51
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
52
|
Di Simone M, Corsale AM, Lo Presti E, Scichilone N, Picone C, Giannitrapani L, Dieli F, Meraviglia S. Phenotypical and Functional Alteration of γδ T Lymphocytes in COVID-19 Patients: Reversal by Statins. Cells 2022; 11:3449. [PMID: 36359845 PMCID: PMC9656060 DOI: 10.3390/cells11213449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: statins have been considered an attractive class of drugs in the pharmacological setting of COVID-19 due to their pleiotropic properties and their use correlates with decreased mortality in hospitalized COVID-19 patients. Furthermore, it is well known that statins, which block the mevalonate pathway, affect γδ T lymphocyte activation. As γδ T cells participate in the inflammatory process of COVID-19, we have investigated the therapeutical potential of statins as a tool to inhibit γδ T cell pro-inflammatory activities; (2) Methods: we harvested peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild clinical manifestations, COVID-19 recovered patients, and healthy controls. We performed ex vivo flow cytometry analysis to study γδ T cell frequency, phenotype, and exhaustion status. PBMCs were treated with Atorvastatin followed by non-specific and specific stimulation, to evaluate the expression of pro-inflammatory cytokines; (3) Results: COVID-19 patients had a lower frequency of circulating Vδ2+ T lymphocytes but showed a pronounced pro-inflammatory profile, which was inhibited by in vitro treatment with statins; (4) Conclusions: the in vitro capacity of statins to inhibit Vδ2+ T lymphocytes in COVID-19 patients highlights a new potential biological function of these drugs and supports their therapeutical use in these patients.
Collapse
Affiliation(s)
- Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Elena Lo Presti
- National Research Council (CNR), Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Medicine, AUOP Paolo Giaccone, 90127 Palermo, Italy
- Internal Medicine Department Unit, Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities Department (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Carmela Picone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Lydia Giannitrapani
- National Research Council (CNR), Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy
- Internal Medicine Department Unit, Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities Department (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
53
|
Han F, Gulam MY, Zheng Y, Zulhaimi NS, Sia WR, He D, Ho A, Hadadi L, Liu Z, Qin P, Lobie PE, Kamarulzaman A, Wang LF, Sandberg JK, Lewin SR, Rajasuriar R, Leeansyah E. IL7RA single nucleotide polymorphisms are associated with the size and function of the MAIT cell population in treated HIV-1 infection. Front Immunol 2022; 13:985385. [PMID: 36341446 PMCID: PMC9632172 DOI: 10.3389/fimmu.2022.985385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.
Collapse
Affiliation(s)
- Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Muhammad Yaaseen Gulam
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Nurul Syuhada Zulhaimi
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Leila Hadadi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Zhenyu Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sharon R. Lewin
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Edwin Leeansyah,
| |
Collapse
|
54
|
Li YQ, Yan C, Wang XF, Xian MY, Zou GQ, Gao XF, Luo R, Liu Z. A New iNKT-Cell Agonist-Adjuvanted SARS-CoV-2 Subunit Vaccine Elicits Robust Neutralizing Antibody Responses. ACS Infect Dis 2022; 8:2161-2170. [PMID: 36043698 DOI: 10.1021/acsinfecdis.2c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adjuvants are essential components of vaccines. Invariant natural killer T (iNKT) cells are a distinct subset of T cells that function to bridge the innate and adaptive immunities and are capable of mediating strong and rapid responses to a range of diseases, including cancer and infectious disease. An increasing amount of evidence suggests that iNKT cells can help fight viral infection. In particular, iNKT-secreting IL-4 is a key mediator of humoral immunity and has a positive correlation with the levels of neutralizing antibodies. As iNKT cell agonists, αGC glycolipid (α-galactosylceramide, or KRN7000) and its analogues as vaccine adjuvants have begun to provide vaccinologists with a new toolset. Herein we found that a new iNKT-cell agonist αGC-CPOEt elicited a strong cytokine response with increased IL-4 production. Remarkably, after three immunizations, SARS-CoV-2 RBD-Fc adjuvanted by αGC-CPOEt evoked robust neutralizing antibody responses that were about 5.5-fold more than those induced by αGC/RBD-Fc and 25-fold greater than those induced by unadjuvanted RBD-Fc. These findings imply that αGC-CPOEt could be investigated further as a new COVID-19 vaccine adjuvant to prevent current and future infectious disease outbreaks.
Collapse
Affiliation(s)
- Ya-Qian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cheng Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Mao-Ying Xian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Guo-Qing Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| |
Collapse
|
55
|
Yao Y, Subedi K, Liu T, Khalasawi N, Pretto-Kernahan CD, Wotring JW, Wang J, Yin C, Jiang A, Fu C, Dimitrion P, Li J, Veenstra J, Yi Q, McKinnon K, McKinnon JE, Sexton JZ, Zhou L, Mi QS. Surface translocation of ACE2 and TMPRSS2 upon TLR4/7/8 activation is required for SARS-CoV-2 infection in circulating monocytes. Cell Discov 2022; 8:89. [PMID: 36085197 PMCID: PMC9462622 DOI: 10.1038/s41421-022-00453-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInfection of human peripheral blood cells by SARS-CoV-2 has been debated because immune cells lack mRNA expression of both angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease type 2 (TMPRSS2). Herein we demonstrate that resting primary monocytes harbor abundant cytoplasmic ACE2 and TMPRSS2 protein and that circulating exosomes contain significant ACE2 protein. Upon ex vivo TLR4/7/8 stimulation, cytoplasmic ACE2 was quickly translocated to the monocyte cell surface independently of ACE2 transcription, while TMPRSS2 surface translocation occurred in conjunction with elevated mRNA expression. The rapid translocation of ACE2 to the monocyte cell surface was blocked by the endosomal trafficking inhibitor endosidin 2, suggesting that endosomal ACE2 could be derived from circulating ACE2-containing exosomes. TLR-stimulated monocytes concurrently expressing ACE2 and TMPRSS2 on the cell surface were efficiently infected by SARS-CoV-2, which was significantly mitigated by remdesivir, TMPRSS2 inhibitor camostat, and anti-ACE2 antibody. Mass cytometry showed that ACE2 surface translocation in peripheral myeloid cells from patients with severe COVID-19 correlated with its hyperactivation and PD-L1 expression. Collectively, TLR4/7/8-induced ACE2 translocation with TMPRSS2 expression makes circulating monocytes permissive to SARS-CoV-2 infection.
Collapse
|
56
|
Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Defying convention in the time of COVID-19: Insights into the role of γδ T cells. Front Immunol 2022; 13:819574. [PMID: 36032159 PMCID: PMC9403327 DOI: 10.3389/fimmu.2022.819574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.
Collapse
|
57
|
Tarique M, Suhail M, Naz H, Muhammad N, Tabrez S, Zughaibi TA, Abuzenadah AM, Hashem AM, Shankar H, Saini C, Sharma A. Where do T cell subsets stand in SARS-CoV-2 infection: an update. Front Cell Infect Microbiol 2022; 12:964265. [PMID: 36034704 PMCID: PMC9399648 DOI: 10.3389/fcimb.2022.964265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It's continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome.
Collapse
Affiliation(s)
- Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, United States
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huma Naz
- Department of Child Health, University of Missouri, Columbia, MO, United States
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hari Shankar
- India Council of Medical Research, New Delhi, India
| | - Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
58
|
Govender M, Hopkins FR, Göransson R, Svanberg C, Shankar EM, Hjorth M, Nilsdotter-Augustinsson Å, Sjöwall J, Nyström S, Larsson M. T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Front Immunol 2022; 13:931039. [PMID: 36003367 PMCID: PMC9393525 DOI: 10.3389/fimmu.2022.931039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is being extensively studied, and much remains unknown regarding the long-term consequences of the disease on immune cells. The different arms of the immune system are interlinked, with humoral responses and the production of high-affinity antibodies being largely dependent on T cell immunity. Here, we longitudinally explored the effect COVID-19 has on T cell populations and the virus-specific T cells, as well as neutralizing antibody responses, for 6-7 months following hospitalization. The CD8+ TEMRA and exhausted CD57+ CD8+ T cells were markedly affected with elevated levels that lasted long into convalescence. Further, markers associated with T cell activation were upregulated at inclusion, and in the case of CD69+ CD4+ T cells this lasted all through the study duration. The levels of T cells expressing negative immune checkpoint molecules were increased in COVID-19 patients and sustained for a prolonged duration following recovery. Within 2-3 weeks after symptom onset, all COVID-19 patients developed anti-nucleocapsid IgG and spike-neutralizing IgG as well as SARS-CoV-2-specific T cell responses. In addition, we found alterations in follicular T helper (TFH) cell populations, such as enhanced TFH-TH2 following recovery from COVID-19. Our study revealed significant and long-term alterations in T cell populations and key events associated with COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robin Göransson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Maria Hjorth
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
59
|
Audemard-Verger A, Le Gouge A, Pestre V, Courjon J, Langlois V, Vareil MO, Devaux M, Bienvenu B, Leroy V, Goulabchand R, Colombain L, Bigot A, Guimard T, Douadi Y, Urbanski G, Faucher JF, Maulin L, Lioger B, Talarmin JP, Groh M, Emmerich J, Deriaz S, Ferreira-Maldent N, Cook AR, Lengellé C, Bourgoin H, Mekinian A, Aouba A, Maillot F, Caille A. Efficacy and safety of anakinra in adults presenting deteriorating respiratory symptoms from COVID-19: A randomized controlled trial. PLoS One 2022; 17:e0269065. [PMID: 35925914 PMCID: PMC9351999 DOI: 10.1371/journal.pone.0269065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
Objective We aimed to investigate whether anakinra, an interleukin-1receptor inhibitor, could improve outcome in moderate COVID-19 patients. Methods In this controlled, open-label trial, we enrolled adults with COVID-19 requiring oxygen. We randomly assigned patients to receive intravenous anakinra plus optimized standard of care (oSOC) vs. oSOC alone. The primary outcome was treatment success at day 14 defined as patient alive and not requiring mechanical ventilation or extracorporeal membrane oxygenation. Results Between 27th April and 6th October 2020, we enrolled 71 patients (240 patients planned to been enrolled): 37 were assigned to the anakinra group and 34 to oSOC group. The study ended prematurely by recommendation of the data and safety monitoring board due to safety concerns. On day 14, the proportion of treatment success was significantly lower in the anakinra group 70% (n = 26) vs. 91% (n = 31) in the oSOC group: risk difference—21 percentage points (95% CI, -39 to -2), odds ratio 0.23 (95% CI, 0.06 to 0.91), p = 0.027. After a 28-day follow-up, 9 patients in the anakinra group and 3 in the oSOC group had died. Overall survival at day 28 was 75% (95% CI, 62% to 91%) in the anakinra group versus 91% (95% CI, 82% to 100%) (p = 0.06) in the oSOC group. Serious adverse events occurred in 19 (51%) patients in the anakinra group and 18 (53%) in the oSOC group (p = 0·89). Conclusion This trial did not show efficacy of anakinra in patients with COVID-19. Furthermore, contrary to our hypothesis, we found that anakinra was inferior to oSOC in patients with moderate COVID-19 pneumonia.
