51
|
Zhan E, Cao W, Fan X, Zhang R, Du H, Xu Y, Li L, Dong N, Li S. Decreased expression of adenosine receptor 2B confers cardiac protection against ischemia via restoring autophagic flux. Am J Transl Res 2020; 12:7995-8006. [PMID: 33437375 PMCID: PMC7791490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/26/2020] [Indexed: 06/12/2023]
Abstract
Adora2B (adenosine receptor 2B) has been reported as one of the key modulators during cardiac remodeling after acute myocardial infarction (AMI). However, the molecular mechanism involved has not been well investigated. Thus, our study aims to investigate whether Adora2B contributes to cardiac remodeling after AMI and its underlying mechanisms. Adenovirus harboring Adora2B or shAdora2B was injected in the border zone in a mouse model of AMI experimentally produced by permanent ligation of left anterior descending (LAD) coronary artery. Decreased Adora2B expression protected the cardiomyocytes from MI-induced autophagic flux obstacle, improved cardiac function, and reduced fibrosis after MI. Adora2B downregulation attenuated the accumulation of LC3-II and p62, which are autophagy substrate proteins. An adenovirus containing mRFP-GFP-LC3 showed that decreased expression of Adora2B restored the autophagic flux by enhancing autophagosome conversion to autophagolysosome. Also, Adora2B knockdown improved cardiomyocytes' survival and protected mitochondrial function of cardiomyocytes insulted with hypoxia. Notably, the effect of Adora2B on autophagy flux and cardiomyocyte protection could be mitigated by autophagy inhibitor chloroquine. Our results demonstrate that decreased expression of Adora2B protected cardiomyocytes from impaired autophagy flux induced by MI. Modulation Adora2B expression plays a significant role in blunting the worsening of heart function and reducing scar formation, suggesting therapeutic potential by targeting Adora2B in AMI for the infarct healing.
Collapse
Affiliation(s)
- Enbo Zhan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Xiaoying Fan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Hongwei Du
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Yousheng Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Lili Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Nana Dong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| | - Shaojun Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, P. R. China
| |
Collapse
|
52
|
Khalil SM, Bernstein I, Kulaga H, Gour N, Rowan N, Lajoie S, Lane AP. Interleukin 13 (IL-13) alters hypoxia-associated genes and upregulates CD73. Int Forum Allergy Rhinol 2020; 10:1096-1102. [PMID: 32673430 PMCID: PMC11268491 DOI: 10.1002/alr.22630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Interleukin 13 (IL-13) is a pleiotropic cytokine that has been shown to be important in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and other type 2 inflammation-related diseases. Increased IL-13 expression can elicit several pro-inflammatory effects, including eosinophilia, and pathology such as increased mucus secretion. Polypogenesis in chronic rhinosinusitis (CRS) can be caused by hypoxia, which can also lead to hyperpermeability of airway epithelium and epithelium-to-mesenchymal translation through the upregulation of hypoxia-associated genes, such as HIF1. Whether T-helper 2 (Th2) inflammatory cytokines, such as IL-13, can also induce sinonasal epithelial hypoxia-associated genes is currently unknown. METHODS Human air-liquid interface (ALI) sinonasal epithelial cell cultures treated with recombinant IL-13 were analyzed by real-time polymerase chain reaction (PCR) and flow cytometry to determine the effect on epithelial cells. RESULTS Whole tissue from CRSwNP subjects showed increased HIF1A gene expression. Treatment of fully differentiated human ALI cultures with IL-13 resulted in a concurrent increase in HIF1A and ARNT messenger RNA (mRNA) expression. However, the level of EPAS1 expression was significantly reduced. IL-13 also had a dose-dependent response on the expression of HIF genes and the time course experiment showed peak expression of HIF1A and ARNT at 5 to 7 days poststimulation. Remarkably, CD73 surface expression also peaked at day 5 poststimulation. CONCLUSION Our data suggests that IL-13 can induce hypoxia signaling pathway genes leading to surface expression of CD73, which has an anti-inflammatory effect.
Collapse
Affiliation(s)
- Syed Muaz Khalil
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Isaac Bernstein
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Heather Kulaga
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Naina Gour
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nicholas Rowan
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stephane Lajoie
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrew P. Lane
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
53
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
54
|
Transcription-independent Induction of ERBB1 through Hypoxia-inducible Factor 2A Provides Cardioprotection during Ischemia and Reperfusion. Anesthesiology 2020; 132:763-780. [PMID: 31794514 DOI: 10.1097/aln.0000000000003037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND During myocardial ischemia, hypoxia-inducible factors are stabilized and provide protection from ischemia and reperfusion injury. Recent studies show that myocyte-specific hypoxia-inducible factor 2A promotes myocardial ischemia tolerance through induction of epidermal growth factor, amphiregulin. Here, the authors hypothesized that hypoxia-inducible factor 2A may enhance epidermal growth factor receptor 1 (ERBB1) expression in the myocardium that could interface between growth factors and its effect on providing tolerance to ischemia and reperfusion injury. METHODS Human myocardial tissues were obtained from ischemic heart disease patients and normal control patients to compare ERBB1 expression. Myocyte-specific Hif2a or ErbB1 knockout mice were generated to observe the effect of Hif2a knockdown in regulating ERBB1 expression and to examine the role of ERBB1 during myocardial ischemia and reperfusion injury. RESULTS Initial studies of myocardial tissues from patients with ischemic heart disease showed increased ERBB1 protein (1.12 ± 0.24 vs. 13.01 ± 2.20, P < 0.001). In contrast, ERBB1 transcript was unchanged. Studies using short hairpin RNA repression of Hif2A or Hif2a Myosin Cre+ mice directly implicated hypoxia-inducible factor 2A in ERBB1 protein induction during hypoxia or after myocardial ischemia, respectively. Repression of RNA-binding protein 4 abolished hypoxia-inducible factor 2A-dependent induction of ERBB1 protein. Moreover, ErbB1 Myosin Cre+ mice experienced larger infarct sizes (22.46 ± 4.06 vs. 46.14 ± 1.81, P < 0.001) and could not be rescued via amphiregulin treatment. CONCLUSIONS These findings suggest that hypoxia-inducible factor 2A promotes transcription-independent induction of ERBB1 protein and implicates epidermal growth factor signaling in protection from myocardial ischemia and reperfusion injury.
Collapse
|
55
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
56
|
Lee JS, Wang RX, Goldberg MS, Clifford GP, Kao DJ, Colgan SP. Microbiota-Sourced Purines Support Wound Healing and Mucous Barrier Function. iScience 2020; 23:101226. [PMID: 32554188 PMCID: PMC7303675 DOI: 10.1016/j.isci.2020.101226] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
The intestinal mucosa requires high levels of nucleotides for energy procurement, proliferation, and innate immunity. This need for nucleotide substrates substantially increases during injury, infection, and wound healing. In the present studies, we profile potential sources of purine nucleotides in murine mucosal tissue. This work reveals the gut microbiota as a prominent source of exogenous purines and that such microbiota-sourced purines (MSPs) are available to the intestinal mucosa. The MSPs are utilized for nucleotide genesis and promote energy balance. Further analyses reveal that colitic tissues lacking MSPs are proliferatively stunted, with notable energetic and endoplasmic reticulum stress to the detriment of mucous barrier integrity. Purine reconstitution either directly or through colonization of germ-free/antibiotic-treated mice with MSP-sufficient E. coli alleviates such deficits, establishing MSP as a critical source of substrate for tissue metabolism, wound healing, and mucous barrier sterile integrity.
