an in vitro system subjected to different levels of shear stress during 1 and 12 h. The mRNA expression of VEGF, Flt-1 and KDR was measured with RT-PCR. eNOS served as positive control and actin as housekeeping gene. RESULTS The KDR expression was isolated upregulated 3-4 times after 12 h exposure to high shear stress. CONCLUSION The genetic expression of KDR is upregulated by shear stress and this response is time dependent.
Collapse
Affiliation(s)
- T Staalesen
- Department of Vascular Surgery, The Wallenberg Laboratory, Bruna Stråket 11B, Plan 1, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | | | | |
Collapse
|