51
|
Miranda-Anaya M, Bosques-Tistler T, Ayala-García IN, Herrera-Argomaniz IJ, Pérez-Mendoza M, Carmona-Castro A. Affectations in photic and thermic circadian entrainment of the locomotor activity rhythm in obese volcano mouse Neotomodon alstoni. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1607221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manuel Miranda-Anaya
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Teresa Bosques-Tistler
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Ivo N Ayala-García
- División de Tecnologías de Automatización e Información, Universidad Tecnológica de Querétaro, Querétaro, México
| | - Irvin J Herrera-Argomaniz
- División de Tecnologías de Automatización e Información, Universidad Tecnológica de Querétaro, Querétaro, México
| | - Moisés Pérez-Mendoza
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Agustín Carmona-Castro
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
52
|
Adamovich Y, Ladeuix B, Sobel J, Manella G, Neufeld-Cohen A, Assadi MH, Golik M, Kuperman Y, Tarasiuk A, Koeners MP, Asher G. Oxygen and Carbon Dioxide Rhythms Are Circadian Clock Controlled and Differentially Directed by Behavioral Signals. Cell Metab 2019; 29:1092-1103.e3. [PMID: 30773466 DOI: 10.1016/j.cmet.2019.01.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022]
Abstract
Daily rhythms in animal physiology are driven by endogenous circadian clocks in part through rest-activity and feeding-fasting cycles. Here, we examined principles that govern daily respiration. We monitored oxygen consumption and carbon dioxide release, as well as tissue oxygenation in freely moving animals to specifically dissect the role of circadian clocks and feeding time on daily respiration. We found that daily rhythms in oxygen and carbon dioxide are clock controlled and that time-restricted feeding restores their rhythmicity in clock-deficient mice. Remarkably, day-time feeding dissociated oxygen rhythms from carbon dioxide oscillations, whereby oxygen followed activity, and carbon dioxide was shifted and aligned with food intake. In addition, changes in carbon dioxide levels altered clock gene expression and phase shifted the clock. Collectively, our findings indicate that oxygen and carbon dioxide rhythms are clock controlled and feeding regulated and support a potential role for carbon dioxide in phase resetting peripheral clocks upon feeding.
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Ladeuix
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jonathan Sobel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Neufeld-Cohen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mohammad H Assadi
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maarten P Koeners
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
53
|
Skirecki T, Cavaillon JM. Inner sensors of endotoxin - implications for sepsis research and therapy. FEMS Microbiol Rev 2019; 43:239-256. [PMID: 30844058 DOI: 10.1093/femsre/fuz004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2025] Open
Abstract
Despite great efforts and numerous clinical trials, there is still a major need for effective therapies for sepsis. Neutralization or elimination of bacterial toxins remains a promising approach. The understanding of the interaction of the endotoxin (lipopolysaccharide, LPS) of Gram-negative bacteria with its cellular receptor, namely the CD14/TLR4/MD2 complex, was a major breakthrough. Unfortunately, clinical trials for sepsis on the neutralization of LPS or on the inhibition of TLR4 signaling failed whereas those on LPS removal remain controversial. Recent discoveries of another class of LPS receptors localized within the cytoplasm, namely caspase-11 in mice and caspases-4/5 in humans, have renewed interest in the field. These provide new potential targets for intervention in sepsis pathogenesis. Since cytoplasmic recognition of LPS induces non-canonical inflammasome pathway, a potentially harmful host response, it is conceivable to therapeutically target this mechanism. However, a great deal of care should be used in the translation of research on the non-canonical inflammasome inhibition due to multiple inter-species differences. In this review, we summarize the knowledge on endotoxin sensing in sepsis with special focus on the intracellular sensing. We also highlight the murine versus human differences and discuss potential therapeutic approaches addressing the newly discovered pathways.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Marymoncka 99/103 Street, 01-813 Warsaw, Poland
| | - Jean-Marc Cavaillon
- Experimental Neuropathology Unit, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
54
|
Ndongson-Dongmo B, Lang GP, Mece O, Hechaichi N, Lajqi T, Hoyer D, Brodhun M, Heller R, Wetzker R, Franz M, Levy FO, Bauer R. Reduced ambient temperature exacerbates SIRS-induced cardiac autonomic dysregulation and myocardial dysfunction in mice. Basic Res Cardiol 2019; 114:26. [DOI: 10.1007/s00395-019-0734-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
55
|
Morton LD, Sanders M, Reagan WJ, Crabbs TA, McVean M, Funk KA. Confounding Factors in the Interpretation of Preclinical Studies. Int J Toxicol 2019; 38:228-234. [PMID: 30975012 DOI: 10.1177/1091581819837157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of issues may arise during the conduct of a study which can complicate interpretation of in vitro and in vivo datasets. Speakers discussed the implications of differing interpretations and how to avoid complicating factors during study planning and execution. Consideration needs to be given to study design factors including defining objectives, consideration of expected pharmacological effects, dose selection and drug kinetics, species used, and vehicle selection. In addition, the effects of vivarium temperature effects on various endpoints, how to control variables affecting clinical pathology, and how early death animals, common background findings, and artifacts can affect histopathology interpretation all play into the final interpretation of study data.
Collapse
Affiliation(s)
| | | | - William J Reagan
- 3 Pfizer Global Research and Development Eastern, Groton, CT, USA
| | | | - Maralee McVean
- 5 PreClinical Research Services, Inc, Fort Collins, CO, USA
| | | |
Collapse
|
56
|
Lee B, Kim G, Jo Y, Lee B, Shin YI, Hong C. Aquatic Exercise at Thermoneutral Water Temperature Enhances Antitumor Immune Responses. Immune Netw 2019; 19:e10. [PMID: 31089437 PMCID: PMC6494765 DOI: 10.4110/in.2019.19.e10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Despite the broad rehabilitative potential of aquatic exercises, the relationship between aquatic exercise and the immune system has not been fully elucidated to date. In particular, there are few specific and delicate immunological approaches to the effect of water temperature on immunity. Thus, we examined the effect of water temperature on immunity during aquatic exercise. The animal tumor model was adopted to examine the impact of aquatic exercise at thermoneutral temperature (TT; 29°C) on immunity compared with aquatic exercise at body temperature (BT; 36°C). Tumor-bearing mice were made to swim in TT water or in BT water for 3 wk and immune cells and their functional activity were analyzed using FACS. Tumor growth was significantly suppressed in mice that exercised in TT than in BT water. The tumor control correlated with the increased number of NK (2-fold), γδT cells (2.5-fold), NKT (2.5-fold), and cytotoxic CD8+ T cells (1.6-fold), which play a critical role in anti-tumor immune responses. Furthermore, the functional activity was dramatically improved in the TT group, showing enhanced production of IFNγ in CD8+ T cells compared with the BT group. This study demonstrates that aquatic exercise in TT water may improve protective immune responses more effectively than in BT water. Although the effects of water temperature on immune function need further verification in humans, this study suggests that water temperature in human hydrotherapy may be important for improving immune function.
