51
|
Yamaguchi Y, Wakaizumi N, Irisa M, Maruno T, Shimada M, Shintani K, Nishiumi H, Yogo R, Yanaka S, Higo D, Torisu T, Kato K, Uchiyama S. The Fab portion of immunoglobulin G has sites in the CL domain that interact with Fc gamma receptor IIIa. MAbs 2022; 14:2038531. [PMID: 35291930 PMCID: PMC8932917 DOI: 10.1080/19420862.2022.2038531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 02/02/2023] Open
Abstract
The interaction between IgG and Fc gamma receptor IIIa (FcγRIIIa) is essential for mediating immune responses. Recent studies have shown that the antigen binding fragment (Fab) and Fc are involved in IgG-FcγRIII interactions. Here, we conducted bio-layer interferometry (BLI) and isothermal titration calorimetry to measure the kinetic and thermodynamic parameters that define the role of Fab in forming the IgG-FcγRIII complex using several marketed therapeutic antibodies. Moreover, hydrogen/deuterium exchange mass spectrometry (HDX-MS) and crosslinking mass spectrometry (XL-MS) were used to clarify the interaction sites and structural changes upon formation of these IgG-FcγRIII complexes. The results showed that Fab in IgG facilitates the interaction via slower dissociation and a larger enthalpy gain. However, a larger entropy loss led to only a marginal change in the equilibrium dissociation constant. Combined HDX-MS and XL-MS analysis revealed that the CL domain of Fab in IgG was in close proximity to FcγRIIIa, indicating that this domain specifically interacts with the extracellular membrane-distal domain (D1) and membrane-proximal domain (D2) of FcγRIIIa. Together with previous studies, these results demonstrate that IgG-FcγRIII interactions are predominantly mediated by the binding of Fc to D2, and the Fab-FcγRIII interaction stabilizes complex formation. These interaction schemes were essentially fucosylation-independent, with Fc-D2 interactions enhanced by afucosylation and the contribution of Fab slightly reduced. Furthermore, the influence of antigen binding on IgG-FcγRIII interactions was also investigated. Combined BLI and HDX-MS results indicate that structural alterations in Fab caused by antigen binding facilitate stabilization of IgG-FcγRIII interactions. This report provides a comprehensive understanding of the interaction between IgG and FcγRIII.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | - Mine Irisa
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mari Shimada
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Koya Shintani
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Haruka Nishiumi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan
| | | | - Tetsuo Torisu
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, Osaka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
| |
Collapse
|
52
|
Abstract
Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.
Collapse
|
53
|
On the Use of Surface Plasmon Resonance-Based Biosensors for Advanced Bioprocess Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomanufacturers are being incited by regulatory agencies to transition from a quality by testing framework, where they extensively test their product after their production, to more of a quality by design or even quality by control framework. This requires powerful analytical tools and sensors enabling measurements of key process variables and/or product quality attributes during production, preferably in an online manner. As such, the demand for monitoring technologies is rapidly growing. In this context, we believe surface plasmon resonance (SPR)-based biosensors can play a role in enabling the development of improved bioprocess monitoring and control strategies. The SPR technique has been profusely used to probe the binding behavior of a solution species with a sensor surface-immobilized partner in an investigative context, but its ability to detect binding in real-time and without a label has been exploited for monitoring purposes and is promising for the near future. In this review, we examine applications of SPR that are or could be related to bioprocess monitoring in three spheres: biotherapeutics production monitoring, vaccine monitoring, and bacteria and contaminant detection. These applications mainly exploit SPR’s ability to measure solution species concentrations, but performing kinetic analyses is also possible and could prove useful for product quality assessments. We follow with a discussion on the limitations of SPR in a monitoring role and how recent advances in hardware and SPR response modeling could counter them. Mainly, throughput limitations can be addressed by multi-detection spot instruments, and nonspecific binding effects can be alleviated by new antifouling materials. A plethora of methods are available for cell growth and metabolism monitoring, but product monitoring is performed mainly a posteriori. SPR-based biosensors exhibit potential as product monitoring tools from early production to the end of downstream processing, paving the way for more efficient production control. However, more work needs to be done to facilitate or eliminate the need for sample preprocessing and to optimize the experimental protocols.
Collapse
|
54
|
Lippold S, Knaupp A, de Ru AH, Tjokrodirijo RTN, van Veelen PA, van Puijenbroek E, de Taeye SW, Reusch D, Vidarsson G, Wuhrer M, Schlothauer T, Falck D. Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography-mass spectrometry. MAbs 2021; 13:1982847. [PMID: 34674601 PMCID: PMC8726612 DOI: 10.1080/19420862.2021.1982847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcɣR). FcɣRIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward FcɣRIIIb (KD ~ 10 µM) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography–mass spectrometry (AC-MS) assay for analyzing IgG-FcɣRIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on FcɣRIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure–function relationships of the IgG-FcɣRIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rayman T N Tjokrodirijo
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development, Roche Innovation Center, Munich, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany.,Biological Technologies, Genentech Inc, South San Francisco, USA
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
55
|
Crowley AR, Osei-Owusu NY, Dekkers G, Gao W, Wuhrer M, Magnani DM, Reimann KA, Pincus SH, Vidarsson G, Ackerman ME. Biophysical Evaluation of Rhesus Macaque Fc Gamma Receptors Reveals Similar IgG Fc Glycoform Preferences to Human Receptors. Front Immunol 2021; 12:754710. [PMID: 34712242 PMCID: PMC8546228 DOI: 10.3389/fimmu.2021.754710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Rhesus macaques are a common non-human primate model used in the evaluation of human monoclonal antibodies, molecules whose effector functions depend on a conserved N-linked glycan in the Fc region. This carbohydrate is a target of glycoengineering efforts aimed at altering antibody effector function by modulating the affinity of Fcγ receptors. For example, a reduction in the overall core fucose content is one such strategy that can increase antibody-mediated cellular cytotoxicity by increasing Fc-FcγRIIIa affinity. While the position of the Fc glycan is conserved in macaques, differences in the frequency of glycoforms and the use of an alternate monosaccharide in sialylated glycan species add a degree of uncertainty to the testing of glycoengineered human antibodies in rhesus macaques. Using a panel of 16 human IgG1 glycovariants, we measured the affinities of macaque FcγRs for differing glycoforms via surface plasmon resonance. Our results suggest that macaques are a tractable species in which to test the effects of antibody glycoengineering.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nana Yaw Osei-Owusu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Department of Experimental Immunohematology, University of Amsterdam, Amsterdam, Netherlands
| | - Wenda Gao
- Antagen Pharmaceuticals Inc., Boston, MA, United States
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Diogo M. Magnani
- Nonhuman Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Keith A. Reimann
- Nonhuman Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Seth H. Pincus
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Department of Experimental Immunohematology, University of Amsterdam, Amsterdam, Netherlands
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
56
|
Shenoy A, Yalamanchili S, Davis AR, Barb AW. Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain. Antibodies (Basel) 2021; 10:antib10040038. [PMID: 34698072 PMCID: PMC8544235 DOI: 10.3390/antib10040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to mammalian expression platforms. Yeasts, for example, generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endoglycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal (HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 μM) and bound CD20 on Raji B cells.
