51
|
Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Lin W, Styner M, Gilmore JH. Common variants in psychiatric risk genes predict brain structure at birth. Cereb Cortex 2014; 24:1230-46. [PMID: 23283688 PMCID: PMC3977618 DOI: 10.1093/cercor/bhs401] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Studies in adolescents and adults have demonstrated that polymorphisms in putative psychiatric risk genes are associated with differences in brain structure, but cannot address when in development these relationships arise. To determine if common genetic variants in disrupted-in-schizophrenia-1 (DISC1; rs821616 and rs6675281), catechol-O-methyltransferase (COMT; rs4680), neuregulin 1 (NRG1; rs35753505 and rs6994992), apolipoprotein E (APOE; ε3ε4 vs. ε3ε3), estrogen receptor alpha (ESR1; rs9340799 and rs2234693), brain-derived neurotrophic factor (BDNF; rs6265), and glutamate decarboxylase 1 (GAD1; rs2270335) are associated with individual differences in brain tissue volumes in neonates, we applied both automated region-of-interest volumetry and tensor-based morphometry to a sample of 272 neonates who had received high-resolution magnetic resonance imaging scans. ESR1 (rs9340799) predicted intracranial volume. Local variation in gray matter (GM) volume was significantly associated with polymorphisms in DISC1 (rs821616), COMT, NRG1, APOE, ESR1 (rs9340799), and BDNF. No associations were identified for DISC1 (rs6675281), ESR1 (rs2234693), or GAD1. Of note, neonates homozygous for the DISC1 (rs821616) serine allele exhibited numerous large clusters of reduced GM in the frontal lobes, and neonates homozygous for the COMT valine allele exhibited reduced GM in the temporal cortex and hippocampus, mirroring findings in adults. The results highlight the importance of prenatal brain development in mediating psychiatric risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Konneker
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | | | - Martin Styner
- Department of Psychiatry
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA and
| | | |
Collapse
|
52
|
Roussos P, Haroutunian V. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 2014; 8:5. [PMID: 24478629 PMCID: PMC3896818 DOI: 10.3389/fncel.2014.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022] Open
Abstract
Given that the genetic risk for schizophrenia is highly polygenic and the effect sizes, even for rare or de novo events, are modest at best, it has been suggested that multiple biological pathways are likely to be involved in the etiopathogenesis of the disease. Most efforts in understanding the cellular basis of schizophrenia have followed a “neuron-centric” approach, focusing on alterations in neurotransmitter systems and synapse cytoarchitecture. However, multiple lines of evidence coming from genetics and systems biology approaches suggest that apart from neurons, oligodendrocytes and potentially other glia are affected from schizophrenia risk loci. Neurobiological abnormalities linked with genetic association signal could identify abnormalities that are more likely to be primary, versus environmentally induced changes or downstream events. Here, we summarize genetic data that support the involvement of oligodendrocytes in schizophrenia, providing additional evidence for a causal role with the disease. Given the undeniable evidence of both neuronal and glial abnormalities in schizophrenia, we propose a neuro-glial model that invokes abnormalities at the node of Ranvier as a functional unit in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Panos Roussos
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Vahram Haroutunian
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
53
|
Díez A, Cieza-Borrella C, Suazo V, González-Sarmiento R, Papiol S, Molina V. Cognitive outcome and gamma noise power unrelated to neuregulin 1 and 3 variation in schizophrenia. Ann Gen Psychiatry 2014; 13:18. [PMID: 24976857 PMCID: PMC4065086 DOI: 10.1186/1744-859x-13-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/29/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Neuregulins are a family of signalling proteins that orchestrate a broad range of cellular responses. Four genes encoding Neuregulins 1-4 have been identified so far in vertebrates. Among them, Neuregulin 1 and Neuregulin 3 have been reported to contribute to an increased risk for developing schizophrenia. We hypothesized that three specific variants of these genes (rs6994992 and rs3924999 for Neuregulin 1 and rs10748842 for Neuregulin 3) that have been related to this illness may modify information processing capacity in the cortex, which would be reflected in electrophysiological parameters (P3b amplitude or gamma noise power) and/or cognitive performance. METHODS We obtained DNA from 31 patients with schizophrenia and 23 healthy controls and analyzed NRG1 rs6994992, NRG1 rs3924999 and NRG3 rs10748842 promoter polymorphisms by allelic discrimination with real-time polymerase chain reaction (PCR). We compared cognitive outcome, P300 amplitude parameters and an electroencephalographic measure of noise power in the gamma band between the groups dichotomized according to genotype. RESULTS Contrary to our hypothesis, we could not detect any significant influence of variation in Neuregulin 1/Neuregulin 3 polymorphisms on cognitive performance or electrophysiological parameters of patients with schizophrenia. CONCLUSIONS Despite our findings, we cannot discard that other genetic variants and, more likely, interactions between those variants and with genetic variation related to different pathways may still influence cerebral processing in schizophrenia.
Collapse
Affiliation(s)
- Alvaro Díez
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London W1W 7EJ, UK
| | - Clara Cieza-Borrella
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Molecular Medicine Unit, Department of Medicine and Institute of Molecular and Cellular Cancer Biology (IBMCC), University of Salamanca & CSIC, Salamanca 37007, Spain
| | - Vanessa Suazo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Neuroscience Institute of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Molecular Medicine Unit, Department of Medicine and Institute of Molecular and Cellular Cancer Biology (IBMCC), University of Salamanca & CSIC, Salamanca 37007, Spain
| | - Sergi Papiol
- Anthropology Unit, Animal Biology Department, University of Barcelona, Barcelona 08028, Spain ; Clinical Neuroscience Section, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Vicente Molina
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Neuroscience Institute of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain ; Psychiatry Department, School of Medicine, University of Valladolid, Valladolid 47005, Spain ; Psychiatry Service, University Hospital of Valladolid, Avenida Ramón y Cajal, 7, Valladolid 47005, Spain
| |
Collapse
|
54
|
Kukshal P, Bhatia T, Bhagwat AM, Gur RE, Gur RC, Deshpande SN, Nimgaonkar VL, Thelma BK. Association study of neuregulin-1 gene polymorphisms in a North Indian schizophrenia sample. Schizophr Res 2013; 144:24-30. [PMID: 23360725 PMCID: PMC4040109 DOI: 10.1016/j.schres.2012.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuregulin-1 (NRG1) gene polymorphisms have been proposed as risk factors for several common disorders. Associations with cognitive variation have also been tested. With regard to schizophrenia (SZ) risk, studies of Caucasian ancestry samples indicate associations more consistently than East Asian samples, suggesting heterogeneity. To exploit the differences in linkage disequilibrium (LD) structure across ethnic groups, we conducted a SZ case-control study (that included cognitive evaluations) in a sample from the north Indian population. METHODS NRG1 variants (n=35 SNPs, three microsatellite markers) were initially analyzed among cases (DSM IV criteria, n=1007) and controls (n=1019, drawn from two groups) who were drawn from the same geographical region in North India. Nominally significant associations with SZ were next analyzed in relation to neurocognitive measures estimated with a computerized neurocognitive battery in a subset of the sample (n=116 cases, n=170 controls). RESULTS Three variants and one microsatellite showed allelic association with SZ (rs35753505, rs4733263, rs6994992, and microsatellite 420M9-1395, p≤0.05 uncorrected for multiple comparisons). A six marker haplotype 221121 (rs35753505-rs6994992-rs1354336-rs10093107-rs3924999-rs11780123) showed (p=0.0004) association after Bonferroni corrections. Regression analyses with the neurocognitive measures showed nominal (uncorrected) associations with emotion processing and attention at rs35753505 and rs6994992, respectively. CONCLUSIONS Suggestive associations with SZ and SZ-related neurocognitive measures were detected with two SNPs from the NRG1 promoter region in a north Indian cohort. The functional role of the alleles merits further investigation.