Collapse
Affiliation(s)
- Boae Lee
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Department of Rehabilitation Medicine, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Geona Kim
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yuna Jo
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Byunghyuk Lee
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Changwan Hong
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
57
|
Xu B, Zang SC, Li SZ, Guo JR, Wang JF, Wang D, Zhang LP, Yang HM, Lian S. HMGB1-mediated differential response on hippocampal neurotransmitter disorder and neuroinflammation in adolescent male and female mice following cold exposure. Brain Behav Immun 2019; 76:223-235. [PMID: 30476565 DOI: 10.1016/j.bbi.2018.11.313] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022] Open
Abstract
Stress induces many different sex-specific physiological and psychological responses during adolescence. Although the impact of certain brain stressors has been reported in the literature, the influence of cold stress on the mechanisms underlying hippocampal neurotransmitter disorder and neuroinflammation remain unstudied. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures, 3 h per day for 1 week. Serum CORT and blood gas analysis was then used to assess body status. Using western blotting, immunofluorescence and immunohistochemistry we also assessed glial cell number and microglial activation, as well as inflammatory cytokine levels and related protein expression levels. The phenomena of excessive CORT, microglial activation, increased acetylate-HMGB1 levels, NF-κB signaling pathway activation, pro-inflammatory cytokine release, neuronal apoptosis and neurotransmitter disorder were demonstrated in mouse hippocampal tissue following cold exposure. We believe that these phenomena are mediated by the HMGB1/TLR4/NFκB pathway. Finally, the male inflammatory response in hippocampal tissue was more severe and the influence of cold exposure on neurotransmitter was greater in females.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shu-Cheng Zang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Li-Ping Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
58
|
Chan CE, Hare MT, Martin GW, Gordon CJ, Swoap SJ. The heat is on: A device that reduces cold stress-induced tachycardia in laboratory mice. J Therm Biol 2018; 79:149-154. [PMID: 30612675 DOI: 10.1016/j.jtherbio.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
Mouse vivaria are typically maintained at an ambient temperature (Ta) of 20-26 °C which is comfortable for human researchers. However, as this Ta is well below the mouse thermoneutral zone (TNZ) of 30-32 °C, typical vivarium temperatures result in cold stress for mice. Recently, a cage has been developed that provides variable cage floor heating, allowing mice to behaviorally regulate body temperature through thermotaxis. A hand warmer provides supplemental heat, elevating cage floor surface temperature for 13 + hours up to 30 °C. This provides a heated surface for the entirety of the light phase. Here, we test the ability of these local heat sources to remove physiological signs of cold stress in mice housed at room temperature by analyzing heart rate (HR), activity, and body temperature in three experimental conditions: 23 °C, 23 °C + heated surface, or 30 °C. The location of C57Bl/6 J mice within the cage was recorded using an infrared camera. In the presence of supplemental heat at a Ta of 23 °C, mice resided atop of the area of the heated surface 85 ± 3% of the 12-h light phase, as compared to 7 ± 2% in the absence of supplemental heat. Further, addition of supplemental heat lowered light phase HR and activity to that seen at a Ta of 30 °C. These results indicate that provision of a local heat source is successful in reducing cold-induced tachycardia in mice housed at typical vivarium temperatures without increasing the ambient temperature of the entire laboratory and subjecting researchers to heat stress.
Collapse
Affiliation(s)
- Cordelia E Chan
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Maia T Hare
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | | | - Christopher J Gordon
- Toxicity Assessment Division, National Health Effects and Environmental Research Laboratory, US Environmental Protection Agency, USA
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
59
|
Hankenson FC, Marx JO, Gordon CJ, David JM. Effects of Rodent Thermoregulation on Animal Models in the Research Environment. Comp Med 2018; 68:425-438. [PMID: 30458902 DOI: 10.30802/aalas-cm-18-000049] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To best promote animal wellbeing and the efficacy of biomedical models, scientific, husbandry, and veterinary professionals must consider the mechanisms, influences, and outcomes of rodent thermoregulation in contemporary research environments. Over the last 2 decades, numerous studies have shown that laboratory mice and rats prefer temperatures that are several degrees warmer than the environments in which they typically are housed within biomedical facilities. Physiologic changes to rodents that are cage-housed under standard temperatures (20 to 26 °C) are attributed to 'cold stress' and include alterations in metabolism, cardiovascular parameters, respiration, and immunologic function. This review article describes common behavioral and physiologic adaptations of laboratory mice and rats to cold stress within modern vivaria, with emphasis on environmental enrichment and effects of anesthesia and procedural support efforts. In addition, potential interventions and outcomes for rodents are presented, relative to the importance of repeating and reproducing experiments involving laboratory rodent research models of human disease.
Collapse
Affiliation(s)
- F Claire Hankenson
- Campus Animal Resources, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - James O Marx
- University Laboratory Animal Resources, Department of Pathobiology, School of Veterinary Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Gordon
- Toxicity Assessment Division, Neurotoxicology Branch, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John M David
- Comparative Medicine, Pfizer, La Jolla, California, USA
| |
Collapse
|
60
|
Schosserer M, Banks G, Dogan S, Dungel P, Fernandes A, Marolt Presen D, Matheu A, Osuchowski M, Potter P, Sanfeliu C, Tuna BG, Varela-Nieto I, Bellantuono I. Modelling physical resilience in ageing mice. Mech Ageing Dev 2018; 177:91-102. [PMID: 30290161 PMCID: PMC6445352 DOI: 10.1016/j.mad.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Geroprotectors, a class of drugs targeting multiple deficits occurring with age, necessitate the development of new animal models to test their efficacy. The COST Action MouseAGE is a European network whose aim is to reach consensus on the translational path required for geroprotectors, interventions targeting the biology of ageing. In our previous work we identified frailty and loss of resilience as a potential target for geroprotectors. Frailty is the result of an accumulation of deficits, which occurs with age and reduces the ability to respond to adverse events (physical resilience). Modelling frailty and physical resilience in mice is challenging for many reasons. There is no consensus on the precise definition of frailty and resilience in patients or on how best to measure it. This makes it difficult to evaluate available mouse models. In addition, the characterization of those models is poor. Here we review potential models of physical resilience, focusing on those where there is some evidence that the administration of acute stressors requires integrative responses involving multiple tissues and where aged mice showed a delayed recovery or a worse outcome then young mice in response to the stressor. These models include sepsis, trauma, drug- and radiation exposure, kidney and brain ischemia, exposure to noise, heat and cold shock.
Collapse
Affiliation(s)
- Markus Schosserer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Vienna, Austria
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, iMed.ULisboa, Research Institute for Medicines, Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Ander Matheu
- Oncology Department, Biodonostia Research Institute, San Sebastián, Spain
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona (IIBB) CSIC, IDIBAPS, CIBERESP, Barcelona, Spain
| | - Bilge Guvenc Tuna
- Department of Medical Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Ilaria Bellantuono
- MRC/Arthritis Research-UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
61
|
Robbins A, Tom CATMB, Cosman MN, Moursi C, Shipp L, Spencer TM, Brash T, Devlin MJ. Low temperature decreases bone mass in mice: Implications for humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:557-568. [PMID: 30187469 DOI: 10.1002/ajpa.23684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Humans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold-induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT). Here we test two hypotheses: (1) low temperature induces impaired cortical and trabecular bone acquisition and (2) UCP1, a marker of NST in BAT, increases in proportion to degree of low-temperature exposure. METHODS We housed wildtype C57BL/6J male mice in pairs at 26 °C (thermoneutrality), 22 °C (standard), and 20 °C (cool) from 3 weeks to 6 or 12 weeks of age with access to food and water ad libitum (N = 8/group). RESULTS Cool housed mice ate more but had lower body fat at 20 °C versus 26 °C. Mice at 20 °C had markedly lower distal femur trabecular bone volume fraction, thickness, and connectivity density and lower midshaft femur cortical bone area fraction versus mice at 26 °C (p < .05 for all). UCP1 expression in BAT was inversely related to temperature. DISCUSSION These results support the hypothesis that low temperature was detrimental to bone mass acquisition. Nonshivering thermogenesis in brown adipose tissue increased in proportion to low-temperature exposure but was insufficient to prevent bone loss. These data show that chronic exposure to low temperature impairs bone architecture, suggesting climate may contribute to phenotypic variation in humans and other hominins.