Collapse
Affiliation(s)
- Anjali Shenoy
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Srisaimaneesh Yalamanchili
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Alexander R. Davis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
57
|
Lemke MM, McLean MR, Lee CY, Lopez E, Bozich ER, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kratochvil S, Wines BD, Hogarth PM, Kent SJ, Chung AW, Arnold KB. A systems approach to elucidate personalized mechanistic complexities of antibody-Fc receptor activation post-vaccination. CELL REPORTS MEDICINE 2021; 2:100386. [PMID: 34622227 PMCID: PMC8484512 DOI: 10.1016/j.xcrm.2021.100386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/16/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Immunoglobulin G (IgG) antibodies that activate Fc-mediated immune functions have been correlated with vaccine efficacy, but it is difficult to unravel the relative roles of multiple IgG and Fc receptor (FcR) features that have the capacity to influence IgG-FcR complex formation but vary on a personalized basis. Here, we develop an ordinary differential-equation model to determine how personalized variability in IgG subclass concentrations and binding affinities influence IgG-FcγRIIIa complex formation and validate it with samples from the HIV RV144 vaccine trial. The model identifies individuals who are sensitive, insensitive, or negatively affected by increases in HIV-specific IgG1, which is validated with the addition of HIV-specific IgG1 monoclonal antibodies to vaccine samples. IgG1 affinity to FcγRIIIa is also prioritized as the most influential parameter for dictating activation broadly across a population. Overall, this work presents a quantitative tool for evaluating personalized differences underlying FcR activation, which is relevant to ongoing efforts to improve vaccine efficacy. Fc-mediated immune functions have been correlated with protection in HIV vaccine trials A model reveals personalized mechanisms that drive variation in FcγR activation The model predicts individuals who are sensitive to changes in IgG1 concentration IgG1 affinity to FcγR best dictates activation across a heterogeneous population
Collapse
Affiliation(s)
- Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Milla R McLean
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ester Lopez
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Emily R Bozich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Sven Kratochvil
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Carlton, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
58
|
Phelps M, Balazs AB. Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function and Advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front Immunol 2021; 12:734304. [PMID: 34603314 PMCID: PMC8479175 DOI: 10.3389/fimmu.2021.734304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) targeting the viral envelope have shown significant promise in both HIV prevention and viral clearance, including pivotal results against sensitive strains in the recent Antibody Mediated Prevention (AMP) trial. Studies of bNAb passive transfer in infected patients have demonstrated transient reduction of viral load at high concentrations that rebounds as bNAb is cleared from circulation. While neutralization is a crucial component of therapeutic efficacy, numerous studies have demonstrated that bNAbs can also mediate effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent complement deposition (ADCD). These functions have been shown to contribute towards protection in several models of HIV acquisition and in viral clearance during chronic infection, however the role of target epitope in facilitating these functions, as well as the contribution of individual innate functions in protection and viral clearance remain areas of active investigation. Despite their potential, the transient nature of antibody passive transfer limits the widespread use of bNAbs. To overcome this, we and others have demonstrated vectored antibody delivery capable of yielding long-lasting expression of bNAbs in vivo. Two clinical trials have shown that adeno-associated virus (AAV) delivery of bNAbs is safe and capable of sustained bNAb expression for over 18 months following a single intramuscular administration. Here, we review key concepts of effector functions mediated by bNAbs against HIV infection and the potential for vectored immunoprophylaxis as a means of producing bNAbs in patients.
Collapse
|
59
|
Harbison A, Fadda E. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Glycobiology 2021; 30:407-414. [PMID: 31829411 DOI: 10.1093/glycob/cwz101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The immunoglobulin type G (IgG) Fc N-glycans are known to modulate the interaction with membrane-bound Fc γ receptors (FcγRs), fine-tuning the antibody's effector function in a sequence-dependent manner. Particularly interesting in this respect are the roles of galactosylation, which levels are linked to autoimmune conditions and aging, of core fucosylation, which is known to reduce significantly the antibody-dependent cellular cytotoxicity (ADCC), and of sialylation, which also reduces antibody-dependent cellular cytotoxicity (ADCC) but only in the context of core-fucosylation. In this article, we provide an atomistic level perspective through enhanced sampling computer simulations, based on replica exchange molecular dynamics (REMD), to understand the molecular determinants linking the Fc N-glycans sequence to the observed IgG1 function. Our results indicate that the two symmetrically opposed N-glycans interact extensively through their core trimannose residues. At room temperature, the terminal galactose on the α (1-6) arm is restrained to the protein through a network of interactions that keep the arm outstretched; meanwhile, the α (1-3) arm extends toward the solvent where a terminal sialic acid remains fully accessible. We also find that the presence of core fucose interferes with the extended sialylated α (1-3) arm, altering its conformational propensity and as a consequence of steric hindrance, significantly enhancing the Fc dynamics. Furthermore, structural analysis shows that the core-fucose position within the Fc core obstructs the access of N162 glycosylated FcγRs very much like a "door-stop," potentially decreasing the IgG/FcγR binding free energy. These results provide an atomistic level-of-detail framework for the design of high potency IgG1 Fc N-glycoforms.
Collapse
Affiliation(s)
- Aoife Harbison
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| |
Collapse
|
60
|
Kwiatkowski A, Co C, Kameoka S, Zhang A, Coughlin J, Cameron T, Chiao E, Bergelson S, Schmid Mason C. Assessment of the role of afucosylated glycoforms on the in vitro antibody-dependent phagocytosis activity of an antibody to Aβ aggregates. MAbs 2021; 12:1803645. [PMID: 32812835 PMCID: PMC7531570 DOI: 10.1080/19420862.2020.1803645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The terminal sugars of Fc glycans can influence the Fc-dependent biological activities of monoclonal antibody therapeutics. Afucosylated N-glycans have been shown to significantly alter binding to FcγRIIIa and affect antibody-dependent cell-mediated cytotoxicity (ADCC). Therefore, in order to maintain and ensure safety and efficacy for antibodies whose predominant mechanism of action (MOA) is ADCC, afucosylation is routinely monitored and controlled within appropriate limits. However, it is unclear how the composition and levels of afucosylated N-glycans can modulate the biological activities for a recombinant antibody whose target is not a cell surface receptor, as is the case with ADCC. The impact of different types and varying levels of enriched afucosylated N-glycan species on the in vitro bioactivities is assessed for an antibody whose target is aggregated amyloid beta (Aβ). While either the presence of complex biantennary or high mannose afucosylated glycoforms significantly increased FcγRIIIa binding activity compared to fucosylated glycoforms, they did not similarly increase aggregated Aβ uptake activity mediated by different effector cells. These experiments suggest that afucosylated N-glycans are not critical for the in vitro phagocytic activity of a recombinant antibody whose target is aggregated Aβ and uses Fc effector function as part of its MOA.
Collapse
Affiliation(s)
| | - Carl Co
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Sei Kameoka
- Research and Development, Biogen , Cambridge, MA, USA
| | - An Zhang
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - John Coughlin
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Tom Cameron
- Research and Development, Biogen , Cambridge, MA, USA
| | - Eric Chiao
- Research and Development, Biogen , Cambridge, MA, USA
| | | | | |
Collapse
|
61
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
62
|
On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. Int J Mol Sci 2021; 22:ijms22126616. [PMID: 34205578 PMCID: PMC8235063 DOI: 10.3390/ijms22126616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.