Collapse
Affiliation(s)
- J Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Ruth X Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Matthew S Goldberg
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Garrett P Clifford
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Daniel J Kao
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA.
| |
Collapse
|
57
|
Soleimani A, Farshchi HK, Mirzavi F, Zamani P, Ghaderi A, Amini Y, Khorrami S, Mashayekhi K, Jaafari MR. The therapeutic potential of targeting CD73 and CD73-derived adenosine in melanoma. Biochimie 2020; 176:21-30. [PMID: 32585229 DOI: 10.1016/j.biochi.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Abstract
The hypoxic environment of melanoma results in CD73 upregulation on the surface of various tumor microenvironment (TME) cells including tumor cells, stromal cells and infiltrated immune cells. Consequently, CD73 through both enzymatic and none enzymatic functions affect melanoma progression. Overaccumulation of CD73-derived adenosine through interaction with its four G coupled receptors (A1AR, A2AAR, A2BAR, and A3AR) mediate tumor growth, immune suppression, angiogenesis, and metastasis. This paper aims to comprehensively review the therapeutic potential of CD73 ectonucleotidase targeting in melanoma. To reach this goal, firstly, we summarize the structure, function, regulation, and clinical outcome of CD73 ectonucleotidase. Then, we depict the metabolism and signaling of CD73-derived adenosine along with its progressive role in development of melanoma. Furthermore, the therapeutic potentials of CD73 -adenosine axis targeting is assessed in both preclinical and clinical studies. Targeting CD73-derived adenosine via small molecule inhibitor or monoclonal antibodies studies especially in combination with immune checkpoint blockers including PD-1 and CTLA-4 have shown desirable results for management of melanoma in preclinical studies and several clinical trials have recently been started to evaluate the therapeutic potential of CD73-derived adenosine targeting in solid tumors. Indeed, targeting of CD73-derived adenosine signaling could be considered as a new therapeutic target in melanoma.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helale Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
58
|
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020; 295:10493-10505. [PMID: 32503843 DOI: 10.1074/jbc.rev120.011188] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA .,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Jackson EK, Gillespie DG, Cheng D, Mi Z, Menshikova EV. Characterization of the N 6-etheno-bridge method to assess extracellular metabolism of adenine nucleotides: detection of a possible role for purine nucleoside phosphorylase in adenosine metabolism. Purinergic Signal 2020; 16:187-211. [PMID: 32367441 PMCID: PMC7367995 DOI: 10.1007/s11302-020-09699-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,β-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Elizabeth V. Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| |
Collapse
|
60
|
Losenkova K, Zuccarini M, Karikoski M, Laurila J, Boison D, Jalkanen S, Yegutkin GG. Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia. J Cell Sci 2020; 133:jcs241463. [PMID: 32317394 PMCID: PMC10681022 DOI: 10.1242/jcs.241463] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular adenosine mediates diverse anti-inflammatory, angiogenic and vasoactive effects, and has become an important therapeutic target for cancer, which has been translated into clinical trials. This study was designed to comprehensively assess adenosine metabolism in prostate and breast cancer cells. We identified cellular adenosine turnover as a complex cascade, comprising (1) the ectoenzymatic breakdown of ATP via sequential ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1, officially known as ENPP1), ecto-5'-nucleotidase (CD73, also known as NT5E), and adenosine deaminase reactions, and ATP re-synthesis through a counteracting adenylate kinase and members of the nucleoside diphosphate kinase (NDPK, also known as NME/NM23) family; (2) the uptake of nucleotide-derived adenosine via equilibrative nucleoside transporters; and (3) the intracellular adenosine phosphorylation into ATP by adenosine kinase and other nucleotide kinases. The exposure of cancer cells to 1% O2 for 24 h triggered an ∼2-fold upregulation of CD73, without affecting nucleoside transporters, adenosine kinase activity and cellular ATP content. The ability of adenosine to inhibit the tumor-initiating potential of breast cancer cells via a receptor-independent mechanism was confirmed in vivo using a xenograft mouse model. The existence of redundant pathways controlling extracellular and intracellular adenosine provides a sufficient justification for reexamination of the current concepts of cellular purine homeostasis and signaling in cancer.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Mariachiara Zuccarini
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
- Department of Medical, Oral and Biotechnological Sciences, 'G. D'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marika Karikoski
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Juha Laurila
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | | |
Collapse
|
61
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
62
|
Adenosinergic System Involvement in Ischemic Stroke Patients' Lymphocytes. Cells 2020; 9:cells9051072. [PMID: 32344922 PMCID: PMC7290971 DOI: 10.3390/cells9051072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Adenosine modulates many physiological processes through the interaction with adenosine receptors (ARs) named as A1, A2A, A2B, and A3ARs. During ischemic stroke, adenosine mediates neuroprotective and anti-inflammatory effects through ARs activation. One of the dominant pathways generating extracellular adenosine involves the dephosphorylation of ATP by ecto-nucleotidases CD39 and CD73, which efficiently hydrolyze extracellular ATP to adenosine. The aim of the study is to assess the presence of ARs in lymphocytes from ischemic stroke patients compared to healthy subjects and to analyze changes in CD39 and CD73 expression in CD4+ and CD8+ lymphocytes. Saturation binding experiments revealed that A2AARs affinity and density were significantly increased in ischemic stroke patients whilst no differences were found in A1, A2B, and A3ARs. These results were also confirmed in reverse transcription (RT)-polymerase chain reaction (PCR) assays where A2AAR mRNA levels of ischemic stroke patients were higher than in control subjects. In flow cytometry experiments, the percentage of CD73+ cells was significantly decreased in lymphocytes and in T-lymphocyte subclasses CD4+ and CD8+ obtained from ischemic stroke patients in comparison with healthy individuals. These data corroborate the importance of the adenosinergic system in ischemic stroke and could open the way to more targeted therapeutic approaches and biomarker development for ischemic stroke.
Collapse
|
63
|
Han SJ, Lovaszi M, Kim M, D’Agati V, Haskó G, Lee HT. P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling. FASEB J 2020; 34:5465-5482. [PMID: 32086866 PMCID: PMC7136150 DOI: 10.1096/fj.201903287r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
We tested the hypothesis that the P2X4 purinergic receptor (P2X4) exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation after ischemia and reperfusion (IR). Supporting this, P2X4-deficient (KO) mice were protected against ischemic AKI with significantly attenuated renal tubular necrosis, inflammation, and apoptosis when compared to P2X4 wild-type (WT) mice subjected to renal IR. Furthermore, WT mice treated with P2X4 allosteric agonist ivermectin had exacerbated renal IR injury whereas P2X4 WT mice treated with a selective P2X4 antagonist (5-BDBD) were protected against ischemic AKI. Mechanistically, induction of kidney NLRP3 inflammasome signaling after renal IR was significantly attenuated in P2X4 KO mice. A P2 agonist ATPγS increased NLRP3 inflammasome signaling (NLRP3 and caspase 1 induction and IL-1β processing) in isolated renal proximal tubule cells from WT mice whereas these increases were absent in renal proximal tubules isolated from P2X4 KO mice. Moreover, 5-BDBD attenuated ATPγS induced NLRP3 inflammasome induction in renal proximal tubules from WT mice. Finally, P2X4 agonist ivermectin induced NLRP3 inflammasome and pro-inflammatory cytokines in cultured human proximal tubule cells. Taken together, our studies suggest that renal proximal tubular P2X4 activation exacerbates ischemic AKI and promotes NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - Marianna Lovaszi
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - Mihwa Kim
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - Vivette D’Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY
| | - György Haskó
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - H. Thomas Lee
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| |
Collapse
|
64
|
Yi Y, Zhou Y, Chu X, Zheng X, Fei D, Lei J, Qi H, Dai Y. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J Cancer 2020; 11:421-431. [PMID: 31897237 PMCID: PMC6930437 DOI: 10.7150/jca.31245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine A2b receptor (A2bR) is a member of the G protein-coupled receptor superfamily members, which has been considered involved in the pathogenesis of various cancers. However, little is known about the role of A2bR renal cell carcinoma (RCC). The A2bR expression levels in RCC 769-P and Caki-1 cell lines compared with HK-2 were analyzed by qRT-PCR. 769-P and Caki-1 cells were transfected with shRNA-A2bR to knock down the expression of A2bR. Cell proliferation was detected by MTT assays and colony formation assays. Wounding healing assays and transwell assays were used to evaluate the effects of A2bR on cell capacity of invasion and migration. Finally, potential mechanisms involved in A2bR blockade's effects on altered tumor behaviors were evaluated by western blotting. We showed that A2bR were significantly up-regulated in RCC cells compared to HK-2 cell. Functionally, MRS1754, a selective A2bR antagonist, and knocking-down the expression of A2bR by shRNA reduced proliferation and migration in vitro and tumor growth in vivo. Furthermore, we demonstrated that A2bR blockade inhibited tumor progression in part via the MAPK/JNK pathway. Conclusion: Our findings suggest the A2bR potentially plays an important role in RCC progression and A2bR blockade may be a promising candidate for therapeutic intervention for renal cell carcinoma.