Collapse
Affiliation(s)
- Amy Robbins
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | | | - Miranda N Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Cleo Moursi
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Lillian Shipp
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Taylor M Spencer
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Timothy Brash
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
62
|
Kovalčíková A, Gyurászová M, Gardlík R, Boriš M, Celec P, Tóthová Ľ. The effects of sucrose on urine collection in metabolic cages. Lab Anim 2018; 53:180-189. [PMID: 30045671 DOI: 10.1177/0023677218781674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Representative urine collection that respects the standards of animal welfare is still an issue in experimental nephrology. The commonly used metabolic cages induce stress in rodents. In mice, the volume of collected urine is sometimes insufficient for further analysis. The aim of this experiment was to analyse the effects of time of day, temperature and 2%, 5% or 10% sucrose solutions on diuresis, weight change and liquid intake of adult mice placed in metabolic cages for urine collection. Mice were placed in metabolic cages for 12 h during the day or night at standard ambient (22℃) and thermoneutral (28℃) temperatures. To determine the effect of acclimatisation, mice were placed in metabolic cages for five consecutive days. Diuresis increased with concentrations of sucrose. Body weight reduction was most rapid in the group given tap water and decreased with increasing sucrose concentrations. A drastic drop in body weight was observed in mice placed in metabolic cages for four consecutive days with access to tap water and food, indicating that time spent in metabolic cages should be kept to a minimum, as prolonged confinement in metabolic cages can be harmful to mice. The administration of concentrated sucrose solutions can potentially aid in mouse urine collection by reducing the time spent in metabolic cages. Sucrose supplementation increased the albumin/creatinine ratio. However, without showing estimates of glomerular filtration rate, renal haemodynamics, plasma electrolytes and urinary electrolyte excretions, the results of this study do not provide any conclusion about the effect of sucrose on renal function.
Collapse
Affiliation(s)
- Alexandra Kovalčíková
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marianna Gyurászová
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlík
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Boriš
- 3 Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Celec
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,4 Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,5 Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
63
|
Abstract
Like many other pathological infectious processes, sepsis is mainly studied in vivo using mice models. Over the past 30 years, such studies have led to significant achievements in understanding of the sepsis pathophysiology. However, unfortunately, none of them led to any «discoveries» in the treatment of patients. In this review, we question the relevance of the experimental models applied, list some aspects rarely taken into account and discuss ways to resolve the deadlock.The text is a translation of the article: Cavail-lon J. M. New methods of treating sepsis: failure of animal models, Bull. Assoc. Anc. El. Inst. Pastor, 2017, 59,230, 58—60. Translation from French by «Akademperevod», Moscow, Russia.
Collapse
|
64
|
Bartke A. Growth Hormone and Aging: Updated Review. World J Mens Health 2018; 37:19-30. [PMID: 29756419 PMCID: PMC6305861 DOI: 10.5534/wjmh.180018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/28/2023] Open
Abstract
Role of growth hormone (GH) in mammalian aging is actively explored in clinical, epidemiological, and experimental studies. The age-related decline in GH levels is variously interpreted as a symptom of neuroendocrine aging, as one of causes of altered body composition and other unwelcome symptoms of aging, or as a mechanism of natural protection from cancer and other chronic diseases. Absence of GH signals due to mutations affecting anterior pituitary development, GH secretion, or GH receptors produces an impressive extension of longevity in laboratory mice. Extension of healthspan in these animals and analysis of survival curves suggest that in the absence of GH, aging is slowed down or delayed. The corresponding endocrine syndromes in the human have no consistent impact on longevity, but are associated with remarkable protection from age-related disease. Moreover, survival to extremely old age has been associated with reduced somatotropic (GH and insulin-like growth factor-1) signaling in women and men. In both humans and mice, elevation of GH levels into the supranormal (pathological) range is associated with increased disease risks and reduced life expectancy likely representing acceleration of aging. The widely advertised potential of GH as an anti-aging agent attracted much interest. However, results obtained thus far have been disappointing with few documented benefits and many troublesome side effects. Possible utility of GH in the treatment of sarcopenia and frailty remains to be explored.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
65
|
Reitman ML. Of mice and men - environmental temperature, body temperature, and treatment of obesity. FEBS Lett 2018; 592:2098-2107. [PMID: 29697140 DOI: 10.1002/1873-3468.13070] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Mice are widely used for exploring obesity physiology and treatment. However, thermal biology is different between small and large mammals. In this Review, we discuss how the effect of environmental temperature must be understood to ensure applicability of mouse experiments to human obesity. At ambient environmental temperature (~ 22 °C), over one-third of energy expenditure in mice is devoted to maintaining core body temperature, largely by brown adipose tissue. To conserve this energy, mice can enter a regulated hypothermia, while humans do not. Since humans expend little or no energy specifically to keep warm, mice studied at thermoneutrality (~ 30 °C) may be a better model for human energy homeostasis. Studies indicate that environmental temperature also affects the efficacy of drugs that increase energy expenditure. In mice, dinitrophenol, a protonophore, and CL316243, a β3-adrenergic agonist, both increase metabolic rate at thermoneutrality, but only CL316243 increases it at 22 °C. Furthermore, mice housed at thermoneutrality may become more obese than mice at 22 °C. Thus, we discuss the importance of studying mice at both thermoneutrality and at lower temperatures in obesity research.
Collapse
Affiliation(s)
- Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
66
|
Schipper L, Harvey L, van der Beek EM, van Dijk G. Home alone: a systematic review and meta-analysis on the effects of individual housing on body weight, food intake and visceral fat mass in rodents. Obes Rev 2018; 19:614-637. [PMID: 29334694 DOI: 10.1111/obr.12663] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/11/2017] [Accepted: 11/21/2017] [Indexed: 12/09/2022]
Abstract
Rats and mice are widely used to study environmental effects on psychological and metabolic health. Study designs differ widely and are often characterized by varying (social) housing conditions. In itself, housing has a profound influence on physiology and behaviour of rodents, affecting energy balance and sustainable metabolic health. However, evidence for potential long-term consequences of individual versus social housing on body weight and metabolic phenotype is inconsistent. We conducted a systematic literature review and meta-analyses assessing effects of individual versus social housing of rats and mice, living under well-accepted laboratory conditions, on measures of metabolic health, including body weight, food intake and visceral adipose tissue mass. Seventy-one studies were included in this review; 59 were included in the meta-analysis. Whilst housing did not affect body weight, both food intake and visceral adipose tissue mass were significantly higher in individually compared with socially housed animals. A combination of emotional stress and lack of social thermoregulation likely contributed to these effects. Increased awareness of consequences and improved specifications of housing conditions are necessary to accurately evaluate efficacy of drugs, diets or other interventions on metabolic and other health outcomes because housing conditions are rarely considered as possible moderators of reported outcomes.
Collapse
Affiliation(s)
- L Schipper
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology Cluster, Department Behavioural Neurosciences, University of Groningen, Groningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | | | - E M van der Beek
- Nutricia Research, Utrecht, The Netherlands.,Department of Paediatrics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - G van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology Cluster, Department Behavioural Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
67
|
Hiramatsu L, Garland T. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise. Physiol Behav 2018; 194:1-8. [PMID: 29680707 DOI: 10.1016/j.physbeh.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level.