Collapse
|
63
|
Liu T, Han J, Zhang R, Tang Z, Yi G, Gong W, Wan L, Hu Q, Teng J, Liu H, Cheng X, Ye J, Su Y, Sun Y, Shi Y, Gu J, Ren S, Yang C, Shi H. Characteristics of purified Anti-β2GPI IgG N-glycosylation associate with thrombotic, obstetric, and catastrophic antiphospholipid syndrome. Rheumatology (Oxford) 2021; 61:1243-1254. [PMID: 34015111 DOI: 10.1093/rheumatology/keab416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Anti-β-2 glycoprotein I (anti-β2GPI) antibodies, defined as primary pathogenic antibody in antiphospholipid syndrome (APS). It has been reported that IgG Fc N-glycosylation affects IgG effector, we aim to investigate the association of Fc glycosylation profiles of purified anti-β2GP1 IgG with clinical features of APS. METHODS We purify anti-β2GPI IgG and total IgG from 82 APS patients including 9 catastrophic antiphospholipid syndrome (CAPS) patients, as well as total IgG from 103 healthy controls to quantitatively analyze all detectable Fc N-glycanforms of all IgG subclasses with Multiple Reaction Monitoring (MRM) method based on UPLC-ESI-QqQ mass spectrometry. RESULTS Both purified anti-β2GPI IgG and APS total IgG showed altered N-glycan profiles when compared with HC IgG. Anti-β2GPI IgG presented with lower galactosylation, increased bisection and core fucosylation compared with APS total IgG and HC IgG. We found higher galactosylation of aβ2GPI IgG2 in thrombotic APS compared with the obstetric APS, and lower galactosylation of aβ2GPI IgG2 associated with late pregnancy morbidity. Moreover, low galactosylation of all anti-β2GPI IgG subclasses, increased bisection and core fucosylation of anti-β2GPI IgG1/2 were strongly associated with CAPS and triple positivity of antiphospholipid antibodies (aPLs). CONCLUSION We comprehensively characterize the N-Glycans landscape of both anti-β2GP1 and total IgG in APS. Altered N-glycan profiles of anti-β2GPI IgG enables enabled the antibodies with proinflammatory properties. Furthermore, we associated levels of IgG Fc-glycosylation with clinical features antiphospholipid syndrome. These findings could increase our understanding of anti-β2GPI antibody mediated mechanisms in APS and be used to develop diagnostics and new target treatments.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jing Han
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zihan Tang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Gang Yi
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Gong
- Department of Rheumatology and Immunology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, Yancheng, 224001, China
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yi Shi
- Bio-X institutes, Key laboratory for the Genetic of Departmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 20030, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| |
Collapse
|
64
|
van Faassen H, Jo DH, Ryan S, Lowden MJ, Raphael S, MacKenzie CR, Lee SH, Hussack G, Henry KA. Incorporation of a Novel CD16-Specific Single-Domain Antibody into Multispecific Natural Killer Cell Engagers With Potent ADCC. Mol Pharm 2021; 18:2375-2384. [PMID: 33999642 DOI: 10.1021/acs.molpharmaceut.1c00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multispecific antibodies that bridge immune effector and tumor cells have shown promising preclinical and clinical efficacies. Here, we isolated and characterized novel llama single-domain antibodies (sdAbs) against CD16. One sdAb, NRC-sdAb048, bound recombinant human and cynomolgus monkey CD16 ectodomains with equivalent affinity (KD: 1 nM) but did not recognize murine CD16. Binding was similar for human CD16a expressed on NK cells and CD16b (NA2) expressed on neutrophils but dramatically weaker (KD: ∼6 μM) for the CD16b (NA1) allotype. The sdAb stained primary human peripheral blood NK cells. Irrespective of fusion orientation and linker length, bispecific sdAb-sdAb and sdAb-scFv dimers (anti-CD16/EGFR, anti-CD16/HER2, and anti-CD16/CD19) retained full binding affinity for each target, coengaged both antigens simultaneously, elicited ADCC against target antigen-expressing tumor cells in a reporter bioassay, and triggered target-specific activation and degranulation of primary NK cells as measured via interferon-γ and CD107a expression. These molecules may have applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Dong-Hyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael J Lowden
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
65
|
Afucosylated IgG Targets FcγRIV for Enhanced Tumor Therapy in Mice. Cancers (Basel) 2021; 13:cancers13102372. [PMID: 34069226 PMCID: PMC8156657 DOI: 10.3390/cancers13102372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cancer treatments are increasingly based on therapeutic antibodies to clear tumors. While in vivo mouse models are useful to predict effectiveness of human antibodies it is not completely clear how useful these models are to test antibodies engineered with enhanced effector functions designed for humans. One of the changes considered for many new antibody-based drugs is the removal of fucose (resulting in afucosylated IgG) which enhances IgG-Fc receptor (FcγR) mediated effector functions in humans through FcγRIIIa. Here we show that afucosylated human IgG1 also have enhanced effector functions against peritoneal metastasis of melanoma cells in mice through the evolutionary related mouse FcγRIV. This shows that afucosylated human IgG is functionally recognized across species and shows that mouse tumor models can be used to assess the therapeutic potential of afucosylated IgG1. Abstract Promising strategies for maximizing IgG effector functions rely on the introduction of natural and non-immunogenic modifications. The Fc domain of IgG antibodies contains an N-linked oligosaccharide at position 297. Human IgG antibodies lacking the core fucose in this glycan have enhanced binding to human (FcγR) IIIa/b, resulting in enhanced antibody dependent cell cytotoxicity and phagocytosis through these receptors. However, it is not yet clear if glycan-enhancing modifications of human IgG translate into more effective treatment in mouse models. We generated humanized hIgG1-TA99 antibodies with and without core-fucose. C57Bl/6 mice that were injected intraperitoneally with B16F10-gp75 mouse melanoma developed significantly less metastasis outgrowth after treatment with afucosylated hIgG1-TA99 compared to mice treated with wildtype hhIgG1-TA99. Afucosylated human IgG1 showed stronger interaction with the murine FcγRIV, the mouse orthologue of human FcγRIIIa, indicating that this glycan change is functionally conserved between the species. In agreement with this, no significant differences were observed in tumor outgrowth in FcγRIV-/- mice treated with human hIgG1-TA99 with or without the core fucose. These results confirm the potential of using afucosylated therapeutic IgG to increase their efficacy. Moreover, we show that afucosylated human IgG1 antibodies act across species, supporting that mouse models can be suitable to test afucosylated antibodies.
Collapse
|
66
|
Zhou X, Motta F, Selmi C, Ridgway WM, Gershwin ME, Zhang W. Antibody glycosylation in autoimmune diseases. Autoimmun Rev 2021; 20:102804. [PMID: 33727152 DOI: 10.1016/j.autrev.2021.102804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The glycosylation of the fragment crystallizable (Fc) region of immunoglobulins (Ig) is critical for the modulation of antibody effects on inflammation. Moreover, antibody glycosylation may induce pathologic modifications and ultimately contribute to the development of autoimmune diseases. Thanks to progress in the analysis of glycosylation, more data are available on IgG and its subclass structures in the context of autoimmune diseases. In this review, we focused on the impact of Ig glycosylation in autoimmunity, describing how it modulates the immune response and how glycome profiles can be used as biomarkers of disease activity. The analysis of antibody glycosylation demonstrated specific features in human autoimmune and chronic inflammatory conditions, including rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and autoimmune liver diseases, among others. Within the same disease, different patterns are associated with disease severity and treatment options. Future research may increase the information available on the distinct glycome profiles and expand their potential role as biomarkers and as targets for treatment, ultimately favoring an individualized approach.
Collapse
Affiliation(s)
- Xing Zhou
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
67
|
Gaudreault J, Liberelle B, Durocher Y, Henry O, De Crescenzo G. Determination of the composition of heterogeneous binder solutions by surface plasmon resonance biosensing. Sci Rep 2021; 11:3685. [PMID: 33574483 PMCID: PMC7878517 DOI: 10.1038/s41598-021-83268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/01/2021] [Indexed: 12/01/2022] Open
Abstract
Surface plasmon resonance-based biosensors have been extensively applied to the characterization of the binding kinetics between purified (bio)molecules, thanks to robust data analysis techniques. However, data analysis for solutions containing multiple interactants is still at its infancy. We here present two algorithms for (1) the reliable and accurate determination of the kinetic parameters of N interactants present at different ratios in N mixtures and (2) the estimation of the ratios of each interactant in a given mixture, assuming that their kinetic parameters are known. Both algorithms assume that the interactants compete to bind to an immobilized ligand in a 1:1 fashion and necessitate prior knowledge of the total concentration of all interactants combined. The effectiveness of these two algorithms was experimentally validated with a model system corresponding to mixtures of four small molecular weight drugs binding to an immobilized protein. This approach enables the in-depth characterization of mixtures using SPR, which may be of considerable interest for many drug discovery or development applications, notably for protein glycovariant analysis.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC, H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
68
|
Atyeo C, Pullen KM, Bordt EA, Fischinger S, Burke J, Michell A, Slein MD, Loos C, Shook LL, Boatin AA, Yockey LJ, Pepin D, Meinsohn MC, Nguyen NMP, Chauvin M, Roberts D, Goldfarb IT, Matute JD, James KE, Yonker LM, Bebell LM, Kaimal AJ, Gray KJ, Lauffenburger D, Edlow AG, Alter G. Compromised SARS-CoV-2-specific placental antibody transfer. Cell 2021; 184:628-642.e10. [PMID: 33476549 PMCID: PMC7755577 DOI: 10.1016/j.cell.2020.12.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; PhD Program in Immunology and Virology, University of Duisburg-Essen, Essen 47057, Germany
| | - John Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ashlin Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthew D Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lydia L Shook
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adeline A Boatin
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Laura J Yockey
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Pepin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ngoc Minh Phuong Nguyen
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ilona T Goldfarb
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Juan D Matute
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlyn E James
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lael M Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lisa M Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, MGH Global Health, and Harvard Medical School, Boston, MA 02114, USA
| | - Anjali J Kaimal
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn J Gray
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
69
|
Wang J, Huang C, Zhou J, Zhao K, Li Y. Causal link between immunoglobulin G glycosylation and cancer: A potential glycobiomarker for early tumor detection. Cell Immunol 2021; 361:104282. [PMID: 33453507 DOI: 10.1016/j.cellimm.2021.104282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Changes in immunoglobulin G (IgG) glycan structures are currently believed to closely related to the emergence of cancer. In this review, we summarize the current body of evidence suggesting that differences in serum IgG glycosylation patterns correspond to changes in multiple types of cancer. Modifications include IgG terminal N-link galactosylation, IgG core fucosylation, IgG terminal sialylation, and IgG terminal bisecting N-acetylglucosamine. IgG N-glycomic alterations represent promising novel biomarkers for non-invasive-cancer diagnosis, prognosis, and progression monitoring; they are characterized by high sensitivity and specificity, compensating for previously identified glycobiomarkers.