Collapse
Affiliation(s)
- Prachi Kukshal
- Department of Genetics, University of Delhi South campus, Benito
Juarez Road, New Delhi – 110 021, India
- C.B. Patel Research Centre, Vile Parle (West), Mumbai, India
| | - Triptish Bhatia
- Department of Psychiatry, Dr. RML Hospital, New Delhi – 110
001, India
| | - A. M. Bhagwat
- C.B. Patel Research Centre, Vile Parle (West), Mumbai, India
| | - Raquel E. Gur
- Department of Psychiatry, Neuropsychiatry Section, University of
Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, Neuropsychiatry Section, University of
Pennsylvania, Philadelphia, PA, USA
| | | | - Vishwajit L. Nimgaonkar
- Department of Psychiatry and Human Genetics, Western Psychiatric
Institute and Clinic, University of Pittsburgh School of Medicine and Graduate
School of Public Health, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - B. K. Thelma
- Department of Genetics, University of Delhi South campus, Benito
Juarez Road, New Delhi – 110 021, India
| |
Collapse
|
55
|
Transcriptomic analysis of postmortem brain identifies dysregulated splicing events in novel candidate genes for schizophrenia. Schizophr Res 2012; 142:188-99. [PMID: 23062752 PMCID: PMC3502694 DOI: 10.1016/j.schres.2012.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/20/2023]
Abstract
The diverse spatial and temporal expression of alternatively spliced transcript isoforms shapes neurodevelopment and plays a major role in neuronal adaptability. Although alternative splicing is extremely common in the brain, its role in mental illnesses such as schizophrenia has received little attention. To examine this relationship, postmortem brain tissue was obtained from 20 individuals with schizophrenia (SZ) and 20 neuropsychiatrically normal comparison subjects. Gray matter samples were extracted from two brain regions implicated in the disorder: Brodmann Area 10 and caudate. Affymetrix Human Gene 1.0 ST arrays were used on four subjects per group to attain an initial profile of differential expression of transcribed elements within and across brain regions in SZ. Numerous genes of interest with altered mRNA transcripts were identified by microarray through the differential expression of particular exons and 3' untranslated regions (UTRs) between diagnostic groups. Select microarray results--including dysregulation of ENAH exon 11a and CPNE3 3'UTR--were verified by qRTPCR and replicated in the remaining independent sample of 16 SZ patients and 16 normal comparison subjects. These results, if further replicated, clearly illustrate the importance of Identifying transcriptomic variants in expression studies, and implicate novel candidate genes in the disorder.
Collapse
|
56
|
Schizophrenia. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
57
|
Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A 2012; 109:12165-70. [PMID: 22689948 DOI: 10.1073/pnas.1206118109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.
Collapse
|
58
|
Chen P, Chen J, Huang K, Ji W, Wang T, Li T, Wang Y, Wang H, He L, Feng G, Shi Y. Analysis of association between common SNPs in ErbB4 and bipolar affective disorder, major depressive disorder and schizophrenia in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:17-21. [PMID: 21993442 DOI: 10.1016/j.pnpbp.2011.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/28/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
Neuregulin-1 (NRG1) is associated with schizophrenia. As one of the receptors of NRG1, v-erb-a erythroblastic leukemia viral oncogene homolog 4 (ErbB4) has also been reported to be associated with schizophrenia. Since there can be shared genetic variants among bipolar affective disorder, major depressive disorder and schizophrenia, we tested the association between ErbB4 and these three major psychiatric disorders in the Han Chinese population. Five single nucleotide polymorphisms (SNPs) were selected based on previous positive reports and linkage disequilibrium information of the HapMap Han Chinese individuals from Beijing (CHB)+individuals from Tokyo, Japan (JPT) population. These SNPs were genotyped in 1140 bipolar affective disorder (BPAD) patients, 1140 schizophrenia (SCZ) patients, 1139 major depressive disorder (MDD) patients and 1140 normal controls. Two SNPs (rs707284 and rs839523) showed nominal significance in the BPAD patients but this was eliminated after permutation. No significant association between ErbB4 and the two other psychiatric disorders was observed, nor did haplotype analysis reveal any positive signal.
Collapse
Affiliation(s)
- Peng Chen
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Yanagi M, Southcott S, Lister J, Tamminga CA. Animal models of schizophrenia emphasizing construct validity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:411-44. [PMID: 22137438 DOI: 10.1016/b978-0-12-394596-9.00012-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Achieving animal models of schizophrenia which are representative of clear aspects of the illness is critical to understanding pathophysiology and developing novel treatments for the complex syndrome. This chapter reviews the various approaches that have been used in the past to create animal models of schizophrenia, including pharmacological approaches, environmental risk conditions and schizophrenia risk genes. In addition, we present a new animal model which derives directly from human tissue and brain imaging data used to develop a human schizophrenia model. This chapter emphasizes the crucial need for construct validity and of modeling discrete elements of schizophrenia's illness presentation as the way to successful advances.
Collapse
Affiliation(s)
- Masaya Yanagi
- Department of Psychiatry, UT Southwestern Medical School, Dallas, Texas, USA
| | | | | | | |
Collapse
|
60
|
Taylor SB, Markham JA, Taylor AR, Kanaskie BZ, Koenig JI. Sex-specific neuroendocrine and behavioral phenotypes in hypomorphic Type II Neuregulin 1 rats. Behav Brain Res 2011; 224:223-32. [PMID: 21620900 PMCID: PMC3159843 DOI: 10.1016/j.bbr.2011.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/11/2022]
Abstract
Neuregulin 1 (NRG1) is an important growth factor involved in the development and plasticity of the central nervous system. Since its identification as a susceptibility gene for schizophrenia, several transgenic mouse models have been employed to elucidate the role NRG1 may play in the pathogenesis of psychiatric disease. Unfortunately very few studies have included females, despite the fact that some work suggests that the consequences of disrupted NRG1 expression may be sex-specific. Here, we used Nrg1 hypomorphic (Nrg1(Tn)) Fischer rats to demonstrate sex-specific changes in neuroendocrine and behavioral phenotypes as a consequence of reduced Type II NRG1 expression. We have previously shown that male Nrg1(Tn) rats have increased basal corticosterone levels, and fail to habituate to an open field despite normal overall levels of locomotor activity. The current studies show that, in contrast, female Nrg1(Tn) rats exhibit enhanced suppression of corticosterone levels following an acute stress, reduced locomotor activity, and enhanced habituation to novel environments. Furthermore, we also show that female, but not male, Nrg1(Tn) rats have impaired prepulse inhibition. Finally, we provide evidence that sex-specific changes are not likely attributable to major disruptions in the hypothalamic-pituitary-gonadal axis, as measures of pubertal onset, estrous cyclicity, and reproductive capacity were unaltered in female Nrg1(Tn) rats. Our results provide further support for both the involvement of NRG1 in the control of hypothalamic-pituitary-adrenal axis function and the sex-specific nature of this relationship.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Blotting, Western
- Female
- Genotype
- Male
- Motor Activity/physiology
- Mutation/physiology
- Neuregulin-1/genetics
- Neuregulin-1/physiology
- Neurosecretory Systems/physiology
- Rats
- Rats, Inbred F344
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Reflex, Startle/physiology
- Reproduction/genetics
- Restraint, Physical
- Sex Characteristics
- Sexual Maturation/genetics
- Sexual Maturation/physiology
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Sara B Taylor
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
61
|
Shang E, Cui Q, Wang X, Beseler C, Greenberg DA, Wolgemuth DJ. The bromodomain-containing gene BRD2 is regulated at transcription, splicing, and translation levels. J Cell Biochem 2011; 112:2784-93. [PMID: 21608014 PMCID: PMC3178676 DOI: 10.1002/jcb.23192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human BRD2 gene has been linked and associated with a form of common epilepsy and electroencephalographic abnormalities. Disruption of Brd2 in the mouse revealed that it is essential for embryonic neural development and that viable Brd2(+/-) heterozygotes show both decreased GABAergic neuron counts and increased susceptibility to seizures. To understand the molecular mechanisms by which mis-expression of BRD2 might contribute to epilepsy, we examined its regulation at multiple levels. We discovered that BRD2 expresses distinct tissue-specific transcripts that originate from different promoters and have strikingly different lengths of 5' untranslated regions (5'UTR). We also experimentally confirmed the presence of a highly conserved, alternatively spliced exon, inclusion of which would result in a premature termination of translation. Downstream of this alternative exon is a polymorphic microsatellite (GT-repeats). Manipulation of the number of the GT-repeats revealed that the length of the GT-repeats affects the ratio of the two alternative splicing products. In vitro translation and expression in cultured cells revealed that among the four different mRNAs (long and short 5'UTR combined with regular and alternative splicing), only the regularly spliced mRNA with the short 5'UTR yields full-length protein. In situ hybridization and immunohistochemical studies showed that although Brd2 mRNA is expressed in both the hippocampus and cerebellum, Brd2 protein only can be detected in the cerebellar Purkinje cells and not in hippocampal cells. These multiple levels of regulation would likely affect the production of functional BRD2 protein during neural development and hence, its role in the etiology of seizure susceptibility.