Collapse
Affiliation(s)
- Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
68
|
Hussain M, Xu C, Ahmad M, Majeed A, Lu M, Wu X, Tang L, Wu X. Acute Respiratory Distress Syndrome: Bench-to-Bedside Approaches to Improve Drug Development. Clin Pharmacol Ther 2018; 104:484-494. [PMID: 29484641 PMCID: PMC7162218 DOI: 10.1002/cpt.1034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
Despite 50 years of extensive research, no definite drug is currently available to treat acute respiratory distress syndrome (ARDS), and the supportive therapies remain the mainstay of treatment. To improve drug development for ARDS, researchers need to deeply analyze the “omics” approaches, reevaluate the suitable therapeutic targets, resolve the problems of inadequate animal modeling, develop the strategies to reduce the heterogeneity, and reconsider new therapeutic and analytical approaches for better designs of clinical trials.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Mashaal Ahmad
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Ximei Wu
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| |
Collapse
|
69
|
Galic S, Loh K, Murray-Segal L, Steinberg GR, Andrews ZB, Kemp BE. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. eLife 2018; 7:32656. [PMID: 29433631 PMCID: PMC5811211 DOI: 10.7554/elife.32656] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a known regulator of whole-body energy homeostasis, but the downstream AMPK substrates mediating these effects are not entirely clear. AMPK inhibits fatty acid synthesis and promotes fatty acid oxidation by phosphorylation of acetyl-CoA carboxylase (ACC) 1 at Ser79 and ACC2 at Ser212. Using mice with Ser79Ala/Ser212Ala knock-in mutations (ACC DKI) we find that inhibition of ACC phosphorylation leads to reduced appetite in response to fasting or cold exposure. At sub-thermoneutral temperatures, ACC DKI mice maintain normal energy expenditure and thermogenesis, but fail to increase appetite and lose weight. We demonstrate that the ACC DKI phenotype can be mimicked in wild type mice using a ghrelin receptor antagonist and that ACC DKI mice have impaired orexigenic responses to ghrelin, indicating ACC DKI mice have a ghrelin signaling defect. These data suggest that therapeutic strategies aimed at inhibiting ACC phosphorylation may suppress appetite following metabolic stress.
Collapse
Affiliation(s)
- Sandra Galic
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Kim Loh
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Lisa Murray-Segal
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Zane B Andrews
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia.,Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Bruce E Kemp
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia
| |
Collapse
|
70
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
71
|
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4 + T Cells in Inflammatory Disease. Front Immunol 2018; 9:540. [PMID: 29599783 PMCID: PMC5862799 DOI: 10.3389/fimmu.2018.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Dumitru
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Agnieszka M. Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Kevin J. Maloy,
| |
Collapse
|
72
|
Rubin RL. Mice Housed at Elevated Vivarium Temperatures Display Enhanced T-cell Response and Survival to Francisella tularensis. Comp Med 2017; 67:491-497. [PMID: 29212580 PMCID: PMC5713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/03/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The inability to translate findings from studies performed in mouse models to the corresponding human condition is well known, especially those involving infectious, atherosclerotic, and other inflammatory diseases. We hypothesize that mice fail to a mount robust or adequate immune response to infectious agents because of physiologic effects of cold stress due to housing temperatures below the mouse thermoneutral zone (TNZ). This hypothesis was tested by comparing the immune response to the Francisella tularensis live vaccine strain in mice housed at a typical vivarium temperature, which is below the TNZ, with that of mice housed at a temperature near their TNZ. Mice maintained at 28 °C displayed elevated antigen-specific T-cell responses compared with mice housed at 22 °C and survived intranasal challenge that was fatal to immunized mice at 22 °C. These results demonstrate that cold stress due to housing below the mouse TNZ results in a blunted immune response and may compromise their translational value a models for infectious diseases and vaccine development.
Collapse
Affiliation(s)
- Robert L Rubin
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico;,
| |
Collapse
|
73
|
Reynés B, van Schothorst E, García-Ruiz E, Keijer J, Oliver P, Palou A. Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue. Thromb Haemost 2017; 117:981-991. [DOI: 10.1160/th16-12-0931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/27/2017] [Indexed: 11/05/2022]
Abstract
SummaryPerivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
74
|
Bajury DM, Nashri SM, King Jie Hung P, Sarbini SR. Evaluation of potential prebiotics: a review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1373287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dayang Marshitah Bajury
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| | - Siti Maisarah Nashri
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| | - Patricia King Jie Hung
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| |
Collapse
|
75
|
Michaelis KA, Zhu X, Burfeind KG, Krasnow SM, Levasseur PR, Morgan TK, Marks DL. Establishment and characterization of a novel murine model of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle 2017; 8:824-838. [PMID: 28730707 PMCID: PMC5659050 DOI: 10.1002/jcsm.12225] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cachexia is a complex metabolic and behavioural syndrome lacking effective therapies. Pancreatic ductal adenocarcinoma (PDAC) is one of the most important conditions associated with cachexia, with >80% of PDAC patients suffering from the condition. To establish the cardinal features of a murine model of PDAC-associated cachexia, we characterized the effects of implanting a pancreatic tumour cell line from a syngeneic C57BL/6 KRASG12D P53R172H Pdx-Cre+/+ (KPC) mouse. METHODS Male and female C57BL/6 mice were inoculated subcutaneously, intraperitoneally, or orthotopically with KPC tumour cells. We performed rigorous phenotypic, metabolic, and behavioural analysis of animals over the course of tumour development. RESULTS All routes of administration produced rapidly growing tumours histologically consistent with moderate to poorly differentiated PDAC. The phenotype of this model was dependent on route of administration, with orthotopic and intraperitoneal implantation inducing more severe cachexia than subcutaneous implantation. KPC tumour growth decreased food intake, decreased adiposity and lean body mass, and decreased locomotor activity. Muscle catabolism was observed in both skeletal and cardiac muscles, but the dominant catabolic pathway differed between these tissues. The wasting syndrome in this model was accompanied by hypothalamic inflammation, progressively decreasing brown and white adipose tissue uncoupling protein 1 (Ucp1) expression, and increased peripheral inflammation. Haematological and endocrine abnormalities included neutrophil-dominant leukocytosis and anaemia, and decreased serum testosterone. CONCLUSIONS Syngeneic KPC allografts are a robust model for studying cachexia, which recapitulate key features of the PDAC disease process and induce a wide array of cachexia manifestations. This model is therefore ideally suited for future studies exploring the physiological systems involved in cachexia and for preclinical studies of novel therapies.
Collapse
Affiliation(s)
| | - Xinxia Zhu
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| | - Kevin G. Burfeind
- Medical Scientist Training ProgramOregon Health and Science UniversityPortlandUSA
| | - Stephanie M. Krasnow
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| | - Peter R. Levasseur
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| | - Terry K. Morgan
- Departments of Pathology and Obstetrics and GynecologyOregon Health and Science UniversityPortlandUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| |
Collapse
|
76
|
Somatic growth, aging, and longevity. NPJ Aging Mech Dis 2017; 3:14. [PMID: 28970944 PMCID: PMC5622030 DOI: 10.1038/s41514-017-0014-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 02/01/2023] Open
Abstract
Although larger species of animals typically live longer than smaller species, the relationship of body size to longevity within a species is generally opposite. The longevity advantage of smaller individuals can be considerable and is best documented in laboratory mice and in domestic dogs. Importantly, it appears to apply broadly, including humans. It is not known whether theses associations represent causal links between various developmental and physiological mechanisms affecting growth and/or aging. However, variations in growth hormone (GH) signaling are likely involved because GH is a key stimulator of somatic growth, and apparently also exerts various “pro-aging” effects. Mechanisms linking GH, somatic growth, adult body size, aging, and lifespan likely involve target of rapamycin (TOR), particularly one of its signaling complexes, mTORC1, as well as various adjustments in mitochondrial function, energy metabolism, thermogenesis, inflammation, and insulin signaling. Somatic growth, aging, and longevity are also influenced by a variety of hormonal and nutritional signals, and much work will be needed to answer the question of why smaller individuals may be likely to live longer.