Collapse
Affiliation(s)
- Ye Yi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yihong Zhou
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xi Chu
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xiaoping Zheng
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Deng Fei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Jun Lei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Huiyue Qi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yingbo Dai
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| |
Collapse
|
65
|
Chambers ED, White A, Vang A, Wang Z, Ayala A, Weng T, Blackburn M, Choudhary G, Rounds S, Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J 2020; 34:1516-1531. [PMID: 31914698 PMCID: PMC7045807 DOI: 10.1096/fj.201902286r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.
Collapse
Affiliation(s)
- Eboni D. Chambers
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexis White
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Zhengke Wang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alfred Ayala
- Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02908
| | - Tingting Weng
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Michael Blackburn
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| |
Collapse
|
66
|
Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract 2019; 38:427-440. [PMID: 31537053 PMCID: PMC6913588 DOI: 10.23876/j.krcp.19.062] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) due to renal ischemia reperfusion (IR) is a major clinical problem without effective therapy and is a significant and frequent cause of morbidity and mortality during the perioperative period. Although the pathophysiology of ischemic AKI is not completely understood, several important mechanisms of renal IR-induced AKI have been studied. Renal ischemia and subsequent reperfusion injury initiates signaling cascades mediating renal cell necrosis, apoptosis, and inflammation, leading to AKI. Better understanding of the molecular and cellular pathophysiological mechanisms underlying ischemic AKI will provide more targeted approach to prevent and treat renal IR injury. In this review, we summarize important mechanisms of ischemic AKI, including renal cell death pathways and the contribution of endothelial cells, epithelial cells, and leukocytes to the inflammatory response during ischemic AKI. Additionally, we provide some updated potential therapeutic targets for the prevention or treatment of ischemic AKI, including Toll-like receptors, adenosine receptors, and peptidylarginine deiminase 4. Finally, we propose mechanisms of ischemic AKI-induced liver, intestine, and kidney dysfunction and systemic inflammation mainly mediated by Paneth cell degranulation as a potential explanation for the high mortality observed with AKI.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| |
Collapse
|
67
|
Koh WU, Kim J, Lee J, Song GW, Hwang GS, Tak E, Song JG. Remote Ischemic Preconditioning and Diazoxide Protect from Hepatic Ischemic Reperfusion Injury by Inhibiting HMGB1-Induced TLR4/MyD88/NF-κB Signaling. Int J Mol Sci 2019; 20:ijms20235899. [PMID: 31771292 PMCID: PMC6929132 DOI: 10.3390/ijms20235899] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 01/23/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) is known to have a protective effect against hepatic ischemia-reperfusion (IR) injury in animal models. However, the underlying mechanism of action is not clearly understood. This study examined the effectiveness of RIPC in a mouse model of hepatic IR and aimed to clarify the mechanism and relationship of the ATP-sensitive potassium channel (KATP) and HMGB1-induced TLR4/MyD88/NF-κB signaling. C57BL/6 male mice were separated into six groups: (i) sham-operated control, (ii) IR, (iii) RIPC+IR, (iv) RIPC+IR+glyburide (KATP blocker), (v) RIPC+IR+diazoxide (KATP opener), and (vi) RIPC+IR+diazoxide+glyburide groups. Histological changes, including hepatic ischemia injury, were assessed. The levels of circulating liver enzymes and inflammatory cytokines were measured. Levels of apoptotic proteins, proinflammatory factors (TLR4, HMGB1, MyD88, and NF-κB), and IκBα were measured by Western blot and mRNA levels of proinflammatory cytokine factors were determined by RT-PCR. RIPC significantly decreased hepatic ischemic injury, inflammatory cytokine levels, and liver enzymes compared to the corresponding values observed in the IR mouse model. The KATP opener diazoxide + RIPC significantly reduced hepatic IR injury demonstrating an additive effect on protection against hepatic IR injury. The protective effect appeared to be related to the opening of KATP, which inhibited HMGB1-induced TRL4/MyD88/NF-kB signaling.
Collapse
Affiliation(s)
- Won Uk Koh
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
| | - Jiye Kim
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
| | - Jooyoung Lee
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Gyu Sam Hwang
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
| | - Eunyoung Tak
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
- Correspondence: (E.T.); (J.-G.S.); Tel.: +82-2-3010-4634 (E.T.); Tel.: +82-2-3010-3869 (J.-G.S.)
| | - Jun-Gol Song
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
- Correspondence: (E.T.); (J.-G.S.); Tel.: +82-2-3010-4634 (E.T.); Tel.: +82-2-3010-3869 (J.-G.S.)