Collapse
Affiliation(s)
- Alexandra Audemard-Verger
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
- University of Tours, Tours, France
- * E-mail:
| | | | - Vincent Pestre
- Department of Internal Medicine and Infectious Diseases, CH Avignon, Avignon, France
| | - Johan Courjon
- Department of Infectious Diseases, Université Côte d’Azur, CHU Nice, Nice, France
| | | | | | - Mathilde Devaux
- Department of Internal Medicine, CH de Poissy, Poissy, France
| | - Boris Bienvenu
- Department of Internal Medicine, Hôpital Saint Joseph, Marseille, France
| | - Vincent Leroy
- Department of Infectious Diseases, Clinique Tessier, Valenciennes, France
| | - Radjiv Goulabchand
- Internal Medicine Department & Department of Infectious and Tropical Diseases, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Léa Colombain
- Department of Infectious Diseases, CH de Perpignan, Perpignan, France
| | - Adrien Bigot
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
| | - Thomas Guimard
- Department of Infectious Diseases, CH la Roche sur Yon, La Roche sur Yon, France
| | - Youcef Douadi
- Department of Infectious Diseases, CH Saint Quentin, Saint Quentin, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, CHU Angers, Angers France
| | | | - Laurence Maulin
- Department of Infectious Diseases, CH Aix en Provence, Aix en Provence, France
| | | | | | - Matthieu Groh
- Department of Internal Medicine, Hôpital Foch, Suresnes, France
| | - Joseph Emmerich
- Department of Vascular Medicine, GH Saint Joseph and Université de Paris, INSERM CRESS 1153, Paris, France
| | - Sophie Deriaz
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
| | | | - Ann-Rose Cook
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
| | | | | | - Arsène Mekinian
- Department of Internal Medicine, Hôpital Saint Antoine, Sorbonne Université, Paris, France
| | - Achille Aouba
- Department of Internal Medicine, CHU de Caen, Caen, France
| | - François Maillot
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
- University of Tours, Tours, France
| | - Agnès Caille
- University of Tours, Tours, France
- INSERM CIC1415, CHRU Tours, Tours, France
| |
Collapse
|
60
|
Du B, Guo Y, Li G, Zhu Y, Wang Y, Xi X. Non-structure protein ORF1ab (NSP8) in SARS-CoV-2 contains potential γδT cell epitopes. Front Microbiol 2022; 13:936272. [PMID: 35935236 PMCID: PMC9354780 DOI: 10.3389/fmicb.2022.936272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Upon activation by the pathogen through T-cell receptors (TCRs), γδT cells suppress the pathogenic replication and thus play important roles against viral infections. Targeting SARS-CoV-2 via γδT cells provides alternative therapeutic strategies. However, little is known about the recognition of SARS-CoV-2 antigens by γδT cells. We discovered a specific Vγ9/δ2 CDR3 by analyzing γδT cells derived from the patients infected by SARS-CoV-2. Using a cell model exogenously expressing γδ-TCR established, we further screened the structural motifs within the CDR3 responsible for binding to γδ-TCR. Importantly, these sequences were mapped to NSP8, a non-structural protein in SARS-CoV-2. Our results suggest that NSP8 mediates the recognition by γδT cells and thus could serve as a potential target for vaccines.
Collapse
Affiliation(s)
- Boyu Du
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yang Guo
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Gang Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yunfu Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
- *Correspondence: Yunfu Wang,
| | - Xueyan Xi
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Xueyan Xi,
| |
Collapse
|
61
|
Singh K, Cogan S, Elekes S, Murphy DM, Cummins S, Curran R, Najda Z, Dunne MR, Jameson G, Gargan S, Martin S, Long A, Doherty DG. SARS-CoV-2 spike and nucleocapsid proteins fail to activate human dendritic cells or γδ T cells. PLoS One 2022; 17:e0271463. [PMID: 35834480 PMCID: PMC9282473 DOI: 10.1371/journal.pone.0271463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
γδ T cells are thought to contribute to immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanisms by which they are activated by the virus are unknown. Using flow cytometry, we investigated if the two most abundant viral structural proteins, spike and nucleocapsid, can activate human γδ T cell subsets, directly or in the presence of dendritic cells (DC). Both proteins failed to induce interferon-γ production by Vδ1 or Vδ2 T cells within fresh mononuclear cells or lines of expanded γδ T cells generated from healthy donors, but the same proteins stimulated CD3+ cells from COVID-19 patients. The nucleocapsid protein stimulated interleukin-12 production by DC and downstream interferon-γ production by co-cultured Vδ1 and Vδ2 T cells, but protease digestion and use of an alternative nucleocapsid preparation indicated that this activity was due to contaminating non-protein material. Thus, SARS-CoV-2 spike and nucleocapsid proteins do not have stimulatory activity for DC or γδ T cells. We propose that γδ T cell activation in COVID-19 patients is mediated by immune recognition of viral RNA or other structural proteins by γδ T cells, or by other immune cells, such as DC, that produce γδ T cell-stimulatory ligands or cytokines.
Collapse
Affiliation(s)
- Kiran Singh
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Sita Cogan
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Stefan Elekes
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Dearbhla M. Murphy
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Sinead Cummins
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Rory Curran
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Margaret R. Dunne
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Gráinne Jameson
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Siobhan Gargan
- Discipline of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Seamus Martin
- Molecular Cell Biology Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Discipline of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| |
Collapse
|
62
|
SARS-CoV-2-Specific and Functional Cytotoxic CD8 Cells in Primary Antibody Deficiency: Natural Infection and Response to Vaccine. J Clin Immunol 2022; 42:914-922. [PMID: 35366743 PMCID: PMC8976534 DOI: 10.1007/s10875-022-01256-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE CD8 cytotoxic T cells (CTLs) play a critical role in the clearance of virally infected cells. SARS-CoV-2-specific CD8 T cells and functional CTLs in natural infections and following COVID-19 vaccine in primary antibody deficiency (PAD) have not been reported. In this study, we evaluated T cell response following COVID-19 or COVID-19 mRNA vaccination in patients with PADs by assessing SARS-CoV-2 tetramer-positive CD8 T cells and functional CTLs. METHODS SARS-CoV-2-specific CD8 and functional CTLs were examined in a patient with X-linked agammaglobulinemia (XLA) and a patient with common variable immunodeficiency (CVID) following COVID-19 infection, and in 5 patients with CVID and 5 healthy controls 1 month following 2nd dose of COVID-19 mRNA vaccine (Pfizer-BioNTech). Cells were stained with SARS-CoV-2 spike protein-specific tetramers, and for functional CTLs (CD8+ CD107a+ granzyme B+ perforin+), with monoclonal antibodies and isotype controls and analyzed by flow cytometry. RESULTS SARS-CoV-2-specific tetramer + CD8 T cells and functional CTLs in the patient with XLA following COVID-19 infection were higher, as compared to healthy control subject following COVID-19 infection. On the other hand, SARS-CoV2-tetramer + CD8 T cells and functional CTLs were lower in CVID patient following COVID19 infection as compared to healthy control following COVID-19 infection. SARS-CoV2-tetramer + CD8 T cells and functional CTLs were significantly lower in SARS-CoV2-naive CVID patients (n = 10) following vaccination when compared to SARS-CoV-2-naive healthy vaccinated controls (n = 10). CONCLUSIONS CVID is associated with reduced SARS-CoV-2-specific CD8 T cells and functional CTLs in both natural SARS-CoV-2 infection and in response to SARS-CoV-2 mRNA vaccine, whereas natural infection in XLA is associated with a robust SARS-CoV-2-specific CD8 and functional CTL responses.