Collapse
|
77
|
Reynés B, Klein Hazebroek M, García-Ruiz E, Keijer J, Oliver P, Palou A. Specific Features of the Hypothalamic Leptin Signaling Response to Cold Exposure Are Reflected in Peripheral Blood Mononuclear Cells in Rats and Ferrets. Front Physiol 2017; 8:581. [PMID: 28860997 PMCID: PMC5559547 DOI: 10.3389/fphys.2017.00581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia. Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months), as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses. Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression), likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC) mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure. Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be considered as a potential surrogate tissue to perform further studies on the regulation of hypothalamic leptin signaling in response to cold exposure.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| | - Marlou Klein Hazebroek
- Human and Animal Physiology Group, Wageningen University and Research CentreWageningen, Netherlands
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain
| | - Jaap Keijer
- Human and Animal Physiology Group, Wageningen University and Research CentreWageningen, Netherlands
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| |
Collapse
|
78
|
Thermoneutral housing temperature regulates T-regulatory cell function and inhibits ovabumin-induced asthma development in mice. Sci Rep 2017; 7:7123. [PMID: 28769099 PMCID: PMC5540912 DOI: 10.1038/s41598-017-07471-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
The change in ambient temperature is one of the risk factors for the aggravation of bronchial asthma (BA). Yet, whether the ambient temperature influences the immune functions associated with allergic asthma remains unknown. In this study, we treated asthmatic mice with standard temperature (ST, 20 °C) or thermoneutral temperature (TT, 30 °C). The results showed that the airway inflammatory cell counts in bronchoalveolar lavage fluid (BALF) and airway hyperresponsiveness (AHR) were significantly reduced in the mice treated with TT as compared with the mice treated with ST. The imbalance of Th1/Th2 response in the lung was improved following housing the mice at TT. In addition, the pulmonary Treg cells were increased in asthmatic mice after TT treatment. The temperature stress (29 °C and 41 °C) drove naïve CD4T cells towards Th2 cells. Our data demonstrate that the change of ambient temperature was a risk factor to aggravate experimental asthma.
Collapse
|
79
|
Abstract
Humans prefer to live within their thermal comfort or neutral zone, which they create by making shelters, wearing clothing and, more recently, by regulating their ambient temperature. These strategies enable humans to maintain a constant core temperature (a trait that is conserved across all endotherms, including mammals and birds) with minimal energy expenditure. Although this primordial drive leads us to seek thermal comfort, we house our experimental animals, laboratory mice (Mus musculus), under conditions of thermal stress. In this Review, we discuss how housing mice below their thermoneutral zone limits our ability to model and study human diseases. Using examples from cardiovascular physiology, metabolic disorders, infections and tumour immunology, we show that certain phenotypes observed under conditions of thermal stress disappear when mice are housed at thermoneutrality, whereas others emerge that are more consistent with human biology. Thus, we propose that warming the mouse might enable more predictive modelling of human diseases and therapies.
Collapse
Affiliation(s)
- Kirthana Ganeshan
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, USA
- Department of Physiology University of California, San Francisco
- Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, California 94143, USA
| |
Collapse
|
80
|
Masopust D, Sivula CP, Jameson SC. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:383-388. [PMID: 28696328 PMCID: PMC5512602 DOI: 10.4049/jimmunol.1700453] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
Mouse models have enabled breakthroughs in our understanding of the immune system, but it has become increasingly popular to emphasize their shortcomings when translating observations to humans. This review provides a brief summary of mouse natural history, husbandry, and the pros and cons of pursuing basic research in mice versus humans. Opportunities are discussed for extending the predictive translational value of mouse research, with an emphasis on exploitation of a "dirty" mouse model that better mimics the diverse infectious history that is typical of most humans.
Collapse
Affiliation(s)
- David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455;
| | - Christine P Sivula
- Research Animal Resources, University of Minnesota, Minneapolis, MN 55455; and
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
81
|
Stressed out: providing laboratory animals with behavioral control to reduce the physiological effects of stress. Lab Anim (NY) 2017; 46:142-145. [PMID: 28328902 DOI: 10.1038/laban.1218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
Laboratory animals experience a large amount of environmental stress. An animal's environment can include both physiological and social stressors that may require an animal to adapt to maintain allostatic balance. For example, thermal stress can lead to changes in behavior, reproduction and immune function, which has been detrimental to cancer modeling in mice. Chronic uncontrollable stress is widely acknowledged for its negative alterations to physiology. However, there is a lack in the understanding of how the laboratory environment affects animal physiology and behavior, particularly as it relates to characteristics of the human disease being modeled. Given the evidence on how stressors affect physiology, it is clear that efforts to model human physiology in animal models must consider animal stress as a confounding factor. We present evidence illustrating that providing captive animals with control or predictability is the best way to reduce the negative physiological effects of these difficult-to-manage stressors.
Collapse
|
82
|
Giles DA, Moreno-Fernandez ME, Stankiewicz TE, Graspeuntner S, Cappelletti M, Wu D, Mukherjee R, Chan CC, Lawson MJ, Klarquist J, Sünderhauf A, Softic S, Kahn CR, Stemmer K, Iwakura Y, Aronow BJ, Karns R, Steinbrecher KA, Karp CL, Sheridan R, Shanmukhappa SK, Reynaud D, Haslam DB, Sina C, Rupp J, Hogan SP, Divanovic S. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat Med 2017; 23:829-838. [PMID: 28604704 PMCID: PMC5596511 DOI: 10.1038/nm.4346] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/22/2017] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways that are associated with the disease in humans. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the IL-17 axis resulted in altered immune responsiveness and protection from thermoneutral-housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full disease characteristics at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis.
Collapse
Affiliation(s)
- Daniel A Giles
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Monica Cappelletti
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Calvin C Chan
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Matthew J Lawson
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jared Klarquist
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebekah Karns
- Division of Gastroenterology Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kris A Steinbrecher
- Division of Gastroenterology Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Rachel Sheridan
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shiva K Shanmukhappa
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Damien Reynaud
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
83
|
Chichelnitskiy E, Himmelseher B, Bachmann M, Pfeilschifter J, Mühl H. Hypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity. Front Immunol 2017; 8:742. [PMID: 28706520 PMCID: PMC5489602 DOI: 10.3389/fimmu.2017.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely prevented its enhanced expression upon hypothermic culture conditions. Data suggest that intact NFAT signaling is required for efficient IL-22 induction upon normothermic and hypothermic conditions. Hypothermia furthermore boosted early signal transducer and activator of transcription 3 activation by IL-22 and shaped downstream gene expression in epithelial-like cells. Altogether, data indicate that hypothermia supports and fine-tunes IL-22 production/action, which may contribute to regulatory properties of low ambient temperature.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Britta Himmelseher
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
84
|
Johnson JS, Taylor DJ, Green AR, Gaskill BN. Effects of Nesting Material on Energy Homeostasis in BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) Mice Housed at 20 °C. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2017; 56:254-259. [PMID: 28535860 PMCID: PMC5438918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Discrepancies exist between the preferred temperature range for mice (26 to 32 °C) and current recommendations (20 to 26 °C), which may alter metabolism and negatively affect studies using mice. Previous research indicates that nesting material can alleviate cold stress in mice; therefore, we sought to determine the effects of the amount of nesting material provided (0, 6, or 12 g) on heat energy loss and energy balance in 3 mouse strains housed at currently recommended temperatures during the daytime, a period of presumed inactivity. Groups of BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) mice, balanced by strain and sex, were group-housed and provided 0, 6, or 12 g of nesting material. After a 3-d acclimation period, body weight was determined daily at 0800, food intake was determined at 0800 and 2000, and total heat production was evaluated from 0800 to 2000 on 4 consecutive days and used to calculate energy balance and the respiratory quotient. Although the amount of nesting material had no overall effect on food intake or heat production, mice provided 12 g of nesting material had greater weight gain than those given 0 or 6 g. This increase in body weight might have been due to improved energy balance, which was corroborated by an increased respiratory quotient in mice provided 12 g of nesting material. In summary, although heat production did not differ, providing 12 g of nesting material improved energy balance, likely leading to an increase in body weight during the 0800-2000 testing period.