Collapse
Affiliation(s)
- Enyuan Shang
- Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, New York 10032
| | - Qingping Cui
- Department of Genetics and Development and Obstetrics and Gynecology, Columbia University Medical Center, New York, New York 1003
| | - Xiangyuan Wang
- Department of Genetics and Development and Obstetrics and Gynecology, Columbia University Medical Center, New York, New York 1003
| | - Cheryl Beseler
- Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, New York 10032
| | - David A. Greenberg
- Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, New York 10032
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032
| | - Debra J. Wolgemuth
- Department of Genetics and Development and Obstetrics and Gynecology, Columbia University Medical Center, New York, New York 1003
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
- The Institute of Human Nutrition, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
62
|
Deakin IH, Nissen W, Law AJ, Lane T, Kanso R, Schwab MH, Nave KA, Lamsa KP, Paulsen O, Bannerman DM, Harrison PJ. Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation. ACTA ACUST UNITED AC 2011; 22:1520-9. [PMID: 21878485 PMCID: PMC3377963 DOI: 10.1093/cercor/bhr223] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuregulin 1 (NRG1) is a growth factor involved in neurodevelopment and plasticity. It is a schizophrenia candidate gene, and hippocampal expression of the NRG1 type I isoform is increased in the disorder. We have studied transgenic mice overexpressing NRG1 type I (NRG1tg-type I) and their wild-type littermates and measured hippocampal electrophysiological and behavioral phenotypes. Young NRG1tg-type I mice showed normal memory performance, but in older NRG1tg-type I mice, hippocampus-dependent spatial working memory was selectively impaired. Hippocampal slice preparations from NRG1tg-type I mice exhibited a reduced frequency of carbachol-induced gamma oscillations and an increased tendency to epileptiform activity. Long-term potentiation in NRG1tg-type I mice was normal. The results provide evidence that NRG1 type I impacts on hippocampal function and circuitry. The effects are likely mediated via inhibitory interneurons and may be relevant to the involvement of NRG1 in schizophrenia. However, the findings, in concert with those from other genetic and pharmacological manipulations of NRG1, emphasize the complex and pleiotropic nature of the gene, even with regard to a single isoform.
Collapse
Affiliation(s)
- Inga H Deakin
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Taylor SB, Taylor AR, Markham JA, Geurts AM, Kanaskie BZ, Koenig JI. Disruption of the neuregulin 1 gene in the rat alters HPA axis activity and behavioral responses to environmental stimuli. Physiol Behav 2011; 104:205-14. [PMID: 21092742 PMCID: PMC3081908 DOI: 10.1016/j.physbeh.2010.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Exposure to stress can result in an increased risk for psychiatric disorders, especially among genetically predisposed individuals. Neuregulin 1 (NRG1) is a susceptibility gene for schizophrenia and is also associated with psychotic bipolar disorder. In the rat, the neurons of the hypothalamic paraventricular nucleus show strong expression of Nrg1 mRNA. In patients with schizophrenia, a single nucleotide polymorphism in the 5' region of NRG1 interacts with psychosocial stress to affect reactivity to expressed emotion. However, there is virtually no information on the role of NRG1 in hypothalamic-pituitary-adrenal axis function, and whether the protein is expressed in the paraventricular nucleus is unknown. The present studies utilize a unique line of Nrg1 hypomorphic rats (Nrg1(Tn)) generated by gene trapping with the Sleeping Beauty transposon. We first established that the Nrg1(Tn) rats displayed reduced expression of both the mRNA and protein corresponding to the Type II NRG1 isoform. After confirming, using wild type animals, that Type II NRG1 is expressed in the neurocircuitry involved in regulating hypothalamic-pituitary-adrenal axis responses to environmental stimuli, the Nrg1(Tn) rats were then used to test the hypothesis that altered expression of Type II NRG1 disrupts stress regulation and reactivity. In support of this hypothesis, Nrg1(Tn) rats have disrupted basal and acute stress recovery corticosterone secretion, differential changes in expression of glucocorticoid receptors in the pituitary, paraventricular nucleus and hippocampus, and a failure to habituate to an open field. Together, these findings point to NRG1 as a potential novel regulator of neuroendocrine responses to stress as well as behavioral reactivity.
Collapse
Affiliation(s)
- S B Taylor
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Morar B, Dragović M, Waters FAV, Chandler D, Kalaydjieva L, Jablensky A. Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition. Mol Psychiatry 2011; 16:860-6. [PMID: 20548296 DOI: 10.1038/mp.2010.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Linkage of 10q22-q23 to schizophrenia and the recently reported association of Neuregulin 3 (NRG3) polymorphisms with high 'delusion factor' scores led us to attempt replication and further refinement of these findings in a sample of 411 schizophrenic patients and 223 nonpsychiatric control subjects. Using quantitative cognitive traits, patients were grouped into a cluster with pervasive cognitive deficit (CD) and a cluster with relatively spared cognition (CS). We found a significant association between rs6584400 and schizophrenia, with a trend for rs10883866. Post hoc analysis revealed that this result was mainly due to the CS cluster, characterized by elevated scores on Schneiderian first-rank symptoms, salience of complex delusions and positive thought disorder--thus closely related to the 'delusion factor'. In addition, both rs6584400 and rs10883866 were associated with the degraded-stimulus continuous performance task in which 'risk' alleles were associated with better than average performance in patients and worse performance in controls. This suggests that NRG3 may be modulating early attentional processes for perceptual sensitivity and vigilance, with opposite effects in affected individuals and healthy controls. The two single-nucleotide polymorphisms are in close proximity to the alternative first exons of the NRG3-a, -b and -d isoforms, of which the human brain-specific NRG-b appears to be the most interesting candidate.
Collapse
Affiliation(s)
- B Morar
- Centre for Medical Research/Western Australian Institute for Medical Research, The University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | |
Collapse
|
65
|
Liu X, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC, Mei L. Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci 2011; 31:8491-501. [PMID: 21653853 PMCID: PMC3154699 DOI: 10.1523/jneurosci.5317-10.2011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/19/2011] [Accepted: 04/28/2011] [Indexed: 01/18/2023] Open
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission, and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development, or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, resulting in a change in NRG1 isoform composition. In both human and rat, the most dominant are types III and II, followed by either type I or type V, while types IV and VI are the least abundant. The expression of NRG1 isoforms is higher in rat brains at ages of E13 and P5 (in particular type V), suggesting roles in early neural development and in the neonatal critical period. At the cellular level, the majority of NRG1 isoforms (types I, II, and III) are expressed in excitatory neurons, although they are also present in GABAergic neurons and astrocytes. Finally, the expression of each NRG1 isoform is distinctly regulated by neuronal activity, which causes significant increase in type I and IV NRG1 levels. Neuronal activity regulation of type IV expression requires a CRE cis-element in the 5' untranslated region (UTR) that binds to CREB. These results indicate that expression of NRG1 isoforms is regulated by distinct mechanisms, which may contribute to versatile functions of NRG1 and pathologic mechanisms of brain disorders such as schizophrenia.
Collapse
Affiliation(s)
- Xihui Liu
- Institute of Molecular Medicine and Genetics and
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ryan Bates
- Institute of Molecular Medicine and Genetics and
| | - Dong-Min Yin
- Institute of Molecular Medicine and Genetics and
| | | | - Fay Wang
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Nan Su
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Sergei A. Kirov
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Yuling Luo
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Wen-Cheng Xiong
- Institute of Molecular Medicine and Genetics and
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Lin Mei
- Institute of Molecular Medicine and Genetics and
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912
| |
Collapse
|
66
|
Glatt SJ, Cohen OS, Faraone SV, Tsuang MT. Dysfunctional gene splicing as a potential contributor to neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:382-92. [PMID: 21438146 PMCID: PMC3082621 DOI: 10.1002/ajmg.b.31181] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/18/2011] [Indexed: 12/31/2022]
Abstract
Alternative pre-mRNA splicing is a major mechanism by which the proteomic diversity of eukaryotic genomes is amplified. Much akin to neuropsychiatric disorders themselves, alternative splicing events can be influenced by genetic, developmental, and environmental factors. Here, we review the evidence that abnormalities of splicing may contribute to the liability toward these disorders. First, we introduce the phenomenon of alternative splicing and describe the processes involved in its regulation. We then review the evidence for specific splicing abnormalities in a wide range of neuropsychiatric disorders, including psychotic disorders (schizophrenia), affective disorders (bipolar disorder and major depressive disorder), suicide, substance abuse disorders (cocaine abuse and alcoholism), and neurodevelopmental disorders (autism). Next, we provide a theoretical reworking of the concept of "gene-focused" epidemiologic and neurobiologic investigations. Lastly, we suggest potentially fruitful lines for future research that should illuminate the nature, extent, causes, and consequences of alternative splicing abnormalities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Medical Genetics Research Center, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | | | |
Collapse
|
67
|
Connor CM, Crawford BC, Akbarian S. White matter neuron alterations in schizophrenia and related disorders. Int J Dev Neurosci 2011; 29:325-34. [PMID: 20691252 PMCID: PMC2992083 DOI: 10.1016/j.ijdevneu.2010.07.236] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 12/15/2022] Open
Abstract
Increased density and altered spatial distribution of subcortical white matter neurons (WMNs) represents one of the more well replicated cellular alterations found in schizophrenia and related disease. In many of the affected cases, the underlying genetic risk architecture for these WMN abnormalities remains unknown. Increased density of neurons immunoreactive for Microtubule-Associated Protein 2 (MAP2) and Neuronal Nuclear Antigen (NeuN) have been reported by independent studies, though there are negative reports as well; additionally, group differences in some of the studies appear to be driven by a small subset of cases. Alterations in markers for inhibitory (GABAergic) neurons have also been described. For example, downregulation of neuropeptide Y (NPY) and nitric oxide synthase (NOS1) in inhibitory WMN positioned at the gray/white matter border, as well as altered spatial distribution, have been reported. While increased density of WMN has been suggested to reflect disturbance of neurodevelopmental processes, including neuronal migration, neurogenesis, and cell death, alternative hypotheses--such as an adaptive response to microglial activation in mature CNS, as has been described in multiple sclerosis--should also be considered. We argue that larger scale studies involving hundreds of postmortem specimens will be necessary in order to clearly establish the subset of subjects affected. Additionally, these larger cohorts could make it feasible to connect the cellular pathology to environmental and genetic factors implicated in schizophrenia, bipolar disorder, and autism. These could include the 22q11 deletion (Velocardiofacial/DiGeorge) syndrome, which in some cases is associated with neuronal ectopias in white matter.