Collapse
|
63
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
64
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
65
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
66
|
Kim DH, Kim B, Lee WW. Mucosal associated invariant T cells in ARDS: MAIT cells set fire to macrophages via cytokines. Thorax 2022; 77:846-847. [PMID: 35688621 DOI: 10.1136/thoraxjnl-2022-218696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea .,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Ischemic/Hypoxic Disease Institute, and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
67
|
Cimini E, Agrati C. γδ T Cells in Emerging Viral Infection: An Overview. Viruses 2022; 14:v14061166. [PMID: 35746638 PMCID: PMC9230790 DOI: 10.3390/v14061166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
New emerging viruses belonging to the Coronaviridae, Flaviviridae, and Filoviridae families are serious threats to public health and represent a global concern. The surveillance to monitor the emergence of new viruses and their transmission is an important target for public health authorities. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an excellent example of a pathogen able to cause a pandemic. In a few months, SARS-CoV-2 has spread globally from China, and it has become a world health problem. Gammadelta (γδ) T cell are sentinels of innate immunity and are able to protect the host from viral infections. They enrich many tissues, such as the skin, intestines, and lungs where they can sense and fight the microbes, thus contributing to the protective immune response. γδ T cells perform their direct antiviral activity by cytolytic and non-cytolytic mechanisms against a wide range of viruses, and they are able to orchestrate the cellular interplay between innate and acquired immunity. For their pleiotropic features, γδ T cells have been proposed as a target for immunotherapies in both cancer and viral infections. In this review, we analyzed the role of γδ T cells in emerging viral infections to define the profile of the response and to better depict their role in the host protection.
Collapse
|
68
|
Sengupta S, Bhattacharya G, Chatterjee S, Datey A, Shaw SK, Suranjika S, Nath P, Barik PK, Prasad P, Chattopadhyay S, Swain RK, Parida A, Devadas S. Underlying Co-Morbidity Reveals Unique Immune Signatures in Type II Diabetes Patients Infected With SARS-CoV2. Front Immunol 2022; 13:848335. [PMID: 35572555 PMCID: PMC9094480 DOI: 10.3389/fimmu.2022.848335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV2 infection in patients with comorbidities, particularly T2DM, has been a major challenge globally and has been shown to be associated with high morbidity and mortality. Here, we did whole blood immunophenotyping along with plasma cytokine, chemokine, antibody isotyping, and viral load from oropharyngeal swab to understand the immune pathology in the T2DM patients infected with SARS-CoV2. Methods Blood samples from 25 Covid-19 positive patients having T2DM, 10 Covid-19 positive patients not having T2DM, and 10 Covid-19 negative, non-diabetic healthy controls were assessed for various immune cells by analyzing for their signature surface proteins in mass cytometry. Circulating cytokines, chemokines, and antibody isotypes were determined from plasma while viral copy number was determined from oropharyngeal swabs. All our representative data corroborated with laboratory findings. Results Our observations encompass T2DM patients having elevated levels of both type I and type II cytokines and higher levels of circulating IgA, IgM, IgG1, and IgG2 as compared to NDM and healthy volunteers. They also displayed higher percentages of granulocytes, mDCs, plasmablasts, Th2-like cells, CD4+ EM cells, and CD8+ TE cells as compared to healthy volunteers. T2DM patients also displayed lower percentages of pDCs, lymphocytes, CD8+ TE cells, CD4+, and CD8+ EM. Conclusion Our study demonstrated that patients with T2DM displayed higher inflammatory markers and a dysregulated anti-viral and anti-inflammatory response when compared to NDM and healthy controls and the dysregulated immune response may be attributed to meta inflammation.
Collapse
Affiliation(s)
- Soumya Sengupta
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Gargee Bhattacharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Sanchari Chatterjee
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Ankita Datey
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Shubham K Shaw
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Sandhya Suranjika
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Paritosh Nath
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Prakash K Barik
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Punit Prasad
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Soma Chattopadhyay
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Rajeeb K Swain
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Ajay Parida
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Satish Devadas
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| |
Collapse
|
69
|
Boulouis C, Kammann T, Cuapio A, Parrot T, Gao Y, Mouchtaridi E, Wullimann D, Lange J, Chen P, Akber M, Rivera Ballesteros O, Muvva JR, Smith CIE, Vesterbacka J, Kieri O, Nowak P, Bergman P, Buggert M, Ljunggren HG, Aleman S, Sandberg JK. MAIT cell compartment characteristics are associated with the immune response magnitude to the BNT162b2 mRNA anti-SARS-CoV-2 vaccine. Mol Med 2022; 28:54. [PMID: 35562666 PMCID: PMC9100314 DOI: 10.1186/s10020-022-00484-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are unconventional T cells with innate-like capacity to rapidly respond to microbial infection via MR1-restricted antigen recognition. Emerging evidence indicate that they can also act as rapid sensors of viral infection via innate cytokine activation. However, their possible role in the immune response to mRNA vaccination is unknown. Here, we evaluated the involvement of MAIT cells in individuals vaccinated with the BNT162b2 mRNA SARS-CoV-2 vaccine. MAIT cell levels, phenotype and function in circulation were preserved and unperturbed through day 35 post-vaccination in healthy donor (HD) vaccinees, as well as people living with HIV (PLWH) or with primary immunodeficiency (PID). Unexpectedly, pre-vaccination and post-vaccination levels of MAIT cells correlated positively with the magnitude of the SARS-CoV-2 spike protein-specific CD4 T cell and antibody responses in the HD vaccinees. This pattern was largely preserved in the PID group, but less so in the PLWH group. Furthermore, in the HD vaccinees levels of MAIT cell activation and cytolytic potential correlated negatively to the adaptive antigen-specific immune responses. These findings indicate an unexpected association between MAIT cell compartment characteristics and the immune response magnitude to the BNT162b2 mRNA vaccine.
Collapse
Affiliation(s)
- Caroline Boulouis
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Tobias Kammann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Tiphaine Parrot
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Elli Mouchtaridi
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Joshua Lange
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Jagadeeswara Rao Muvva
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Kieri
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 14152, Stockholm, Sweden.
| |
Collapse
|
70
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
71
|
Innate and Adaptive Immune Responses in the Upper Respiratory Tract and the Infectivity of SARS-CoV-2. Viruses 2022; 14:v14050933. [PMID: 35632675 PMCID: PMC9143801 DOI: 10.3390/v14050933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence shows the nasal epithelium to be the initial site of SARS-CoV-2 infection, and that early and effective immune responses in the upper respiratory tract (URT) limit and eliminate the infection in the URT, thereby preventing infection of the lower respiratory tract and the development of severe COVID-19. SARS-CoV-2 interferes with innate immunity signaling and evolves mutants that can reduce antibody-mediated immunity in the URT. Recent genetic and immunological advances in understanding innate immunity to SARS-CoV-2 in the URT, and the ability of prior infections as well as currently available injectable and potential intranasal COVID-19 vaccines to generate anamnestic adaptive immunity in the URT, are reviewed. It is suggested that the more detailed investigation of URT immune responses to all types of COVID-19 vaccines, and the development of safe and effective COVID-19 vaccines for intranasal administration, are important needs.
Collapse
|
72
|
Abstract
COVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.