| |
Collapse
|
68
|
Kwon JH, Lee J, Kim J, Jo YH, Kirchner VA, Kim N, Kwak BJ, Hwang S, Song GW, Lee SG, Yoon YI, Park GC, Tak E. HIF-1α regulates A2B adenosine receptor expression in liver cancer cells. Exp Ther Med 2019; 18:4231-4240. [PMID: 31772626 PMCID: PMC6862085 DOI: 10.3892/etm.2019.8081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer exhibits the fourth most common cause of cancer-associated mortality worldwide. Due to the rapid growth, solid tumors undergo severe hypoxia and produce high levels of extracellular adenosine to maintain homeostasis. A previous study indicated that the hypoxic condition in liver cancer increased hepatic adenosine, which is known to facilitate cancer survival and proliferation. Extracellular adenosine has been revealed to regulate pathological and physiological processes in cells and tissues. However, its pathophysiological role in liver cancer remains undetermined. Emerging evidence has indicated that the adenosine A2B receptor promotes the progression of liver cancer. Therefore, it was hypothesized that HIF-1α is a transcriptional regulator of A2B in human liver cancer. The current study determined A2B expression of a number of liver cancer cell lines and performed functional studies of HIF-1α as a master transcriptional regulator of hepatic A2B signaling during hypoxic conditions. The current study aimed to identify the promoter region of A2B, which has a hypoxia response element, by performing luciferase assays. The present study demonstrated that reduced HIF-1α expression is associated with low expression of A2B, and HIF-1α overexpression is associated with A2B induction. Furthermore, the siRNA-mediated downregulation of A2B inhibited the growth and proliferation of HepG2, which is a liver cancer cell line. The relationship between HIF-1α and A2B expression was also identified in human liver cancer specimens. In conclusion, the current study indicated that A2B is induced by the HIF-1α transcriptional regulator during hypoxia, and it may be a potential pharmacologic and therapeutic target for the treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Jae Hyun Kwon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jooyoung Lee
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jiye Kim
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Varvara A Kirchner
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nayoung Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Bong Jun Kwak
- Division of Hepatobiliary-Pancreas Surgery and Liver Transplantation, Department of Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Young-In Yoon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eunyoung Tak
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
69
|
Cummins EP, Strowitzki MJ, Taylor CT. Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals. Physiol Rev 2019; 100:463-488. [PMID: 31539306 DOI: 10.1152/physrev.00003.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular oxygen (O2) and carbon dioxide (CO2) are the primary gaseous substrate and product of oxidative phosphorylation in respiring organisms, respectively. Variance in the levels of either of these gasses outside of the physiological range presents a serious threat to cell, tissue, and organism survival. Therefore, it is essential that endogenous levels are monitored and kept at appropriate concentrations to maintain a state of homeostasis. Higher organisms such as mammals have evolved mechanisms to sense O2 and CO2 both in the circulation and in individual cells and elicit appropriate corrective responses to promote adaptation to commonly encountered conditions such as hypoxia and hypercapnia. These can be acute and transient nontranscriptional responses, which typically occur at the level of whole animal physiology or more sustained transcriptional responses, which promote chronic adaptation. In this review, we discuss the mechanisms by which mammals sense changes in O2 and CO2 and elicit adaptive responses to maintain homeostasis. We also discuss crosstalk between these pathways and how they may represent targets for therapeutic intervention in a range of pathological states.
Collapse
Affiliation(s)
- Eoin P Cummins
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Moritz J Strowitzki
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
70
|
Sanmarco LM, Eberhardt N, Bergero G, Quebrada Palacio LP, Adami PM, Visconti LM, Minguez ÁR, Hernández-Vasquez Y, Carrera Silva EA, Morelli L, Postan M, Aoki MP. Monocyte glycolysis determines CD8+ T cell functionality in human Chagas disease. JCI Insight 2019; 4:123490. [PMID: 31479429 DOI: 10.1172/jci.insight.123490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Chagas disease is a lifelong pathology resulting from Trypanosoma cruzi infection. It represents one of the most frequent causes of heart failure and sudden death in Latin America. Herein, we provide evidence that aerobic glycolytic pathway activation in monocytes drives nitric oxide (NO) production, triggering tyrosine nitration (TN) on CD8+ T cells and dysfunction in patients with chronic Chagas disease. Monocytes from patients exhibited a higher frequency of hypoxia-inducible factor 1α and increased expression of its target genes/proteins. Nonclassical monocytes are expanded in patients' peripheral blood and represent an important source of NO. Monocytes entail CD8+ T cell surface nitration because both the frequency of nonclassical monocytes and that of NO-producing monocytes positively correlated with the percentage of TN+ lymphocytes. Inhibition of glycolysis in in vitro-infected peripheral blood mononuclear cells decreased the inflammatory properties of monocytes/macrophages, diminishing the frequency of IL-1β- and NO-producing cells. In agreement, glycolysis inhibition reduced the percentage of TN+CD8+ T cells, improving their functionality. Altogether, these results clearly show that glycolysis governs oxidative stress on monocytes and modulates monocyte-T cell interplay in human chronic Chagas disease. Understanding the pathological immune mechanisms that sustain an inflammatory environment in human pathology is key to designing improved therapies.
Collapse
Affiliation(s)
- Liliana María Sanmarco
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Natalia Eberhardt
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Gastón Bergero
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | | | - Pamela Martino Adami
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Marina Visconti
- Hospital Nuestra Señora de la Misericordia, Córdoba, Argentina.,Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, II Cátedra de Infectología, Córdoba, Argentina
| | | | | | - Eugenio Antonio Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, Academia Nacional de Medicina, CONICET, Buenos Aires, Argentina
| | - Laura Morelli
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén," Buenos Aires, Argentina
| | - Maria Pilar Aoki
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
71
|
Soleimani A, Taghizadeh E, Shahsavari S, Amini Y, Rashidpour H, Azadian E, Jafari A, Parizadeh MR, Mashayekhi K, Soukhtanloo M, Jaafari MR. CD73; a key ectonucleotidase in the development of breast cancer: Recent advances and perspectives. J Cell Physiol 2019; 234:14622-14632. [PMID: 30693504 DOI: 10.1002/jcp.28187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Tumor cell invasion and metastasis are the definitive cause of mortality in breast cancer (BC). Hypoxia and pro-inflammatory cytokines upregulate the CD73 gene in the tumor microenvironment. Subsequently, CD73 triggers molecular and cellular signaling pathways by both enzymatic and nonenzymatic pathways, which finally leads to breast tumor progression and development. In this paper, we summarize current advances in the understanding of CD73-driven mechanisms that promote BC development and mortality. Furthermore, we evaluate the therapeutic potential of CD73 targeting in BC.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Shahsavari
- Division of Biotechnology, Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hatam Rashidpour
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeel Azadian
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Jafari
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
72
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
73
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
74
|
Ko CL, Lin JA, Chen KY, Hsu AC, Wu SY, Tai YT, Lin KH, Chung WC, Li MH. Netrin-1 Dampens Hypobaric Hypoxia-Induced Lung Injury in Mice. High Alt Med Biol 2019; 20:293-302. [PMID: 31329475 DOI: 10.1089/ham.2018.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: This study aimed to explore the effects of netrin-1 on hypobaric hypoxia-induced lung injury in mice. Methods: We exposed 6-8-week-old C57BL/6 mice to hypobaric stress at 340 mmHg for 30 minutes followed by 260 mmHg for different periods (6, 12, 18, and 24 hours) to observe the severity of lung injury (O2 concentration, 21%; 54.6 mmHg). The wet/dry weight ratio and protein leakage from the mouse lung were used to determine the suitable exposure time. Netrin-1 was injected into the tail vein of mice before 18-hour decompression. Inflammatory cytokines, lung injury scores, and activity of nuclear factor κB were evaluated. The expression of apoptosis-related proteins was also examined. Results: Protein concentration in the bronchoalveolar lavage fluid was significantly higher in the 18-hour group (p < 0.05). Pulmonary pathology revealed neutrophil infiltration, alveolar septum thickening, and tissue edema. Injury score and macrophage inflammatory protein 2 levels were also increased. Intrinsic apoptosis pathway was activated. Hypoxia decreased the expression of Bcl2 protein, the number of active caspase-3-stained cells, and UNC5HB receptors. Pretreatment with netrin-1 reduced protein leakage, inhibited neutrophil migration, lowered the injury score, attenuated apoptosis, and increased UNC5HB receptor expression. Conclusion: Netrin-1 dampens hypobaric hypoxia-induced lung injury by inhibiting neutrophil migration and attenuating apoptosis.