Collapse
Affiliation(s)
- Caroline M Connor
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | | | | |
Collapse
|
68
|
Papiol S, Begemann M, Rosenberger A, Friedrichs H, Ribbe K, Grube S, Schwab MH, Jahn H, Gunkel S, Benseler F, Nave KA, Ehrenreich H. A phenotype-based genetic association study reveals the contribution of neuregulin1 gene variants to age of onset and positive symptom severity in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:340-5. [PMID: 21234898 DOI: 10.1002/ajmg.b.31168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
By pure endpoint diagnosis of the disease, the risk of developing schizophrenia has been repeatedly associated with specific variants of the neuregulin1 (NRG1) gene. However, the role of NRG1 in the etiology of schizophrenia has remained unclear. Since Nrg1 serves vital functions in early brain development of mice, we hypothesized that human NRG1 alleles codetermine developmentally influenced readouts of the disease: age of onset and positive symptom severity. We analyzed 1,071 comprehensively phenotyped schizophrenic/schizoaffective patients, diagnosed according to DSM-IV-TR, from the GRAS (Göttingen Research Association for Schizophrenia) Data Collection for genetic variability in the Icelandic region of risk in the NRG1 gene. For the case-control analysis part of the study, we included 1,056 healthy individuals with comparable ethnicity. The phenotype-based genetic association study (PGAS) was performed on the GRAS sample. Instead of a risk constellation, we detected that several haplotypic variants of NRG1 were, unexpectedly, less frequent in the schizophrenic than in the control sample (mean OR=0.78, range between 0.68 and 0.85). In the PGAS we found that these "protective" NRG1 variants are specifically underrepresented in subgroups of schizophrenic subjects with early age of onset and high positive symptom load. The GRAS Data Collection as a prerequisite for PGAS has enabled us to associate protective NRG1 genotypes with later onset and milder course of schizophrenia.
Collapse
Affiliation(s)
- Sergi Papiol
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011; 17:470-8. [PMID: 21441918 PMCID: PMC3264662 DOI: 10.1038/nm.2315] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
Hypofunction of the N-methyl D-aspartate subtype of glutamate receptor (NMDAR) is hypothesized to be a mechanism underlying cognitive dysfunction in individuals with schizophrenia. For the schizophrenia-linked genes NRG1 and ERBB4, NMDAR hypofunction is thus considered a key detrimental consequence of the excessive NRG1-ErbB4 signaling found in people with schizophrenia. However, we show here that neuregulin 1β-ErbB4 (NRG1β-ErbB4) signaling does not cause general hypofunction of NMDARs. Rather, we find that, in the hippocampus and prefrontal cortex, NRG1β-ErbB4 signaling suppresses the enhancement of synaptic NMDAR currents by the nonreceptor tyrosine kinase Src. NRG1β-ErbB4 signaling prevented induction of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses and suppressed Src-dependent enhancement of NMDAR responses during theta-burst stimulation. Moreover, NRG1β-ErbB4 signaling prevented theta burst-induced phosphorylation of GluN2B by inhibiting Src kinase activity. We propose that NRG1-ErbB4 signaling participates in cognitive dysfunction in schizophrenia by aberrantly suppressing Src-mediated enhancement of synaptic NMDAR function.
Collapse
Affiliation(s)
- Graham M Pitcher
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
70
|
Fallin MD, Lasseter VK, Liu Y, Avramopoulos D, McGrath J, Wolyniec PS, Nestadt G, Liang KY, Chen PL, Valle D, Pulver AE. Linkage and association on 8p21.2-p21.1 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156:188-97. [PMID: 21302347 DOI: 10.1002/ajmg.b.31154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/17/2010] [Indexed: 11/07/2022]
Abstract
In the past decade, we and others have consistently reported linkage to a schizophrenia (SZ) susceptibility region on chromosome 8p21. Most recently, in the largest SZ linkage sample to date, a multi-site international collaboration performed a SNP-based linkage scan (~6,000 SNPs; 831 pedigrees; 121 from Johns Hopkins (JHU)), that showed the strongest evidence for linkage in a 1 Mb region of chr 8p21 from rs1561817 to rs9797 (Z(max) = 3.22, P = 0.0004) [Holmans et al. 2009. Mol Psychiatry]. We have investigated this 8p21 peak region further in two ways: first by linkage and family-based association in 106 8p-linked European-Caucasian (EUC) JHU pedigrees using 1,402 SNPs across a 4.4 Mb region surrounding the peak; second, by an independent case-control association study in the genetically more homogeneous Ashkenazim (AJ) (709 cases, 1,547 controls) using 970 SNPs in a further narrowed 2.8 Mb region. Family-based association analyses in EUC pedigrees and case-control analyses in AJ samples reveal significant associations for SNPs in and around DPYSL2 and ADRA1A, candidate genes previously associated with SZ in our work and others. Further, several independent gene expression studies have shown that DPYSL2 is differentially expressed in SZ brains [Beasley et al. 2006. Proteomics 6(11):3414–3425; Edgar et al. 2000. Mol Psychiatry 5(1):85–90; Johnston-Wilson et al. 2000. Mol Psychiatry 5(2):142–149] or in response to psychosis-inducing pharmaceuticals [Iwazaki et al. 2007. Proteomics 7(7):1131–1139; Paulson et al. 2004. Proteomics 4(3):819–825]. Taken together, this work further supports DPYSL2 and the surrounding genomic region as a susceptibility locus for SZ.
Collapse
Affiliation(s)
- M Daniele Fallin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ, Weinberger DR. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry 2011; 69:140-5. [PMID: 21183009 PMCID: PMC4351748 DOI: 10.1016/j.biopsych.2010.10.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/06/2010] [Accepted: 10/14/2010] [Indexed: 12/13/2022]
Abstract
Human postmortem brain studies are critical for elucidating the pathophysiology and etiology of schizophrenia and other major mental illnesses. The traditional approach compares patients and control subjects but is potentially confounded by a number of artifacts, including medication, substance misuse, and other secondary effects of illness. Genetic advances now make possible a novel approach that focuses on how allelic variation in risk-associated genes affects expression and function of transcripts and proteins. These questions can be addressed in normal brain, overcoming to some extent the confounding effects of studying brains from subjects with schizophrenia; equally, extension of the studies to include cases also has advantages. Conceptually, the approach may be seen as the neuropathologic counterpart of genetic neuroimaging, representing a potentially powerful intermediate phenotype. For several schizophrenia susceptibility genes, the data show that risk-associated polymorphisms do affect gene expression or the function of the encoded protein; in some instances, expression of downstream or interacting partners of the gene are also altered. A further striking finding is that the implicated transcripts often appear to be enriched in, or specific to, human brain. Some also show enhanced expression in fetal brain. These considerations give unique importance to postmortem human brain tissue in elucidating the genetic mechanisms underlying schizophrenia and probably other neurodevelopmental disorders as well. Studies of this kind can provide clues as to the biological mechanisms of genetic association, especially when carried out in conjunction with experimental studies. Moreover, the data, interpreted judiciously, can strengthen the plausibility of the association itself.