Collapse
Affiliation(s)
- Junyan Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncui Huang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyu Zhou
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keli Zhao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
70
|
Nimmerjahn F, Werner A. Sweet Rules: Linking Glycosylation to Antibody Function. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:365-393. [PMID: 34687017 DOI: 10.1007/978-3-030-76912-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Erlangen, Germany.
| | - Anja Werner
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
71
|
Abstract
Changes in immunoglobulin G (IgG) glycosylation pattern have been observed in a vast array of auto- and alloimmune, infectious, cardiometabolic, malignant, and other diseases. This chapter contains an updated catalog of over 140 studies within which IgG glycosylation analysis was performed in a disease setting. Since the composition of IgG glycans is known to modulate its effector functions, it is suggested that a changed IgG glycosylation pattern in patients might be involved in disease development and progression, representing a predisposition and/or a functional effector in disease pathology. In contrast to the glycopattern of bulk serum IgG, which likely relates to the systemic inflammatory background, the glycosylation profile of antigen-specific IgG probably plays a direct role in disease pathology in several infectious and allo- and autoimmune antibody-dependent diseases. Depending on the specifics of any given disease, IgG glycosylation read-out might therefore in the future be developed into a useful clinical biomarker or a supplementary to currently used biomarkers.
Collapse
Affiliation(s)
- Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
72
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:481-517. [PMID: 34687020 DOI: 10.1007/978-3-030-76912-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
73
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
74
|
Barb AW. Fc γ receptor compositional heterogeneity: Considerations for immunotherapy development. J Biol Chem 2021; 296:100057. [PMID: 33172893 PMCID: PMC7948983 DOI: 10.1074/jbc.rev120.013168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antibody-binding crystallizable fragment (Fc) γ receptors (FcγRs) are expressed by leukocytes and activate or suppress a cellular response once engaged with an antibody-coated target. Therapeutic mAbs that require FcγR binding for therapeutic efficacy are now frontline treatments for multiple diseases. However, substantially fewer development efforts are focused on the FcγRs, despite accounting for half of the antibody-receptor complex. The recent success of engineered cell-based immunotherapies now provides a mechanism to introduce modified FcγRs into the clinic. FcγRs are highly heterogeneous because of multiple functionally distinct alleles for many genes, the presence of membrane-tethered and soluble forms, and a high degree of post-translational modification, notably asparagine-linked glycans. One significant factor limiting FcγR improvement is the fundamental lack of knowledge regarding endogenous receptor forms present in the human body. This review describes the composition of FcγRs isolated from primary human leukocytes, summarizes recent efforts to engineer FcγRs, and concludes with a description of potential FcγR features to enrich for enhanced function. Further understanding FcγR biology could accelerate the development of new clinical therapies targeting immune-related disease.
Collapse
Affiliation(s)
- Adam W Barb
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
75
|
Zhuo Y, Keire DA, Chen K. Minor N-Glycan Mapping of Monoclonal Antibody Therapeutics Using Middle-Down NMR Spectroscopy. Mol Pharm 2020; 18:441-450. [PMID: 33305950 DOI: 10.1021/acs.molpharmaceut.0c01083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The N-glycosylation pattern of Asn-297 may have impacts on monoclonal antibody (mAb) drug plasma clearance, antibody-dependent cell mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). Notably, the changes in the relative abundance of certain minor glycans, like the afucosylation, high-mannose, or galactosylation are known to change mAb properties and functions. Here, a middle-down NMR spectroscopy based analytical procedure was applied to assess the composition and structure of glycans on adalimumab and trastuzumab without glycan cleavage from the mAbs. The anomeric 2D 1H-13C spectra showed distinct patterns that could be used to profile and differentiate mAb glycan compositions. Specifically, the anomeric C1/H1 resonances from N-acetylglucosamine (GlcNAc2 and -5) and mannose (Man4) were identified as characteristic peaks for key glycan anomeric linkages and branching states. They were also utilized for measuring the relative abundance of minor glycans of total afucosylation (aFuc%), high mannose (HM%), and branch specific galactosylation (Gal1-3% and Gal1-6%). The obtained total aFuc% value of 11-12% was similar between the two mAbs; however, trastuzumab had significantly lower level of high mannose and a higher level of galactosylation than adalimumab. Overall, the 2D-NMR measurements provided functionally relevant mAb glycan composition and structure information. The method was deemed fit-for-purpose for assessment of these mAb quality attributes and involved fewer chemical preparation steps than the classical approaches that cleave glycans prior to making measurements.
Collapse
Affiliation(s)
- You Zhuo
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David A Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
76
|
Sjögren J, Lood R, Nägeli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 2020; 30:254-267. [PMID: 31616919 PMCID: PMC7109354 DOI: 10.1093/glycob/cwz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023] Open
Abstract
The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.
Collapse
Affiliation(s)
| | - Rolf Lood
- Genovis AB, Scheelevägen 2, 223 63 Lund, Sweden
| | | |
Collapse
|
77
|
Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 2020; 30:214-225. [PMID: 31822882 DOI: 10.1093/glycob/cwz068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are the fastest growing group of drugs with 11 new antibodies or antibody-drug conjugates approved by the Food and Drug Administration in 2018. Many mAbs require effector function for efficacy, including antibody-dependent cell-mediated cytotoxicity triggered following contact of an immunoglobulin G (IgG)-coated particle with activating crystallizable fragment (Fc) γ receptors (FcγRs) expressed by leukocytes. Interactions between IgG1 and the FcγRs require post-translational modification of the Fc with an asparagine-linked carbohydrate (N-glycan). Though the structure of IgG1 Fc and the role of Fc N-glycan composition on disease were known for decades, the underlying mechanism of how the N-glycan affected FcγR binding was not defined until recently. This review will describe the current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc and describe new techniques that are poised to provide the next critical breakthroughs.