Collapse
Affiliation(s)
- Jay S Johnson
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, Indiana;,
| | - Daniel J Taylor
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Angela R Green
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana-Champaign, Illinois
| | - Brianna N Gaskill
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
85
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
86
|
van der Stelt I, Hoevenaars F, Široká J, de Ronde L, Friedecký D, Keijer J, van Schothorst E. Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality. Front Physiol 2017; 8:179. [PMID: 28386236 PMCID: PMC5362617 DOI: 10.3389/fphys.2017.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/08/2017] [Indexed: 01/29/2023] Open
Abstract
Housing of laboratory mice at room temperature (22°C) might be considered a constant cold stress, which induces a thermogenic program in brown adipose tissue (BAT). However, the early adaptive response of white adipose tissue (WAT), the fat storage organ of the body, to a change from thermoneutrality to room temperature is not known. This was investigated here for various WAT depots, focusing on epididymal WAT (eWAT), widely used as reference depot. Male adult diet-induced obese (DIO) C57BL/6JOlaHsd mice housed at thermoneutrality (29°C), were for 5 days either switched to room temperature (22°C) or remained at thermoneutrality. Energy metabolism was continuously measured using indirect calorimetry. At the end of the study, serum metabolomics and WAT transcriptomics were performed. We confirmed activation of the thermogenic program in 22°C housed mice. Body weight and total fat mass were reduced. Whole body energy expenditure (EE) was increased, with a higher fatty acid to carbohydrate oxidation ratio and increased serum acylcarnitine levels, while energy intake was not significantly different between the two groups. Transcriptome analysis of eWAT identified tissue remodeling and inflammation as the most affected processes. Expression of pro-inflammatory M1 macrophage-related genes, and M1 over M2 macrophage ratio were decreased, which might be linked to an increased insulin sensitivity. Markers of thermogenesis were not altered in eWAT. Decreased expression of tryptophan hydroxylase 2 (Tph2) and cholecystokinin (Cck) might represent altered neuroendocrine signaling. eWAT itself does not show increased fatty acid oxidation. The three measured WATs, epididymal, mesenteric, and retroperitoneal, showed mainly similar responses; reduced inflammation (s100a8), decreased carbohydrate oxidation, and no or small differences in fatty acid oxidation. However, Ucp1 was only expressed and increased in rWAT in 22°C housed mice. Cck expression was decreased in the three WATs, significantly in eWAT and rWAT, in contrast to Tph2, which was decreased in eWAT while not expressed in mWAT and rWAT. Our data show that tissue remodeling, inflammation and neuroendocrine signaling are early responses in WAT to a moderate decrease in environmental temperature.
Collapse
Affiliation(s)
- Inge van der Stelt
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - Femke Hoevenaars
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - Jitka Široká
- Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc Olomouc, Czechia
| | - Lidwien de Ronde
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - David Friedecký
- Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc Olomouc, Czechia
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | | |
Collapse
|
87
|
Freymann J, Tsai PP, Stelzer HD, Mischke R, Hackbarth H. Impact of bedding volume on physiological and behavioural parameters in laboratory mice. Lab Anim 2017; 51:601-612. [PMID: 29160176 DOI: 10.1177/0023677217694400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The standard housing temperature in animal facilities is substantially below the lower critical temperature of mice. This does not only endanger animal welfare, it can also jeopardize scientific research as cold stress has a major impact on mouse physiology. There is some evidence that deep bedding, comparable to nesting material, can help mice to reduce heat loss. Whenever changes are applied to the cage environment, the potential impact on experimental results, including variation, needs to be assessed. An increased variation can result in a conflict between reduction and refinement, when more animals are needed for significance due to the housing design. The aim of this study was to assess the impact of different bedding volumes (0.5 L, 1.5 L and 6 L per type III cage) on mean values and coefficient of variation (CV) of physiological (pentobarbital sleeping time, blood and anatomical parameters) and behavioural parameters (open-field and novel object recognition tests) of group-housed female and male BALB/c and C57BL/6 mice. A larger bedding volume did not interfere with the CVs, but influenced mean values of organ weights and tail lengths. Mice housed on deeper bedding showed a significant reduction in adrenal, liver, kidney and heart weights as well as an increase in tail lengths; these anatomical changes are akin to warm adaptation, and were previously observed for mice housed under warmer environments. A larger bedding volume appears to be a sensible way to reduce cold stress for laboratory mice without increasing variation in experimental results.
Collapse
Affiliation(s)
- Jennifer Freymann
- 1 Institute of Animal Welfare and Behaviour, University of Veterinary Medicine Hannover, Germany
| | - Ping-Ping Tsai
- 1 Institute of Animal Welfare and Behaviour, University of Veterinary Medicine Hannover, Germany
| | - Helge D Stelzer
- 1 Institute of Animal Welfare and Behaviour, University of Veterinary Medicine Hannover, Germany
| | - Reinhard Mischke
- 2 Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hansjoachim Hackbarth
- 1 Institute of Animal Welfare and Behaviour, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
88
|
Qi Y, Purtell L, Fu M, Sengmany K, Loh K, Zhang L, Zolotukhin S, Sainsbury A, Campbell L, Herzog H. Ambient temperature modulates the effects of the Prader-Willi syndrome candidate gene Snord116 on energy homeostasis. Neuropeptides 2017; 61:87-93. [PMID: 27823858 DOI: 10.1016/j.npep.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
Germline deletion of the Prader-Willi syndrome (PWS) candidate gene Snord116 in mice leads to some classical symptoms of human PWS, notably reductions in body weight, linear growth and bone mass. However, Snord116 deficient mice (Snord116-/-) do not develop an obese phenotype despite their increased food intake and the underlying mechanism for that is unknown. We tested the phenotypes of germline Snord116-/- as well as neuropeptide Y (NPY) neuron specific Snord116lox/lox/NPYcre/+ mice at 30°C, the thermoneutral temperature of mice, and compared these to previous reports studies conducted at normal room temperature. Snord116-/- mice at 30°C still weighed less than wild type but had increased body weight gain. Importantly, food intake and energy expenditure were no longer different at 30°C, and the reduced bone mass and nasal-anal length observed in Snord116-/- mice at room temperature were also normalized. Mechanistically, the thermoneutral condition led to the correction of the mRNA expression of NPY and pro-opiomelanocortin (POMC), which were both previously observed to be significantly up-regulated at room temperature. Importantly, almost identical phenotypes and NPY/POMC mRNA expression alterations were also observed in Snord116lox/lox/NPYcre/+ mice, which lack the Snord116 gene only in NPY neurons. These data illustrate that mild cold stress is a critical factor preventing the development of obesity in Snord116-/- mice via the NPY system. Our study highlights that the function of Snord116 in the hypothalamus may be to enhance energy expenditure, likely via the NPY system, and also indicates that Snord116 function in mice is strongly dependent on environmental conditions such as cold exposure.