Collapse
Affiliation(s)
- Ching-Lung Ko
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jui-An Lin
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kung-Yen Chen
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - An-Chih Hsu
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ting Tai
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ko-Huan Lin
- Division of Psychiatry, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Wei-Chen Chung
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Hui Li
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
75
|
Alter C, Ding Z, Flögel U, Scheller J, Schrader J. A2bR-dependent signaling alters immune cell composition and enhances IL-6 formation in the ischemic heart. Am J Physiol Heart Circ Physiol 2019; 317:H190-H200. [DOI: 10.1152/ajpheart.00029.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the cardioprotective effect of adenosine is undisputed, the role of the adenosine A2breceptor (A2bR) in ischemic cardiac remodeling is not defined. In this study we aimed to unravel the role A2bR plays in modulating the immune response and the healing mechanisms after myocardial infarction. Genetic and pharmacological (PSB603) inactivation of A2bR as well as activation of A2bR with BAY60-6583 does not alter cardiac remodeling of the infarcted (50-min left anterior descending artery occlusion/reperfusion) murine heart. Flow cytometry of immune cell subsets identified a significant increase in B cells, NK cells, CD8 and CD4 T cells, as well as FoxP3-expressing regulatory T cells in the injured heart in A2bR-deficient mice. Analysis of T-cell function revealed that expression and secretion of interleukin (IL)-2, interferon (IFN)γ, and tumor necrosis factor (TNF)α by T cells is under A2bR control. In addition, we found substantial cellular heterogeneity in the response of immune cells and cardiomyocytes to A2bR deficiency: while in the absence of A2bR, expression of IL-6 was greatly reduced in cardiomyocytes and immune cells except T cells, and expression of IL-1β was strongly reduced in cardiomyocytes, granulocytes, and B cells as determined by quantitative PCR. Our findings indicate that A2bR signaling in the ischemic heart triggers substantial changes in cardiac immune cell composition of the lymphoid lineage and induces a profound cell type-specific downregulation of IL-6 and IL-1β. This suggests the presence of a targetable adenosine–A2bR–IL-6-axis triggered by adenosine formed by the ischemic heart.NEW & NOTEWORTHY Genetic deletion and pharmacological inactivation/activation of A2bR does not alter cardiac remodeling after MI but is associated by compensatory upregulation of various pro- and anti-inflammatory immune cell subsets (B cells, NK cells, CD8 and CD4 T cells, regulatory T cells). In the inflamed heart, A2bR modulates the expression of IL-2, IFNγ, TNFα in T cells and of IL-6 in cardiomyocytes, monocytes, granulocytes and B cells. This suggests an important adenosine–IL-6 axis, which is controlled by A2bR via local adenosine.
Collapse
Affiliation(s)
- Christina Alter
- Department of Molecular Cardiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Ulrich Flögel
- Department of Molecular Cardiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, University Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
76
|
Roldan CJ, Lo TC, Huh B. Recurrence of complex regional pain syndrome after administration of adenosine. Pain Manag 2019; 9:233-237. [PMID: 31140915 DOI: 10.2217/pmt-2018-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The effects of adenosine in acute chronic pain are not clear. Literature supports both a pronociceptive/inflammatory role of the A2aR/A2bR and antihyperalgesia/allodynia with A1Rs/A3Rs. Adenosine could participate in the reactivation of chronic regional pain syndrome (CRPS) through inflammatory pathways and via A2Rs. Plastic changes in the brain CRPS-related overlap with those seen in systemic inflammation and persist even after symptoms of CRPS resolve. Aim: To illustrate the hypothesis that intravenous adenosine can reactivate dormant CRPS. Case report: An individual with successfully treated CRPS developed supraventricular tachycardia, he was treated with intravenous adenosine. Shortly after a second dose, he developed severe pain at a lower limb from relapsed CRPS. Treatment included lumbar sympathetic block, physical therapy and pharmacological agents. Conclusion: Intravenous adenosine can reactivate dormant CRPS. Its potential pronociceptive role in CRPS calls for further studies to better elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Carlos J Roldan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Emergency Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tony Ct Lo
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Billy Huh
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
77
|
Singh BL, Chen L, Cai H, Shi H, Wang Y, Yu C, Chen X, Han X, Cai X. Activation of adenosine A2a receptor accelerates and A2a receptor antagonist reduces intermittent hypoxia induced PC12 cell injury via PKC-KATP pathway. Brain Res Bull 2019; 150:118-126. [PMID: 31129168 DOI: 10.1016/j.brainresbull.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with multiple system diseases. Neurocognitive dysfunction resulting from central nervous system complications has been reported, especially in children with OSAHS. Chronic intermittent hypoxia is accepted to be the major pathophysiological mechanism of OSAHS. Adenosine plays an important role in cellular function via interactions with its receptors. A2a receptor has been recognized as a factor involved in neuroprotection. However, the role of adenosine A2a receptor in intermittent hypoxia induced cellular injury is not completely understood. In this study, we aim to investigate the underlying mechanisms of A2a receptor mediated cellular damage caused by intermittent hypoxia in PC12 cells. We found that activated A2a receptor by CGS21680 decreased cellular viability, increased PKC as well as ATP-sensitive potassium channel (KATP) subunits expression Kir6.2 and SUR1. Inhibition of A2a receptor by SCH58261 increased cellular viability, suppressed PKC and SUR1 expression level, ultimately showing a protective role in PC12 cells. Moreover, we observed that CHE, which is an antagonist of PKC, downregulated Kir6.2 and SUR1 expression and increased cellular viability. Additionally, we found that A2a receptor activation induced cell injury was associated with increased Cleaved-Caspase 3 expression, which can be decreased by inhibition of A2a receptor or PKC. In conclusion, our findings indicate that A2a receptor induced KATP expression by PKC activation and plays a role in accelerating PC12 cells injury induced by intermittent hypoxia exposure via A2a-PKC-KATP signal pathway mediated apoptosis.
Collapse
Affiliation(s)
- Brett Lyndall Singh
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Liya Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Huilin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Hua Shi
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yueyuan Wang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xinru Han
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
78
|
Nedeljkovic N. Complex regulation of ecto-5'-nucleotidase/CD73 and A 2AR-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. Pharmacol Res 2019; 144:99-115. [PMID: 30954629 DOI: 10.1016/j.phrs.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
The review summarizes available data regarding the complex regulation of CD73 at the neurovascular unit (NVU) during neuroinflammation. Based on available data we propose the biphasic pattern of CD73 regulation at NVU, with an early attenuation and a postponed up-regulation of CD73 activity. Transient attenuation of CD73 activity on leukocyte/vascular endothelium and leukocyte/astrocyte surface, required for the initiation of a neuroinflammatory response, may be effectuated either by catalytic inhibition of CD73 and/or by shedding of the CD73 molecule from the cell surface, while postponed induction of CD73 is effectuated by transcriptional up-regulation of Nt5e and posttranslational modifications. Neuroinflammatory conditions are also associated with significant enhancement and gain-of-function of A2AR-mediated adenosine signaling. However, in contrast to the temporary prevalence of A2AR over A1R signaling during an acute inflammatory response, prolonged induction of A2AR and resulting perpetual CD73/A2AR coupling may be a contributing factors in the transition between acute and chronic neuroinflammation. Thus, pharmacological targeting of the CD73/A2AR axis may attenuate inflammatory response and ameliorate neurological deficits in chronic neuroinflammatory conditions.