Collapse
Affiliation(s)
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
78
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
79
|
Cambay F, Raymond C, Brochu D, Gilbert M, Tu TM, Cantin C, Lenferink A, Grail M, Henry O, De Crescenzo G, Durocher Y. Impact of IgG1 N-glycosylation on their interaction with Fc gamma receptors. CURRENT RESEARCH IN IMMUNOLOGY 2020; 1:23-37. [PMID: 35493857 PMCID: PMC9040152 DOI: 10.1016/j.crimmu.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022] Open
Abstract
The effector functions of the IgGs are modulated by the N-glycosylation of their Fc region. Particularly, the absence of core fucosylation is known to increase the affinity of IgG1s for the Fcγ receptor IIIa expressed by immune cells, in turn translating in an improvement in the antibody-dependent cellular cytotoxicity. However, the impact of galactosylation and sialylation is still debated in the literature. In this study, we have investigated the influence of high and low levels of core fucosylation, terminal galactosylation and terminal α2,6-sialylation of the Fc N-glycans of trastuzumab on its affinity for the FcγRIIIa. A large panel of antibody glycoforms (i.e., highly α2,6-sialylated or galactosylated IgG1s, with high or low levels of core fucosylation) were generated and characterized, while their interactions with the FcγRs were analysed by a robust surface plasmon resonance-based assay as well as in a cell-based reporter bioassay. Overall, IgG1 glycoforms with reduced fucosylation display a stronger affinity for the FcγRIIIa. In addition, fucosylation, and the presence of terminal galactose and sialic acids are shown to increase the affinity for the FcγRIIIa as compared to the agalactosylated forms. These observations perfectly translate in the response observed in our reporter bioassay. Rapid production in CHO cells of IgGs bearing defined and relevant N-glycans IgG1 N-glycosylation influence upon FcγRs binding studied in a robust SPR assay Excellent correlation between the EC50 from a cell-based assay and the affinities
Collapse
|
80
|
Patenaude AM, Erhardt J, Hennig R, Rapp E, Lauc G, Pezer M. N-glycosylation analysis of mouse immunoglobulin G isolated from dried blood spots. Electrophoresis 2020; 42:2615-2618. [PMID: 33165939 DOI: 10.1002/elps.202000249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022]
Abstract
The association of immunoglobulin G (IgG) glycosylation changes with various human diseases and physiological conditions is well established. Since the mechanistical explanation of the regulation of IgG glycosylation and its functional role in these various states is still missing, the eyes of the biomedical community are now turned towards animal models, which enable intervention studies necessary for conclusions on causality. Mice are recognized and used as a good experimental model for human IgG glycosylation. However, smaller blood volumes, low IgG concentrations at young ages (which are most often used in mice experiments) and multiple sampling protocols during the course of longitudinal studies would profit from a robust workflow for mouse IgG glycome analysis from minute amounts of starting material, collected through a simple sampling procedure. For this purpose, we have developed a protocol for analysis of total N-glycans of IgG isolated from mouse dried blood spots (DBS), which we report here. We show that mouse DBS are a good source of material for IgG N-glycan analysis by multiplexed capillary gel electrophoresis with laser-induced fluorescence (xCGE-LIF).
Collapse
Affiliation(s)
| | - Julija Erhardt
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Erdmann Rapp
- glyXera GmbH, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
81
|
Ladel S, Maigler F, Flamm J, Schlossbauer P, Handl A, Hermann R, Herzog H, Hummel T, Mizaikoff B, Schindowski K. Impact of Glycosylation and Species Origin on the Uptake and Permeation of IgGs through the Nasal Airway Mucosa. Pharmaceutics 2020; 12:E1014. [PMID: 33114132 PMCID: PMC7690786 DOI: 10.3390/pharmaceutics12111014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Although we have recently reported the involvement of neonatal Fc receptor (FcRn) in intranasal transport, the transport mechanisms are far from being elucidated. Ex vivo porcine olfactory tissue, primary cells from porcine olfactory epithelium (OEPC) and the human cell line RPMI 2650 were used to evaluate the permeation of porcine and human IgG antibodies through the nasal mucosa. IgGs were used in their wild type and deglycosylated form to investigate the impact of glycosylation. Further, the expression of FcRn and Fc-gamma receptor (FCGR) and their interaction with IgG were analyzed. Comparable permeation rates for human and porcine IgG were observed in OEPC, which display the highest expression of FcRn. Only traces of porcine IgGs could be recovered at the basolateral compartment in ex vivo olfactory tissue, while human IgGs reached far higher levels. Deglycosylated human IgG showed significantly higher permeation in comparison to the wild type in RPMI 2650 and OEPC, but insignificantly elevated in the ex vivo model. An immunoprecipitation with porcine primary cells and tissue identified FCGR2 as a potential interaction partner in the nasal mucosa. Glycosylation sensitive receptors appear to be involved in the uptake, transport, but also degradation of therapeutic IgGs in the airway epithelial layer.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| | - Alina Handl
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Hermann
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| | - Helena Herzog
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| |
Collapse
|
82
|
Temming AR, Bentlage AEH, de Taeye SW, Bosman GP, Lissenberg-Thunnissen SN, Derksen NIL, Brasser G, Mok JY, van Esch WJE, Howie HL, Zimring JC, Vidarsson G. Cross-reactivity of mouse IgG subclasses to human Fc gamma receptors: Antibody deglycosylation only eliminates IgG2b binding. Mol Immunol 2020; 127:79-86. [PMID: 32947169 DOI: 10.1016/j.molimm.2020.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Immunoglobulin G (IgG) antibodies are important for protection against pathogens and exert effector functions through binding to IgG-Fc receptors (FcγRs) on myeloid and natural killer cells, resulting in destruction of opsonized target cells. Despite interspecies differences, IgG subclasses and FcγRs show substantial similarities and functional conservation between mammals. Accordingly, binding of human IgG (hIgG) to mouse FcγRs (mFcγRs) has been utilized to study effector functions of hIgG in mice. In other applications, such as immunostaining with mouse IgG monoclonal antibodies (mAbs), these cross-reactivities are undesired and prone to misinterpretation. Despite this drawback, the binding of mouse IgG (mIgG) subclasses to human FcγR (hFcγR) classes has never been fully documented. Here, we report detailed and quantifiable characterization of binding affinities for all mIgG subclasses to hFcγRs, including functional polymorphic variants. mIgG subclasses show the strongest binding to hFcγRIa, with relative affinities mIgG2a = mIgG2c > mIgG3 >> mIgG2b, and no binding by mIgG1. hFcγRIIa/b showed general low reactivities to all mIgG (mIgG1> mIgG2a/c > mIgG2b), with no reactivity to mIgG3. A particularly high affinity was observed for mIgG1 to the hFcγRIIa-R131 polymorphic variant. hFcγRIIIa showed lower binding (mIgG2a/c > mIgG3), slightly favouring binding to the hFcγRIIIa-V158 over the F158 polymorphic variant. No binding was observed of mIgG to hFcγRIIIb. Deglycosylation of mIgG1 did not abrogate binding to hFcγRIIa-R131, nor did deglycosylation of mIgG2a/c and mIgG3 prevent hFcγRIa binding. Importantly, deglycosylation of the least cross-reactive mIgG subclass, mIgG2b, abrogated reactivity to all hFcγRs. Together, these data document for the first time the full spectrum of cross-reactivities of mouse IgG to human FcγRs.
Collapse
Affiliation(s)
- A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents, Amsterdam, The Netherlands
| | | | - Heather L Howie
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - James C Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
83
|
Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies. Proc Natl Acad Sci U S A 2020; 117:22992-23000. [PMID: 32855300 PMCID: PMC7502815 DOI: 10.1073/pnas.2003621117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
All currently licensed antibodies against bacteria target exotoxins. For most pathogens, neutralization of toxin(s) is not sufficient to prevent bacterial replication. Antibodies against surface determinants represent better candidates to enhance opsonophagocytic killing, but the mechanisms of action of such antibodies have not been systematically studied. Staphylococcal protein A is a conserved surface protein of Staphylococcus aureus and a crucial virulence determinant that manipulates B-cell responses and blocks deposition of opsonin. Monoclonal antibodies directed against SpA represent potential therapeutic agents as well as a formidable tool to identify and optimize effector functions of antibodies that can promote bacterial clearance. Antibodies may bind to bacterial pathogens or their toxins to control infections, and their effector activity is mediated through the recruitment of complement component C1q or the engagement with Fcγ receptors (FcγRs). For bacterial pathogens that rely on a single toxin to cause disease, immunity correlates with toxin neutralization. Most other bacterial pathogens, including Staphylococcus aureus, secrete numerous toxins and evolved multiple mechanisms to escape opsonization and complement killing. Several vaccine candidates targeting defined surface antigens of S. aureus have failed to meet clinical endpoints. It is unclear that such failures can be solely attributed to the poor selection of antibody targets. Thus far, studies to delineate antibody-mediated uptake and killing of Gram-positive pathogens remain extremely limited. Here, we exploit 3F6-hIgG1, a human monoclonal antibody that binds and neutralizes the abundant surface-exposed Staphylococcal protein A (SpA). We find that galactosylation of 3F6-hIgG1 that favors C1q recruitment is indispensable for opsonophagocytic killing of staphylococci and for protection against bloodstream infection in animals. However, the simple removal of fucosyl residues, which results in reduced C1q binding and increased engagement with FcγR, maintains the opsonophagocytic killing and protective attributes of the antibody. We confirm these results by engineering 3F6-hIgG1 variants with biased binding toward C1q or FcγRs. While the therapeutic benefit of monoclonal antibodies against infectious disease agents may be debatable, the functional characterization of such antibodies represents a powerful tool for the development of correlates of protection that may guide future vaccine trials.