Collapse
Affiliation(s)
- Joel E Kleinman
- Section on Neuropathology, Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35:848-70. [PMID: 20951727 PMCID: PMC3005823 DOI: 10.1016/j.neubiorev.2010.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world's population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | | |
Collapse
|
73
|
Abstract
How will we view schizophrenia in 2030? Schizophrenia today is a chronic, frequently disabling mental disorder that affects about one per cent of the world's population. After a century of studying schizophrenia, the cause of the disorder remains unknown. Treatments, especially pharmacological treatments, have been in wide use for nearly half a century, yet there is little evidence that these treatments have substantially improved outcomes for most people with schizophrenia. These current unsatisfactory outcomes may change as we approach schizophrenia as a neurodevelopmental disorder with psychosis as a late, potentially preventable stage of the illness. This 'rethinking' of schizophrenia as a neurodevelopmental disorder, which is profoundly different from the way we have seen this illness for the past century, yields new hope for prevention and cure over the next two decades.
Collapse
|
74
|
Buonanno A. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 2010; 83:122-31. [PMID: 20688137 PMCID: PMC2958213 DOI: 10.1016/j.brainresbull.2010.07.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/14/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
Numerous genetic linkage and association studies implicate members of the Neuregulin-ErbB receptor (NRG-ErbB) signaling pathway as schizophrenia "at risk" genes. An emphasis of this review is to propose plausible neurobiological mechanisms, regulated by the Neuregulin-ErbB signaling network, that may be altered in schizophrenia and contribute to its etiology. To this end, the distinct neurotransmitter pathways, neuronal subtypes and neural network systems altered in schizophrenia are initially discussed. Next, the review focuses on the possible significance of genetic studies associating NRG1 and ErbB4 with schizophrenia, in light of the functional role of this signaling pathway in regulating glutamatergic, GABAergic and dopaminergic neurotransmission, as well as modulating synaptic plasticity and gamma oscillations. The importance of restricted ErbB4 receptor expression in GABAergic interneurons is emphasized, particularly their expression at glutamatergic synapses of parvalbumin-positive fast-spiking interneurons where modulation of inhibitory drive could account for the dramatic effects of NRG-ErbB signaling on gamma oscillations and pyramidal neuron output. A case is made for reasons that the NRG-ErbB signaling pathway constitutes a "biologically plausible" system for understanding the pathogenic mechanisms that may underlie the complex array of positive, negative and cognitive deficits associated with schizophrenia during development.
Collapse
Affiliation(s)
- Andrés Buonanno
- National Institutes of Health, Eunice Shriver Kennedy NICHD, Section on Molecular Neurobiology, Program of Developmental Neurobiology, 35 Lincoln Drive, Bethesda, MD 20892-3714, USA.
| |
Collapse
|
75
|
Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR, Law AJ. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci U S A 2010; 107:15619-24. [PMID: 20713722 PMCID: PMC2932571 DOI: 10.1073/pnas.1005410107] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Structural and polymorphic variations in Neuregulin 3 (NRG3), 10q22-23 are associated with a broad spectrum of neurodevelopmental disorders including developmental delay, cognitive impairment, autism, and schizophrenia. NRG3 is a member of the neuregulin family of EGF proteins and a ligand for the ErbB4 receptor tyrosine kinase that plays pleotropic roles in neurodevelopment. Several genes in the NRG-ErbB signaling pathway including NRG1 and ErbB4 have been implicated in genetic predisposition to schizophrenia. Previous fine mapping of the 10q22-23 locus in schizophrenia identified genome-wide significant association between delusion severity and polymorphisms in intron 1 of NRG3 (rs10883866, rs10748842, and rs6584400). The biological mechanisms remain unknown. We identified significant association of these SNPs with increased risk for schizophrenia in 350 families with an affected offspring and confirmed association to patient delusion and positive symptom severity. Molecular cloning and cDNA sequencing in human brain revealed that NRG3 undergoes complex splicing, giving rise to multiple structurally distinct isoforms. RNA expression profiling of these isoforms in the prefrontal cortex of 400 individuals revealed that NRG3 expression is developmentally regulated and pathologically increased in schizophrenia. Moreover, we show that rs10748842 lies within a DNA ultraconserved element and homedomain and strongly predicts brain expression of NRG3 isoforms that contain a unique developmentally regulated 5' exon (P = 1.097E(-12) to 1.445E(-15)). Our observations strengthen the evidence that NRG3 is a schizophrenia susceptibility gene, provide quantitative insight into NRG3 transcription traits in the human brain, and reveal a probable mechanistic basis for disease association.
Collapse
Affiliation(s)
- Wee-Tin Kao
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
- Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Bethesda, MD 20814-1460
| | - Yanhong Wang
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
| | - Joel E. Kleinman
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
| | - Barbara K. Lipska
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
| | - Thomas M. Hyde
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
| | - Amanda J. Law
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1385; and
| |
Collapse
|
76
|
Choi W, Wolber R, Gerwat W, Mann T, Batzer J, Smuda C, Liu H, Kolbe L, Hearing VJ. The fibroblast-derived paracrine factor neuregulin-1 has a novel role in regulating the constitutive color and melanocyte function in human skin. J Cell Sci 2010; 123:3102-11. [PMID: 20736300 DOI: 10.1242/jcs.064774] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Interactions between melanocytes and neighboring cells in the skin are important in regulating skin color in humans. We recently demonstrated that the less pigmented and thicker skin on the palms and soles is regulated by underlying fibroblasts in those areas, specifically via a secreted factor (DKK1) that modulates Wnt signaling. In this study, we tested the hypothesis that dermal fibroblasts regulate the constitutive skin color of individuals ranging from very light to very dark. We used microarray analysis to compare gene expression patterns in fibroblasts derived from lighter skin types compared to darker skin types, with a focus on secreted proteins. We identified a number of genes that differ dramatically in expression and, among the expressed proteins, neuregulin-1, which is secreted by fibroblasts derived from dark skin, effectively increases the pigmentation of melanocytes in tissue culture and in an artificial skin model and regulates their growth, suggesting that it is one of the major factors determining human skin color.
Collapse
Affiliation(s)
- Wonseon Choi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
McIntosh AM, Hall J, Lymer GKS, Sussmann JED, Lawrie SM. Genetic risk for white matter abnormalities in bipolar disorder. Int Rev Psychiatry 2010; 21:387-93. [PMID: 20374152 DOI: 10.1080/09540260902962180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
White matter deficits have been demonstrated in people with bipolar disorder, schizophrenia and their unaffected relatives. These deficits are supported by evidence from post-mortem studies, including microarray investigations which have repeatedly implicated abnormal myelin-associated gene expression. Furthermore, several risk-associated genes have now been identified that encode for proteins which have effects on white matter integrity. These genes include neuregulin-1 (NRG1) polymorphisms of which have been associated with risk to bipolar disorder. NRG1 has been shown to have effects on axonal migration, myelination and oligodendrocyte function. We and others have also shown that 5' risk-associated genetic variants in NRG1 are associated with reductions in both white matter density and integrity in regions associated with prefrontal connectivity. These findings are discussed in the context of the current literature, along with possible future research directions.
Collapse
Affiliation(s)
- Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | | | | | | |
Collapse
|
78
|
Measurement and comparison of serum neuregulin 1 immunoreactivity in control subjects and patients with schizophrenia: an influence of its genetic polymorphism. J Neural Transm (Vienna) 2010; 117:887-95. [DOI: 10.1007/s00702-010-0418-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/02/2010] [Indexed: 02/07/2023]
|
79
|
Abstract
Numerous genetic studies associated the Neuregulin 1 (NRG1) Icelandic haplotype (HAP(ice)), and its single nucleotide polymorphism SNP8NRG243177 [T/T], with schizophrenia. Because SNP8NRG243177 [T/T] has characteristics of a functional polymorphism that maps close to NRG1 type IV coding sequences, our initial goal was to map precisely the human type IV transcription initiation site. We determined that the initiation site is 23 bp upstream of the previously reported type IV exon, and that no other transcripts map to the SNP8NRG243177 region. Because NRG1 type IV transcripts are specific to human, we isolated full-length NRG1 type IV cDNAs from human hippocampi and expressed them in non-neural cells and dissociated rat hippocampal neurons to study protein expression, processing and function. Using an antiserum we generated against the NRG1 type IV-specific N-terminus, we found that the protein is targeted to the cell surface where PKC activation promotes its cleavage and release of the extracellular domain. Conditioned medium derived from type IV expressing cells stimulates ErbB receptor phosphorylation, as well as downstream Akt and Erk signaling, demonstrating that NRG1 type IV possesses biological activity similar to other releasable NRG1 isoforms. To study the subcellular targeting of distinct isoforms, neurons were transfected with the Ig-domain-containing NRG1 types I and IV, or the cysteine-rich domain type III isoform. Three dimensional confocal images from transfected neurons indicate that, whereas all isoforms are expressed on somato-dendritic membranes, only the type III-cysteine-rich domain isoform is detectable in distal axons. These results suggest that NRG1 type IV expression levels associated with SNP8NRG243177 [T/T] can selectively modify signaling of NRG1 released from somato-dendritic compartments, in contrast to the type III NRG1 that is also associated with axons.