Collapse
Affiliation(s)
- Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Studentski trg 3, Belgrade 11001, Serbia.
| |
Collapse
|
79
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019; 13:124. [PMID: 30983976 PMCID: PMC6447611 DOI: 10.3389/fncel.2019.00124] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adenosine receptors (ARs) function in the body’s response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
80
|
Sadiku P, Walmsley SR. Hypoxia and the regulation of myeloid cell metabolic imprinting: consequences for the inflammatory response. EMBO Rep 2019; 20:embr.201847388. [PMID: 30872317 PMCID: PMC6500960 DOI: 10.15252/embr.201847388] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Inflamed and infected tissue sites are characterised by oxygen and nutrient deprivation. The cellular adaptations to insufficient oxygenation, hypoxia, are mainly regulated by a family of transcription factors known as hypoxia-inducible factors (HIFs). The protein members of the HIF signalling pathway are critical regulators of both the innate and adaptive immune responses, and there is an increasing body of evidence to suggest that the elicited changes occur through cellular metabolic reprogramming. Here, we review the literature on innate immunometabolism to date and discuss the role of hypoxia in innate cell metabolic reprogramming, and how this determines immune responses.
Collapse
Affiliation(s)
- Pranvera Sadiku
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah R Walmsley
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
81
|
Abstract
Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.
Collapse
|
82
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019. [PMID: 30983976 DOI: 10.3389/fncel.2019.00124/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
83
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
84
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
85
|
Chambers AM, Wang J, Lupo KB, Yu H, Atallah Lanman NM, Matosevic S. Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Front Immunol 2018; 9:2533. [PMID: 30425720 PMCID: PMC6218627 DOI: 10.3389/fimmu.2018.02533] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Adenosine is a potent immunosuppressive purine metabolite contributing to the pathogenesis of solid tumors. Extracellular adenosine signals on tumor-infiltrating NK cells to inhibit their proliferation, maturation, and cytotoxic function. Cytokine priming imparts upon NK cells distinct activation statuses, which modulate NK anti-tumor immunity and responses to purinergic metabolism. Here, for the first time, we investigated human NK cell responses to adenosinergic signaling in the context of distinct cytokine priming programs. NK cells were shown to be hyper-responsive to adenosine when primed with IL-12 and IL-15 compared to IL-2, exhibiting enhanced IFN-γ expression from CD56bright and CD56dim subsets while modulating the expression of activation marker NKG2D. These responses resulted in signaling that was dependent on mTOR. Adenosine induced upregulation of transcriptional signatures for genes involved in immune responses while downregulating cellular metabolism and other protein synthesis functions that correlate to inhibited oxidative phosphorylation and glycolysis. Overall, our findings show that adenosine acts on specific cellular pathways rather than inducing a broad inhibition of NK cell functions. These responses are dependent on cytokine priming signatures and are important in designing therapeutic interventions that can reprogram NK cell immunometabolism for improved immunotherapies of solid tumors.
Collapse
Affiliation(s)
- Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Hao Yu
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | | | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
86
|
The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018; 7:cells7100156. [PMID: 30287799 PMCID: PMC6211135 DOI: 10.3390/cells7100156] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important metabolite involved in most of the redox metabolism reactions and processes of the cells. H2O2 is recognized as one of the main molecules in the sensing, modulation and signaling of redox metabolism, and it is acting as a second messenger together with hydrogen sulfide (H2S) and nitric oxide (NO). These second messengers activate in turn a cascade of downstream proteins via specific oxidations leading to a metabolic response of the cell. This metabolic response can determine proliferation, survival or death of the cell depending on which downstream pathways (homeostatic, pathological, or protective) have been activated. The cells have several sources of H2O2 and cellular systems strictly control its concentration in different subcellular compartments. This review summarizes research on the role played by H2O2 in signaling pathways of eukaryotic cells and how this signaling leads to homeostatic or pathological responses.
Collapse
|
87
|
Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 2018; 9:34554-34566. [PMID: 30349649 PMCID: PMC6195371 DOI: 10.18632/oncotarget.26177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose The identification of genes with synthetic lethality in the context of mutant TP53 is a promising strategy for the treatment of basal-like triple negative breast cancer (TNBC). This study investigated regulators of mutant TP53 (R248Q) in basal-like TNBC and their impact on tumorigenesis. Experimental Design TNBC cells were analyzed by RNA-seq, and synthetic-lethal shRNA knock-down screening, to identify genes related to the expression of mutant TP53. A tissue microarray of 232 breast cancer samples, that included 66 TNBC cases, was used to assess clinicopathological correlates of tumor protein expression. Functional assays were performed in vitro and in vivo to assess the role of ADORA2B in TNBC. Results Transcriptome profiling identified ADORA2B as up-regulated in basal-like TNBC cell lines with R248Q-mutated TP53, with shRNA-screening suggesting the potential for a synthetic-lethal interaction between these genes. In clinical samples, ADORA2B was highly expressed in 39.4% (26/66) of TNBC patients. ADORA2B-expression was significantly correlated with ER (P < 0.01), PgR (P = 0.027), EGFR (P < 0.01), and tumor size (P = 0.037), and was an independent prognostic factor for outcome (P = 0.036). In line with this, ADORA2B-transduced TNBC cells showed increased tumorigenesis, and ADORA2B knockdown, along with mutant p53 knockdown, decreased metastasis both in vitro and in vivo. Notably, the cytotoxic cyclic peptide SA-I suppressed ADORA2B expression and tumorigenesis in TNBC cell lines. Conclusions ADORA2B expression increases the oncogenic potential of basal-like TNBC and is an independent factor for poor outcome. These data suggest that ADORA2B could serve as a prognostic biomarker and a potential therapeutic target for basal-like TNBC.
Collapse
|
88
|
Knight JS, Mazza LF, Yalavarthi S, Sule G, Ali RA, Hodgin JB, Kanthi Y, Pinsky DJ. Ectonucleotidase-Mediated Suppression of Lupus Autoimmunity and Vascular Dysfunction. Front Immunol 2018; 9:1322. [PMID: 29942314 PMCID: PMC6004379 DOI: 10.3389/fimmu.2018.01322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives CD39 and CD73 are surface enzymes that jut into the extracellular space where they mediate the step-wise phosphohydrolysis of the autocrine and paracrine danger signals ATP and ADP into anti-inflammatory adenosine. Given the role of vascular and immune cells' "purinergic halo" in maintaining homeostasis, we hypothesized that the ectonucleotidases CD39 and CD73 might play a protective role in lupus. Methods Lupus was modeled by intraperitoneal administration of pristane to three groups of mice: wild-type (WT), CD39-/-, and CD73-/-. After 36 weeks, autoantibodies, endothelial function, kidney disease, splenocyte activation/polarization, and neutrophil activation were characterized. Results As compared with WT mice, CD39-/- mice developed exaggerated splenomegaly in response to pristane, while both groups of ectonucleotidase-deficient mice demonstrated heightened anti-ribonucleoprotein production. The administration of pristane to WT mice triggered only subtle dysfunction of the arterial endothelium; however, both CD39-/- and CD73-/- mice demonstrated striking endothelial dysfunction following induction of lupus, which could be reversed by superoxide dismutase. Activated B cells and plasma cells were expanded in CD73-/- mice, while deficiency of either ectonucleotidase led to expansion of TH17 cells. CD39-/- and CD73-/- mice demonstrated exaggerated neutrophil extracellular trap release, while CD73-/- mice additionally had higher levels of plasma cell-free DNA. Conclusion These data are the first to link ectonucleotidases with lupus autoimmunity and vascular disease. New therapeutic strategies may harness purinergic nucleotide dissipation or signaling to limit the damage inflicted upon organs and blood vessels by lupus.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Levi F Mazza
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Yogendra Kanthi
- Division of Cardiology, Ann Arbor Veterans Administration Healthcare System, Ann Arbor, MI, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - David J Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
89
|
CD39 and CD73 in the aortic valve-biochemical and immunohistochemical analysis in valve cell populations and its changes in valve mineralization. Cardiovasc Pathol 2018; 36:53-63. [PMID: 30056298 DOI: 10.1016/j.carpath.2018.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/21/2018] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The calcific aortic valve disease (CAVD) is a common heart pathology that involves inflammation, fibrosis, and calcification of aortic valve leaflets. All these processes could be affected by changes in the extracellular purinergic signaling that depend on the activity of ectonucleotidases, mainly ectonucleoside triphosphate diphosphohydrolase 1 (CD39, eNTPD1) and ecto-5'nucleotidase (CD73, e5NT). OBJECTIVE AND METHODS We investigated the localization of CD39 and CD73 proteins in human noncalcified and calcified aortic valves using immunohistochemistry together with analysis of NTPDases and e5NT activities in aortic valve homogenates by analysis of substrate into product conversion by high-performance liquid chromatography. We also measured the rates of extracellular nucleotide catabolism on the surface of isolated cultured aortic valve endothelial (hAVECs) and interstitial cells (hAVICs) as well as characterized cellular CD39 and CD73 distribution. RESULTS In noncalcified valves, CD39 and CD73 were expressed in both endothelial and interstitial cells, while in calcified valves, the expressions of CD39 and CD73 were significantly down-regulated with the exception of calcified regions where the expression of CD73 was maintained. This correlated with activities in valve homogenates. NTPDase was reduced by 35% and e5NT activity by 50% in calcified vs. noncalcified valve. CD39 and CD73 were present mainly in the cell membrane of hAVECs, but in hAVICs, these proteins were also present intracellularly. The rates of extracellular adenosine triphosphate and adenosine monophosphate hydrolysis in isolated hAVECs and hAVICs were comparable. CONCLUSION The presence of ectonucleotidases in valves and especially in aortic valve interstitial cells highlights important local role of purinergic signaling and metabolism. Changes in the local expression and hence the activity of CD39 and CD73 in calcified valves suggest their potential role in CAVD.