Collapse
|
84
|
Bajardi-Taccioli A, Co C, Bond C, Masci A, Brantley T, Xu C, Bergelson S, Feschenko M. Biolayer Interferometry-based FcγRIIa binding assay for a therapeutic antibody with strong effector function. Anal Biochem 2020; 611:113842. [PMID: 32755599 DOI: 10.1016/j.ab.2020.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022]
Abstract
FcγRIIa receptor binding is part of the mechanism of action for many therapeutic antibodies. AlphaScreen® technology and Biolayer Interferometry (BLI) are often used to assess protein-protein interactions. Recently we demonstrated that the presence of aggregates in samples significantly increased binding potency values in AlphaScreen®-based FcRn binding assays, sometimes masking the loss of potency. Even bigger effect of aggregates was observed in an AlphaScreen®-based FcγRIIa binding assay for a monoclonal antibody with strong effector function. To resolve this issue a novel BLI-based FcγRIIa binding assay was developed and qualified. The assay measures association binding responses and calculates the binding potency of the samples relative to the standard using Parallel Line Analysis. The method overcomes interference of aggregates present in the samples, distinguishes different Fc glycosylation patterns, and is stability-indicating. It can be used for sample characterization, drug product release and stability testing.
Collapse
Affiliation(s)
| | - Carl Co
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| | - Christine Bond
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| | - Allyson Masci
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| | - Tim Brantley
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| | - Chongfeng Xu
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| | - Svetlana Bergelson
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| | - Marina Feschenko
- Department of Analytical Development, Biogen, Inc., 225 Binney St., Cambridge, MA, 02142, USA.
| |
Collapse
|
85
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
86
|
Kim JO, Kim HN, Kim KH, Baek EJ, Park JY, Ha K, Heo DR, Seo MD, Park SG. Development and characterization of a fully human antibody targeting SCF/c-kit signaling. Int J Biol Macromol 2020; 159:66-78. [PMID: 32437800 DOI: 10.1016/j.ijbiomac.2020.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
Abstract
CD117/c-kit, a tyrosine kinase receptor, plays a critical role in hematopoiesis, pigmentation, and fertility. The overexpression and activation of c-kit are thought to promote tumor growth and have been reported in various cancers, including leukemia, glioblastoma and mastocytosis. To disrupt the SCF/c-kit signaling axis in cancer, we generated a c-kit antagonist human antibody (NN2101) that binds to domain 2/3 of c-kit. This completely blocked the SCF-mediated phosphorylation of c-kit and inhibited TF-1 cell proliferation, erythroleukemia. In addition, the examination of binding affinity using surface plasmon resonance (SPR) assay showed that NN2101 can bind to c-kit of monkeys (KD = 2.92 × 10-10 M), rats (KD = 1.68 × 10-6 M), mice (KD = 11.5 × 10-9 M), and humans (KD = 2.83 × 10-12 M). We showed that NN2101 does not cause antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The immunogenicity of NN2101 was similar to that of bevacizumab. Furthermore, the crystal structure of NN2101 Fab was determined and the structure of NN2101 Fab:c-kit complex was modeled. Structural information, as well as mutagenesis results, revealed that NN2101 can bind to the SCF-binding regions of c-kit. Collectively, we generated a c-kit neutralizing human antibody (NN2101) for the treatment of erythroleukemia and characterized its biophysical properties. NN2101 can potentially be used as a therapeutic antibody to treat different cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kwang-Hyeok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Ji Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jeong-Yang Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea
| | - Deok Rim Heo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea; College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong 28160, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| | - Sang Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| |
Collapse
|
87
|
Martin TC, Šimurina M, Ząbczyńska M, Martinic Kavur M, Rydlewska M, Pezer M, Kozłowska K, Burri A, Vilaj M, Turek-Jabrocka R, Krnjajić-Tadijanović M, Trofimiuk-Müldner M, Ugrina I, Lityńska A, Hubalewska-Dydejczyk A, Trbojevic-Akmacic I, Lim EM, Walsh JP, Pocheć E, Spector TD, Wilson SG, Lauc G. Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases. Mol Cell Proteomics 2020; 19:774-792. [PMID: 32024769 PMCID: PMC7196582 DOI: 10.1074/mcp.ra119.001860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Indexed: 11/06/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.
Collapse
Affiliation(s)
- Tiphaine C Martin
- Department of Twin Research and Genetic Epidemiology, King's College, London, United Kingdom; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | | | - Magdalena Rydlewska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Marija Pezer
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrea Burri
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand; Waitemata Pain Service, Department of Anaesthesia and Perioperative Medicine, North Shore Hospital, Auckland, New Zealand
| | - Marija Vilaj
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Renata Turek-Jabrocka
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; Department of Endocrinology, University Hospital in Krakow, Krakow, Poland
| | | | - Małgorzata Trofimiuk-Müldner
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; Department of Endocrinology, University Hospital in Krakow, Krakow, Poland
| | - Ivo Ugrina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Alicja Hubalewska-Dydejczyk
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; Department of Endocrinology, University Hospital in Krakow, Krakow, Poland
| | | | - Ee Mun Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College, London, United Kingdom
| | - Scott G Wilson
- Department of Twin Research and Genetic Epidemiology, King's College, London, United Kingdom; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos, Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
88
|
Simunovic J, Vilaj M, Trbojevic-Akmacic I, Momcilovic A, Vuckovic F, Gudelj I, Juric J, Nakic N, Lauc G, Pezer M. Comprehensive N-glycosylation analysis of immunoglobulin G from dried blood spots. Glycobiology 2020; 29:817-821. [PMID: 31410450 DOI: 10.1093/glycob/cwz061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin G (IgG) glycans are emerging as a new putative biomarker for biological age and different diseases, requiring a robust workflow for IgG glycome analysis, ideally beginning with a simple and undemanding sampling procedure. Here, we report the first comprehensive study on total N-glycans of IgG isolated from dried blood spots (DBSs), which was performed in a high-throughput mode. We compared the IgG N-glycan profiles originating from DBS with those originating from plasma, compared different media for DBS collection, evaluated analytical variation and assessed IgG N-glycan profile stability for different storage conditions. In conclusion, we show that DBSs are a good and stable source material for a robust IgG N-glycan analysis by ultra-performance liquid chromatography, suitable for blood sampling in conditions where no trained personnel and necessary laboratory equipment are available.
Collapse
Affiliation(s)
- Jelena Simunovic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia
| | | | - Ana Momcilovic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2333 ZA Leiden, The Netherlands
| | - Frano Vuckovic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia
| | - Julija Juric
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia
| | - Natali Nakic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy and
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacica 1, 10000 Zagreb, Croatia
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, 10000 Zagreb, Croatia
| |
Collapse
|
89
|
Cambay F, Forest-Nault C, Dumoulin L, Seguin A, Henry O, Durocher Y, De Crescenzo G. Glycosylation of Fcγ receptors influences their interaction with various IgG1 glycoforms. Mol Immunol 2020; 121:144-158. [PMID: 32222585 DOI: 10.1016/j.molimm.2020.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Most of therapeutic monoclonal antibodies belong to the immunoglobulin G1 (IgG1) family; they interact with the Fcγ receptors (FcγRs) at the surface of immune cells to trigger effector functions. The IgG1-Fc N-glycans impact the interaction with FcγRs and are considered a critical quality attribute. Pioneer studies on FcγR N-glycans have unveiled an additional complexity in that the N-glycan linked on the Asn-162 of FcγRIIIa was shown to be directly involved in the strong affinity for afucosylated IgG1. The last few years have thus seen the emergence of many studies investigating the complex influence of FcγRIIIa N-glycans on the interaction with IgG1 through their glycosylation sites or their glycoprofiles. In this context, we performed site-directed mutagenesis along with glycoengineering on FcγRs (FcγRI, FcγRIIaH131/b and FcγRIIIaV158/F158) in an effort to elucidate the impact of FcγRs N-glycans on the interaction with IgG1. Furthermore, we assessed their binding to various trastuzumab glycoforms with an enhanced surface plasmon resonance assay. The FcγRIIIa N-glycans had the highest impact on the interaction with IgG1. More specifically, the N162 glycan positively influenced the affinity (15-fold) for afucosylated IgG1 while the N45 glycan presented a negative impact (2-fold) regardless of the IgG1 glycoforms. Interestingly, only the FcγRIIIa glycoprofile had an impact on the interaction with IgG1 with a 1.5-fold affinity increase when FcγRIIIa displays high-mannose glycans. These results provide invaluable insights into the complex and strong influence of N-glycosylation upon FcγRs/IgG1 binding and are instrumental to further understand the impact of FcγRs N-glycosylation in their natural forms.