Collapse
Affiliation(s)
- Kristen Orumaa
- Department of Clinical Microbiology and Department of Immunology, Trinity Translational Medicine Institute, St James's Hospital, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Clinical Microbiology and Department of Immunology, Trinity Translational Medicine Institute, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
73
|
Li YR, Dunn ZS, Garcia G, Carmona C, Zhou Y, Lee D, Yu J, Huang J, Kim JT, Arumugaswami V, Wang P, Yang L. Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Res Ther 2022; 13:112. [PMID: 35313965 PMCID: PMC8935266 DOI: 10.1186/s13287-022-02787-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND New COVID-19 treatments are desperately needed as case numbers continue to rise and emergent strains threaten vaccine efficacy. Cell therapy has revolutionized cancer treatment and holds much promise in combatting infectious disease, including COVID-19. Invariant natural killer T (iNKT) cells are a rare subset of T cells with potent antiviral and immunoregulatory functions and an excellent safety profile. Current iNKT cell strategies are hindered by the extremely low presence of iNKT cells, and we have developed a platform to overcome this critical limitation. METHODS We produced allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells through TCR engineering of human cord blood CD34+ hematopoietic stem cells (HSCs) and differentiation of these HSCs into iNKT cells in an Ex Vivo HSC-Derived iNKT Cell Culture. We then established in vitro SARS-CoV-2 infection assays to assess AlloHSC-iNKT cell antiviral and anti-hyperinflammation functions. Lastly, using in vitro and in vivo preclinical models, we evaluated AlloHSC-iNKT cell safety and immunogenicity for off-the-shelf application. RESULTS We reliably generated AlloHSC-iNKT cells at high-yield and of high-purity; these resulting cells closely resembled endogenous human iNKT cells in phenotypes and functionalities. In cell culture, AlloHSC-iNKT cells directly killed SARS-CoV-2 infected cells and also selectively eliminated SARS-CoV-2 infection-stimulated inflammatory monocytes. In an in vitro mixed lymphocyte reaction (MLR) assay and an NSG mouse xenograft model, AlloHSC-iNKT cells were resistant to T cell-mediated alloreaction and did not cause GvHD. CONCLUSIONS Here, we report a method to robustly produce therapeutic levels of AlloHSC-iNKT cells. Preclinical studies showed that these AlloHSC-iNKT cells closely resembled endogenous human iNKT cells, could reduce SARS-CoV-2 virus infection load and mitigate virus infection-induced hyperinflammation, and meanwhile were free of GvHD-risk and resistant to T cell-mediated allorejection. These results support the development of AlloHSC-iNKT cells as a promising off-the-shelf cell product for treating COVID-19; such a cell product has the potential to target the new emerging SARS-CoV-2 variants as well as the future new emerging viruses.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, Los Angeles, CA, 90089, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jocelyn T Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, Los Angeles, CA, 90089, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
74
|
Yang J, Chang T, Tang L, Deng H, Chen D, Luo J, Wu H, Tang T, Zhang C, Li Z, Dong L, Yang XP, Tang ZH. Increased Expression of Tim-3 Is Associated With Depletion of NKT Cells In SARS-CoV-2 Infection. Front Immunol 2022; 13:796682. [PMID: 35250975 PMCID: PMC8889099 DOI: 10.3389/fimmu.2022.796682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
In the ongoing coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), natural killer T (NKT) cells act as primary initiators of immune responses. However, a decrease of circulating NKT cells has been observed in COVID-19 different stages, of which the underlying mechanism remains to be elucidated. Here, by performing single-cell RNA sequencing analysis in three large cohorts of COVID-19 patients, we found that increased expression of Tim-3 promotes depletion of NKT cells during the progression stage of COVID-19, which is associated with disease severity and outcome of patients with COVID-19. Tim-3+ NKT cells also expressed high levels of CD147 and CD26, which are potential SARS-CoV-2 spike binding receptors. In the study, Tim-3+ NKT cells showed high enrichment of apoptosis, higher expression levels of mitochondrial genes and caspase genes, with a larger pseudo time value. In addition, Tim-3+ NKT cells in COVID-19 presented a stronger capacity to secrete IFN-γ, IL-4 and IL-10 compared with healthy individuals, they also demonstrated high expression of co-inhibitory receptors such as PD-1, CTLA-4, and LAG-3. Moreover, we found that IL-12 secreted by dendritic cells (DCs) was positively correlated with up-regulated expression of Tim-3 in NKT cells in COVID-19 patients. Overall, this study describes a novel mechanism by which up-regulated Tim-3 expression induced the depletion and dysfunction of NKT cells in COVID-19 patients. These findings not only have possible implications for the prediction of severity and prognosis in COVID-19 but also provide a link between NKT cells and future new therapeutic strategies in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Liangsheng Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Jialiu Luo
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Han Wu
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - TingXuan Tang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Zhenwen Li
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Liming Dong
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| |
Collapse
|
75
|
Ahern DJ, Ai Z, Ainsworth M, Allan C, Allcock A, Angus B, Ansari MA, Arancibia-Cárcamo CV, Aschenbrenner D, Attar M, Baillie JK, Barnes E, Bashford-Rogers R, Bashyal A, Beer S, Berridge G, Beveridge A, Bibi S, Bicanic T, Blackwell L, Bowness P, Brent A, Brown A, Broxholme J, Buck D, Burnham KL, Byrne H, Camara S, Candido Ferreira I, Charles P, Chen W, Chen YL, Chong A, Clutterbuck EA, Coles M, Conlon CP, Cornall R, Cribbs AP, Curion F, Davenport EE, Davidson N, Davis S, Dendrou CA, Dequaire J, Dib L, Docker J, Dold C, Dong T, Downes D, Drakesmith H, Dunachie SJ, Duncan DA, Eijsbouts C, Esnouf R, Espinosa A, Etherington R, Fairfax B, Fairhead R, Fang H, Fassih S, Felle S, Fernandez Mendoza M, Ferreira R, Fischer R, Foord T, Forrow A, Frater J, Fries A, Gallardo Sanchez V, Garner LC, Geeves C, Georgiou D, Godfrey L, Golubchik T, Gomez Vazquez M, Green A, Harper H, Harrington HA, Heilig R, Hester S, Hill J, Hinds C, Hird C, Ho LP, Hoekzema R, Hollis B, Hughes J, Hutton P, Jackson-Wood MA, Jainarayanan A, James-Bott A, Jansen K, Jeffery K, Jones E, Jostins L, Kerr G, Kim D, Klenerman P, Knight JC, Kumar V, et alAhern DJ, Ai Z, Ainsworth M, Allan C, Allcock A, Angus B, Ansari MA, Arancibia-Cárcamo CV, Aschenbrenner D, Attar M, Baillie JK, Barnes E, Bashford-Rogers R, Bashyal A, Beer S, Berridge G, Beveridge A, Bibi S, Bicanic T, Blackwell L, Bowness P, Brent A, Brown A, Broxholme J, Buck D, Burnham KL, Byrne H, Camara S, Candido Ferreira I, Charles P, Chen W, Chen YL, Chong A, Clutterbuck EA, Coles M, Conlon CP, Cornall R, Cribbs AP, Curion F, Davenport EE, Davidson N, Davis S, Dendrou CA, Dequaire J, Dib L, Docker J, Dold C, Dong T, Downes D, Drakesmith H, Dunachie SJ, Duncan DA, Eijsbouts C, Esnouf R, Espinosa A, Etherington R, Fairfax B, Fairhead R, Fang H, Fassih S, Felle S, Fernandez Mendoza M, Ferreira R, Fischer R, Foord T, Forrow A, Frater J, Fries A, Gallardo Sanchez V, Garner LC, Geeves C, Georgiou D, Godfrey L, Golubchik T, Gomez Vazquez M, Green A, Harper H, Harrington HA, Heilig R, Hester S, Hill J, Hinds C, Hird C, Ho LP, Hoekzema R, Hollis B, Hughes J, Hutton P, Jackson-Wood MA, Jainarayanan A, James-Bott A, Jansen K, Jeffery K, Jones E, Jostins L, Kerr G, Kim D, Klenerman P, Knight JC, Kumar V, Kumar Sharma P, Kurupati P, Kwok A, Lee A, Linder A, Lockett T, Lonie L, Lopopolo M, Lukoseviciute M, Luo J, Marinou S, Marsden B, Martinez J, Matthews PC, Mazurczyk M, McGowan S, McKechnie S, Mead A, Mentzer AJ, Mi Y, Monaco C, Montadon R, Napolitani G, Nassiri I, Novak A, O'Brien DP, O'Connor D, O'Donnell D, Ogg G, Overend L, Park I, Pavord I, Peng Y, Penkava F, Pereira Pinho M, Perez E, Pollard AJ, Powrie F, Psaila B, Quan TP, Repapi E, Revale S, Silva-Reyes L, Richard JB, Rich-Griffin C, Ritter T, Rollier CS, Rowland M, Ruehle F, Salio M, Sansom SN, Sanches Peres R, Santos Delgado A, Sauka-Spengler T, Schwessinger R, Scozzafava G, Screaton G, Seigal A, Semple MG, Sergeant M, Simoglou Karali C, Sims D, Skelly D, Slawinski H, Sobrinodiaz A, Sousos N, Stafford L, Stockdale L, Strickland M, Sumray O, Sun B, Taylor C, Taylor S, Taylor A, Thongjuea S, Thraves H, Todd JA, Tomic A, Tong O, Trebes A, Trzupek D, Tucci FA, Turtle L, Udalova I, Uhlig H, van Grinsven E, Vendrell I, Verheul M, Voda A, Wang G, Wang L, Wang D, Watkinson P, Watson R, Weinberger M, Whalley J, Witty L, Wray K, Xue L, Yeung HY, Yin Z, Young RK, Youngs J, Zhang P, Zurke YX. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 2022; 185:916-938.e58. [PMID: 35216673 PMCID: PMC8776501 DOI: 10.1016/j.cell.2022.01.012] [Show More Authors] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19.
Collapse
|
76
|
Ma Y, Qiu F, Deng C, Li J, Huang Y, Wu Z, Zhou Y, Zhang Y, Xiong Y, Yao Y, Zhong Y, Qu J, Su J. Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19. Genome Med 2022; 14:16. [PMID: 35172892 PMCID: PMC8851814 DOI: 10.1186/s13073-022-01021-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/06/2022] [Indexed: 02/08/2023] Open
Abstract
Background Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. Methods We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. Results We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. Conclusions We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01021-1.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Qiu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunyu Deng
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zeyi Wu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yijun Zhou
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yichun Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
77
|
Xu G, Qi F, Wang H, Liu Y, Wang X, Zou R, Yuan J, Liao X, Liu Y, Zhang S, Zhang Z. The Transient IFN Response and the Delay of Adaptive Immunity Feature the Severity of COVID-19. Front Immunol 2022; 12:816745. [PMID: 35095917 PMCID: PMC8795972 DOI: 10.3389/fimmu.2021.816745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 patients show heterogeneous and dynamic immune features which determine the clinical outcome. Here, we built a single-cell RNA sequencing (scRNA-seq) dataset for dissecting these complicated immune responses through a longitudinal survey of COVID-19 patients with various categories of outcomes. The data reveals a highly fluctuating peripheral immune landscape in severe COVID-19, whereas the one in asymptomatic/mild COVID-19 is relatively steady. Then, the perturbed immune landscape in peripheral blood returned to normal state in those recovered from severe COVID-19. Importantly, the imbalance of the excessively strong innate immune response and delayed adaptive immunity in the early stage of viral infection accelerates the progression of the disease, indicated by a transient strong IFN response and weak T/B-cell specific response. The proportion of abnormal monocytes appeared early and rose further throughout the severe disease. Our data indicate that a dynamic immune landscape is associated with the progression and recovery of severe COVID-19, and have provided multiple immune biomarkers for early warning of severe COVID-19.