Collapse
|
90
|
Kordaß T, Osen W, Eichmüller SB. Controlling the Immune Suppressor: Transcription Factors and MicroRNAs Regulating CD73/NT5E. Front Immunol 2018; 9:813. [PMID: 29720980 PMCID: PMC5915482 DOI: 10.3389/fimmu.2018.00813] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023] Open
Abstract
The NT5E (CD73) molecule represents an ecto-5′-nucleotidase expressed on the cell surface of various cell types. Hydrolyzing extracellular adenosine monophosphate into adenosine and inorganic phosphate, NT5E performs numerous homeostatic functions in healthy organs and tissues. Importantly, NT5E can act as inhibitory immune checkpoint molecule, since free adenosine generated by NT5E inhibits cellular immune responses, thereby promoting immune escape of tumor cells. MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression on posttranscriptional level through binding to mRNAs, resulting in translational repression or degradation of the targeted mRNA molecule. In tumor cells, miRNA expression patterns are often altered which in turn might affect NT5E surface expression and eventually influence the efficacy of antitumor immune responses. This review describes the diverse roles of NT5E, summarizes current knowledge about transcription factors controlling NT5E expression, and highlights the significance of miRNAs involved in the posttranscriptional regulation of NT5E expression.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
91
|
Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci 2018; 19:ijms19041222. [PMID: 29669994 PMCID: PMC5979498 DOI: 10.3390/ijms19041222] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular nucleotides (e.g., ATP, ADP, UTP, UDP) released by inflammatory cells interact with specific purinergic P2 type receptors to modulate their recruitment and activation. The focus of this review is on stimuli and mechanisms of extracellular nucleotide release and its consequences during inflammation. Necrosis leads to non-specific release of nucleotides, whereas specific release mechanisms include vesicular exocytosis and channel-mediated release via connexin or pannexin hemichannels. These release mechanisms allow stimulated inflammatory cells such as macrophages, neutrophils, and endothelial cells to fine-tune autocrine/paracrine responses during acute and chronic inflammation. Key effector functions of inflammatory cells are therefore regulated by purinergic signaling in acute and chronic diseases, making extracellular nucleotide release a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Michel Dosch
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Joël Gerber
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Fadi Jebbawi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| |
Collapse
|
92
|
Infant cardiopulmonary bypass: CD73 kinetics, association with clinical outcomes, and influence on serum adenosine production capacity. Pediatr Res 2018; 83:858-865. [PMID: 29278640 PMCID: PMC5935543 DOI: 10.1038/pr.2017.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
BackgroundExtracellular adenine nucleotides contribute to ischemia-reperfusion injury following infant cardiopulmonary bypass (CPB), whereas conversion to adenosine may be protective. Alkaline phosphatase (AP), a key enzyme responsible for this conversion, decreases after infant CPB. Indirect evidence suggests that soluble CD73 may simultaneously increase and partially offset this loss of AP. We sought to measure CD73 levels in infants undergoing CPB and determine its association with adenosine production capacity and postoperative support requirements.MethodsA prospective cohort study of infants ≤120 days of age undergoing CPB. CD73 was measured before CPB and during rewarming. Multivariable modeling evaluated the contributions of CD73/AP to adenosine production capacity and postoperative support requirements.ResultsSerum samples from 85 subjects were analyzed. The median CD73 concentration increased following CPB (95.2 vs. 179.8 ng/ml; P<0.0001). Rewarming CD73 was independently inversely associated with vasoactive inotropic support (P<0.005) and length of intensive care unit stay (P<0.005). Combined AP activity and CD73 concentration predicted adenosine production capacity (P<0.0001).ConclusionsSerum CD73 increases following infant CPB. Low rewarming CD73 is independently associated with increased postoperative support requirements. CD73 and AP together predict serum adenosine production capacity and may represent potential therapeutic targets to clear extracellular adenine nucleotides and improve outcomes following infant CPB.
Collapse
|
93
|
Du H, Zhao J, Su Z, Liu Y, Yang Y. Sequencing the exons of human glucocorticoid receptor (NR3C1) gene in Han Chinese with high-altitude pulmonary edema. J Physiol Anthropol 2018; 37:7. [PMID: 29587872 PMCID: PMC5869773 DOI: 10.1186/s40101-018-0168-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/13/2018] [Indexed: 02/01/2023] Open
Abstract
Background High-altitude pulmonary edema (HAPE) is a serious acute mountain sickness that mainly occurs in non-acclimatized individuals after rapid ascent to high altitude. The precise etiology of HAPE remains unclear. This study aimed to investigate whether NR3C1 gene polymorphism is associated with the susceptibility to HAPE. Methods The exons of NR3C1 gene were sequenced by a ABI 3730 DNA analyzer in 133 HAPE patients and matched 135 healthy Han Chinese controls from the Yushu area in Qinghai (the altitude greater than 3500 m). Results DNA sequencing showed the heterozygous substitutions at codon 588 (rs6194) in exon 6 and 766 (rs6196) in exon 9 of NR3C1 gene. The genotypic distributions and allelic frequencies of NR3C1 SNP rs6194 showed significant differences in two groups (P < 0.05). The frequencies of the C allele were significantly higher in the HAPE group than in the control group (P < 0.05) with an odds ratio of 3.009 (95% CI = 1.250-7.244). There were no differences in genotypic and allelic frequencies in rs6196 polymorphism between the two groups. Conclusions NR3C1 gene rs6194 polymorphism is correlated with HAPE susceptibility. CC genotype and C allele of rs6194 polymorphism might increase the risk of HAPE in Han Chinese.