Collapse
Affiliation(s)
- Florian Cambay
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada; Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, Canada
| | - Catherine Forest-Nault
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada; Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, Canada
| | - Lea Dumoulin
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Alexis Seguin
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada.
| | | |
Collapse
|
90
|
Martin TC, Ilieva KM, Visconti A, Beaumont M, Kiddle SJ, Dobson RJB, Mangino M, Lim EM, Pezer M, Steves CJ, Bell JT, Wilson SG, Lauc G, Roederer M, Walsh JP, Spector TD, Karagiannis SN. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells 2020; 9:E665. [PMID: 32182948 PMCID: PMC7140647 DOI: 10.3390/cells9030665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of autoimmune thyroid diseases (AITD) is poorly understood and the association between different immune features and the germline variants involved in AITD are yet unclear. We previously observed systemic depletion of IgG core fucosylation and antennary α1,2 fucosylation in peripheral blood mononuclear cells in AITD, correlated with anti-thyroid peroxidase antibody (TPOAb) levels. Fucose depletion is known to potentiate strong antibody-mediated NK cell activation and enhanced target antigen-expressing cell killing. In autoimmunity, this may translate to autoantibody-mediated immune cell recruitment and attack of self-antigen expressing normal tissues. Hence, we investigated the crosstalk between immune cell traits, secreted proteins, genetic variants and the glycosylation patterns of serum IgG, in a multi-omic and cross-sectional study of 622 individuals from the TwinsUK cohort, 172 of whom were diagnosed with AITD. We observed associations between two genetic variants (rs505922 and rs687621), AITD status, the secretion of Desmoglein-2 protein, and the profile of two IgG N-glycan traits in AITD, but further studies need to be performed to better understand their crosstalk in AITD. On the other side, enhanced afucosylated IgG was positively associated with activatory CD335- CD314+ CD158b+ NK cell subsets. Increased levels of the apoptosis and inflammation markers Caspase-2 and Interleukin-1α positively associated with AITD. Two genetic variants associated with AITD, rs1521 and rs3094228, were also associated with altered expression of the thyrocyte-expressed ligands known to recognize the NK cell immunoreceptors CD314 and CD158b. Our analyses reveal a combination of heightened Fc-active IgG antibodies, effector cells, cytokines and apoptotic signals in AITD, and AITD genetic variants associated with altered expression of thyrocyte-expressed ligands to NK cell immunoreceptors. Together, TPOAb responses, dysregulated immune features, germline variants associated with immunoactivity profiles, are consistent with a positive autoreactive antibody-dependent NK cell-mediated immune response likely drawn to the thyroid gland in AITD.
Collapse
Affiliation(s)
- Tiphaine C. Martin
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina M. Ilieva
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (K.M.I.); (S.N.K.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Michelle Beaumont
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Steven J. Kiddle
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK; (S.J.K.); (R.J.B.D.)
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK; (S.J.K.); (R.J.B.D.)
- Health Data Research UK (HDR UK), London Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’s NHS Foundation Trust, London SE1 9RT, UK
| | - Ee Mun Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
- PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Marija Pezer
- Genos, Glycoscience Research Laboratory, 10000 Zagreb, Croatia; (M.P.); (G.L.)
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Scott G. Wilson
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, 10000 Zagreb, Croatia; (M.P.); (G.L.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA;
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Sophia N. Karagiannis
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (K.M.I.); (S.N.K.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
91
|
Roberts JT, Patel KR, Barb AW. Site-specific N-glycan Analysis of Antibody-binding Fc γ Receptors from Primary Human Monocytes. Mol Cell Proteomics 2020; 19:362-374. [PMID: 31888963 PMCID: PMC7000114 DOI: 10.1074/mcp.ra119.001733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
FcγRIIIa (CD16a) and FcγRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcγRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ∼20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145).
Collapse
Affiliation(s)
- Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames Iowa 50011
| | - Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames Iowa 50011
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames Iowa 50011
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
92
|
Effects of sialic acid linkage on antibody-fragment crystallizable receptor binding and antibody dependent cytotoxicity depend on levels of fucosylation/bisecting. Bioanalysis 2020; 11:1437-1449. [PMID: 31490109 DOI: 10.4155/bio-2019-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Fragment crystallizable (Fc) glycosylation of immunoglobulin G-type monoclonal antibodies applied to therapeutic applications is regarded a critical quality attribute and can influence bioactivity, pharmacokinetics and/or immunogenicity/safety. Investigating the impact of certain Fc N-glycans is therefore of importance to assess its criticality for a therapeutic product. This has been done for N-glycan types like fucosylation, galactosylation or sialylation. There were contradictory results reported for functionality especially with regard to sialylation. Material & methods: We elucidated the effect of terminal sialic acid residues on Fcγ receptor binding and antibody dependent cytotoxicity activity of two immunoglobulin G1 antibodies with different levels of fucosylation/bi-secting. Conclusion: We found the impact to be specific to the sialylation linkage type, in other words, α2,3- versus α2,6-linked sialic acid attached to the terminal galactose residues.
Collapse
|
93
|
Bovine serum albumin affects N-glycoforms of murine IgG monoclonal antibody purified from hybridoma supernatants. Appl Microbiol Biotechnol 2020; 104:1583-1594. [PMID: 31915902 DOI: 10.1007/s00253-019-10309-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
Immunoglobulin G (IgG) is a class of monoclonal antibodies (mAbs) commonly produced in mammalian cell lines. These cell lines are grown in finely adjusted culture media, which contain components that may impact glycoforms. As variation of N-glycoforms can impact the biological properties of IgGs, medium composition should be controlled. Here, we studied the effects on IgG N-glycoforms of different components in hybridoma culture media, specifically compared bovine serum albumin (BSA) with other small molecules, using a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight multistage mass spectrometry (MALDI-QIT-TOF MSn)-based approach. We show that small molecular additives caused little change in glycan species, though a number of these reagents, especially glutamine, affected levels of glycosylation. In comparison, the addition of macromolecular protein BSA significantly changed IgG N-glycan patterns, not only in species but also in glycosylation levels. Together, our finding suggests that BSA increases the complexity of IgG N-glycoforms, thus raising the difficulty in maintaining glycoforms consistency during antibody production. Therefore, the effect of BSA on IgG N-glycans should be considered when designing optimal medium formulations for IgG production. KEY POINTS: • Small molecular medium additives only affect glycosylation levels of IgG N-glycans. • BSA significantly changes IgG N-glycoforms as a medium additive. • BSA's skewing of IgG N-glycoforms should be considered in IgG production.