Collapse
Affiliation(s)
- Alon Shamir
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
80
|
Watanabe Y, Someya T, Nawa H. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci 2010; 64:217-30. [PMID: 20602722 DOI: 10.1111/j.1440-1819.2010.02094.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathogenesis of schizophrenia has yet to be fully characterized. Gene-environment interactions have been found to play a crucial role in the vulnerability to this disease. Among various environmental factors, inflammatory immune processes have been most clearly implicated in the etiology and pathology of schizophrenia. Cytokines, regulators of immune/inflammatory reactions and brain development, emerge as part of a common pathway of genetic and environmental components of schizophrenia. Maternal infection, obstetric complications, neonatal hypoxia and brain injury all recruit cytokines to mediate inflammatory processes. Abnormal expression levels of specific cytokines such as epidermal growth factor, interleukins (IL) and neuregulin-1 are found both in the brain and peripheral blood of patients with schizophrenia. Accordingly, cytokines have been proposed to transmit peripheral immune/inflammatory signals to immature brain tissue through the developing blood-brain barrier, perturbing structural and phenotypic development of the brain. This cytokine hypothesis of schizophrenia is also supported by modeling experiments in animals. Animals treated with specific cytokines of epidermal growth factor, IL-1, IL-6, and neuregulin-1 as embryos or neonates exhibit schizophrenia-like behavioral abnormalities after puberty, some of which are ameliorated by treatment with antipsychotics. In this review, we discuss the neurobiological mechanisms underlying schizophrenia and novel antipsychotic candidates based on the cytokine hypothesis.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | |
Collapse
|
81
|
Friedrich K, Lee L, Leistritz DF, Nürnberg G, Saha B, Hisama FM, Eyman DK, Lessel D, Nürnberg P, Li C, Garcia-F-Villalta MJ, Kets CM, Schmidtke J, Cruz VT, Van den Akker PC, Boak J, Peter D, Compoginis G, Cefle K, Ozturk S, López N, Wessel T, Poot M, Ippel PF, Groff-Kellermann B, Hoehn H, Martin GM, Kubisch C, Oshima J. WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations. Hum Genet 2010; 128:103-11. [PMID: 20443122 DOI: 10.1007/s00439-010-0832-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/22/2010] [Indexed: 11/28/2022]
Abstract
Werner syndrome (WS) is an autosomal recessive segmental progeroid syndrome caused by null mutations at the WRN locus, which codes for a member of the RecQ family of DNA helicases. Since 1988, the International Registry of Werner syndrome had enrolled 130 molecularly confirmed WS cases from among 110 worldwide pedigrees. We now report 18 new mutations, including two genomic rearrangements, a deep intronic mutation resulting in a novel exon, a splice consensus mutation leading to utilization of the nearby splice site, and two rare missense mutations. We also review evidence for founder mutations among various ethnic/geographic groups. Founder WRN mutations had been previously reported in Japan and Northern Sardinia. Our Registry now suggests characteristic mutations originated in Morocco, Turkey, The Netherlands and elsewhere.
Collapse
Affiliation(s)
- Katrin Friedrich
- Center for Molecular Medicine Cologne, Institute of Human Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
NRG1 (neuregulin 1) belongs to the NRG family of EGF (epidermal growth factor)-like signalling molecules involved in cell–cell communication during development and disease. It plays important roles in the developing tissues of the nerves, heart and mammary glands. Particularly in neurobiology, NRG1 signalling is associated with synaptic transmission, myelination of Schwann cells and the human disease of schizophrenia. Many different isoforms of NRG1 make the molecule highly sophisticated in biological activities and a great diversity of in vivo functions. The nervous system is a common trait in all bilateria (higher animals), but based on the BLAST information from the currently available databases it appears that NRG1 orthologues can only be identified in vertebrates. The gene was analysed in silico for type I–IV CDSs (coding sequences) from ten vertebrate genomes. The gene loci, structures of coding-intronic sequences, ClustalW program analyses, phylogenetic trees and conserved motifs in ecto- and cyto-plasmic domains were analysed and compared. Here, we conclude that non-mammalian vertebrates mainly carry type I (may have evolved a spacer different from mammalian isoforms), II and III NRG1s. The type IV NRG1 N-terminal CDSs can be identified from most of the mammalian genomes studied; however, the corresponding rodent sequences lack the start codon. The evolutionary conservation of a CDS59-CDS24-CDS103 domain, intracellular phosphorylation sites and bipartite nuclear localization signals is of physiological significance.
Collapse
|
83
|
Neuregulin-1 modulates the differentiation of neural stem cells in vitro trough an interaction with the Swi/Snf complex. Mol Cell Neurosci 2010; 43:72-80. [DOI: 10.1016/j.mcn.2009.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/24/2009] [Accepted: 09/08/2009] [Indexed: 11/24/2022] Open
|
84
|
Sawa A. Genetic animal models for schizophrenia: advantages and limitations of genetic manipulation in drosophila, zebrafish, rodents, and primates. PROGRESS IN BRAIN RESEARCH 2009; 179:3-6. [PMID: 20302812 DOI: 10.1016/s0079-6123(09)17901-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating mental illness in which major initial risks of the disease during neurodevelopment may disturb postnatal brain maturation, which results in onset after puberty. Family, twin, and adoption studies have suggested an important role for genetic factors in the etiology of schizophrenia. To address the etiology-associated mechanisms and disease course, use of genetic models, that is, manipulation of genetic susceptibility factors, is currently considered to be a powerful tool for biological studies. In this manuscript, advantages and possible limitations in manipulating genetic susceptibility factors for schizophrenia toward modeling the disease are discussed. In addition to mouse models, the potential to use drosophila, zebrafish, and primates is underscored.
Collapse
Affiliation(s)
- Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
85
|
Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Berja A, Vazquez-Barquero JL, Crespo-Facorro B. Additive effect of NRG1 and DISC1 genes on lateral ventricle enlargement in first episode schizophrenia. Neuroimage 2009; 53:1016-22. [PMID: 19913623 DOI: 10.1016/j.neuroimage.2009.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/16/2022] Open
Abstract
Neuregulin 1 (NRG1) and Disrupted-in-schizophrenia (DISC1) genes, which are candidate genes for schizophrenia, are implicated in brain development. We have previously reported an association between the T allele of the rs6994992 SNP within NRG1 gene and lateral ventricle (LV) enlargement in first-episode schizophrenia patients. Moreover, transgenic mice with mutant DISC1 have also been reported as showing LV enlargement. In this study, we examined the possible interactive effects of NRG1 and DISC1 on brain volumes in a sample of first-episode schizophrenia patients. Ninety-one patients experiencing their first episode of schizophrenia underwent genotyping of three SNPs within DISC1 and structural brain MRI. These results were combined with our previously reported genotypes on three SNPs within NRG1. The T/T genotype of rs2793092 SNP in DISC1 was significantly associated with increased LV volume. However, taking into account the rs6994992 SNP in the NRG1 gene, which was also associated with LV volume in a previous study, the DISC1 SNP only predicted LV enlargement among those patients carrying the T allele in the NRG1 SNP. Those patients with the "at risk" allelic combinations in both genes had LV volumes which were 48% greater than those with none of the allelic combinations. Our findings suggest that NRG1 and DISC1 genes may be associated with brain abnormalities in schizophrenia through their influence on related pathways of brain development.
Collapse
Affiliation(s)
- Ignacio Mata
- Department of Psychiatry, University Hospital Marques de Valdecilla, School of Medicine, University of Cantabria, Santander, Spain, CIBERSAM
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Pedrosa E, Locker J, Lachman HM. Survey of Schizophrenia and Bipolar Disorder Candidate Genes using Chromatin Immunoprecipitation and Tiled Microarrays (ChIP-chip). J Neurogenet 2009; 23:341-52. [DOI: 10.1080/01677060802669766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
87
|
Pedrosa E, Nolan KA, Stefanescu R, Hershcovitz P, Novak T, Zukov I, Stopkova P, Lachman HM, Lachman HM. Analysis of a promoter polymorphism in the SMDF neuregulin 1 isoform in Schizophrenia. Neuropsychobiology 2009; 59:205-12. [PMID: 19521112 PMCID: PMC2790772 DOI: 10.1159/000223732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 03/02/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Neuregulin 1 (NRG1) is a positional candidate gene in schizophrenia (SZ). Two major susceptibility loci in the NRG1 gene approximately one million nucleotides apart have been identified in genetic studies. Several candidate functional allelic variants have been described that might be involved in disease susceptibility. However, the findings are still preliminary. We recently mapped active promoters and other regulatory domains in several SZ and bipolar disorder (BD) candidate genes using ChIP-chip (chromatin immunoprecipitation hybridized to microarrays). One was the promoter for the NRG1 isoform, SMDF, which maps to the 3' end of the gene complex. Analysis of the SNP database revealed several polymorphisms within the approximate borders of the region immunoprecipitated in our ChIP-chip experiments, one of which is rs7825588. METHODS This SNP was analyzed in patients with SZ and BD and its effect on promoter function was assessed by electromobility gel shift assays and luciferase reporter constructs. RESULTS A significant increase in homozygosity for the minor allele was found in patients with SZ (genotype distribution chi(2) = 7.32, p = 0.03) but not in BD (genotype distribution chi(2) = 0.52, p = 0.77). Molecular studies demonstrated modest, but statistically significant allele-specific differences in protein binding and promoter function. CONCLUSION The findings suggest that homozygosity for rs725588 could be a risk genotype for SZ.