Collapse
Affiliation(s)
- Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Rongrong Zou
- Department for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jing Yuan
- Department for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xuejiao Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China.,Guangdong Key Laboratory for Anti-Infection Drug Quality Evaluation, Shenzhen, China
| |
Collapse
|
78
|
Comprehensive Analysis of the ILCs and Unconventional T Cells in Virus Infection: Profiling and Dynamics Associated with COVID-19 Disease for a Future Monitoring System and Therapeutic Opportunities. Cells 2022; 11:cells11030542. [PMID: 35159352 PMCID: PMC8834012 DOI: 10.3390/cells11030542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
This review is a comprehensive analysis of the effects of SARS-CoV-2 infection on Unconventional T cells and innate lymphoid cells (ILCs). COVID-19 affected patients show dysregulation of their adaptive immune systems, but many questions remain unsolved on the behavior of Unconventional cells and ILCs during infection, considering their role in maintaining homeostasis in tissue. Therefore, we highlight the differences that exist among the studies in cohorts of patients who in general were categorized considering symptoms and hospitalization. Moreover, we make a critical analysis of the presence of particular clusters of cells that express activation and exhausted markers for each group in order to bring out potential diagnostic factors unconsidered before now. We also focus our attention on studies that take into consideration recovered patients. Indeed, it could be useful to determine Unconventional T cells’ and ILCs’ frequencies and functions in longitudinal studies because it could represent a way to monitor the immune status of SARS-CoV-2-infected subjects. Possible changes in cell frequencies or activation profiles could be potentially useful as prognostic biomarkers and for future therapy. Currently, there are no efficacious therapies for SARS-CoV-2 infection, but deep studies on involvement of Unconventional T cells and ILCs in the pathogenesis of COVID-19 could be promising for targeted therapies.
Collapse
|
79
|
An Early Th1 Response Is a Key Factor for a Favorable COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10020296. [PMID: 35203509 PMCID: PMC8869678 DOI: 10.3390/biomedicines10020296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The Th1/Th2 balance plays a crucial role in the progression of different pathologies and is a determining factor in the evolution of infectious diseases. This work has aimed to evaluate the early, or on diagnosis, T-cell compartment response, T-helper subsets and anti-SARS-CoV-2 antibody specificity in COVID-19 patients and to classify them according to evolution based on infection severity. A unicenter, randomized group of 146 COVID-19 patients was divided into four groups in accordance with the most critical events during the course of disease. The immunophenotype and T-helper subsets were analyzed by flow cytometry. Asymptomatic SARS-CoV-2 infected individuals showed a potent and robust Th1 immunity, with a lower Th17 and less activated T-cells at the time of sample acquisition compared not only with symptomatic patients, but also with healthy controls. Conversely, severe COVID-19 patients presented with Th17-skewed immunity, fewer Th1 responses and more activated T-cells. The multivariate analysis of the immunological and inflammatory parameters, together with the comorbidities, showed that the Th1 response was an independent protective factor for the prevention of hospitalization (OR 0.17, 95% CI 0.03–0.81), with an AUC of 0.844. Likewise, the Th1 response was found to be an independent protective factor for severe forms of the disease (OR 0.09, 95% CI: 0.01–0.63, p = 0.015, AUC: 0.873). In conclusion, a predominant Th1 immune response in the acute phase of the SARS-CoV-2 infection could be used as a tool to identify patients who might have a good disease evolution.
Collapse
|
80
|
Kim TO, Park KJ, Cho YN, Jin HM, Jo YG, Kim HS, Ju JK, Shin HJ, Kho BG, Kee SJ, Park YW. Altered distribution, activation and increased IL-17 production of mucosal-associated invariant T cells in patients with acute respiratory distress syndrome. Thorax 2022; 77:865-872. [PMID: 35086913 DOI: 10.1136/thoraxjnl-2021-217724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/06/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that are engaged in a number of diseases, but their roles in acute respiratory distress syndrome (ARDS) are not fully examined yet. This study aimed to examine levels and functions of MAIT cells in patients with ARDS. METHODS Peripheral blood samples from patients with ARDS (n=50) and healthy controls (HCs, n=50) were collected. Levels of MAIT cells, cytokines, CD69, programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) were measured by flow cytometry. RESULTS Circulating MAIT cell levels were significantly reduced in patients with ARDS than in HCs. MAIT cell levels were inversely correlated with disease severity and mortality. Cytokine production profiles in MAIT cells showed that percentages of interleukin (IL)-17 producing MAIT cell were significantly higher in patients with ARDS than in HCs. Patients with ARDS exhibited higher expression levels of CD69, PD-1 and LAG-3 in circulating MAIT cells. Moreover, levels of MAIT cells and expression levels of CD69, PD-1 and IL-17 in MAIT cells were higher in bronchoalveolar lavage fluid samples than in peripheral blood samples. Our in vitro experiments showed that MAIT cells triggered macrophages to produce proinflammatory cytokines such as tumour necrosis factor-α, IL-1β and IL-8. CONCLUSIONS This study demonstrates that circulating MAIT cells are numerically deficient in patients with ARDS. In addition, MAIT cells were found to be activated, migrate into lung, secrete IL-17 and then stimulate macrophages. These findings suggest that MAIT cells contribute to the worsening of inflammation in the lung of patients with ARDS.
Collapse
Affiliation(s)
- Tae-Ok Kim
- Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Ki-Jeong Park
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young-Nan Cho
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hye-Mi Jin
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young-Goun Jo
- Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hyo Shin Kim
- Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jae Kyun Ju
- Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hong-Joon Shin
- Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Bo-Gun Kho
- Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Seung-Jung Kee
- Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong-Wook Park
- Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea .,Rheumatology, Chonnam National University Bitgoeul Hospital, Gwangju, Korea
| |
Collapse
|
81
|
Koay HF, Gherardin NA, Nguyen THO, Zhang W, Habel JR, Seneviratna R, James F, Holmes NE, Smibert OC, Gordon CL, Trubiano JA, Kedzierska K, Godfrey DI. Are NKT cells a useful predictor of COVID-19 severity? Immunity 2022; 55:185-187. [PMID: 35104438 PMCID: PMC8768020 DOI: 10.1016/j.immuni.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Rebecca Seneviratna
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia; Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia; Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia; Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia; North Eastern Public Health Unit, Austin Health, Heidelberg, VIC 3084, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
82
|
Erbaş GS, Botsali A, Erden N, Arı C, Taşkın B, Alper S, Vural S. COVID-19-related oral mucosa lesions among confirmed SARS-CoV-2 patients: a systematic review. Int J Dermatol 2022; 61:20-32. [PMID: 34549816 PMCID: PMC8652904 DOI: 10.1111/ijd.15889] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for coronavirus disease 2019 (COVID-19), which manifests as a flu-like respiratory infection affecting multiple organ systems, including the gastrointestinal system, central nervous system, cardiovascular system, skin, and mucosa. In this review, we investigated the literature on specific manifestations of COVID-19 in the oral mucosa. An online literature search in PubMed, Scopus, Google Scholar, and Medline was conducted to retrieve relevant studies on confirmed COVID-19 patients with oral mucosa findings published between December 31, 2019, and April 07, 2021. After an independent review by two authors, 39 articles considering 59 laboratory-confirmed cases of SARS-CoV-2 infection were included in the final analysis. The most common finding, reported in 29 patients (43.9%), was Kawasaki-like syndrome. In addition, oral ulcers including aphthous, hemorrhagic, and necrotic ulcers were reported in 24 patients (36.3%). Other lesions reported included pustules, macules, bullae, maculopapular enanthema, and erythema multiforme-like lesions. Concomitant skin lesions were present in 60.6% of patients. Fever was reported in 86.2% of patients. Forty-eight patients (76.1%) were hospitalized. Loss of taste and smell was present in 30.8% of the patients. A comprehensive understanding of the dermatologic manifestations of COVID-19 can improve and facilitate patient management and referrals.
Collapse
Affiliation(s)
- Gizem S. Erbaş
- School of MedicineTechnical University of MunichMunchenGermany
| | - Aysenur Botsali
- Department of DermatologyUniversity of Health Sciences, Gülhane Training and Research HospitalAnkaraTurkey
| | - Nihan Erden
- Koç University School of MedicineİstanbulTurkey
| | - Canan Arı
- Department of Dermatology and VenereologyAnkara Dışkapı Yıldırım Bayezit Eğitim ve Araştırma HospitalAnkaraTurkey
| | - Banu Taşkın
- Department of Dermatology and VenereologyKoç University School of MedicineİstanbulTurkey
| | - Sibel Alper
- Department of Dermatology and VenereologyKoç University School of MedicineİstanbulTurkey
| | - Secil Vural
- Department of Dermatology and VenereologyKoç University School of MedicineİstanbulTurkey
| |
Collapse
|
83
|
Ouyang L, Wu M, Shen Z, Cheng X, Wang W, Jiang L, Zhao J, Gong Y, Liang Z, Weng X, Yu M, Wu X. Activation and Functional Alteration of Mucosal-Associated Invariant T Cells in Adult Patients With Community-Acquired Pneumonia. Front Immunol 2021; 12:788406. [PMID: 34992604 PMCID: PMC8724213 DOI: 10.3389/fimmu.2021.788406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains the significant infectious cause of morbidity and mortality worldwide. Although mucosal-associated invariant T cells (MAIT) play roles in the pathogenesis of children CAP and ICU-associated pneumonia, their roles in adult CAP are largely unexplored. In this study, we investigated the frequency, phenotype, and function of MAIT cells in peripheral blood and bronchoalveolar lavage fluid (BALF) of adult CAP patients. Our data indicate that MAIT-cell frequency is profoundly lower in the peripheral blood of CAP patients compared to that in healthy individuals. Furthermore, the circulatory MAIT cells express higher levels of CD69 and PD-1 compared to those in healthy individuals. In BALF of CAP patients, MAIT-cell frequency is higher and MAIT cells express higher levels of CD69 and PD-1 compared to their matched blood counterparts. Levels of IL-17A and IFN-γ are increased in BALF of CAP patients compared to those in BALF of patients with pulmonary small nodules. The IL-17A/IFN-γ ratio is significantly positively correlated with MAIT frequency in BALF of CAP patients, suggesting a pathogenic role of MAIT-17 cells in CAP. Of note, blood MAIT-cell frequency in CAP patients is strongly negatively correlated with high-sensitivity C-reactive protein (hsCRP) and neutrophil count percentage in blood. The ability of circulating MAIT cells in CAP patients to produce IFN-γ is significantly impaired compared to those in healthy individuals. In summary, our findings suggest the possible involvement of MAIT cells in the immunopathogenesis of adult CAP.