Collapse
|
94
|
Hajduk J, Brunner C, Malik S, Bangerter J, Schneider G, Thomann M, Reusch D, Zenobi R. Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. MAbs 2020; 12:1736975. [PMID: 32167012 PMCID: PMC7153833 DOI: 10.1080/19420862.2020.1736975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022] Open
Abstract
Minor changes in the quality of biologically manufactured monoclonal antibodies (mAbs) can affect their bioactivity and efficacy. One of the most important variations concerns the N-glycosylation pattern, which directly affects an anti-tumor mechanism called antibody-dependent cell-meditated cytotoxicity (ADCC). Thus, careful engineering of mAbs is expected to enhance both protein-receptor binding and ADCC. The specific aim of this study is to evaluate the influence of terminal carbohydrates within the Fc region on the interaction with the FcγRIIIa/CD16a receptor in native and label-free conditions. The single mAb molecule comprises variants with minimal and maximal galactosylation, as well as α2,3 and α2,6-sialic acid isomers. Here, we apply native electrospray ionization mass spectrometry to determine the solution-phase antibody-receptor equilibria and by using temperature-controlled nanoelectrospray, a thermal stability of the complex is examined. Based on these, we prove that the galactosylation of a fucosylated Fc region increases the binding to CD16a 1.5-fold when compared with the non-galactosylated variant. The α2,6-sialylation has no significant effect on the binding, whereas the α2,3-sialylation decreases it 1.72-fold. In line with expectation, the galactoslylated and α2,6-sialylated mAb:CD16a complex exhibit higher thermal stability when measured in the temperature gradient from 20 to 50°C. The similar binding pattern is observed based on surface plasmon resonance analysis and immunofluorescence staining using natural killer cells. The results of our study provide new insight into N-glycosylation-based interaction of the mAb:CD16a complex.
Collapse
Affiliation(s)
- Joanna Hajduk
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Sebastian Malik
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jana Bangerter
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marco Thomann
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
95
|
Kang H, Larson NR, White DR, Middaugh CR, Tolbert T, Schöneich C. Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc. J Pharm Sci 2020; 109:677-689. [DOI: 10.1016/j.xphs.2019.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
|
96
|
Temming AR, de Taeye SW, de Graaf EL, de Neef LA, Dekkers G, Bruggeman CW, Koers J, Ligthart P, Nagelkerke SQ, Zimring JC, Kuijpers TW, Wuhrer M, Rispens T, Vidarsson G. Functional Attributes of Antibodies, Effector Cells, and Target Cells Affecting NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2019; 203:3126-3135. [PMID: 31748349 DOI: 10.4049/jimmunol.1900985] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Ab-dependent cellular cytotoxicity (ADCC) is one of the most important effector mechanisms of tumor-targeting Abs in current immunotherapies. In ADCC and other Ab-dependent activation of myeloid effector cells, close cell-cell contact (between effector and target cell) and formation of immunological synapses are required. However, we still lack basic knowledge on the principal factors influencing ADCC potential by therapeutic Abs. In this study we investigated the combined roles of five factors affecting human NK cell-mediated ADCC, namely: 1) Ag density, 2) target cell membrane composition, 3) IgG FcγR polymorphism, 4) FcγR-blocking cytophilic Abs, and 5) Ab fucosylation. We demonstrate that the magnitude of NK cell-mediated ADCC responses is predominantly influenced by Ag density and Ab fucosylation. Afucosylation consistently induced efficient ADCC, even at very low Ag density, where fucosylated target Abs did not elicit ADCC. On the side of the effector cell, the FcγRIIIa-Val/Phe158 polymorphism influenced ADCC potency, with NK cells expressing the Val158 variant showing more potent ADCC. In addition, we identified the sialic acid content of the target cell membrane as an important inhibitory factor for ADCC. Furthermore, we found that the presence and glycosylation status of aspecific endogenous Abs bound to NK cell FcγRIIIa (cytophilic Abs) determine the blocking effect on ADCC. These five parameters affect the potency of Abs in vitro and should be further tested as predictors of in vivo capacity.
Collapse
Affiliation(s)
- A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Erik L de Graaf
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Louise A de Neef
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Gillian Dekkers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Christine W Bruggeman
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Jana Koers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Peter Ligthart
- Erythrocyte Serology, Sanquin, 1066 CX Amsterdam, the Netherlands
| | - Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Pediatric Immunology and Infectious diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - James C Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Pediatric Immunology and Infectious diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands;
| |
Collapse
|
97
|
Patel KR, Nott JD, Barb AW. Primary Human Natural Killer Cells Retain Proinflammatory IgG1 at the Cell Surface and Express CD16a Glycoforms with Donor-dependent Variability. Mol Cell Proteomics 2019; 18:2178-2190. [PMID: 31467031 PMCID: PMC6823852 DOI: 10.1074/mcp.ra119.001607] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification confers diverse functional properties to immune system proteins. The composition of serum proteins such as immunoglobulin G (IgG) strongly associates with disease including forms lacking a fucose modification of the crystallizable fragment (Fc) asparagine(N)-linked glycan that show increased effector function, however, virtually nothing is known about the composition of cell surface receptors or their bound ligands in situ because of low abundance in the circulating blood. We isolated primary NK cells from apheresis filters following plasma or platelet donation to characterize the compositional variability of Fc γ receptor IIIa/CD16a and its bound ligand, IgG1. CD16a N162-glycans showed the largest differences between donors; one donor displayed only oligomannose-type N-glycans at N162 that correlate with high affinity IgG1 Fc binding whereas the other donors displayed a high degree of compositional variability at this site. Hybrid-type N-glycans with intermediate processing dominated at N45 and highly modified, complex-type N-glycans decorated N38 and N74 from all donors. Analysis of the IgG1 ligand bound to NK cell CD16a revealed a sharp decrease in antibody fucosylation (43.2 ± 11.0%) versus serum from the same donors (89.7 ± 3.9%). Thus, NK cells express CD16a with unique modification patterns and preferentially bind IgG1 without the Fc fucose modification at the cell surface.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames IA 50011
| | - Joel D Nott
- Office of Biotechnology, Protein Facility, Iowa State University, Ames IA 50011
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames IA 50011; Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602; Complex Carbohydrate Research Center, University of Georgia, Athens 30602.
| |
Collapse
|
98
|
Wang Y, Jönsson F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front Immunol 2019; 10:1958. [PMID: 31507592 PMCID: PMC6718464 DOI: 10.3389/fimmu.2019.01958] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are best known for their critical role in host defense, for which they utilize multiple innate immune mechanisms, including microbe-associated pattern recognition, phagocytosis, production of reactive oxygen species, and the release of potent proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their well-established contribution to innate immunity, neutrophils were more recently reported to interact with various other cell types, including cells from the adaptive immune system, thereby enabling neutrophils to tune the overall immune response of the host. Neutrophils express different receptors for IgG antibodies (Fcγ receptors), which facilitate the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-linking of several receptors. Indeed, FcγRs (via IgG antibodies) confer neutrophils with a key feature of the adaptive immunity: an antigen-specific cell response. This review summarizes the expression and function of FcγRs on human neutrophils in health and disease and how they are affected by polymorphisms in the FCGR loci. Additionally, we will discuss the role of neutrophils in providing help to marginal zone B cells for the production of antibodies, which in turn may trigger neutrophil effector functions when engaging FcγRs.
Collapse
Affiliation(s)
- Yu Wang
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
- Université Diderot Paris VII, PSL University, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
| |
Collapse
|
99
|
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200:110-125. [DOI: 10.1016/j.pharmthera.2019.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
|
100
|
Abstract
The precise mechanisms underlying anti-inflammatory effects of intravenous immunoglobulin (IVIg) therapies remain elusive. The sialylated IgG fraction within IVIg has been shown to be therapeutically more active in mouse models. Functionally, it has been suggested that IgG undergoes conformational changes upon Fc-sialylation which sterically impede binding to conventional FcγRs, but simultaneously allow binding to human DC-SIGN (SIGN-R1 in mice) and also CD23. These latter C-type lectins have been proposed responsible for the immunomodulatory effects in mouse models. However, there is conflicting evidence supporting direct interactions between sialylated human IgG and CD23/DC-SIGN. While cells expressing human CD23 and DC-SIGN in their native configuration bound their natural ligands IgE and ICAM-3, respectively, no IgG binding was observed, regardless of Fc-glycan sialylation in any context (with or without bisection and/or fucosylation) or presence of sialylated Fab-glycans. This was tested by both by FACS and a novel cellular Surface Plasmon Resonance imaging (cSPRi) approach allowing for monitoring low-affinity but high-avidity interactions. In summary, we find no evidence for human CD23 or DC-SIGN being bona fide receptors to human IgG, regardless of IgG Fc- or Fab-glycosylation status. However, these results do not exclude the possibility that either IgG glycosylation or C-type lectins affect IVIg therapies.
Collapse
|