Collapse
Affiliation(s)
- Erika Pedrosa
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA
| | - Karen A. Nolan
- Nathan Kline Institute, Orangeburg, N.Y., and Department of Psychiatry, New York University School of Medicine, New York, N.Y., USA
| | - Radu Stefanescu
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA
| | - Pnina Hershcovitz
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA
| | - Tomas Novak
- Prague Psychiatric Center, Prague, Czech Republic
| | - Ilja Zukov
- Psychiatric Clinic, First Faculty of Medicine, Prague, Czech Republic
| | - Pavla Stopkova
- Prague Psychiatric Center, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert M. Lachman
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA,*Dr. H. Lachman, Department of Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA), Tel. +1 718 430 2428, Fax +1 718 430 8772, E-Mail
| | | |
Collapse
|
88
|
Nicodemus KK, Law AJ, Luna A, Vakkalanka R, Straub RE, Kleinman JE, Weinberger DR. A 5' promoter region SNP in NRG1 is associated with schizophrenia risk and type III isoform expression. Mol Psychiatry 2009; 14:741-3. [PMID: 19626024 PMCID: PMC3271936 DOI: 10.1038/mp.2008.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kristin K. Nicodemus
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Road, Oxford, OX3 7BN, United Kingdom
- Department of Clinical Pharmacology, Old Road Campus Research Building, University of Oxford, Old Road Campus, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ United Kingdom
| | - Amanda J. Law
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Headington, Oxford, OX3 7JX, United Kingdom
| | - Augustin Luna
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Radhakrishna Vakkalanka
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Richard E. Straub
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Joel E. Kleinman
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Daniel R. Weinberger
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Room 4S-235, 10 Center Drive, Bethesda, Maryland, 20892, USA
| |
Collapse
|
89
|
Kéri S. Genes for psychosis and creativity: a promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychol Sci 2009; 20:1070-3. [PMID: 19594860 DOI: 10.1111/j.1467-9280.2009.02398.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Why are genetic polymorphisms related to severe mental disorders retained in the gene pool of a population? A possible answer is that these genetic variations may have a positive impact on psychological functions. Here, I show that a biologically relevant polymorphism of the promoter region of the neuregulin 1 gene (SNP8NRG243177/rs6994992) is associated with creativity in people with high intellectual and academic performance. Intriguingly, the highest creative achievements and creative-thinking scores were found in people who carried the T/T genotype, which was previously shown to be related to psychosis risk and altered prefrontal activation.
Collapse
|
90
|
Hall J, Romaniuk L, McIntosh AM, Steele JD, Johnstone EC, Lawrie SM. Associative learning and the genetics of schizophrenia. Trends Neurosci 2009; 32:359-65. [PMID: 19427043 DOI: 10.1016/j.tins.2009.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 02/05/2023]
Abstract
Several well-validated susceptibility genes for schizophrenia have now been identified. We suggest that these genes can be divided into two broad classes. Those in the first class have direct effects on synaptic plasticity mediated through actions at glutamatergic synapses; those in the second class impact on meso-limbic dopamine signalling. We argue that these genes have an interactive effect on risk for psychosis and that this interaction can be understood in the context of associative learning theory. We illustrate how genetic variation in genes from these classes can contribute to the development of psychosis using data from the Edinburgh High Risk Study of schizophrenia.
Collapse
Affiliation(s)
- Jeremy Hall
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK.
| | | | | | | | | | | |
Collapse
|
91
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
92
|
Kéri S, Kiss I, Seres I, Kelemen O. A polymorphism of the neuregulin 1 gene (SNP8NRG243177/rs6994992) affects reactivity to expressed emotion in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:418-20. [PMID: 18543275 DOI: 10.1002/ajmg.b.30812] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A single nucleotide polymorphism of the neuregulin 1 gene (SNP8NRG243177/rs6994992) increases the risk of psychosis, affects prefrontal activation and structural connectivity in the brain, and is related to the expression of a specific neuregulin 1 isoform. The purpose of this study was to investigate the interaction between this polymorphism and reactivity to psychosocial stress. Two hundred patients with schizophrenia were genotyped. The patients and one of their family members participated in neutral and conflict-related interactions in which the number of relatives' criticisms and patients' unusual thoughts was assessed. Patients with the risk T/T genotype expressed more unusual thoughts than C-carriers (C/T and C/C) during conflict-related interactions but not during neutral interactions. Two controls polymorphisms of the neuregulin 1 gene (rs10954867 and rs7005288) showed no such effect. These results raise the possibility that there is a significant gene by environment interaction regarding SNP8NRG243177/rs6994992 and psychosocial stress.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
93
|
Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Vazquez-Barquero JL, Crespo-Facorro B. A neuregulin 1 variant is associated with increased lateral ventricle volume in patients with first-episode schizophrenia. Biol Psychiatry 2009; 65:535-40. [PMID: 19058791 DOI: 10.1016/j.biopsych.2008.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/13/2008] [Accepted: 10/20/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND Structural brain abnormalities are already present at early phases of psychosis and might be the consequence of neurodevelopmental deviance. Neuregulin 1 gene (NRG1) is a candidate gene for schizophrenia, and its protein has different roles in nervous system development and plasticity. A single nucleotide polymorphism (SNP) within NRG1, SNP8NRG243177, has been associated with brain function among healthy and high-risk subjects and with reduced cell migration among patients with schizophrenia. We examined whether variations in this polymorphism influence brain volumes in first-episode schizophrenia subjects. METHODS Ninety-five minimally medicated patients experiencing their first episode of schizophrenia underwent genotyping of three SNPs within the NRG1 gene and structural brain magnetic resonance imaging (MRI). A comparison of volumes of lobar gray matter (GM), lateral ventricles, and cortical cerebrospinal fluid (CSF) was made between the groups according to their genotype after controlling for total intracranial volume. RESULTS The SNP8NRG243177 risk T allele was significantly associated, in an allele copy number-dependent fashion, with increased lateral ventricle volume. Genotype explained 7% of the variance of lateral ventricle volume. No significant differences in GM lobar or cortical CSF volumes were found among subgroups. CONCLUSIONS Our findings suggest that genetic variations of the NRG1 gene can contribute to the enlargement of the lateral ventricles described in early phases of schizophrenia. These results suggest novel lines of research into potential mechanisms by which schizophrenia susceptibility genes might exert their effect on brain structure.
Collapse
Affiliation(s)
- Ignacio Mata
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marques de Valdecilla, CIBERSAM, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
94
|
Freese C, Garratt AN, Fahrenholz F, Endres K. The effects of alpha-secretase ADAM10 on the proteolysis of neuregulin-1. FEBS J 2009; 276:1568-80. [PMID: 19220854 DOI: 10.1111/j.1742-4658.2009.06889.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although ADAM10 is a major alpha-secretase involved in non-amyloidogenic processing of the amyloid precursor protein, several additional substrates have been identified, most of them in vitro. Thus, therapeutical approaches for the prevention of Alzheimer's disease by upregulation of this metalloproteinase may have severe side effects. In the present study, we examined whether the ErbB receptor ligand neuregulin-1, which is essential for myelination and other important neuronal functions, is cleaved by ADAM10. Studies with beta- and gamma-secretase inhibitors, as well as with the metalloproteinase inhibitor GM6001, revealed an inhibition of neuregulin-1 processing in human astroglioma cell line U373; however, specific RNA interference-induced knockdown of ADAM10 remained without effect. In vivo investigations of mice overexpressing either ADAM10 or dominant negative ADAM10 showed unaltered cleavage of neuregulin-1 compared to wild-type animals. As a consequence, the myelin sheath thickness of peripheral nerves was unaffected in mice with altered ADAM10 activity. Thus, although the beta-secretase BACE-1 acts as a neuregulin-1 sheddase, ADAM10 does not lead to altered neuregulin-1 processing either in cell culture or in vivo. Adverse reactions of an ADAM10-based therapy of Alzheimer's disease due to neuregulin-1 cleavage are therefore unlikely.