Collapse
Affiliation(s)
- Lichen Ouyang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Cheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yeli Gong
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Zhihui Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muqing Yu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Muqing Yu, ; Xiongwen Wu, xiongwen
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Muqing Yu, ; Xiongwen Wu, xiongwen
| |
Collapse
|
84
|
Sarkar A, Harty S, Moeller AH, Klein SL, Erdman SE, Friston KJ, Carmody RN. The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends Mol Med 2021; 27:1115-1134. [PMID: 34756546 PMCID: PMC8492747 DOI: 10.1016/j.molmed.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to exact a devastating global toll. Ascertaining the factors underlying differential susceptibility and prognosis following viral exposure is critical to improving public health responses. We propose that gut microbes may contribute to variation in COVID-19 outcomes. We synthesise evidence for gut microbial contributions to immunity and inflammation, and associations with demographic factors affecting disease severity. We suggest mechanisms potentially underlying microbially mediated differential susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These include gut microbiome-mediated priming of host inflammatory responses and regulation of endocrine signalling, with consequences for the cellular features exploited by SARS-CoV-2 virions. We argue that considering gut microbiome-mediated mechanisms may offer a lens for appreciating differential susceptibility to SARS-CoV-2, potentially contributing to clinical and epidemiological approaches to understanding and managing COVID-19.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Siobhán Harty
- Tandy Court, Spitalfields, Dublin 8, D08 RP20, Ireland
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
85
|
Gee S, Chandiramani M, Seow J, Pollock E, Modestini C, Das A, Tree T, Doores KJ, Tribe RM, Gibbons DL. The legacy of maternal SARS-CoV-2 infection on the immunology of the neonate. Nat Immunol 2021; 22:1490-1502. [PMID: 34616036 DOI: 10.1038/s41590-021-01049-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Despite extensive studies into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the effect of maternal infection on the neonate is unclear. To investigate this, we characterized the immunology of neonates born to mothers with confirmed SARS-CoV-2 infection during pregnancy. Here we show that maternal SARS-CoV-2 infection affects the neonatal immune system. Despite similar proportions of B cells, CD4+ T cells and CD8+ T cells, increased percentages of natural killer cells, Vδ2+ γδ T cells and regulatory T cells were detected in neonates born to mothers with recent or ongoing infection compared with those born to recovered or uninfected mothers. Increased plasma cytokine levels were also evident in neonates and mothers within the recent or ongoing infection group. Cytokine functionality was enhanced in neonates born to SARS-CoV-2-exposed mothers, compared to those born to uninfected mothers. In most neonates, this immune imprinting was nonspecific, suggesting vertical transmission of SARS-CoV-2 is limited, a finding supported by a lack of SARS-CoV-2-specific IgM in neonates despite maternal IgG transfer.
Collapse
Affiliation(s)
- Sarah Gee
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Manju Chandiramani
- Department of Women's Health, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Emily Pollock
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Carlotta Modestini
- Department of Women's Health, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | - Abhishek Das
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Timothy Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Rachel M Tribe
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, UK
| | - Deena L Gibbons
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
86
|
Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021; 17:e1010106. [PMID: 34969061 PMCID: PMC8718010 DOI: 10.1371/journal.ppat.1010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.
Collapse
Affiliation(s)
- Olivier Terrier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mustapha Si-Tahar
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Inserm U1100, Research Center for Respiratory Diseases (CEPR), Université de Tours, Tours, France
| | - Mariette Ducatez
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- IHAP, UMR1225, Université de Toulouse, ENVT, INRAE, Toulouse, France
| | - Christophe Chevalier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Andrés Pizzorno
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Ronan Le Goffic
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Thibaut Crépin
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gaëlle Simon
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Nadia Naffakh
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
87
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
88
|
Tang G, Huang M, Luo Y, Liu W, Lin Q, Mao L, Wu S, Xiong Z, Hou H, Sun Z, Wang F. The Dynamic Immunological Parameter Landscape in Coronavirus Disease 2019 Patients With Different Outcomes. Front Immunol 2021; 12:697622. [PMID: 34777333 PMCID: PMC8586656 DOI: 10.3389/fimmu.2021.697622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objectives The longitudinal and systematic evaluation of immunity in coronavirus disease 2019 (COVID-19) patients is rarely reported. Methods Parameters involved in innate, adaptive, and humoral immunity were continuously monitored in COVID-19 patients from onset of illness until 45 days after symptom onset. Results This study enrolled 27 mild, 47 severe, and 46 deceased COVID-19 patients. Generally, deceased patients demonstrated a gradual increase of neutrophils and IL-6 but a decrease of lymphocytes and platelets after the onset of illness. Specifically, sustained low numbers of CD8+ T cells, NK cells, and dendritic cells were noted in deceased patients, while these cells gradually restored in mild and severe patients. Furthermore, deceased patients displayed a rapid increase of HLA-DR expression on CD4+ T cells in the early phase, but with a low level of overall CD45RO and HLA-DR expressions on CD4+ and CD8+ T cells, respectively. Notably, in the early phase, deceased patients showed a lower level of plasma cells and antigen-specific IgG, but higher expansion of CD16+CD14+ proinflammatory monocytes and HLA-DR−CD14+ monocytic-myeloid-derived suppressor cells (M-MDSCs) than mild or severe patients. Among these immunological parameters, M-MDSCs showed the best performance in predicting COVID-19 mortality, when using a cutoff value of ≥10%. Cluster analysis found a typical immunological pattern in deceased patients on day 9 after onset, which was characterized as the increase of inflammatory markers (M-MDSCs, neutrophils, CD16+CD14+ monocytes, and IL-6) but a decrease of host immunity markers. Conclusions This study systemically characterizes the kinetics of immunity of COVID-19, highlighting the importance of immunity in patient prognosis.
Collapse
Affiliation(s)
- Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang Xiong
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Khwatenge CN, Pate M, Miller LC, Sang Y. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Front Immunol 2021; 12:732913. [PMID: 34737743 PMCID: PMC8560738 DOI: 10.3389/fimmu.2021.732913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity prevails worldwide to an increasing effect. For example, up to 42% of American adults are considered obese. Obese individuals are prone to a variety of complications of metabolic disorders including diabetes mellitus, hypertension, cardiovascular disease, and chronic kidney disease. Recent meta-analyses of clinical studies in patient cohorts in the ongoing coronavirus-disease 2019 (COVID-19) pandemic indicate that the presence of obesity and relevant disorders is linked to a more severe prognosis of COVID-19. Given the significance of obesity in COVID-19 progression, we provide a review of host metabolic and immune responses in the immunometabolic dysregulation exaggerated by obesity and the viral infection that develops into a severe course of COVID-19. Moreover, sequela studies of individuals 6 months after having COVID-19 show a higher risk of metabolic comorbidities including obesity, diabetes, and kidney disease. These collectively implicate an inter-systemic dimension to understanding the association between obesity and COVID-19 and suggest an interdisciplinary intervention for relief of obesity-COVID-19 complications beyond the phase of acute infection.
Collapse
Affiliation(s)
- Collins N Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Marquette Pate
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
90
|
Single-Cell RNAseq Profiling of Human γδ T Lymphocytes in Virus-Related Cancers and COVID-19 Disease. Viruses 2021; 13:v13112212. [PMID: 34835019 PMCID: PMC8623150 DOI: 10.3390/v13112212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
The detailed characterization of human γδ T lymphocyte differentiation at the single-cell transcriptomic (scRNAseq) level in tumors and patients with coronavirus disease 2019 (COVID-19) requires both a reference differentiation trajectory of γδ T cells and a robust mapping method for additional γδ T lymphocytes. Here, we incepted such a method to characterize thousands of γδ T lymphocytes from (n = 95) patients with cancer or adult and pediatric COVID-19 disease. We found that cancer patients with human papillomavirus-positive head and neck squamous cell carcinoma and Epstein-Barr virus-positive Hodgkin's lymphoma have γδ tumor-infiltrating T lymphocytes that are more prone to recirculate from the tumor and avoid exhaustion. In COVID-19, both TCRVγ9 and TCRVγnon9 subsets of γδ T lymphocytes relocalize from peripheral blood mononuclear cells (PBMC) to the infected lung tissue, where their advanced differentiation, tissue residency, and exhaustion reflect T cell activation. Although severe COVID-19 disease increases both recruitment and exhaustion of γδ T lymphocytes in infected lung lesions but not blood, the anti-IL6R therapy with Tocilizumab promotes γδ T lymphocyte differentiation in patients with COVID-19. PBMC from pediatric patients with acute COVID-19 disease display similar γδ T cell lymphopenia to that seen in adult patients. However, blood γδ T cells from children with the COVID-19-related multisystem inflammatory syndrome are not lymphodepleted, but they are differentiated as in healthy PBMC. These findings suggest that some virus-induced memory γδ T lymphocytes durably persist in the blood of adults and could subsequently infiltrate and recirculate in tumors.