Collapse
Affiliation(s)
- Y Qi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia.
| | - L Purtell
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - M Fu
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - K Sengmany
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - K Loh
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - L Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - S Zolotukhin
- Department of Pediatrics, College of Medicine, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - A Sainsbury
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - L Campbell
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
89
|
Hylander BL, Eng JWL, Repasky EA. The Impact of Housing Temperature-Induced Chronic Stress on Preclinical Mouse Tumor Models and Therapeutic Responses: An Important Role for the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:173-189. [PMID: 29275472 PMCID: PMC9423006 DOI: 10.1007/978-3-319-67577-0_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last 10-15 years, there has been a recognition that the catecholamines (norepinephrine, NE, and epinephrine, Epi) released by the sympathetic nervous system under stressful conditions promote tumor growth through a variety of mechanisms. Tumors recruit autonomic nerves during their development and NE is then released locally in the tumor microenvironment (TME). Acting through adrenergic receptors present on a variety of cells in the TME, NE and Epi induce proliferation, resistance to apoptosis, epithelial to mesenchymal transition, metastasis of tumor cells, angiogenesis, and inflammation in the TME. These pre-clinical studies have been conducted in mouse models whose care and housing parameters are outlined in "The Guide for the Care and Use of Laboratory Animals [1]. In particular, the Guide mandates that mice be housed at standardized sub-thermoneutral temperatures; however, this causes a state of chronic cold-stress and elevated levels of NE. Although mice are able to maintain a normal body temperature when kept at these cool temperatures, it is becoming clear that this cold-stress is sufficient to activate physiological changes which affect experimental outcomes. We find that when mice are housed under standard, sub-thermoneutral temperatures (~22 °C, ST), tumor growth is significantly greater than when mice are housed at thermoneutrality (~30 °C TT). We also find that the anti-tumor immune response is suppressed at ST and this immunosuppression can be reversed by housing mice at TT or by administration of propranolol (a β-adrenergic receptor antagonist) to mice housed at ST. Furthermore, at ST tumors are more resistant to therapy and can also be sensitized to cytotoxic therapies by housing mice at TT or by treating mice with propranolol. The implications of these observations are particularly relevant to the way in which experiments conducted in preclinical models are interpreted and the findings implemented in the clinic. It may be that the disappointing failure of many new therapies to fulfill their promise in the clinic is related to an incomplete preclinical assessment in mouse models. Further, an expanded understanding of the efficacy of a therapy alone or in combination obtained by testing under a wider range of conditions would better predict how patients, who are under various levels of stress, might respond in a clinical setting. This may be particularly important to consider since we now appreciate that long term outcome of many therapies depends on eliciting an immune response.It is clear that the outcome of metabolic experiments, immunological investigations and therapeutic efficacy testing in tumors of mice housed at ST is restricted and expanding these experiments to include results obtained at TT may provide us with valuable information that would otherwise be overlooked.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
90
|
Yang H, Wu JW, Wang SP, Severi I, Sartini L, Frizzell N, Cinti S, Yang G, Mitchell GA. Adipose-Specific Deficiency of Fumarate Hydratase in Mice Protects Against Obesity, Hepatic Steatosis, and Insulin Resistance. Diabetes 2016; 65:3396-3409. [PMID: 27554470 PMCID: PMC5860441 DOI: 10.2337/db16-0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
Obesity and type 2 diabetes are associated with impaired mitochondrial function in adipose tissue. To study the effects of primary deficiency of mitochondrial energy metabolism in fat, we generated mice with adipose-specific deficiency of fumarate hydratase (FH), an integral Krebs cycle enzyme (AFHKO mice). AFHKO mice have severe ultrastructural abnormalities of mitochondria, ATP depletion in white adipose tissue (WAT) and brown adipose tissue, low WAT mass with small adipocytes, and impaired thermogenesis with large unilocular brown adipocytes. AFHKO mice are strongly protected against obesity, insulin resistance, and fatty liver despite aging and high-fat feeding. AFHKO white adipocytes showed normal lipolysis but low triglyceride synthesis. ATP depletion in normal white adipocytes by mitochondrial toxins also decreased triglyceride synthesis, proportionally to ATP depletion, suggesting that reduced triglyceride synthesis may result nonspecifically from adipocyte energy deficiency. At thermoneutrality, protection from insulin resistance and hepatic steatosis was diminished. Taken together, the results show that under the cold stress of regular animal room conditions, adipocyte-specific FH deficiency in mice causes mitochondrial energy depletion in adipose tissues and protects from obesity, hepatic steatosis, and insulin resistance, suggesting that in cold-stressed animals, mitochondrial function in adipose tissue is a determinant of fat mass and insulin sensitivity.
Collapse
Affiliation(s)
- Hao Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jiang W Wu
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Shu P Wang
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Center of Obesity, United Hospitals, University of Ancona (Università Politecnica Delle Marche), Ancona, Italy
| | - Loris Sartini
- Department of Experimental and Clinical Medicine, Center of Obesity, United Hospitals, University of Ancona (Università Politecnica Delle Marche), Ancona, Italy
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, United Hospitals, University of Ancona (Università Politecnica Delle Marche), Ancona, Italy
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, Montreal, Quebec, Canada
| |
Collapse
|
91
|
Lau J, Shi YC, Herzog H. Temperature dependence of the control of energy homeostasis requires CART signaling. Neuropeptides 2016; 59:97-109. [PMID: 27080622 DOI: 10.1016/j.npep.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/22/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a key neuropeptide with predominant expression in the hypothalamus central to the regulation of diverse biological processes, including food intake and energy expenditure. While there is considerable information on CART's role in the control of feeding, little is known about its thermoregulatory potential. Here we show the consequences of lack of CART signaling on major parameters of energy homeostasis in CART-/- mice under standard ambient housing (RT, 22°C), which is considered a mild cold exposure for mice, and thermoneutral conditions (TN, 30°C). WT mice kept at RT showed an increase in food intake, energy expenditure, BAT UCP-1 expression, and physical activity compared with TN condition, reflecting the augmented energy demand for thermogenesis at RT. On the molecular level, RT housing led to upregulated mRNA expression of TH, CRH, and TRH at the PVN, while NPY, AgRP and CART mRNA levels in the Arc were downregulated. CART-/- mice displayed elevated adiposity and diminished lean mass across both RT and TN. At RT, CART-/- mice showed unchanged food consumption yet greater body weight gain. In addition, an increase in energy expenditure and heightened BAT thermogenesis marked by UCP-1 protein expression was observed in the CART-/- mice. In contrast, TN-housed CART-/- mice exhibited lower weight gain than WT mice accompanied with pronounced reduction in basal feeding. These findings were correlated with reduced BAT temperature, but unchanged energy expenditure and UCP-1 levels. Interestingly, the respiratory exchange ratio for CART-/- mice, which shifted from lower at RT to higher at TN with respect to WT controls, indicates a transition of relative fuel source preference from fat to carbohydrate in the absence of CART signaling. Taken together, these results demonstrate that CART is a critical regulator of energy expenditure, energy partitioning and utilization dependent on the thermal environment.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| |
Collapse
|
92
|
Crabbe JC. Reproducibility of Experiments with Laboratory Animals: What Should We Do Now? Alcohol Clin Exp Res 2016; 40:2305-2308. [PMID: 27716958 DOI: 10.1111/acer.13228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 01/27/2023]
|
93
|
Giles DA, Ramkhelawon B, Donelan EM, Stankiewicz TE, Hutchison SB, Mukherjee R, Cappelletti M, Karns R, Karp CL, Moore KJ, Divanovic S. Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice. Mol Metab 2016; 5:1121-1130. [PMID: 27818938 PMCID: PMC5081423 DOI: 10.1016/j.molmet.2016.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Objectives Obesity and obesity-associated inflammation is central to a variety of end-organ sequelae including atherosclerosis, a leading cause of death worldwide. Although mouse models have provided important insights into the immunopathogenesis of various diseases, modeling atherosclerosis in mice has proven difficult. Specifically, wild-type (WT) mice are resistant to developing atherosclerosis, while commonly used genetically modified mouse models of atherosclerosis are poor mimics of human disease. The lack of a physiologically relevant experimental model of atherosclerosis has hindered the understanding of mechanisms regulating disease development and progression as well as the development of translational therapies. Recent evidence suggests that housing mice within their thermoneutral zone profoundly alters murine physiology, including both metabolic and immune processes. We hypothesized that thermoneutral housing would allow for augmentation of atherosclerosis induction and progression in mice. Methods ApoE−/− and WT mice were housed at either standard (TS) or thermoneutral (TN) temperatures and fed either a chow or obesogenic “Western” diet. Analysis included quantification of (i) obesity and obesity-associated downstream sequelae, (ii) the development and progression of atherosclerosis, and (iii) inflammatory gene expression pathways related to atherosclerosis. Results Housing mice at TN, in combination with an obesogenic “Western” diet, profoundly augmented obesity development, exacerbated atherosclerosis in ApoE−/− mice, and initiated atherosclerosis development in WT mice. This increased disease burden was associated with altered lipid profiles, including cholesterol levels and fractions, and increased aortic plaque size. In addition to the mild induction of atherosclerosis, we similarly observed increased levels of aortic and white adipose tissue inflammation and increased circulating immune cell expression of pathways related to adverse cardiovascular outcome. Conclusions In sum, our novel data in WT C57Bl/6 mice suggest that modulation of a single environmental variable, temperature, dramatically alters mouse physiology, metabolism, and inflammation, allowing for an improved mouse model of atherosclerosis. Thus, thermoneutral housing of mice shows promise in yielding a better understanding of the cellular and molecular pathways underlying the pathogenesis of diverse diseases. Thermoneutral housing augments atherosclerosis in ApoE−/− and WT mice. Thermoneutral housing increases serum LDL levels in obese WT mice. Thermoneutral housing increases inflammatory potential in lean and obese mice.