Collapse
Affiliation(s)
- Christian Freese
- Institute of Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | |
Collapse
|
95
|
Chen PL, Avramopoulos D, Lasseter VK, McGrath JA, Fallin MD, Liang KY, Nestadt G, Feng N, Steel G, Cutting AS, Wolyniec P, Pulver AE, Valle D. Fine mapping on chromosome 10q22-q23 implicates Neuregulin 3 in schizophrenia. Am J Hum Genet 2009; 84:21-34. [PMID: 19118813 PMCID: PMC2668048 DOI: 10.1016/j.ajhg.2008.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2008] [Accepted: 12/08/2008] [Indexed: 11/15/2022] Open
Abstract
Linkage studies have implicated 10q22-q23 as a schizophrenia (SZ) susceptibility locus in Ashkenazi Jewish (AJ) and Han Chinese from Taiwan populations. To further explore our previous linkage signal in the AJ population (NPL score: 4.27, empirical p = 2 x 10(-5)), we performed a peakwide association fine mapping study by using 1414 SNPs across approximately 12.5 Mb in 10q22-q23. We genotyped 1515 AJ individuals, including 285 parent-child trios, 173 unrelated cases, and 487 unrelated controls. We analyzed the binary diagnostic phenotype of SZ and 9 heritable quantitative traits derived from a principal components factor analysis of 73 items from our consensus diagnostic ratings and direct assessment interviews. Although no marker withstood multiple test correction for association with the binary SZ phenotype, we found strong evidence of association by using the "delusion" factor as the quantitative trait at three SNPs (rs10883866, rs10748842, and rs6584400) located in a 13 kb interval in intron 1 of Neuregulin 3 (NRG3). Our best p value from family-based association analysis was 7.26 x 10(-7). We replicated this association in the collection of 173 unrelated AJ cases (p = 1.55 x 10(-2)), with a combined p value of 2.30 x 10(-7). After performing 10,000 permutations of each of the phenotypes, we estimated the empirical study-wide significance across all 9 factors (90,000 permutations) to be p = 2.7 x 10(-3). NRG3 is primarily expressed in the central nervous system and is one of three paralogs of NRG1, a gene strongly implicated in SZ. These biological properties together with our linkage and association results strongly support NRG3 as a gene involved in SZ.
Collapse
Affiliation(s)
- Pei-Lung Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Virginia K. Lasseter
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John A. McGrath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - M. Daniele Fallin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kung-Yee Liang
- Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ningping Feng
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gary Steel
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paula Wolyniec
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ann E. Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
96
|
Kalkman HO. Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacol Ther 2008; 121:115-22. [PMID: 19046988 DOI: 10.1016/j.pharmthera.2008.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/22/2022]
Abstract
In recent years evidence has accumulated that the activity of the signaling cascades of Neuregulin-1, Wnt, TGF-beta, BDNF-p75 and DISC1 is different between control subjects and patients with schizophrenia. These pathways are involved in embryonic and adult neurogenesis and neuronal maturation. A review of the clinical data indicates that in schizophrenia the Wnt pathway is most likely hypoactive, whereas the Nrg1-ErbB4, the TGF-beta- and the BDNF-p75-pathways are hyperactive. Haplo-insuffiency of the DISC1 gene is currently the best established schizophrenia risk factor. Preclinical experiments indicate that suppression of DISC1 signaling leads to accelerated dendrite development in neuronal stem cells, accelerated migration and aberrant integration into the neuronal network. Other preclinical experiments show that increasing NRG1-, BDNF- and TGF-beta signaling and decreasing Wnt signaling, also promotes adult neuronal differentiation and migration. Thus deviations in these pathways detected in schizophrenia could contribute to premature neuronal differentiation, accelerated migration and inappropriate insertion into the neuronal network. Initial clinical findings are confirmatory: neuronal stem cells isolated from nasal biopsies from schizophrenia patients display signs of accelerated development, whilst increased erosion of telomeres and bone age provide further support for accelerated cell maturation in schizophrenia.
Collapse
Affiliation(s)
- Hans O Kalkman
- Novartis Pharma AG, Novartis Institutes of Biomedical Research Basel, WSJ-386.11.40, Postfach, CH-4002 Basel, Switzerland.
| |
Collapse
|
97
|
McIntosh AM, Moorhead TWJ, Job D, Lymer GKS, Muñoz Maniega S, McKirdy J, Sussmann JED, Baig BJ, Bastin ME, Porteous D, Evans KL, Johnstone EC, Lawrie SM, Hall J. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2008; 13:1054-9. [PMID: 17925794 DOI: 10.1038/sj.mp.4002103] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/03/2007] [Accepted: 08/10/2007] [Indexed: 02/02/2023]
Abstract
Theories of abnormal anatomical and functional connectivity in schizophrenia and bipolar disorder are supported by evidence from functional magnetic resonance imaging (MRI), structural MRI and diffusion tensor imaging (DTI). The presence of similar abnormalities in unaffected relatives suggests such disconnectivity is genetically mediated, albeit through unspecified loci. Neuregulin 1 (NRG1) is a psychosis susceptibility gene with effects on neuronal migration, axon guidance and myelination that could potentially explain these findings. In the current study, unaffected subjects were genotyped at the NRG1 single nucleotide polymorphism (SNP) rs6994992 (SNP8NRG243177) locus, previously associated with increased risk for psychosis, and the effect of genetic variation at this locus on white matter density (T(1)-weighted MRI) and integrity (DTI) was ascertained. Subjects with the risk-associated TT genotype had reduced white matter density in the anterior limb of the internal capsule and evidence of reduced structural connectivity in the same region using DTI. We therefore provide the first imaging evidence that genetic variation in NRG1 is associated with reduced white matter density and integrity in human subjects. This finding is discussed in the context of NRG1 effects on neuronal migration, axon guidance and myelination.
Collapse
Affiliation(s)
- A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Gruber O, Falkai P, Schneider-Axmann T, Schwab SG, Wagner M, Maier W. Neuregulin-1 haplotype HAP(ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 2008; 43:1-6. [PMID: 18291420 DOI: 10.1016/j.jpsychires.2008.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/02/2008] [Accepted: 01/02/2008] [Indexed: 01/31/2023]
Abstract
The neuregulin-1 (NRG1) gene on chromosome 8p has been suggested as a potential susceptibility gene for schizophrenia. The exact way in which genetic variation in NRG1 might impact on this susceptibility for the disorder is a focus of current research. The present study aimed at investigating the possible relationship between a putative NRG1 at-risk haplotype (HAP(ICE)) and hippocampal volumes in schizophrenic patients and their healthy first-degree relatives. We genotyped 30 schizophrenic patients and 52 non-affected family members with regard to the presence or absence of the NRG1 haplotype HAP(ICE). Structural magnetic resonance imaging was used to determine hippocampal brain volumes in the same subjects. Patients and relatives carrying haplotype HAP(ICE) both had smaller relative hippocampal volumes as compared to patients or relatives who did not carry this haplotype. These findings provide first direct evidence for a link between NRG1 genetic variation and hippocampal volume reductions in schizophrenic patients and non-affected relatives. This preliminary evidence may help to guide further research into the pathophysiological pathways that underlie this genetic susceptibility for schizophrenia.
Collapse
Affiliation(s)
- Oliver Gruber
- Department of Psychiatry and Psychotherapy, Georg August University, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
99
|
Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Dev Psychopathol 2008; 20:1297-327. [DOI: 10.1017/s095457940800062x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractSchizophrenia has been thought of as a disorder of reduced functional and structural connectivity. Recent advances in neuroimaging techniques such as functional magnetic resonance imaging, structural magnetic resonance imaging, diffusion tensor imaging, and small animal imaging have advanced our ability to investigate this hypothesis. Moreover, the power of longitudinal designs possible with these noninvasive techniques enable the study of not just how connectivity is disrupted in schizophrenia, but when this disruption emerges during development. This article reviews genetic and neurodevelopmental influences on structural and functional connectivity in human populations with or at risk for schizophrenia and in animal models of the disorder. We conclude that the weight of evidence across these diverse lines of inquiry points to a developmental disruption of neural connectivity in schizophrenia and that this disrupted connectivity likely involves susceptibility genes that affect processes involved in establishing intra- and interregional connectivity.
Collapse
|
100
|
Abstract
Schizophrenia is a highly debilitating mental disorder that affects approximately 1% of the general population, yet it continues to be poorly understood. Recent studies have identified variations in several genes that are associated with this disorder in diverse populations, including those that encode neuregulin 1 (NRG1) and its receptor ErbB4. The past few years have witnessed exciting progress in our knowledge of NRG1 and ErbB4 functions and the biological basis of the increased risk for schizophrenia that is potentially conferred by polymorphisms in the two genes. An improved understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to schizophrenia might eventually lead to the development of more effective therapeutics.
Collapse
Affiliation(s)
- Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | |
Collapse
|