Collapse
|
91
|
Estella Á, Vidal-Cortés P, Rodríguez A, Andaluz Ojeda D, Martín-Loeches I, Díaz E, Suberviola B, Gracia Arnillas MP, Catalán González M, Álvarez-Lerma F, Ramírez P, Nuvials X, Borges M, Zaragoza R. Management of infectious complications associated with coronavirus infection in severe patients admitted to ICU. Med Intensiva 2021; 45:485-500. [PMID: 34475008 PMCID: PMC8382590 DOI: 10.1016/j.medine.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022]
Abstract
Infections have become one of the main complications of patients with severe SARS-CoV-2 pneumonia admitted in ICU. Poor immune status, frequent development of organic failure requiring invasive supportive treatments, and prolonged ICU length of stay in saturated structural areas of patients are risk factors for infection development. The Working Group on Infectious Diseases and Sepsis GTEIS of the Spanish Society of Intensive Medicine and Coronary Units SEMICYUC emphasizes the importance of infection prevention measures related to health care, the detection and early treatment of major infections in the patient with SARS-CoV-2 infections. Bacterial co-infection, respiratory infections related to mechanical ventilation, catheter-related bacteremia, device-associated urinary tract infection and opportunistic infections are review in the document.
Collapse
Affiliation(s)
- Á Estella
- Servicio de Medicina Intensiva, Hospital Universitario de Jerez, Departamento de Medicina, Facultad de Medicina de Cádiz, Jerez de la Frontera, Cádiz, Spain.
| | - P Vidal-Cortés
- Servicio de Medicina Intensiva, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - A Rodríguez
- Servicio de Medicina Intensiva, Hospital Universitario Joan XXIII de Tarragona, Tarragona, Spain
| | - D Andaluz Ojeda
- Servicio de Medicina Intensiva, Hospital Universitario de Sanchinarro de Madrid, Madrid, Spain
| | - I Martín-Loeches
- PhD JFICMI Consultant in Intensive Care Medicine, CLOD Dublin Midlands Group, St James's University Hospital, Trinity Centre for Health Sciences, HRB-Welcome Trust St James's Hospital, Dublin, EIRE, Universidad de Barcelona, Barcelona, Spain
| | - E Díaz
- Servicio de Medicina Intensiva, Hospital Parc Tauli, Sabadell, Spain
| | - B Suberviola
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - M P Gracia Arnillas
- Servicio de Medicina Intensiva, Hospital Universitario del Mar, Barcelona, Spain
| | - M Catalán González
- Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - F Álvarez-Lerma
- Servicio de Medicina Intensiva, Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - P Ramírez
- Servicio de Medicina Intensiva, Hospital La Fe de Valencia, Valencia, Spain
| | - X Nuvials
- Servicio de Medicina Intensiva, Hospital Vall d'Hebrón, Barcelona, Spain
| | - M Borges
- Unidad Multidisciplinar de Sepsis, Servicio de Medicina Intensiva, Hospital Universitario Son Llatzer, IDISBA, Enfermedades Infecciosas UIB, Palma de Mallorca, Área de Sepsis e Infecciosas, Federación Ibérica y Panamericana de Medicina Intensiva (FEPIMCTI), Palma de Mallorca, Spain
| | - R Zaragoza
- Servicio de Medicina Intensiva, Hospital Universitario Dr. Peset, Valencia, Spain
| |
Collapse
|
92
|
Estella Á, Vidal-Cortés P, Rodríguez A, Andaluz Ojeda D, Martín-Loeches I, Díaz E, Suberviola B, Gracia Arnillas MP, Catalán González M, Álvarez-Lerma F, Ramírez P, Nuvials X, Borges M, Zaragoza R. [Management of infectious complications associated with coronavirus infection in severe patients admitted to ICU]. Med Intensiva 2021; 45:485-500. [PMID: 33994616 PMCID: PMC8086823 DOI: 10.1016/j.medin.2021.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022]
Abstract
Infections have become one of the main complications of patients with severe SARS-CoV-2 pneumonia admitted in ICU. Poor immune status, frequent development of organic failure requiring invasive supportive treatments, and prolonged ICU length of stay in saturated structural areas of patients are risk factors for infection development. The Working Group on Infectious Diseases and Sepsis GTEIS of the Spanish Society of Intensive Medicine and Coronary Units SEMICYUC emphasizes the importance of infection prevention measures related to health care, the detection and early treatment of major infections in the patient with SARS-CoV-2 infections. Bacterial co-infection, respiratory infections related to mechanical ventilation, catheter-related bacteremia, device-associated urinary tract infection and opportunistic infections are review in the document.
Collapse
Affiliation(s)
- Á Estella
- Servicio de Medicina Intensiva, Hospital Universitario de Jerez, Departamento de Medicina, Facultad de Medicina de Cádiz, Jerez de la Frontera, Cádiz, España
| | - P Vidal-Cortés
- Servicio de Medicina Intensiva, Complexo Hospitalario Universitario de Ourense, Ourense, España
| | - A Rodríguez
- Servicio de Medicina Intensiva, Hospital Universitario Joan XXIII de Tarragona, Tarragona, España
| | - D Andaluz Ojeda
- Servicio de Medicina Intensiva, Hospital Universitario de Sanchinarro de Madrid, Madrid, España
| | - I Martín-Loeches
- PhD JFICMI Consultant in Intensive Care Medicine, CLOD Dublin Midlands group, St James's University Hospital, Trinity Centre for Health Sciences, HRB-Welcome Trust St James's Hospital, Dublín, EIRE, Universidad de Barcelona, Barcelona, España
| | - E Díaz
- Servicio de Medicina Intensiva, Hospital Parc Tauli, Sabadell, España
| | - B Suberviola
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla. Santander, España
| | - M P Gracia Arnillas
- Servicio de Medicina Intensiva, Hospital Universitario del Mar, Barcelona, España
| | - M Catalán González
- Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, España
| | - F Álvarez-Lerma
- Servicio de Medicina Intensiva, Parc de Salut Mar, Hospital del Mar, Barcelona, España
| | - P Ramírez
- Servicio de Medicina Intensiva, Hospital La Fe de Valencia, Valencia, España
| | - X Nuvials
- Servicio de Medicina Intensiva, Hospital Vall d'Hebrón, Barcelona, España
| | - M Borges
- Unidad Multidisciplinar de Sepsis, Servicio de Medicina Intensiva, Hospital Universitario Son Llatzer, IDISBA, Enfermedades Infecciosas UIB, Palma de Mallorca, Área de Sepsis e Infecciosas, Federación Ibérica y Panamericana de Medicina Intensiva (FEPIMCTI), Palma de Mallorca, España
| | - R Zaragoza
- Servicio de Medicina Intensiva, Hospital Universitario Dr. Peset, Valencia, España
| |
Collapse
|
93
|
von Massow G, Oh S, Lam A, Gustafsson K. Gamma Delta T Cells and Their Involvement in COVID-19 Virus Infections. Front Immunol 2021; 12:741218. [PMID: 34777353 PMCID: PMC8586491 DOI: 10.3389/fimmu.2021.741218] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people worldwide and forced large parts of the world into lockdowns. While multiple vaccine programs are starting to immunize the global population, there is no direct cure for COVID-19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells are in the immune response to COVID-19. The research so far has mainly focused on the involvement of classical αβ T cells. However, another subset of T cells called γδ T cells could have an important role to play. As part of the innate immune system, γδ T cells respond to inflammation and stressed or infected cells. The γδ T cell subset appears to be particularly affected by lymphopenia in COVID-19 patients and commonly express activation and exhaustion markers. Particularly in children, this subset of T cells seems to be most affected. This is interesting and relevant because γδ T cells are more prominent and active in early life. Their specific involvement in this group of patients could indicate a significant role for γδ T cells in this disease. Furthermore, they seem to be involved in other viral infections and were able to kill SARS infected cells in vitro. γδ T cells can take up, process and present antigens from microbes and human cells. As e.g. tumour-associated antigens are presented by MHC on γδ T cells to classical T-cells, we argue here that it stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be presented in the same way. γδ T cells are already used for medical purposes in oncology and have potential in cancer therapy. As γδ T cells are not necessarily able to distinguish between a transformed and a virally infected cell it could therefore be of great interest to investigate further the relationship between COVID-19 and γδ T cells.