Collapse
Affiliation(s)
- Daniel A Giles
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Bhama Ramkhelawon
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA; Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth M Donelan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Traci E Stankiewicz
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susan B Hutchison
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Rajib Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Monica Cappelletti
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christopher L Karp
- Discovery & Translational Sciences, The Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | - Kathryn J Moore
- Department of Medicine, Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.
| |
Collapse
|
94
|
Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA. Warm-Sensitive Neurons that Control Body Temperature. Cell 2016; 167:47-59.e15. [PMID: 27616062 DOI: 10.1016/j.cell.2016.08.028] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/22/2016] [Accepted: 08/13/2016] [Indexed: 01/12/2023]
Abstract
Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth K Cooke
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn E Daly
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher A Zimmerman
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
95
|
Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8:v8080231. [PMID: 27548204 PMCID: PMC4997593 DOI: 10.3390/v8080231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.
Collapse
Affiliation(s)
- Terence P Scott
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
96
|
Kirkland JL, Stout MB, Sierra F. Resilience in Aging Mice. J Gerontol A Biol Sci Med Sci 2016; 71:1407-1414. [PMID: 27535963 DOI: 10.1093/gerona/glw086] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an aging context. The preliminary set of tests ranked by the participants is discussed here, recognizing that this is a first attempt.
Collapse
Affiliation(s)
- James L Kirkland
- Mayo Clinic Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Michael B Stout
- Mayo Clinic Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Felipe Sierra
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
97
|
Odegaard JI, Lee MW, Sogawa Y, Bertholet AM, Locksley RM, Weinberg DE, Kirichok Y, Deo RC, Chawla A. Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 2016; 166:841-854. [PMID: 27453471 PMCID: PMC4985267 DOI: 10.1016/j.cell.2016.06.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
Abstract
For placental mammals, the transition from the in utero maternal environment to postnatal life requires the activation of thermogenesis to maintain their core temperature. This is primarily accomplished by induction of uncoupling protein 1 (UCP1) in brown and beige adipocytes, the principal sites for uncoupled respiration. Despite its importance, how placental mammals license their thermogenic adipocytes to participate in postnatal uncoupled respiration is not known. Here, we provide evidence that the "alarmin" IL-33, a nuclear cytokine that activates type 2 immune responses, licenses brown and beige adipocytes for uncoupled respiration. We find that, in absence of IL-33 or ST2, beige and brown adipocytes develop normally but fail to express an appropriately spliced form of Ucp1 mRNA, resulting in absence of UCP1 protein and impairment in uncoupled respiration and thermoregulation. Together, these data suggest that IL-33 and ST2 function as a developmental switch to license thermogenesis during the perinatal period. PAPERCLIP.
Collapse
Affiliation(s)
- Justin I Odegaard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Min-Woo Lee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Yoshitaka Sogawa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Ambre M Bertholet
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Rahul C Deo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
98
|
Liao WH, Henneberg M, Langhans W. Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis. Cell Metab 2016; 23:971-979. [PMID: 27304499 DOI: 10.1016/j.cmet.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diet-induced thermogenesis (DIT) has often been argued to be a physiological defense against obesity, but no empirical proof of its effectiveness in limiting human body weight gain is available. We here propose an immune explanation of DIT-i.e., that it results from the coevolution of host and gut microbiota (especially Firmicutes) that ferment ingested food and proliferate, causing periodic, vagally mediated increases in thermogenesis aimed at curtailing their expansion. Because of this evolutionary adaptive significance related to the immune system, DIT is not effective as an "adaptation" to maintain a certain body mass. Were DIT an effective adaptation to prevent obesity, the current obesity epidemic might not have occurred.
Collapse
Affiliation(s)
- Wan-Hui Liao
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland; Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| | - Maciej Henneberg
- Institute of Evolutionary Medicine, Medical Faculty, University of Zurich, 8057 Zurich, Switzerland; Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide 5005, Australia
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
99
|
Accounting for reciprocal host–microbiome interactions in experimental science. Nature 2016; 534:191-9. [DOI: 10.1038/nature18285] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
|
100
|
Hylander BL, Repasky EA. Thermoneutrality, Mice, and Cancer: A Heated Opinion. Trends Cancer 2016; 2:166-175. [PMID: 28741570 DOI: 10.1016/j.trecan.2016.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
The 'mild' cold stress caused by standard sub-thermoneutral housing temperatures used for laboratory mice in research institutes is sufficient to significantly bias conclusions drawn from murine models of several human diseases. We review the data leading to this conclusion, discuss the implications for research and suggest ways to reduce problems in reproducibility and experimental transparency caused by this housing variable. We have found that these cool temperatures suppress endogenous immune responses, skewing tumor growth data and the severity of graft versus host disease, and also increase the therapeutic resistance of tumors. Owing to the potential for ambient temperature to affect energy homeostasis as well as adrenergic stress, both of which could contribute to biased outcomes in murine cancer models, housing temperature should be reported in all publications and considered as a potential source of variability in results between laboratories. Researchers and regulatory agencies should work together to determine whether changes in housing parameters would enhance the use of mouse models in cancer research, as well as for other diseases. Finally, for many years agencies such as the National Cancer Institute (NCI) have encouraged the development of newer and more sophisticated mouse models for cancer research, but we believe that, without an appreciation of how basic murine physiology is affected by ambient temperature, even data from these models is likely to be compromised.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA
| | - Elizabeth A Repasky
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
| |
Collapse
|