Collapse
Affiliation(s)
- Hui Du
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China.,Research Center for High Altitude Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China
| | - Jing Zhao
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China
| | - Zhanhai Su
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China
| | - Yongnian Liu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China
| | - Yingzhong Yang
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China. .,Research Center for High Altitude Medical Sciences, Medical College, Qinghai University, Xining, 810001, Qinghai, China.
| |
Collapse
|
94
|
Kovacs-Kasa A, Kim KM, Cherian-Shaw M, Black SM, Fulton DJ, Verin AD. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role. J Cell Physiol 2018; 233:5736-5746. [PMID: 29168172 DOI: 10.1002/jcp.26281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling.
Collapse
Affiliation(s)
- Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Kyung Mi Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephen M Black
- Center for Lung Vascular Pathobiology, University of Arizona, Phoenix, Arizona
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
95
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
96
|
Lee JS, Yilmaz Ö. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. Int J Mol Sci 2018; 19:E199. [PMID: 29315226 PMCID: PMC5796148 DOI: 10.3390/ijms19010199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling have has strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| |
Collapse
|
97
|
Liang D, Shao H, Born WK, O’Brien RL, Kaplan HJ, Sun D. Connection between γδ T-cell- and Adenosine- Mediated Immune Regulation in the Pathogenesis of Experimental Autoimmune Uveitis. Crit Rev Immunol 2018; 38:233-243. [PMID: 30004859 PMCID: PMC6361114 DOI: 10.1615/critrevimmunol.2018026150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory effects of γδ T-cells on immune responses have been studied for years. We have investigated the regulatory effect of γδ T-cells on Th1 and Th17 autoimmune responses, and have studied molecular and cellular mechanisms by which γδ T-cells enhance or inhibit immune responses, exploiting a well-characterized murine model of experimental autoimmune uveitis (EAU). Our results show that (1) aberrant γδ T-cell activation is an important pathogenic event in EAU; (2) γδ T-cells have a unique regulatory effect on Th17 autoimmune responses, which is shaped by the activation status of γδ T-cells; and (3) γδ-mediated immunoregulation is closely linked with the extracellular adenosine metabolism. Reciprocal interactions between γδ T-cells and extracellular adenosine partially determine the development of EAU.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Rebecca L. O’Brien
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
98
|
Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, Vavricka SR, Fiocchi C. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol 2018; 15:39-49. [PMID: 29018271 DOI: 10.1038/nrgastro.2017.136] [Citation(s) in RCA: 609] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of environmental factors have been associated with the development of IBD. Alteration of the gut microbiota, or dysbiosis, is closely linked to initiation or progression of IBD, but whether dysbiosis is a primary or secondary event is unclear. Nevertheless, early-life events such as birth, breastfeeding and exposure to antibiotics, as well as later childhood events, are considered potential risk factors for IBD. Air pollution, a consequence of the progressive contamination of the environment by countless compounds, is another factor associated with IBD, as particulate matter or other components can alter the host's mucosal defences and trigger immune responses. Hypoxia associated with high altitude is also a factor under investigation as a potential new trigger of IBD flares. A key issue is how to translate environmental factors into mechanisms of IBD, and systems biology is increasingly recognized as a strategic tool to unravel the molecular alterations leading to IBD. Environmental factors add a substantial level of complexity to the understanding of IBD pathogenesis but also promote the fundamental notion that complex diseases such as IBD require complex therapies that go well beyond the current single-agent treatment approach. This Review describes the current conceptualization, evidence, progress and direction surrounding the association of environmental factors with IBD.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Boston, Massachusetts 02114, USA
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre, 804-F-175 McDermot Avenue, Winnipeg Manitoba R3E 3P4, Canada
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche & Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA, 650 Charles E. Young Drive South CHS 44-133, Los Angeles, California 90095-7278, USA
| | - Andrew Macpherson
- Gastroenterology/UVCM, Inselspital, Freiburgstrasse 8, 3010 Bern, Switzerland
| | - Markus F Neurath
- I. Department of Medicine, University of Erlangen-Nürnberg, University Hospital, Ulmenweg 18, 91054 Erlangen, Germany
| | - Raja A Raja Ali
- The National University of Malaysia, UKM Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Stephan R Vavricka
- Triemli Hospital, Department of Gastroenterology & Hepatology, Birmensdorferstrasse 497, 8063 Zurich, Switzerland
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, and Department of Gastroenterology & Hepatology, Digestive Diseases and Surgery Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
99
|
Oyama Y, Bartman CM, Gile J, Sehrt D, Eckle T. The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury. Curr Pharm Des 2018; 24:3376-3383. [PMID: 30246635 PMCID: PMC6318050 DOI: 10.2174/1381612824666180924102530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recently, we identified the circadian rhythm protein Period 2 (PER2) in robust cardioprotection from myocardial ischemia (MI). Based on findings that perioperative MI is the most common major cardiovascular complication and that anesthetics can alter the expression of PER2, we hypothesized that an anesthesia mediated downregulation of PER2 could be detrimental if myocardial ischemia and reperfusion (IR) would occur. METHODS AND RESULTS We exposed mice to pentobarbital, fentanyl, ketamine, propofol, midazolam or isoflurane and determined cardiac Per2 mRNA levels. Unexpectedly, only midazolam treatment resulted in an immediate and significant downregulation of Per2 transcript levels. Subsequent studies in mice pretreated with midazolam using an in-situ mouse model for myocardial (IR)-injury revealed a significant and dramatic increase in infarct sizes or Troponin-I serum levels in the midazolam treated group when compared to controls. Using the recently identified flavonoid, nobiletin, as a PER2 enhancer completely abolished the deleterious effects of midazolam during myocardial IR-injury. Moreover, nobiletin treatment alone significantly reduced infarct sizes or Troponin I levels in wildtype but not in Per2-/- mice. Pharmacological studies on nobiletin like flavonoids revealed that only nobiletin and tangeritin, both found to enhance PER2, were cardioprotective in our murine model for myocardial IR-injury. CONCLUSION We identified midazolam mediated downregulation of cardiac PER2 as an underlying mechanism for a deleterious effect of midazolam pretreatment in myocardial IR-injury. These findings highlight PER2 as a cardioprotective mechanism and suggest the PER2 enhancers nobiletin or tangeritin as a preventative therapy for myocardial IR-injury in the perioperative setting where midazolam pretreatment occurs frequently.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Jennifer Gile
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Daniel Sehrt
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
100
|
Roy C, Tabiasco J, Caillon A, Delneste Y, Merot J, Favre J, Guihot AL, Martin L, Nascimento DC, Ryffel B, Robson SC, Sévigny J, Henrion D, Kauffenstein G. Loss of vascular expression of nucleoside triphosphate diphosphohydrolase-1/CD39 in hypertension. Purinergic Signal 2017; 14:73-82. [PMID: 29236227 DOI: 10.1007/s11302-017-9597-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and spontaneously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hypertensive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover, serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39 transcription was reduced by proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor alpha on vascular smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus enhancing arterial damage, remodeling, or thrombotic events.
Collapse
Affiliation(s)
- Charlotte Roy
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Julie Tabiasco
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France
| | - Antoine Caillon
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Yves Delneste
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Jean Merot
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Julie Favre
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Anne Laure Guihot
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Ludovic Martin
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Daniele C Nascimento
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Bernhard Ryffel
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Simon C Robson
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Gilles Kauffenstein
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France. .,University Hospital of Angers, Angers, France.
| |
Collapse
|