Collapse
Affiliation(s)
- Georg von Massow
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Kenth Gustafsson
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
94
|
Valdebenito S, Bessis S, Annane D, Lorin de la Grandmaison G, Cramer–Bordé E, Prideaux B, Eugenin EA, Bomsel M. COVID-19 Lung Pathogenesis in SARS-CoV-2 Autopsy Cases. Front Immunol 2021; 12:735922. [PMID: 34671353 PMCID: PMC8521087 DOI: 10.3389/fimmu.2021.735922] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major public health issue. COVID-19 is considered an airway/multi-systemic disease, and demise has been associated with an uncontrolled immune response and a cytokine storm in response to the virus. However, the lung pathology, immune response, and tissue damage associated with COVID-19 demise are poorly described and understood due to safety concerns. Using post-mortem lung tissues from uninfected and COVID-19 deadly cases as well as an unbiased combined analysis of histology, multi-viral and host markers staining, correlative microscopy, confocal, and image analysis, we identified three distinct phenotypes of COVID-19-induced lung damage. First, a COVID-19-induced hemorrhage characterized by minimal immune infiltration and large thrombus; Second, a COVID-19-induced immune infiltration with excessive immune cell infiltration but no hemorrhagic events. The third phenotype correspond to the combination of the two previous ones. We observed the loss of alveolar wall integrity, detachment of lung tissue pieces, fibroblast proliferation, and extensive fibrosis in all three phenotypes. Although lung tissues studied were from lethal COVID-19, a strong immune response was observed in all cases analyzed with significant B cell and poor T cell infiltrations, suggesting an exhausted or compromised immune cellular response in these patients. Overall, our data show that SARS-CoV-2-induced lung damage is highly heterogeneous. These individual differences need to be considered to understand the acute and long-term COVID-19 consequences.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Simon Bessis
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Djillali Annane
- Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Paris, France
- Simone Veil School of Medicine, Université of Versailles, Versailles, France
- University Paris Saclay, Garches, France
| | - Geoffroy Lorin de la Grandmaison
- Department of Forensic Medicine and Pathology, Versailles Saint-Quentin Université, AP-HP, Raymond Poincaré Hospital, Garches, France
| | | | - Brendan Prideaux
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity, and Inflammation, Institute Cochin, CNRS UMR 8104, INSERM U1016, University of Paris, Paris, France
| |
Collapse
|
95
|
Wang X, Xu G, Liu X, Liu Y, Zhang S, Zhang Z. Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cell Mol Immunol 2021; 18:2313-2324. [PMID: 34471261 PMCID: PMC8408367 DOI: 10.1038/s41423-021-00754-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
In response to emerging infectious diseases, such as the recent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to quickly identify and understand responsible pathogens, risk factors, host immune responses, and pathogenic mechanisms at both the molecular and cellular levels. The recent development of multiomic technologies, including genomics, proteomics, metabolomics, and single-cell transcriptomics, has enabled a fast and panoramic grasp of the pathogen and the disease. Here, we systematically reviewed the major advances in the virology, immunology, and pathogenic mechanisms of SARS-CoV-2 infection that have been achieved via multiomic technologies. Based on well-established cohorts, omics-based methods can greatly enhance the mechanistic understanding of diseases, contributing to the development of new diagnostics, drugs, and vaccines for emerging infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Xin Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiaoju Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.
| |
Collapse
|
96
|
Yang Q, Wen Y, Qi F, Gao X, Chen W, Xu G, Wei C, Wang H, Tang X, Lin J, Zhao J, Zhang M, Zhang S, Zhang Z. Suppressive Monocytes Impair MAIT Cells Response via IL-10 in Patients with Severe COVID-19. THE JOURNAL OF IMMUNOLOGY 2021; 207:1848-1856. [PMID: 34452933 DOI: 10.4049/jimmunol.2100228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.
Collapse
Affiliation(s)
- Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanling Wen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Weixin Chen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Cailing Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xian Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jingyan Lin
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; and
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China; .,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
97
|
Povoa P, Martin-Loeches I, Nseir S. Secondary pneumonias in critically ill patients with COVID-19: risk factors and outcomes. Curr Opin Crit Care 2021; 27:468-473. [PMID: 34321415 PMCID: PMC8452245 DOI: 10.1097/mcc.0000000000000860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of the current evidence of secondary pneumonias in COVID-19 patients, its incidence, risk factors and impact outcomes. RECENT FINDINGS Early studies reported low incidence of hospital-acquired infections in COVID-19 patients. More recent large studies clearly showed that the incidence of secondary pneumonias was markedly high in patients under mechanical ventilation. Duration of mechanical ventilation, acute respiratory distress syndrome, prone position and male sex were identified as risk factors. The adjunctive therapy with steroids and immunomodulators were associated with a higher risk of pneumonia and invasive pulmonary Aspergillosis. Although secondary pneumonias seemed to be associated with poor outcomes, namely mortality, in comparison with influenza, no difference was found in heterogeneity of outcomes. Immunosuppressive therapy has been studied in several observational and randomized trials with conflicting results and the true impact on superinfections, namely secondary pneumonias, has not been properly assessed. SUMMARY According to the current evidence, COVID-19 patients are at an increased risk of secondary pneumonias. The impact of immunosuppressive therapies on superinfections is yet to be determined. Further studies are needed to assess the true risk of secondary infections associated with immunosuppressive therapies and to identify preventive strategies.
Collapse
Affiliation(s)
- Pedro Povoa
- Polyvalent Intensive Care Unit, São Francisco Xavier Hospital, Centro Hospitalar de Lisboa Ocidental
- NOVA Medical School, CHRC, New University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, St. James Street, Dublin 8, Dublin, Eire, Ireland
- Hospital Clinic. IDIBAPS. Universided de Barcelona. CIBERes, Barcelona, Spain
| | - Saad Nseir
- CHU de Lille, Centre de Réanimation
- Université de Lille, INSERM U995, Team Fungal Associated Invasive & Inflammatory Diseases, Lille Inflammation Research International Center, Lille, France
| |
Collapse
|
98
|
Qi HX, Shen QD, Zhao HY, Qi GZ, Gao L. Network-based analysis revealed significant interactions between risk genes of severe COVID-19 and host genes interacted with SARS-CoV-2 proteins. Brief Bioinform 2021; 23:6372084. [PMID: 34535795 DOI: 10.1093/bib/bbab372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Whether risk genes of severe coronavirus disease 2019 (COVID-19) from genome-wide association study could play their regulatory roles by interacting with host genes that were interacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins was worthy of exploration. In this study, we implemented a network-based approach by developing a user-friendly software Network Calculator (https://github.com/Haoxiang-Qi/Network-Calculator.git). By using Network Calculator, we identified a network composed of 13 risk genes and 28 SARS-CoV-2 interacted host genes that had the highest network proximity with each other, with a hub gene HNRNPK identified. Among these genes, 14 of them were identified to be differentially expressed in RNA-seq data from severe COVID-19 cases. Besides, by expression enrichment analysis in single-cell RNA-seq data, compared with mild COVID-19, these genes were significantly enriched in macrophage, T cell and epithelial cell for severe COVID-19. Meanwhile, 74 pathways were significantly enriched. Our analysis provided insights for the underlying genetic etiology of severe COVID-19 from the perspective of network biology.
Collapse
Affiliation(s)
- Hao-Xiang Qi
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Qi-Dong Shen
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Hong-Yi Zhao
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Guo-Zhen Qi
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Lei Gao
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| |
Collapse
|
99
|
Youngs J, Provine NM, Lim N, Sharpe HR, Amini A, Chen YL, Luo J, Edmans MD, Zacharopoulou P, Chen W, Sampson O, Paton R, Hurt WJ, Duncan DA, McNaughton AL, Miao VN, Leaver S, Wyncoll DLA, Ball J, Hopkins P, Oxford Immunology Network Covid-19 response T cell Consortium, Oxford Protective T cell Immunology for COVID-19 (OPTIC) Clinical team, Skelly DT, Barnes E, Dunachie S, Ogg G, Lambe T, Pavord I, Shalek AK, Thompson CP, Xue L, Macallan DC, Goulder P, Klenerman P, Bicanic T. Identification of immune correlates of fatal outcomes in critically ill COVID-19 patients. PLoS Pathog 2021; 17:e1009804. [PMID: 34529726 PMCID: PMC8445447 DOI: 10.1371/journal.ppat.1009804] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.
Collapse
Affiliation(s)
- Jonathan Youngs
- Institute for Infection & Immunity, St. George’s University of London, London, United Kingdom
- Clinical Academic Group in Infection and Immunity, St. George’s Hospital NHS Trust, London, United Kingdom
| | - Nicholas M. Provine
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ali Amini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yi-Ling Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jian Luo
- Respiratory Medicine Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Matthew D. Edmans
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Wentao Chen
- Respiratory Medicine Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Oliver Sampson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert Paton
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - William J. Hurt
- Institute for Infection & Immunity, St. George’s University of London, London, United Kingdom
- Clinical Academic Group in Infection and Immunity, St. George’s Hospital NHS Trust, London, United Kingdom
| | - David A. Duncan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Anna L. McNaughton
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincent N. Miao
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Susannah Leaver
- Intensive Care Medicine, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
| | - Duncan L. A. Wyncoll
- Intensive Care Medicine, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - Jonathan Ball
- Intensive Care Medicine, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
| | - Philip Hopkins
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences, & Medicine, King’s College, London, United Kingdom
| | | | | | - Donal T. Skelly
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ian Pavord
- Respiratory Medicine Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex K. Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Craig P. Thompson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Luzheng Xue
- Respiratory Medicine Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Derek C. Macallan
- Institute for Infection & Immunity, St. George’s University of London, London, United Kingdom
- Clinical Academic Group in Infection and Immunity, St. George’s Hospital NHS Trust, London, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tihana Bicanic
- Institute for Infection & Immunity, St. George’s University of London, London, United Kingdom
- Clinical Academic Group in Infection and Immunity, St. George’s Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
100
|
Masina N, Bekiswa A, Shey M. Mucosal-associated invariant T cells in natural immunity and vaccination against infectious diseases in humans. Curr Opin Immunol 2021; 71:1-5. [PMID: 33773437 DOI: 10.1016/j.coi.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are subsets of T cells abundant in human mucosal tissues and in blood. These cells are activated directly by cytokines or by vitamin B metabolites antigen presentation. MAIT cells possess antimicrobial potential against viruses and bacteria through production of cytokines and cytotoxic molecules. MAIT cells generally reduce in numbers and function during viral and bacterial infections/diseases. Mice and humans lacking MAIT cells cannot effectively control bacterial infections. MAIT cells respond rapidly to infections and are rapidly recruited to the site of vaccination or infection including the lungs where they can be involved in controlling local inflammation. These characteristics of MAIT cells offer them a unique potential to be explored as potential targets for vaccines.
Collapse
Affiliation(s)
- Nomawethu Masina
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abulele Bekiswa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|